All cited works refer essentially to compact section beams where symmetry does not play any role, whereas in the present model open-cross-section beams, without any assumption of symmetry, are considered. The discrete form of the equations of motion obtained in Part I [1] is used to analyze the non-linear oscillations of a beam with a mono-symmetric cross-section. Due to the presence of many mixed terms, phenomena of modal coupling and internal resonance involving all the displacement components can occur, allowing the beam to undergo exural-exural-torsional vibrations. A beam has been considered having frequency ratios: ! 1 =! 3 ∼ = 2 and ! 2 =! 3 ∼ = 3, where ! 1 is the exural frequency in the symmetry direction and ! 3 is the torsional frequency. These frequency ratios imply quadratic and cubic internal resonances and a combination resonance to occur.

A harmonic load acting in the direction of the symmetry axis, in an external resonance condition with exural frequency, is considered. Multiple time scale method [8] is used to obtain modulation-phase equations and the reconstitution method ÿrst proposed in [9] is adopted to return to the true time domain. Steady-state solutions and their stability are studied by using the model proposed. The coecients of the discrete equations of motion and some frequency-response curves are compared with those obtained by the model in which torsional elongation and non-linear warping are neglected, retaining linear Vlasov warping only. Fig. 2. Midspan section displacements in the ÿrst three eigenfunctions.

 Coe cients of the non-dimensional discretized equations of motion Eq. (1)

Amplitude and phase equations for the discrete model

A beam with a monosymmetric cross-section, loaded by a distributed harmonic force applied to the beam's centroid axis acting along the section symmetric axis is considered. By assuming that the beam is inextensible and shear indeformable and using a three-mode discretization, the non-linear exural-exural-torsional oscillations are governed by the following three ordinary di erential equations [START_REF] Di Egidio | A non-linear model for the dynamics of open cross-section thin-walled beams-Part I: formulation[END_REF]:

q 1 + d 1 q1 + k 1 q 1 = c 1 q 2
2 + c 2 q 2 3 + c 3 q 2 q 3 + c 4 q 1 q 2 2 + c 5 q 1 q 2 3 + c 6 q 1 q 2 q 3 + f 1 ; q 2 + d 2 q2 + k 2 q 2 = c 7 q 1 q 2 + c 8 q 1 q 3 + c 9 q 3 2 + c 10 q 3 3 + c 11 q 2 1 q 2 + c 12 q 2 1 q 3 + c 13 q 2 q 2 3 + c 14 q 2 2 q 3 ; q 3 + d 3 q3 + k 3 q 3 = c 15 q 1 q 2 + c 16 q 1 q 3 + c 17 q 3 2 + c 18 q 3 3 + c 19 q 2 1 q 2 + c 20 q 2 1 q 3 + c 21 q 2 q 2 3 + c 22 q 2 2 q 3 ;

where q i is the ith mode amplitude, d i are the modal damping coe cients and f 1 (t) = p 1 e i 1 t + c:c: is the load, of frequency , assumed to be in primary resonance with the q 1 -mode. Moreover, the beam is assumed to be in internal resonance conditions of the kind 2:3:1, so that quadratic, cubic and combination resonances occur.

The method of multiple time scales is employed to study the non-linear equations [START_REF] Di Egidio | A non-linear model for the dynamics of open cross-section thin-walled beams-Part I: formulation[END_REF]. Since non-linear terms are quadratic and cubic, a second-order expansion is developed. A small parameter is introduced by ordering the linear damping and load amplitude as d i = 2 di ; p i = 3 pi . Moreover, the displacements q i are expanded as q i (T 0 ; T 1 ; T 2 ; ) = q (0) i (T 0 ; T 1 ; T 2 )+ 2 q (1) i (T 0 ; T 1 ; T 2 )

+ 3 q (2) i (T 0 ; T 1 ; T 2 ) + • • • ; (2) 
where, T 0 = t; T 1 = t; T 2 = 2 t. T 0 is a fast scale, on which motions with frequencies of the order of occur, while T 1 and T 2 are the slow scales, on which modulations of the amplitudes and phases take place. Substituting Eq. (2) into Eq. ( 1) and equating coecients of like powers of , the following perturbation equations are obtained: Order :

D 00 q (0) i + ! 2 i q (0) i = 0; (i = 1; 2; 3): (3) 
Order 2 :

D 00 q (1) i + ! 2 1 q (1) 1 = -2D 01 q (0) 1 + c 1 q (0) 2
where D i ()=@()=@T i ; D ij ()=@ 2 ()=@T i @T j (i; j=0; 1; 2) and the tilde has been omitted for simplicity. The solution to the ÿrst-order perturbation equations (3) is

q (0) i = A i (T 1 ; T 2 )e i!iT0 + c:c: (6) 
In order to investigate the system response under internal and external resonance conditions, three detuning parameters i are introduced

1 = ! 1 + 2 1 ; 2! 3 = ! 1 + 2 ; 3! 3 = ! 2 + 2 3 : (7) 
The ÿrst relation accounts for the primary external resonance, while the last two relations account for the quadratic and the cubic internal resonances, respectively. Substituting Eq. ( 6) into Eqs. ( 4) and zeroing secular terms, it follows that

D 1 A 1 = -2i 1 A 2 3 e i 2 T1 -2i 2 A 2 A 3 e i( 2 T1-3 T2) ; D 1 A 2 = -2i 3 A 1 A 3 e i( 3 T2-2 T1) ; D 1 A 3 = -2i 4 A 1 A 2 e i( 2 T1-3 T2) -2i 5 A 1 A 3 e -i 2T1 ; (8) 
where coe cients i are reported in the appendix. The solution to the 2 -order perturbation equations reads:

q (1) 1 = K 1 c 1 A 2 2 e i2!2T0 + K 2 c 3 A 2 A 3 e i(!2+!3)T0 + c 1 ! 2 1 A 2 A 2 + c 2 ! 2 1 A 3 A 3 + c:c:; q (1) 2 = K 3 c 7 A 1 A 2 e i(!1+!2)T0 + K 4 c 7 A 1 A 2 e i(!2-!1)T0 + K 5 c 8 A 1
A 3 e i(!3-!1)T0 + c:c:;

q (1) 3 = K 6 c 15 A 1 A 2 e i(!1+!2)T0 + K 7 c 16 A 1 A 3 e i(!1+!3)T0 + c:c:; (9) 
where coe cients K i are reported in the appendix. Eqs. ( 6) and ( 9) are substituted into Eqs. (5); zeroing again secular terms and taking into account Eqs. [START_REF] Benedettini | Theoretical and experimental ÿnite forced dynamics of a cantilever beam: dynamic instability and modal coupling[END_REF], leads to

D 2 A 1 =(-id 1 ! 1 A 1 +p 1 e i 1 T2 +b 1 A 1 A 2 A 3 e i(2 2 T1-3 T2) + b 2 A 1 A 3 A 3 + b 3 A 2 3 e i 2 T1 + b 4 A 1 A 2 A 2 + b 5 A 2 A 3 e i( 2 T1-3 T2) )=2i! 1 ; D 2 A 2 = (-id 2 ! 2 A 2 + b 6 A 3 3 e i 3 T2 + b 7 A 2 A 3 A 3 + b 8 A 1 A 1 A 2 +b 9 A 2 1 A 3 e i( 2 T1-2 3 T2) +b 10 A 2 2 A 2 + b 11 A 1 A 3 e i( 3 T2-2 T1) )=2i! 2 ; D 2 A 3 = (id 3 ! 3 A 3 + b 12 A 2 A 2 3 e -i 3 T2 + b 13 A 2 A 2 A 3 + b 14 A 1 A 1 A 3 + b 15 A 1 A 2 e i( 2 T1-3 T2) + b 16 A 2 3 A 3 + b 17 A 2 1 A 2 e i( 3 T2-2 2 T1) + b 18 A 1 A 3 e -i 2 T1 )=2i! 3 ; (10) 
where coe cients b i are given in the appendix. Eqs. ( 8) and (10) are rewritten in terms of polar quantities by deÿning

A j = 1 2 a j e i j ; (11) 
where a i are real amplitudes and i are the phases. In the previous Eqs. ( 8) and (10), the explicit dependence on time is eliminated by introducing the following phase-di erences:

1 = 1 -1 T 2 ; 2 = 2 3 -1 + 2 T 1 ; 3 = 3 3 -2 + 3 T 2 : (12) 
The reconstitution method ÿrst proposed in [START_REF] Ali | Perturbation Methods in Nonlinear Dynamics, Societ a Italiana di Fisica[END_REF] is adopted to return to true time t, according to the following rules:

ȧi = D 1 a i + 2 D 2 a i ; #i = D 1 # i + 2 D 2 # i : (13) 
Using Eqs. ( 8) and (10) and taking into account Eqs. (11) and (12), the following amplitude and phase equations are ÿnally obtained:

ȧ1 = -d * 1 a 1 + h 1 a 2 3 sin 2 + h 2 a 2 a 3 sin( 2 -3 ) + h 3 a 1 a 2 a 3 sin(2 2 -3 ) -f * 1 sin 1 ; ȧ2 = -d * 2 a 2 + h 4 a 1 a 3 sin( 3 -2 ) + h 5 a 3 3 sin 3 + h 6 a 2 1 a 3 sin( 3 -2 2 ); ȧ3 = -d * 3 a 3 -h 7 a 1 a 3 sin 2 + h 8 a 1 a 2 sin( 2 -3 ) -h 9 a 2 a 2 3 sin 3 + h 10 a 2 1 a 2 sin( 3 -2 2 )
;

a 1 ˙ 1 = -h 1 a 2 3 cos 2 -h 2 a 2 a 3 cos( 2 -3 ) -hc 3 a 1 a 2 a 3 cos(2 2 -3 ) -h 14 a 1 a 2 3 -h 15 a 1 a 2 2 -f * 1 cos 1 -1 a 1 ; (14) 
a 1 a 3 ˙ 2 = (h 1 a 3 3 -2h 7 a 2 1 a ) cos 2 + (h 2 a 2 a 2 3 -2h a 2 1 a 2 ) cos( 2 -3 ) -2h 9 a 1 a 2 a 2 3 cos 3 +(h 3 a 1 a 2 a 2 3 -2h 10 a 3 1 a 2 ) × cos( 3 -2 2 ) -2h 11 a 1 a 2 2 a 3 -2h 14 a 3 1 a 3 -2h 13 a 1 a 3 3 + h 14 a 1 a 3 3 + h 15 a 1 a 2 2 a 3 + f * 1 a 3 cos 1 + 2 a 1 a 3 ; a 2 a 3 ˙ 3 = -3h 7 a 1 a 2 a 3 cos 2 + (h 4 a 1 a 2 3 -3h 8 a 1 a 2 2 ) × cos( 2 -3 ) + (h 5 a 4 3 -3h 9 a 2 2 a 2 3 ) cos 3 + (h 6 a 2 1 a 2 3 -3h 10 a 2 1 a 2 2 ) cos( 3 -2 2 )
-3h 11 a 3 2 a 3 -3h 14 a 2 1 a 2 a 3 -3h 13 a 2 a 3 3 + h 16 a 2 a 3 3 +h 17 a a 2 a 3 +h 18 a 3 2 a 3 + 3 a 2 a 3 ; where coe cients h i ; f * 1 ; d * i are reported in the appendix. Eqs. ( 14) describe the non-linear resonant motion of the system; the steady-state solutions and their stability are studied for a particular mechanical system in the next section.

Numerical results

Sample mechanical system

Non-linear coupling and resonant motions are investigated for a beam simply supported at the ends and restrained by torsional constraints. Warping at the end sections is admitted and only one of the supports is free to move in the longitudinal direction. The boundary conditions at z = 0;

l are      u 1 (0) = 0; u 2 (0) = 0; # 3 (0) = 0;      u 1 (l) = 0; u 2 (l) = 0; # 3 (l) = 0;      EI 2 u 1 (0) = 0; EI 1 u 2 (0) = 0; E # 3 (0) = 0;      EI u 1 (l) = 0; EI u 2 (l) = 0; E # 3 (l) = 0: (15)
They are such that simple closed-form expressions for the eigenvalues and the eigenfunctions of the linearized system can be obtained. The cross-section of the beam is illustrated in Fig. 1. It has a symmetry axis x 1 ; moreover the abscissas of the shear center x C and of the centroid x G are equal to:

x C = 3s 2 h 2 b 2 12bs 2 h 2 + 8s 2 h 3 ; x G = b 2 s 2s(2b + h) : (16) 
The aspect ratios are assumed to be s=h ∼ = 1=25, h=b ∼ = 3=5; h=l ∼ = 1=48, for which the internal resonance conditions (7) 2 ; (7) 3 are satisÿed. In the numerical investigation the following geometrical and material characteristic are used: h=3:0 cm, b=5:0 cm, s = 0:12 cm, l = 144 cm, E = 1; 22; 0000 kg=cm 2 , G = 469; 230 kg=cm 2 , =9:1×10 -6 kg m =cm 3 . The dimensions of the section of the beam have been chosen in such a way as to make possible experimental investigations in future; the material considered is copper. The solution of the linear free dynamic problem furnishes the following ÿrst three eigenvalues and eigenfunctions: 

The displacement components u 1 (z; t); u 2 (z; t); # 3 (z; t) are obtained from the modal amplitudes q 1 (t) by the following relations:

u 1 = ' 11 a 1 cos(! 1 t + 1 ) sin z l ; u 2 = [' 22 a 2 cos(! 2 t + 2 )
+ ' 23 a 3 cos(! 3 t + 3 )] sin z l ;

# 3 = [' 32 a 2 cos(! 2 t + 2 ) + ' 33 a 3 cos(! 3 t + 3 )] sin z l ; (18) 
where ' ij is the jth component of the ith eigenfunction i . According to Part I of this work, the eigenfunctions i are used as shape functions to discretize the equations of motion through the Galerkin procedure. The displacements of the midspan cross-section in the ÿrst three modes are illustrated in Fig. 2. Due to the symmetry, the displacement component u 1 is uncoupled from the other two.

The coe cients of the discretized equations of motion (1), are then evaluated in non-dimensional form, as illustrated in Part I, for a beam in which non-linear warping and torsional elongation of the longitudinal ÿbers are accounted (Model 1) and also for the case in which these contributions are not taken into account and only the linear Vlasov contribution to warping is considered (Model 2).

The values of the coe cients for the two model are listed in Table 1. It is noticed that the new contributions notably change the values of many coe cients. In particular, several resonant terms are strongly modiÿed by these e ects, thus implying the motion is strongly a ected by them. Accordingly, a remarkable change is registered in most of coe cients of the modulation equations ( 14), as shown in Table 2. This conÿrms that the motion will change very much due to the contribution of warping and torsional elongation.

Steady-state motions and stability

Steady-state solutions are determined by zeroing the right-hand members of the modulation equations ( 14) and solving the non-linear system. Stability analysis is then performed by analyzing the eigenvalues of the Jacobian matrix of the non-linear equations cal-culated at the ÿxed points. Most results, which are discussed in the following, are relevant to the Model 1; a few numerical investigation has been performed also with Model 2, although it is inaccurate for the open cross-section beams, just to point out the modiÿcations in the response produced by the reÿned presented theory.

Amplitude-load curves are reported in Fig. 3 for Model 1. They have been obtained for external forces in a perfect resonance condition ( 1 = 0) and for two values of damping (Figs. 3a andb). The smaller damping is ÿrst considered (Fig. 3a). A unimodal linear solution branch, a 1 = 0; a 2 = a 3 = 0, is found. On this branch, at a point very near to the axes origin, one three-modal solution branch bifurcates. Due to the presence of some saddle-nodes, the three-modal solution branch alternatively loses and regains stability. However, this behavior appears at very high values of the displacements at which the validity of the performed analysis is in doubt. By limiting the attention to moderately large displacements, the amplitudes curves shown in Fig. 3b are obtained for a higher damping to better observe the kind of bifurcation, since point B goes away from the beginning of the unimodal branch, as damping is increased. In general, the angular coe cient of the unimodal solution and the position of the bifurcation point depend on damping. At B, the a 1 bifurcated branch is tangent to the unimodal solution and is unstable. After B, the unimodal oscillation is unstable, which means that unimodal oscillation is practically always unstable. It is worth noting that the bifurcated three component solution has a stable branch which starts very close to the origin, that is for very small value of the force.

Frequency-response curves are then analyzed in Fig. 4, in which two di erent loads are considered. The unimodal solution becomes unstable at two points B 1 and B 2 , located on opposite sides with respect to the resonance. Consequently, the unimodal solution is unstable almost everywhere, even with respect to the parameter 1 , apart from a small range of f 1 , as already observed in Fig. 3. The branch bifurcating from B 1 is initially stable for the two loads considered, while the branch bifurcating from B 2 is initially unstable for the higher load (Fig. 4a) and stable for the lower load (Fig. 4b). However, both change stability at higher amplitudes, due to the occurrence of saddle-nodes in Fig. 4a, or Hopf bifurcations H and saddle-nodes in Fig. 4b. It is interesting to note that a saturation phenomenon of a 3 component occurs which is manifest in the amplitude-load curve (Fig. 3a) and in the frequency-response curve (Fig. 4a).

The results furnished by Model 1 di er notably from those obtained omitting the contribution of non-linear warping and torsional elongation of the longitudinal ÿbers (Model 2). The di erences can be appreciated by comparing the frequency-response curves of Fig. 4 with those obtained with Model 2, reported in Fig. 5. For small damping d (Fig. 5a) on the unimodal linear solution branch, a 1 = 0; a 2 = a 3 = 0, two bifurcation points A 1 and A 2 occur. Their distance depends on the damping, but they are in any case very close. As a consequence, in contrast with Model 1, the unimodal solution is stable everywhere, except for the small zone between the two bifurcation points. Two three-modal solution branches bifurcate from the points A 1 and A 2 , but only one branch is stable; this is characterized by a a 3 modal amplitude much greater than the other components. No saturation phenomenon of the third component is observed. Increasing the damping d, the two bifurcation points ÿrst coalesce and then bifurcation disappears (see Fig. 5b). In this case, the unimodal solutions are always stable, while the three-modal solution curve is unstable almost everywhere due to a saddle-node and a Hopf bifurcation at H . The beam oscillates indeÿnitely in the plane of the excitation, while Model 1 foresees an oscillation of the beam excited by a force in the symmetry plane characterized by comparable out-of-plane components. Some orbits of the displacements and rotation of the beam middle-section are illustrated in Fig. 6 at the points marked in Figs. 3a andb. Orbits of the stable and unstable solutions always keep a similar pattern along the branch. Due to Eqs. (18), the displacement components u 2 ; # 3 oscillate with frequencies ! 2 and ! 3 . One of these frequencies can be more important than the other in the displacement components u 2 and # 3 evolution. If ' i2 a 2 term is ¿ ' i3 a 3 term (i = 2; 3) in Eqs. (18), ! 2 is the prevailing frequency in the evolution of the displacement components u 2 and # 3 ; on the contrary, ! 3 becomes the prevailing frequency. The running direction of the orbits is reported also when useful. The patterns of the orbits presented are quite di erent from those obtained by Model 2 which are not reported for the sake of brevity.

Conclusions

The non-linear oscillations of a supported beam have been investigated in Part II of this paper by using the ODE's obtained in Part I [START_REF] Di Egidio | A non-linear model for the dynamics of open cross-section thin-walled beams-Part I: formulation[END_REF]. They have been specialized for a beam having one symmetry axis. The beam is in internal resonance conditions and is excited by a force in external resonance condition with the ÿrst mode, along the symmetry axis. Amplitude and phase equations have been obtained through multiple scale method and solved numerically. For the beam model, in which the e ects due to non-linear warping and torsional elongation of the longitudinal ÿbers are taken into account (Model 1), the behavior is illustrated by frequency-response and amplitude-load curves, evaluated for di erent values of damping and load. Some results are compared with those obtained by neglecting the non-linear warping and torsional elongation of the longitudinal ÿbers (Model 2).

The results have shown that warping and torsional elongation produce deep modiÿcations in the dynamic behavior of the beam. In fact, the internal resonance conditions considered interest those terms of the discretized equations of motion, that are more strongly modiÿed by the e ects taken into account in the model. These latter consequently produce strong modiÿcations in the behavior of the system; quantitative and qualitative di erences are evidenced, these latter a ecting the stability of the oscillations. However, the case analyzed here should be considered as a limit case, in which the in uence of the non-linear warping and torsional elongation e ects is magniÿed. 

1 ! 2 1 -(! 2 + ! 3 ) 2 ; K 3 = 1 ! 2 2 -(! 1 +! 2 ) 2 ; K 4 = 1 ! 2 2 -(! 2 -! 1 ) 2 ; K 5 = 1 ! 2 2 -(! 3 -! 1 ) 2 ; K 6 = 1 ! 2 3 -(! 1 + ! 2 ) 2 ; K 7 = 1 ! 2 3 -(! 1 + ! 3

Fig. 1 .

 1 Fig. 1. Geometrical beam characteristics.
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 3 Fig. 3. Model 1, amplitude-load curves: (a) d = 0:01; (b) d = 0:075. Perfect external resonance: 1 = 0. Thick line: stable solutions; thin line: unstable solutions.

Fig. 4 .

 4 Fig. 4. Model 1, frequency-response curves: (a) f 1 = 0:025; (b) f 1 = 0:0045. Damping value: d = 0:01. Thick line: stable solutions; thin line: unstable solutions.

Fig. 5 .

 5 Fig. 5. Model 2, frequency-response curves: (a) d = 0:0005; (b) d = 0:01 Load value: f 1 = 0:001. Thick line: stable solutions; thin line: unstable solutions.

Fig. 6 .

 6 Fig. 6. Model 1, orbits of beam middle section: (a) d = 0:01; (b) d = 0:075.

) 2 : 3 = -2 1 1 ; b 4 = -4 2 4 + k 2 ;b 5 = -2 2 1 ; b 6 = 4 1 3 + k 5 ;b 7 = 4 2 3 + k 7 ; b 8 = 4 3 4 + k 8 ;b 9 = 4 3 5 +where k i are k 1 = c 6 + 2c 1 c 8 K 5 + c 3 c 7 K 4 ; k 2 = 2c 4 + 2c 1 c 7 K 3 + 2c 1 c 7 K 4 + c 2 c 15 K 6 ;k 3 = 5 ;k 4 = 3c 9 + 2 c 7 c 1 ! 2 1 + c 7 c 1 K 1 ; k 5 =c 7 c 2 ! 2 1 + c 8 c 3 K 2 ;k 8 =

 23144251635737848951685424737463541115128 (A.2) Coe cients b i of Eqs. (10) are b 1 = 8 1 4 -4 2 5 +k 1 ; b 2 = 8 1 5 +4 2 3 + k 3 ; b k 6 ; b 10 = k 4 ; b 11 = 2 3 1 ; b 12 = -4 1 4 +4 2 5 +k 13 ; b 13 = -4 2 4 +k 12 ; b 14 = 4 3 4 -4 2 5 + k 11 ; b 15 = -2 4 1 ; b 16 = 4 1 5 + k 9 ; b 17 = -4 4 5 + k 10 ; b 18 = 2 1 5 ; (A.3) 2c 5 + 2c 2 c 16 K 7 + c 3 c 8 K c 10 ; k 6 = c 12 + c 7 c 8 K 5 ; k 7 = 2c 13 + 2 2c 19 + c

Table 2

 2 Coe cients of the modulation equations of motion in the two Models 1 and 2

		h 1	h 2	h 3	h 4	h 5	h 6
	Model 1	-1.3362	-2.3878	68.4789	-11.6907	-89.2138	223.722
	Model 2	0.0299	-0.1227	-5.1118	-0.4686	-0.6895	-9.8221
		h 7	h 8	h 9	h 10	h 11	h 12
	Model 1	-13.8381	-12.4138	-383.395	-4.1440	-445.381	40.0938
	Model 2	0.3107	-0.6382	-2.8095	-13.0776	3.6203	-33.5854
		h 13	h 14	h 15	h 16	h 17	h 18
	Model 1	-530.551	49.3155	-15.2101	-227.127	85.7115	93.9876
	Model 2	1.4106	-6.4672	-4.4475	2.7422	-16.5887	17.1358

  2 7 K 3 + c 2 7 K 4 + c 8 c 15 K 6 ; 10 = c 19 +c 15 c 7 K 4 ; k 11 = 2c 20 +c 15 c 8 K 5 +c 2 16 K 7 ; k 12 = 2c 22 + c 15 c 3 K 2 + 2 c 16 c 1 ! 2 1 ; k 13 = c 21 : (A.4) Coe cients h i , d * 1; 2; 3 and f * 1 of Eqs. (14) are

	k 9 = 3c 18 + 2	c 16 c 2 1 ! 2	;	
	k h 1 = 1 +	b 3 4! 1	; h 2 = 2 +	b 5 4! 1	; h 3 =	b 1 8! 1	;
	h 4 = 3 +	b 11 4! 2	; h 5 =	b 6 8! 2	; h 6 =	b 9 8! 2	;
	h 7 = 5 +	b 18 4! 3	; h 8 = 4 +	b 15 4! 3	; h 9 =	b 12 8! 3	;
	h 10 =	b 17 8! 3	; h 11 =	b 13 8! 3	; h 12 =	b 14 8! 3	;
	h 13 =	b 16 8! 3	; h 14 =	b 2 8! 1	; h 15 =	b 4 8! 1	;
	h 16 =	b 7 8! 2	; h 17 =	b 8 8! 2	; h 18 =	b 10 8! 2	;
	d * 1 =	d 1 2	; d * 2 =	d 2 2	; d * 3 =	d 3 2	; f * 1 =	f 1 ! 1	:
										(A.5)
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Appendix

Coe cients i of Eqs. [START_REF] Ali | Perturbation Methods[END_REF] 

Coe cients K i of Eqs. ( 9) are