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Abstract

In the 1960s, a moment approach to linear time varying (LTV) minimal norm
impulsive optimal control was developed, as an alternative to direct approaches
(based on discretization of the equations of motion and linear programming) or in-
direct approaches (based on Pontryagin’s maximum principle). This paper revisits
these classical results in the light of recent advances in convex optimization, in par-
ticular the use of measures jointly with hierarchy of linear matrix inequality (LMI)
relaxations. Linearity of the dynamics allows us to integrate system trajectories
and to come up with a simplified LMI hierarchy where the only unknowns are mo-
ments of a vector of control measures of time. In particular, occupation measures
of state and control variables do not appear in this formulation. This is in stark
contrast with LMI relaxations arising usually in polynomial optimal control, where
size grows quickly as a function of the relaxation order. Jointly with the use of
Chebyshev polynomials (as a numerically more stable polynomial basis), this allows
LMI relaxations of high order (up to a few hundreds) to be solved numerically.

1 Introduction

In the 1960s, it was realized that many physically relevant problems of optimal control
were inappropriately formulated in the sense that the optimum control law (a function
of time and/or state) cannot be found if the admissible functional space is too small.
This observation was the main driving force of the papers [17, 18, 20] which introduce
optimal control problems formulated in the space of measures. The approach is well
summarized in the textbook [15], which contains some (academic) examples of optimal
control problems without solutions. This motivated the introduction of many concepts
of functional analysis (density, completeness, duality, separability) in control engineering,
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building up on the advances on mathematical control theory and calculus of variations.
As promoted in [15], an optimal control problem should be formulated in the dual of a
Banach space which is large enough for the solution to be attained.

Most of the literature on numerical optimal control focuses on direct approaches (based on
discretization of the equations of motions and linear programming) or indirect approaches
(based on the necessary optimal conditions of Pontryagin’s maximum principle). When
applied to optimal control problems whose optima cannot be attained, these numerical
approaches typically face difficulties. In this context, we believe that it is timely to revisit
classical results by Neustadt [17] on the formulation of optimal control problems for linear
time varying (LTV) systems as a problem of moments, where the decision variables (from
which an optimal control law can be extracted) are measures subject to a finite number
of linear constraints.

There is an important literature, especially from the 1960s, on moment formulations to
optimal control of ordinary differential equations (ODEs) and partial differential equa-
tions (PDEs), see e.g. [3] and references therein, as well as the comments of [7, p. 586].
Currently, this approach is not frequently used by engineers, and in our opinion this may
be due, on the one hand, to the technicality of the underlying concepts of functional
analysis, and, on the other hand, to the absence of numerical methods to deal satisfacto-
rily with optimization problems in large functional spaces such as spaces of measures or
distributions. Regarding the first point, we strongly recommend the textbook [15] which
is a very readable account of elementary functional analysis useful for engineers. Regard-
ing the second point, there has been recent advances in convex optimization, especially
semidefinite programming (optimization over linear matrix inequalities, LMIs), for solving
numerically generalized problems of moments, i.e. linear programming (LP) problems in
Banach spaces of measures, see [12, 8] and references therein.

Our contribution is therefore to revisit the classical formulation by Neustadt [17] in the
light of recent advances on LMI hierarchies for solving generalized problems of moments.
In our previous work [11], we formulated polynomial optimal control problems with semi-
algebraic state and control constraints as generalized problems of moments that can be
solved with asymptotically converging LMI hierarchies. The optimal control problem
is relaxed to an LP problem in the space of occupation measures, which are measures
of time, state and control encoding the trajectories of the system. The main drawback
of this approach is the rapid growth of the size of the LMI problems in the hierarchy,
making the approach applicable to small-size problems only (say at most 3 states and
2 controls). In the current paper, which focuses on the specific case of LTV dynamics
depending affinely on the control variable, we first replace control variables by interpret-
ing them as measures of time. This is similar to our previous work [6] which also dealt
with impulsive control design in a more general setting. Second, we get rid of the state
variables by integrating numerically the LTV ODE. This is possible because the ODE
depends linearly on the state and the control. As a result, the optimal control problem
is relaxed to an LP on measures depending only on time. It follows that there is no need
for an LMI hierarchy since in the univariate case finite-dimensional moment LMI condi-
tions are necessary and sufficient. However, there is still a hierarchy of LMI conditions
in connection with the polynomial approximations of increasing degree we use to model
the integrated system trajectories. To deal with those high degree univariate polynomials
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and moment matrices, we use Chebyshev polynomials instead of monomials. Indeed, high
degree Chebyshev polynomials behave much better numerically than monomials, and we
can rely on functionalities of the chebfun package for Matlab [22, 23] to integrate the LTV
ODE and manipulate polynomials. To illustrate the above methodology, we show on some
examples how to obtain very good approximations of impulse times and amplitudes of an
optimal solution.

2 Relaxed linear optimal control

Consider the linear time varying (LTV) optimal control problem

q∗ := inf ‖u‖1 :=
m∑
j=1

∫ tF

tI

|uj(t)|dt

s.t. ẋ(t) = A(t)x(t) +B(t)u(t)
x(tI) ∈ Rn given
x(tF ) ∈ Rn given

(1)

where the minimization is w.r.t. a vector of control functions uj ∈ L1([tI , tF ]), j =
1, . . . ,m, and A ∈ L∞([tI , tF ];Rn×n), B ∈ C([tI , tF ];Rn×m), on a given bounded time
interval [tI , tF ] ⊂ R.

In general the infimum is not attained, and the optimal control problem is relaxed to

p∗ := inf ‖µ‖TV :=
m∑
j=1

∫ tF

tI

|µj|(dt)

s.t. x(dt) = A(t)x(t)dt+B(t)µ(dt)
x(tI) ∈ Rn given
x(tF ) ∈ Rn given

(2)

where the minimization is w.r.t. a vector of (signed) measures µj ∈ M([tI , tF ]), j =
1, . . . ,m, and ‖µ‖TV denotes the total variation, or norm, of vector measure µ. A measure
in M([tI , tF ]) of finite norm is identified (by a representation theorem of F. Riesz, see e.g.
[19, Section 21.5]) as a continuous linear functional acting on the space of continuous
functions C([tI , tF ]).

Problem (2) is a relaxation of problem (1) since we enlarge the space of admissible con-
trols. Indeed, problem (1) is equivalent to problem (2) restricted to measures which
are absolutely continuous w.r.t. time, i.e. µj(dt) = uj(t)dt for some uj ∈ L1([tI , tF ]),
j = 1, . . . ,m. The motivation for introducing relaxed problem (2) is as follows.

Lemma 1 The infimum is attained in problem (2) and it is equal to the infimum of
problem (1), i.e. q∗ = p∗.

The proof of Lemma 1 is relegated to the end of Section 3. We will introduce a numerical
method to deal directly with relaxed problem (2) in measure space M , bypassing the
potential difficulties coming from the fact that the infimum in problem (1) is typically
not attained in function space L1. Before this, we need to reformulate optimal control
problem (2) as a problem of moments.
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3 Problem of moments

Now we integrate the differential equation in problem (2) to obtain an equivalent problem
of moments. For more details, see e.g. [5, Section 2.2].

Let fi ∈ W 1,1([tI , tF ];Rn) denote the absolutely continuous solution of the Cauchy prob-
lem ḟi(t) = A(t)fi(t) with fi(tI) equal to the i-th column of In, the n-by-n identity matrix,
for i = 1, . . . , n. The matrix

F (t) :=
[
f1(t) · · · fn(t)

]
∈ W 1,1([tI , tF ];Rn×n)

therefore satisfies1 the matrix ODE

Ḟ (t) = A(t)F (t), F (tI) = In, t ∈ [tI , tF ].

From [5, Theorem 2.2.3]2, matrix F−1(t) is differentiable and any function x(t) satisfying

x(tF ) = F (tF )

[
x(tI) +

∫ tF

tI

F−1(t)B(t)µ(dt)

]
is a solution to the differential equation

x(dt) = A(t)x(t)dt+B(t)µ(dt), t ∈ [tI , tF ]. (3)

Letting
G(t) := (F−1(t)B(t))T

=
[
g1(t) · · · gn(t)

]
∈ C([tI , tF ];Rm×n),

h := F−1(tF )x(tF )− x(tI) ∈ Rm,

we can replace the differential equation (3) with the integral equation:∫ tF

tI

GT (t)µ(dt) = h.

It follows that problem (2) can be written equivalently as

p∗ = min ‖µ‖TV

s.t. 〈gi, µ〉 = hi, i = 1, . . . , n
(4)

where

〈gi, µ〉 :=

∫ tF

tI

gTi (t)µ(dt) =
m∑
j=1

∫ tF

tI

gi,j(t)µj(dt)

denotes the duality bracket between C([tI , tF ];Rm) and its dual M([tI , tF ];Rm), a bilinear
form pairing C([tI , tF ];Rm) and M([tI , tF ];Rm). Problem (4) is a problem of moments
consisting of finding m measures subject to n linear constraints.

1A function belongs to the Sobolev space W 1,1 of absolutely continuous functions if it is the integral
of a function of Lebesgue space L1.

2In this reference the authors define the fundamental matrix solution as a bivariate matrix M(t, s) such
that ∂M(t, s)/∂t = A(t)M(t, s), M(s, s) = In. The connection with our definition is that F (t) = M(t, tI).
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Proof: (of Lemma 1) The proof that the infimum of problem (2) is attained follows from
[17, Theorem 1]. Moreover, in [17, Theorem 4] it is shown that there exists a solution
µ to problem (4), hence to problem (2), which is the (signed) sum of at most n Dirac
measures. Finally, it is shown in [17, pp. 45-46] that there is a sequence of functions uk ∈
L1([tI , tF ];Rm), k = 1, 2, . . . which are admissible for problem (1), i.e. µ(dt) = uk(t)dt
satisfies the constraints in problem (4), and which are such that limk→∞ ‖uk‖1 = p∗. �

4 Primal and dual conic LP

By decomposing each signed measure µj as a difference of two nonnegative measures
(using the Jordan decomposition theorem, see e.g. [19, Section 17.2]), i.e.

µj = µ+
j − µ−j , µ+

j ≥ 0, µ−j ≥ 0, j = 1, . . . ,m,

problem (4) can be written as a linear programming (LP) problem on the cone of non-
negative measures

p∗ = inf 〈1, µ+〉+ 〈1, µ−〉
s.t. 〈gi, µ+〉 − 〈gi, µ−〉 = hi, i = 1, . . . , n

µ+ ≥ 0, µ− ≥ 0
(5)

where 1 denotes the m-dimensional vector of functions identically equal to one, and the
above minimization is w.r.t. two vector-valued nonnegative measures µ+ ∈M([tI , tF ];Rm),
µ− ∈M([tI , tF ];Rm). It is easy to show that problem (5) is equivalent to problem (4).

Problem (5) is the dual of the following LP on the cone of nonnegative continuous functions
(see [21] for details of the derivation):

d∗ = sup
n∑

i=1

yihi

s.t. z+(t) := 1 +
n∑

i=1

yigi(t) ≥ 0 t ∈ [tI , tF ]

z−(t) := 1−
n∑

i=1

yigi(t) ≥ 0 t ∈ [tI , tF ]

(6)

where the maximization is w.r.t. a vector y ∈ Rn parametrizing two vector-valued non-
negative continuous functions z+ ∈ C([tI , tF ];Rm), z− ∈ C([tI , tF ];Rm). Denoting

‖z‖∞ := sup
t∈[tI ,tF ],j=1,...,m

|zj(t)|

for any z ∈ C([tI , tF ];Rm), remark that LP problem (6) can be also written as

d∗ = sup hTy
s.t. ‖G(t)y‖∞ ≤ 1.

(7)

Lemma 2 There is no duality gap between LP (5) and (6), i.e. p∗ = d∗.
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Proof: Define the vector r(µ+, µ−) ∈ Rn+1 with entries r0(µ
+, µ−) := 〈1, µ+〉 + 〈1, µ−〉,

ri(µ
+, µ−) := 〈gi, µ+〉 − 〈gi, µ−〉, i = 1, . . . , n and the set R := {r(µ+, µ−) : (µ+, µ−) ∈

M2m
+ } ⊂ Rn+1 where M2m

+ denotes the cone of nonnegative measures in M([tI , tF ];R2m).
Let us invoke [1, Theorem 3.10] which states that p∗ = d∗ provided p∗ is finite and R is
closed. Finiteness of p∗ follows immediately since we minimize the total variation. To
prove closedness, we have to show that all accumulation points of any sequence r(µ+

n , µ
−
n )

belong to R. Since the supports of the measures are compact and p∗ is finite, hence
µ+ and µ− are bounded, the sequence (µ+

n , µ
−
n ) is bounded. By the weak-* compactness

of the unit ball in the Banach space of bounded signed measures with compact support
(Alaoglu’s Theorem, see e.g. [15, Section 5.10] or [19, Section 15.1]), there is a subsequence
(µ+

nk
, µ−nk) that converges weakly-* to an element (µ+, µ−) ∈M2m

+ . As 1 and all gi belong
to C([tI , tF ];Rm) then limk→∞ r(µ

+
nk
, µ−nk) = r(µ+, µ−) ∈ R. �

Zero duality gap implies that any optimal pair ((µ+, µ−), (z+, z−)) solving LPs (5-6) sat-
isfies the complementarity conditions

〈z+j , µ+
j 〉 = 0, 〈z+j , µ−j 〉 = 0, j = 1, . . . ,m.

This means that the support of each measure µ+
j , resp. µ−j , is included in the set {t ∈

[tI , tF ] : z+j (t) = 0}, resp. {t ∈ [tI , tF ] : z−j (t) = 0}, for j = 1, . . . ,m.

Note that formulation (7) of the dual problem dates back to the work of Neustadt [17]
and was preferred to the primal formulation for numerical solution of the optimal control
problem. One objective of this paper is to show that the recent advances on the moment
problem give an efficient computation procedure for the primal problem. In particular,
one obtains very good approximations of an optimal solution of (5) (impulse times and
amplitudes).

Remark 1 The vector G(t)y involved in LP problem (6) is known as the primer vector
introduced in the seminal work [13]. This primer vector is defined as the velocity adjoint
vector arising by the application of Pontryagin’s maximum principle to optimal trajectory
problems. The primer vector must satisfy Lawden’s well-known necessary conditions for
an optimal impulsive trajectory.

5 Integration of the LTV ODE

In order to compute matrix F (t), the last step before obtaining a tractable problem, we
have to integrate numerically the ODE ẋ(t) = A(t)x(t). Matrix G(t) solves numerically
the LTV system of equations F (t)GT (t) = B(t). In practice, we use the Matlab software
package Chebfun [22] to build Chebyshev polynomial interpolants of the problem data
A(t) and B(t). Some of its specialized numerical routines to compute F (t) and G(t) have
been used here.

We want to characterize the error of approximating G(t) by its Chebyshev polynomial
interpolant on d points, see [23] for an introduction on this subject. Define Gd(t) as the
Chebyshev interpolant of G(t) on d points. Assume furthermore that the error induced
by algebraic manipulations for obtaining Gd(t) can be properly controlled. Then the
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approximation error ed := ‖Gd − G‖∞ for large d is conditionned by the regularity of
G(t). We recall the main results of approximation theory which can all be found in [23]:

• if G(t) is k-times continuously differentiable, then ed → 0 at the algebraic rate of
O(d−k) as d→∞;

• if G(t) is k-times differentiable with its k-th derivative of bounded variation, then
the algebraic rate is O(d−k);

• if G(t) is analytic, then there exists a positive ρ such that the algebraic rate is
O(ρ−d).

This imposes some minimal requirements for A(t) and B(t) for our numerical approach to
work. Indeed, assuming A(t) of bounded variation and B(t) differentiable with derivative
of bounded variation guarantees that the error converges to zero for large approximation
orders.

We now show that if ed → 0 as d→∞, we can build a hierarchy of moment relaxations of
(4) involving only approximate data and converging to p∗. For this, let Fd(t) denote the
Chebyshev interpolant of F (t) on d points, and let hd := F−1d (tF )x(tF )− F−1d (tI)x(tI).

Lemma 3 Consider the following relaxed moment problem with approximate data:

p̃∗d = min ‖µ‖TV

s.t.
∣∣∫GT

d dµ− hd
∣∣ ≤ ed (‖B‖ |x(tF )|+ ‖µ‖TV ).

(8)

Then p̃∗d ↑ p∗ as d→∞

Proof: By the same argument as Lemma 1, a solution for (8) is attained. Furthermore,
any solution µ∗ of (4) is feasible for (8), as∣∣∫GT

d dµ
∗ − hd

∣∣ ≤ ∣∣∫GT dµ∗ − h
∣∣+
∣∣∫(GT

d −GT ) dµ∗
∣∣+ ||B|| |x(tF )| |hd − h|

≤ 0 + ed ||µ∗||TV + ed ||B|| |x(tF )|.

Therefore, p̃∗e ≤ p∗ holds.

For the convergence, consider the auxiliary relaxed problem with the true data instead:

p∗d = min ‖µ‖TV

s.t.
∣∣∫GT dµ− h

∣∣ ≤ 2ed (‖B‖ |x(tF )|+ ‖µ‖TV ).
(9)

By similar arguments, we have that p∗d ≤ p̃∗d ≤ p∗. Because of this uniform bound on the
minimizers of (9), standard arguments (see for instance the second part of the Banach-
Saks-Steinhaus theorem in [19, Section 13.5]) show that p∗ ≤ lim inf p∗d, which show indeed
that p∗d → p∗, hence p̃∗d → p∗. �
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6 Solving the LP on measures

To summarize, we have formulated our LTV optimal control problem as a primal-dual
LP pair (5-6). The coefficients in these LP problems are entries of matrix function G(t)
and vector h. These data are calculated by numerical integration, using Chebyshev poly-
nomial approximations, as explained in the last section. For a given degree d of the
polynomial approximation, LP problem (5) is a particular instance of a generalized prob-
lem of moments. It can be seen as an extension of the approach of [11] which was originally
designed for classical optimal control problems with polynomial dynamics. Alternatively,
it can also be understood as an application of the approach of [6], but after integration
of the ODE, which is here possible because of linearity of the dynamics in the state and
control.

An infinite-dimensional LP on measures can be solved approximately by a hierarchy of
finite-dimensional linear matrix inequality (LMI) problems, see [11, 6, 9] for details (not
reproduced here). The main idea behind the hierarchy is to manipulate each measure via
its moments truncated to degree d. Note that here the measures are univariate (depending
on time only). Therefore, for a problem involving polynomials up to degree d, the d-th
LMI condition is necessary and sufficient. The hierarchy presented in this paper comes
thus from the polynomial approximation of the continuous data, not from the moment
truncation. In contrast, when dealing with multivariate measures as in [11, 6, 9], we use
a hierarchy of necessary LMI conditions which become sufficient only asymptotically.

Generally speaking, the number of variables in an LMI relaxation of order d of a multi-
variate measure LP grows polynomially in d, but the exponent is the number of variables
entering the measures. If the number of variables is equal to 5 or more, the growth is
fast, and only LMI relaxation of small orders can be solved at a reasonable computational
cost. It is therefore crucial to reduce as much as possible the number of variables entering
the measures, so as to reduce the overall computational burden. One contribution of our
paper is precisely to show that for LTV optimal control problems, we can manipulate
measures of the time variable only. This allows for LMI relaxations of large order to be
solved, with d a few hundreds.

7 Examples

7.1 Scalar polynomial example

Consider the optimal control problem (1):

p∗ = inf ‖u‖1 :=

∫ 1

0

|u(t)|dt

s.t. ẋ(t) = t(1− t)u(t)
x(0) = 0, x(1) = 1
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where the minimization is w.r.t. a function u ∈ L1([0, 1]). Since L1([0, 1]) is not the dual
of any normed space, the problem must be relaxed to the optimal control problem (2):

p∗ = min ‖µ‖TV :=

∫ 1

0

|µ|(dt)

s.t. x(dt) = t(1− t)µ(dt)
x(0) = 0, x(1) = 1

where the minimization is now w.r.t. a measure µ ∈ M([0, 1]). Following the approach
of Section 3, we readily obtain F (t) = 1, G(t) = t(1− t) and hence the moment problem
(4):

p∗ = min ‖µ‖TV

s.t. 〈t(1− t), µ〉 :=

∫ 1

0

t(1− t)µ(dt) = 1.

Decomposing µ = µ+− µ− as a difference of two nonnegative measures we obtain the LP
(5):

p∗ = inf 〈1, µ+〉+ 〈1, µ−〉
s.t. 〈t(1− t), µ+〉 − 〈t(1− t), µ−〉 = 1

µ+ ≥ 0, µ− ≥ 0

where the minimization is w.r.t. measures µ+, µ−, and the LP (6):

d∗ = sup y
s.t. −1 ≤ t(1− t)y ≤ 1, ∀ t ∈ [0, 1]

where the maximization is w.r.t. y ∈ R. For this latter problem, we readily obtain that
the maximum d∗ = 4 is attained for the choice y = 4. Since polynomial 4t(1− t) attains
its maximum at t = 1

2
it follows from the discussion after Lemma 2 that the optimal

measure solution is µ+ = 4δ 1
2

and µ− = 0, achieving p∗ = 4.

As this problem has polynomial data, we can readily find the optimal solution, with the
following GloptiPoly 3 script [8], instead of using the approximation techniques of Section
V:

>> mpol tp tn;

>> mp = meas(tp); % measure \mu^+

>> mn = meas(tn); % measure \mu^-

>> P = msdp(min(mass(mp)+mass(mn)), ...

mom(tp*(1-tp))-mom(tn*(1-tn)) == 1, ...

tp*(1-tp) >= 0 ... % support of \mu^+

tn*(1-tn) >= 0); % support of \mu^-

>> [stat, obj] = msol(P);

obj =

4.0000

>> double(mmat(mp)) % moment mat. of \mu^+

ans =

4.0000 2.0001

2.0001 1.0001
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>> double(mmat(mn)) % moment mat. of \mu^-

ans =

1.0e-08 *

0.2673 0.2036

0.2036 0.2186

7.2 Nonsmooth trajectories

This example is meant to illustrate the numerical difficulty we may face when integrating
LTV ODEs with discontinuous state matrix A(t). Consider the following optimal control
problem (1):

p∗ = inf ‖u‖1
s.t. ẋ(t) = sign(t)x(t) + u(t)

x(−1) = −1, x(1) = 1

where the minimization is w.r.t. a function u ∈ L1([−1, 1]). Upon solving the ODE
Ḟ (t) = sign(t)F (t), F (−1) = 1 we obtain F (t) = e−1+|t|, G(t) = e1−|t| and hence the
moment problem (4):

p∗ = inf ‖µ‖TV

s.t. 〈e1−|t|, µ〉 = 2

where the minimization is now w.r.t. a signed measure µ ∈M([−1, 1]). The dual problem
(6) reads:

d∗ = sup 2y
s.t. −1 ≤ ye1−|t| ≤ 1 ∀ t ∈ [−1, 1]

where the maximization is w.r.t. a real scalar y. The optimal dual solution can easily be
found analytically as y∗ = e−1, from which it follows that the optimal primal solution is
µ∗ = 2e−1δt=0.

d ‖G−Gd‖∞ |p∗ − pd|/|p∗|
10 0.1995 0.1243
20 0.0899 0.0555
30 0.0579 0.0357
40 0.0427 0.0263
50 0.0338 0.0208
60 0.0280 0.0172
70 0.0239 0.0147
80 0.0208 0.0128
90 0.0184 0.0114
100 0.0166 0.0102

Table 1: Approximation errors vs. polynomial approximation orders for discontinuous
dynamics.

If we want to apply the numerical integration approach of Section 5, discontinuity of
A(t) = sign(t) turns out to be a problem. Indeed, we can check that G(t) presents a cusp
at t = 0. That is, for an even number d of Chebyshev interpolation points, the maximum
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A(t) =



0 0 1 0
0 0 0 1

n̄2e cos ν(t)

(
1 + e cos ν(t)

1 − e2

)3

−2 n̄2 e sin ν(t)

(
1 + e cos ν(t)

1 − e2

)3

0 2n̄
(1 + e cos ν(t))2(

1 − e2
)3/2

2 n̄2 e sin ν(t)

(
1 + e cos ν(t)

1 − e2

)3

n̄2(3 + e cos ν(t))

(
1 + e cos ν(t)

1 − e2

)3

−2n̄
(1 + e cos ν(t))2(

1 − e2
)3/2 0



B(t) =


0 0
0 0

n̄2 0

0 n̄2



(10)

interpolation error ‖G−Gd‖∞ is located where the optimal impulse should be, while for
an odd d the interpolant is exact at the cusp. In Table 1 we present the approximation
errors on function G and on the optimal cost p∗d as functions of d, found by our numerical
method. The results exhibit the expected linear decrease in the approximation error,
resulting in a linear decrease in the optimal cost. The error for moderate orders (d ≈ 100)
is acceptable though far from excellent.

d ‖G−Gd‖∞ |p∗ − pd|/|p∗|
2 2.1187 · 10−1 3.4307 · 10−3

4 1.0851 · 10−3 1.0406 · 10−5

6 2.2540 · 10−6 1.5281 · 10−8

8 2.5115 · 10−9 1.3166 · 10−11

10 1.7422 · 10−12 5.9438 · 10−13

12 1.1336 · 10−15 5.8093 · 10−12

14 < 10−15 1.3729 · 10−11

16 < 10−15 3.1846 · 10−12

18 < 10−15 2.5462 · 10−10

Table 2: Approximation errors vs. polynomial approximation orders for piecewise analytic
dynamics.

Now, if we split the time interval around the cusp, the restrictions of G(t) on the intervals
[−1, 0] and [0, 1] are respectively GL(t) := e1+t and GR(t) := e1−t which are both analytic.
The updated moment problem with piecewise analytic data reads:

p∗ = inf ‖µL‖TV + ‖µR‖TV

s.t.

∫ 0

−1
GL(t)µL(dt) +

∫ 1

0

GR(t)µR(dt) = 2.

In Table 2, we present the updated polynomial approximation errors, which show the
expected exponential decrease. For the cost, the decrease is exponential until a relative
error of about 10−10 after which the error comes from the semidefinite solver (used to solve
the LMI hierarchy of the moment problem), not from the polynomial approximation.

7.3 A fuel-optimal linear impulsive guidance rendezvous prob-
lem for an elliptic reference orbit

Finally, an illustration based on a realistic case of a far range rendezvous in a linearized
gravitational field is given. The general framework of the minimum-fuel fixed-time copla-
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nar rendezvous problem in a linear setting is recalled in [2], where an indirect method
based on primer vector theory is proposed. Under Keplerian assumptions and for an
elliptic reference orbit, the complete rendezvous problem may be decoupled between the
out-of-plane rendezvous problem for which an analytical solution may be found and the
coplanar problem. Therefore, only a coplanar elliptic rendezvous problem based on the
Tschauner-Hempel equations [24] is studied thereafter. The associated optimal control
problem (1) has a 4-dimensional (n = 4) state vector composed of the relative posi-
tions (denoted here x(t), z(t)) and respective velocities in the LVLH frame [14] and a
2-dimensional (m = 2) control vector u(t) (one control in the x-direction, one control in
the z-direction). The state space matrices A(t) and B(t) are given in equ. (10), with
n̄ = 34.0094 is the mean angular motion, e = 4.0000 · 10−3 is the eccentricity, ν(t) is the
true anomaly of the reference orbit satisfying for all t ≥ 0 the Kepler equation:

n̄t = E(t)− e sinE(t)

tan
ν(t)

2
=

(
1 + e

1− e

)1/2

tan
E(t)

2

where E(t) is the eccentric anomaly.

For this problem, G(t) can be approximated below the 10−8 resolution of the SDP solver
by polynomials of degree 100 on the given time interval. This implies that the problem
can be solved numerically by LMI relaxations of order 50, with a computational load of
a few seconds. The assembly of G(t) using Chebfun routines take a few seconds as well.
All of this was done without any sort of problem-specific optimization, and with standard
Matlab code.

To solve the optimal control problem, direct methods based on the solution of a linear
programming (LP) problem can be used as in [16, 14]. For an a priori fixed number of
impulsive maneuvers at given times, an LP problem is formulated and solved numerically.
Its solution is therefore suboptimal, depending strongly upon the number of impulsions.
This makes it hard to evaluate how far the solution could be from the global optimum.

The particular instance, studied in this paper, is borrowed from the PRISMA test bed
and GNC experiments from [4]. PRISMA programme is a cooperative effort between the
Swedish National Space Board (SNSB), the French Centre National d’Etudes Spatiales
(CNES), the German Deutsche Zentrum für Luft- und Raumfahrt (DLR) and the Dan-
ish Danmarks Tekniske Universitet (DTU) [10]. Launched on June 15, 2010 from Yasny
(Russia), it was intended to test in-orbit new guidance schemes (particularly autonomous
orbit control) for formation flying and rendezvous technologies. This mission includes
the FFIORD experiment led by CNES, which features a rendezvous maneuver (formation
acquisition). To save fuel and allow for in-flight testing throughout the FFIORD exper-
iment, the rendezvous maneuver must last several orbits. Duration of the rendezvous is
approximately 14.25 orbital periods, each of duration 5920s, i.e. tI = 0 and tF = 84360
in problem (1).

The moment LMI approach is compared to the classical 2-impulse solution and to the
direct approach with 20 and 2000 pre-assigned evenly distributed impulses. These re-
sults are presented in Table 3, where tk are the impulsion times and u(tk) the impulsion
directions, for k = 0, 1, 2, 3. It is interesting to note that the 2-impulse solution has a
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2-impulse LP (20 i.) LP (2000 i.) LMI
t0 0 0 0 0
t1 - 8880 2321 2140
t2 - 75480 2363 82350
t3 84360 84360 82334 -

u(t0)
0.02
−0.1985

0.0006
0

0.0174
0

0.0172
0

u(t1) -
0.0014

0
0.0193

0
0.0011

0

u(t2) -
−0.0146

0
−0.0003

0
−0.019

0

u(t3)
−0.0215

0.218
−0.0207

0
−0.019

0
-

cost m/s 0.4588 0.04072 0.03736 0.03736

Table 3: Comparisons of results of moment LMI approach, two-impulse solution and
direct LP solution for 200 and 2000 impulses for the PRISMA case study

prohibitive cost when compared to the optimal solution found by the direct method and
the moment LMI approach. This is mainly due to the extra thrusts in the z-direction
that are not necessary to realize this particular rendezvous. Indeed, a remarkable feature
of the optimal solution is that it exhibits a terminal coast, unlike the 2-impulse and di-
rect 20-impulse solution. Note also that the 2-impulse solution leads to a very different
trajectory in the orbital plane as shown by Figure 1. The optimal fuel-cost computed via
the moment LMI approach is less than half the one obtained in [4] via a pseudo-closed
loop technique (0.086 m/s). Figure 2 shows the importance of the pre-assigned number
of impulses for the direct method to recover the optimal solution. Indeed, for a small
number of impulses, the solution given by the direct method is a crude approximation of
the optimal solution obtained by the moment LMI approach and by the direct approach
with 2000 pre-assigned impulses. The impulse locations are indicated on the trajectories
(red triangles for the optimal solution and red squares for the 20-impulse solution). The
differences of locations of the impulses for the four methods used on the PRISMA example
are depicted on Figure 3.

8 Conclusion

In this paper, we revisit classic impulsive control theory from the 1960s with modern
numerical tools stemming from convex programming and approximation theory. The
theory leads to the reformulation of a control problem as a one-dimensional problem of
moments. The numerical tools allow for its efficient numerical solution without any expert
knowledge needed.

Several extensions of our work are possible and will be included in an extended version of
this paper. First of all, the class of dynamics can easily be extended to cover those with
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Figure 1: Trajectories in the orbital plane: 2-impulse solution (pink), optimal solution
(blue), Direct 20-impulses solution (cyan).

a forced drift term, i.e. to dynamics

ẋ = A(t)x(t) +B(t)u(t) + w(t)

with w(t) ∈ C1([tI , tF ],Rn). The second main extension is to enforce positivity constraints
on linear combinations of the states using additional positive measures. Finally, the
method can also consider other norms of the form ||u(·)||p :=

∫
|u(t)|p dt with p = 2, 3, ...,

instead of the p = 1 case that is the focus of this paper. This can be done since norms
with integer exponents are semidefinite representable.

For the specific case of orbital rendezvous as exemplified in Section 7.3, one can exploit
the specific symmetries of (10) to approximate G(t) off-line on half an orbital period,
and partition the time interval accordingly such as presented in Ex. 7.2. This will lead
to accurate, low order polynomial approximations, and one could expect to obtain com-
putational loads compatible for an online implementation of a model predictive control
loop.
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Figure 2: Trajectories in the orbital plane: optimal solution (blue), Direct 20-impulses
solution (cyan) .
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