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A cluster algebra approach tog-characters of
Kirillov-Reshetikhin modules

D. Hernandez, B. Leclerc

Abstract

We describe a cluster algebra algorithm for calculatirdharacters of Kirillov-Resheti-
khin modules for any untwisted quantum affine algebség). This yields a geometrig-
character formula for tensor products of Kirillov-Reskbth modules. Whery is of type
A D, E, this formula extends Nakajima’s formula fgrcharacters of standard modules in
terms of homology of graded quiver varieties.
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1 Introduction

Let g be a simple Lie algebra oveE, and letUq(g) be the corresponding untwisted quantum
affine algebra with quantum parametpe C* not a root of unity. The finite-dimensional complex
representations &fy(g) have been studied by many authors during the past twentg.y&r refer
the reader taCP1] for a classical introduction, and t&€H| Le2] for recent surveys on this topic.

In [HL1], we started to explore some new connections between dhsepresentation theory
and the cluster algebras of Fomin and Zelevinsky. The manlteproved in[HL1] in type
A, andDy4, and extended to ang-D-E type by NakajimallN4], shows the existence of a tensor
category#; of finite-dimensionally(g)-modules whose Grothendieck ring is a cluster algebra of
the same finite Dynkin type, such that the classes of simphiutee coincide with the set of cluster
monomials. As a consequence, itpeharacters of the simple objects ¥ can be computed
algorithmically using the combinatorics of cluster algebr Moreover, the Caldero-Chapoton
formula for cluster expansions leads to some new geomaeidriaiflae for these characters, in
terms of Euler characteristics of quiver Grassmannians.

Unfortunately the categor¥; is quite small. For instance it contains only three KiriHov
Reshetikhin modules for each node of the Dynkin diagramy. dtnother limitation of the papers
[HL1] and [N4] is that g is assumed to be of simply laced type. In fact, the generafprd
Nakajima uses in a crucial way his geometric constructiothefstandardly(g)-modules [N1],
which is only available in the simply laced case.
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In this paper we drop the assumption of being simply laced,va@a consider a much larger
tensor subcategory’~ which contains, up to spectral shifts, all the irreducibigté-dimensional
representations diy(g). Our first main result (Theorem 3.1) is an algorithm whichcakdtes
the g-character of an arbitrary Kirillov-Reshetikhin moduledf as the result of a sequence of
cluster mutations. The only input for this calculation is thitial seed of our cluster algebsa,
which is encoded in a quiver obtained from the Cartan matfrixlwy a simple and uniform recipe.
(It may be worth noting thats is always a skew-symmetric cluster algebra, even whennot
simply laced.)

The proof of this theorem is based on the fact thatcHwharacters of the Kirillov-Reshetikhin
modules are solutions of the correspondingystem of Kuniba, Nakanishi and SuzukiNS1,
N2, H]. This will come as no surprise, given the many papers ajrel@doted to the relationships
between cluster algebras anesystems (see in particuldtkKNS ||, [IIKKNZ1 [, [IIKKNZ2 ]; in fact
our algorithm is inspired fromGLS2, §13], where similarT -system formulas are obtained for
generalized minors of symmetric Kac-Moody groups). We fimgkvertheless remarkable that, by
interpreting thel -system equations as appropriate cluster transformatimesis able to obtain the
Kirillov-Reshetikhing-characters starting from their highest weight monomigsayrocedure of
successive approximations. To the best of our knowledgesihple “bootstrap” algorithm had
not been noticed before, although, in retrospect, it coatthinly have been formulated and proved
without knowledge of the cluster algebra theory.

At this stage, we should recall that Frenkel and MuklfM] have described long ago a
completely different algorithm, which can be used for cotmmutheg-characters of the Kirillov-
Reshetikhin moduledN2, H]. The advantage of our approach is that we are now in a poditio
apply deep results of the theory of cluster algebras androbiw formulas for the Kirillov-
Reshetikhing-characters. InDWZ1), DWZ2], Derksen, Weyman and Zelevinsky have con-
structed a categorical model for a large class of clustezbalts using quivers with potentials.
In particular they have proved a far-reaching generabiratif the Caldero-Chapoton formula, ex-
pressing any cluster variable in terms of thgolynomial of an associated quiver representation
(see alsdP11] for a different proof of this generalized formula). Apphg this formula in our con-
text, we get a geometric character formula for arbitrarylliir-Reshetikhin modules, and also for
their tensor products (Theorém 4.8).

When g is simply laced, and we restrict our attention to the sintpl&sillov-Reshetikhin
modules and their tensor products, namely the fundamerddulas and the standard modules,
the quiver Grassmannians involved in our formula are honuephic to the projective varieties
£°(V,W) used by NakajimalN3, §4] in his geometric construction of the standard modules.
This suggests that the quiver Grassmannians we introdnamrinection with general Kirillov-
Reshetikhin modules of not necessarily simply laced typghtrbe interesting new varieties.

Wheng is a classical Lie algebra of tyge B, C, D, there exist tableau sum formulas for tpe
characters of certain Kirillov-Reshetikhin modules (468$2, 57] and references therein). From
the geometric point of view of Theorelm #.8, these formulaslmaexplained by the fact that the
corresponding quiver representations have a nice andaretgrid structure”, and in many cases
their quiver Grassmannians are reduced to points€seg6.4, 6.3, 6.8).

The cluster algebra approach also suggests that our reshdidd extend far beyond the
Kirillov-Reshetikhin modules. Indeed, we show (Theofed) $hat the cluster algebre is iso-
morphic to the Grothendieck ring & ~. It is then natural to conjecture that this isomorphism
maps all cluster monomials @f to the classes of certain simple objectséof (Conjecturd 5.2),
and to extend the above geometric character formula toedktisimple objects (Conjecturels.3).
The results ofllHL1], HL2] and [N4] provide some evidence supporting these conjectures in the
simply laced case.



Here is a more precise outline of the paper. In Sedtlon 2 wecats with every simple Lie
algebrag some quivers§2.1), from which we define a cluster algebwa(§2.2). We also introduce
the untwisted quantum affine algelig(g) (§2.3). In Section3 we state and prove our algorithm
for computing the Kirillov-Reshetikhim-characters as special cluster variablesf The proof
usesT-systems §3.2.1) and the notion of truncategcharacters§3.2.2). In Sectiofnl4, we con-
sider an algebra defined by a quiver with potential, coming from our initiaksefor o7 (§4.1).

We introduce certain distinguishefkatmodulesKlgr)n (§4.3), and we state our geometric formula

for the Kirillov-Reshetikhing-characters in terms of Grassmannians of submodules d{me
(Theoren 4.8). To prove it, we calculate thevectors of thesg-characters, regarded as cluster
variables of</, and we apply a result of PlamonddRl2] which allows to reconstruct thé-
module corresponding to a given cluster variable from theaktedge of itsg-vector. To be in a
position to apply this result, we show that the defining ptiééiof A is rigid, and that appropriate
truncations ofA are finite-dimensional (Proposition 4]117). In Secfibn 5 pn@/e Theorerh 511 and
we formulate Conjecturie 8.2 and Conjecturd 5.3. The papseslwith an appendix illustrating
our results with many examples.

2 Definitions and notation

2.1 Quivers
2.1.1 Cartan matrix

LetC = (cijj)i,jel be an indecomposablex n Cartan matrix of finite typeKa, §4.3]. There is a
diagonal matriXD = diag(d; | i € I) with entries inZ-o such that the product

B=DC = (bjj)i jel
is symmetric. We normalizB so that miqd; |i €1} =1, and we put := max{d; |i € 1}. Thus

1 if Cis of typeA,, Dn, Eg, E7 Or Eg,
t=1< 2 ifCisoftypeBy, C,or F4,
3 if Cis of typeGo.

It is easy to check by inspection that
(di >1 andcij < O) — (Cij = —1). (l)

One attaches t€ a Dynkin diagramd with vertex setl [Kal, §4.7]. SinceC is assumed to be
indecomposable and of finite typ&,is a tree.

All the objects that we consider below depend@rbut we shall not always repeat it, neither
record it explicitly in our notation.

Example 2.1 The Cartan matrixC of type B3 in the Cartan-Killing classification is defined by

2 -1 O
C=1-1 2 -1
o -2 2

We haveD = diag(2,2,1) and the symmetric matri is given by

4 -2 0
B=|-2 4 -2
0 -2 2
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Figure 1:The quiverd” and G in type A.

2.1.2 Infinite quiver

PutV =1 x Z. We introduce a quivel? with vertex seV. The arrows of are given by
((i,r)=(j,8)) <= (bj#0 and s=r+h).

Lemma 2.2 The quiver has two isomorphic connected components.

Proof — Leti € | be such thatl = 1. For every € Z we have an arroi,r) — (i,r +2). Since the
Dynkin diagramd is connected, every vertéx,s) € V is connected to a vertex of the forir), so

I has at most two connected components. Moreover, sifisa tree, any path frorfi,r) to (i,s) in

I contains as many arrows of the folm p) — (k, p+bjk) with j #k, as it contains arrows of the
form (k,t) — (j,t4bx;j). Sincebjkx = by, and sinceb;; € 2Z for everyj < |, it follows that if there

is a path from(i,r) to (i,s) thens—r € 2Z. Thereforel has exactly two connected components.
These two components are isomorphic via the ifjap) — (j,r +1) ((j,r) €V x Z)). O

We pick one of the two isomorphic connected component:saﬁd call itl'. The vertex set of
I" is denoted by .
2.1.3 Semi-infinite quiver

We will have to use a second labelling of the verticed oflt is deduced from the first one by
means of the functiog defined by

W(i,r)=(>i,r+d), ((i,r) eV). (2)
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Figure 2:The quiverd” and G in type B.

LetW C | x Z be the image oY undery. We shall denote by the same quiver as but with
vertices labelled bW. PutW— :=WnN(l x Z<p). LetG~ be the full subquiver 06 with vertex
setWw~.

Example 2.3 The definitions off2.1.2 andj2.1.3 are illustrated in Figuté 1 and Figlte 2. We find
it convenient to always display the quivdrsn the following way. We decide to draw all arrows of
the form(i,r) — (i,r + by ) vertically, going upwards. Moreover, (if,r) and(i,s) are two vertices
with r —s ¢ b; Z, we draw them in differentolumns Hence, the quivers attached@@lways have
Yiel di columns. Finally, the integer determines thaltitude of the vertex(i,r) in I'. Therefore,
since fori # j we haveb;; <0, the arrowgi,r) — (j,r +bjj) are represented as oblique arrows
going down.
Figurell displays the quivefsandG~ for C of type A;. Figure2 show$ andG~ for C of

type By. In both cases we have chosen to ¢allhe connected component Bfcontaining the
vertex (2,1). For another illustration, witl of type Gy, see Figurel3. More examples can be

found in the Appendix§6.5, §6.6, §6.7.

2.2 Cluster algebras

We refer the reader tdEZ2] and [GSV] for an introduction to cluster algebras, and for any un-
defined terminology.

2.2.1 Cluster algebra attached tdG~

Consider an infinite set of indeterminates= {z, | (i,r) € W~} overQ. Let .« be the cluster

algebra defined by the initial se¢d~,G~). Thus,.«7 is theQ-subalgebra of the field of rational
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functionsQ(z~) generated by all the elements obtained from some element efa a finite
sequence of seed mutations, $8€, Definition 3.1]. Note that there are no frozen variables.

Cluster algebras of infinite rank have not received muchatie up to now. (In fact we are
not aware of another paper tha®@]; in [[GG|, a specific example of typA. is developed, in
connection with a triangulated category studied by Holm &ordensenHoJo].)

For our purposes in this paper, it is always possible to wdthk sufficiently large finite sub-
seeds of the seed,G), and replace by the genuine cluster subalgebras attached to them.
On the other hand, statements become nicer if we allow ox@sédb formulate them in terms of
the infinite rank cluster algebra'.

2.2.2 Monomial change of variables

LetY ={Yi, | (i,r) € W} be a new set of indeterminates o@rLetY = {Y;; € Y | (i,r) e W~ }.
For (i,r) € W—, we perform the substitution

Z, = |_L i r kb - 3)
k>0, r+kh;j <0

Note that all variables in the right-hand side[df (3) belom't .

Example 2.4 If G~ is as in Figuré2, we have
20 = Y20, 2 _2=Yo _2Yo0, Z_4=Y2_4Y2 _5Y20, 2 6= Y2 _gY2_4aY2 2Y20,
z11=Y1-1, Z1-5=Y1-5Y1-1, Z1-9=Y1-9oY1-5Y1-1, Z1-13=Y1-13Y1-9Y1-5Y11,

2 3=Y1-3 217=Y1-7Y1-3, Z-11=VY1-11Y1-7Y1-3, e€tC.

2.2.3 Sequence of vertices

As explained in Example 2.3, the arrows@®f of the form(i,r) — (i,r +bj) are called vertical
and displayed in columns. To each column we attach an itétid| given by the index of its top
vertex(i,r), for whichr is maximal among the vertices of the column.

We now form a sequence tf columns by induction as follows. At each step we pick a column
whose labeli,r) has maximat among labels of all columns. After picking a column with labe
(i,r), we change its label t@,r — bj; ). Finally, reading column after column in this ordering,ifro
top to bottom, we get an infinite sequengéof vertices ofG™.

Example 2.5 If G™ is as in Figurél, theh= 1, the sequence of columns consists of 3 columns,
and we obtain the following sequence of vertices:

7 =((2,0),(2,-2),(2,-4),...,(1,-1),(1,-5),(1,-9),...,(3,—1),(3,—3),(3,-5),...).

(Here, the columns labelled (1,-1) and (3,-1) could be afitanged.)
If G~ is as in Figuré 2, theh= 2, the sequence of columns consists of 4 columns and gives
the following sequence of vertices:

7 = ((2,0),(2-2),(2,-4),...,(1,-1),(1,-5),(1,-9),...,
(2,0),(2,—2),(2,—4),...,(1,-3),(1,-7),(1,-11),...)

Note that the column with verticé®,r) appears two times. It appears first because its initial label
is (2,0). After picking it, its label is changed t@, —2), so it appears again between the columns
labelled(1,—1) and(1,—3).
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Table 1: Dual Coxeter numbers

Finally, for (i,r) € G~, we definek;, to be the unique positive integksatisfying
0 < kb — |r| < by. (4)
In other words(i,r) is thekth vertex in its column, counting from the top.

Example 2.6 If G~ is as in Figuré 2, then

k2.72 — 2, k]_.fg — 3

2.3 Quantum affine algebras
2.3.1 The algebraJqy(g)

Let g be the simple Lie algebra ovér with Cartan matrixC. We denote byy; (i € 1) the simple
roots ofg, and by (i € |) the fundamental weights. They are related by

ai = Cjiw;. (5)
J% ji Wi

Let h” be the dual Coxeter number gfseelKa, §6.1]. The values ofi” are recalled in Tablg 1.

Let g be the corresponding untwisted affine Lie algebra. Thygshifis typeX, in the Cartan-
Killing classification, g has typexrgl) in the Kac classificationKa, 4.8]. LetUqy(g) be the
Drinfeld-Jimbo quantum enveloping algebragoseee.g.[CP1]. We regardJq(g) as aC-algebra
with quantum parameteye C* not a root of unity.

2.3.2 g-characters

Frenkel and ReshetikinER] have attached to every complex finite-dimensional repasien

of Uy(g) a g-characteryq(M). If M is irreducible, it is determined up to isomorphism by its
g-character. The irreducible finite-dimensional represtions ofUy(g) have been classified by
Chari and Pressley in terms of Drinfeld polynomials, $8B1, Theorem 12.2.6]. Equivalently, ir-
reducible finite-dimensional representationt)gfg) can be parametrized by the highest dominant
monomial of theirg-characterlER], and this is the parametrization we shall use.

By definition, theg-characteryq(M) is a Laurent polynomial with positive integer coefficients
in the infinite set of variable® = {Y, 5 | i €|, a€ C*}, which should be seen as a quantum affine
analogue of €™ | i € 1}. In this paper we will be concerned only with polynomialsdlwing the
subset of variables

Yig s ((i,r) eW).

For simplicity of notation, we shall therefore wrig, instead ofY; . Thus ourg-characters will
be Laurent polynomials in the variables of the ¥ehtroduced inj2.2.2.



Let m be adominantmonomial in the variable¥ ; < Y, that is, a monomial with nonnegative
exponents. We denote Hy(m) the corresponding irreducible representatiorigfg), and by
Xq(m) = Xq(L(m)) its g-character. For example,ifiis of the form

m:I_LYi'r+jb"’ (i€|,r€Z,k21),
1=

L(m) is called aKirillov-Reshetikhin modul,eand usually denoted by/k(ir) In particular, ifk =1

we get afundamental modulew Yir). By convention, itk = 0 the moduIeNO() is the trivial
one-dimensional module for evefyr) and itsg-character is equal to 1.

Finally, following [FR], for (i,r) € V we introduce the following quantum affine analogue
of ei:

-1 -1 -1
A| r- —Y| r—di |r+d. ( |_| Yj r) ( |_| er 1Yj r+1> ( |_| Yj r— ZYJ rYJ r+2> (6)
j: cji=—1 j: Cji=—2 j: Cji=-3
Note that sincéi,r) € V, we have(i,r +d;) € W. If ¢ < 0, we also have, because of (1),

(Jsr+cji+1) = (j,r +dj(cji +1)) = (j,r +bij +dj) e W.

It follows thatA  is a Laurent monomial in the variabl¥gss with (],s) € W.

3 Analgorithm for the g-characters of Kirillov-Reshetikhin modules

3.1 Statement and examples
Let <7 be the cluster algebra defined§a.2.1, with initial see& = (z~,G ), and let

S = ((i17r1)a (i2,r2),(i3,r3),...)

be the sequence of vertices of the quiverstfdefined in§2.2.3. We denote by~ (Z) the new
seed obtained after performing the sequence of mutatialexéd by., that is, by mutating first
at vertex(iy,ry), then at vertexip, r2), etc. More generally, fom> 1, let>, = u (%) be the
seed obtained fromx after m repetitions of the mutation sequenpg-. Let ;(T) be the cluster

variable ofZ, sitting at vertex(i,r) € W—; this is a Laurent polynomial in the initial variables
Zjs, (J,5) eW™. Letyi(f:q> be the Laurent polynomial obtained frczﬁfﬂ1> by performing the change

of variables[(B) off2.2.2; this is a Laurent polynomial in the variab¥s, (j,s) e W~.
Theorem 3.1 (a) The quiver oft~(Z) is equal to the quiver df, that is, to G .

(b) Suppose that i h’/2. Then, the SV') are the g-characters of the Kirillov-Reshetikhin
modules. More precisely, for ba h’/2 there holds

Yi(.r;q> = Xq ( k(,|>r72tm) :
where k= ki is defined as ifZ2.2.3.

Remark 3.2 Itis well known that, forp € Z, theq—charactep(q(wk(.ir)w) is deduced fronxq(Wk(.ir))
by applying the ring automorphism mappi¥igs to Y] s, , for every(j,s) € | x Z. Therefore, mod-
ulo these straightforward automorphisms, Thedrer 3.1ritesctheg-characters oéll Kirillov-
Reshetikhin modules.



Remark 3.3 Although the statement of Theordm 13.1 involves an infinitedse and an infinite
sequence of mutation®’, the calculation of thg-character of a given Kirillov-Reshetikhin mod-
ule requires only a finite number of mutations on a finite aisegment of the semi-infinite
guiver. More precisely, the proof of Theordm]3.1 will shovatttall theq-charactersxq(wk(g)

withk=1,...

,| can be calculated usindy + 2| — 1)h’'n/2 mutations, wherté’ = [h7/2].

Example 3.4 Let g be of typeAs. The quiverG™ of the initial seed is displayed in Figuré 1. The
initial cluster variables are

20="Y20, 2 _2=Y2 2Y0, Z_4=VYz 4Y2 2Y20, etC.
z3 1=Y11, Z23=Y1 3Y1 1, &4 s5=Y1 5Y1 31 1, etc.

z3 1=Y3_1, 23 3=Y3 3Y3_ 1, Z3 5=7Y3 5Y3_3Y3 3, etc.

After the mutation sequengey, the first new cluster variables are

1

¥e =
1
y(z)z =

y(z’),4 -

1
yg_)_l =

g

Y2 _2+Y1_1Y3 1Y2T01,

Yo aY2 24V 1Ya 1Yz aYag + Y1 a¥1 1Yy Y5 0Ya 3Ys 1,

Yo _6Ya—aYo_2+Y1_1Y3_1Ya 62 _aYs0 +Y1_3Y1 1Yo _6Y, ,Y54Ya_3Ys 1,

+ Y1,75Y1,73Y1,71Y2T_14Y2T_1 2Y2T01Y3,75Y3.73Y3.717

Y13+ Y Yo 2+ Y0 Va1,

Y1, 5Y1, 3+ Y1.75Y1T,1 1Yo, 2+ Y1.75Y2T01Y3.71 +Y 1 3Y1T,1 1Y2,aY2 2

+ Y Yo aYo5Ya 14 Y, 1Yo Ya aYs

Y1,-7Y1,5Y1, 3+ Y1,—7Y17—5Y1f_1 1Yo, 2+ Y1,—7Y17—5Y2f01Y3,— 1+ Y17—7Y1f_1 3Y1f_l 1Y2,-4Y2 2
+Yq, S 7Y1T,1 3Y2,74Y2T01Y3,71 + Y1,77Y2T,i 2Y2T01Y3,7EY3,71 +Y 1 5Y1T,1 3Y1T,1 1Y2,6Y2,_4Y2 2
Y1 "5Y1 J3Y2,6Y2-4Y29 Y31+ Y] “5Y26Yp ToYo0 Y3 -3Y3 1

+ Yzj_l 4Y2T_1 2Y2T()1Y37 — 5Y37 - 3Y37 -1

(We omit the varlablegg 1 yé ) v ” s, since they are readily obtained frcyﬂ 1 yl 5 Y1 v 5
via the symmetry (> 3) ) After a second application of the mutation sequemge the first new
cluster variables are

2
V5 =
2
y(z,lz =

Hereh’/2 =

Yo 4+ Y1.73Y3,73Y2T_1 5+ Y1.73Y3T_1 1+ Ylf_l 1Y3 3+ Ylf_l 1Y2,72Y3T_1 1+ Y2T017

Y27—6Y27—4 + Y17—3Y37—3Y27—6Y2TE 2 + Y17—5Y17—3Y2f,14Y2f,1 2Y37—5Y37—3 + Y17—5Y2f01Y3f,1 3

+ Ylf 3Y270 Y3 5+ Ylf 3Y2 4Y270 Y37 3 +Yo 6Y270 +Yp - 5Y27 4Y270 Y3 _5+Y1 3Y2 5Y37 1
+ Y1, _5Y1 3Y3 3Y 1+ Y1 sY1 3Y2 4Y3 5Y Tt Y1 1Y2 6Y3,-3+ Y1 3Y1 1Y3 5Y3-3
+ Y1,75Y1’, 1Y2’,4Y3,75Y3,73 + Yli, 3Y1’, 1Y2,74Y2,72Y3’,3Y3’, 1+ Yli, 1Y2,—6Y2,72Y3’, 1

+ Ylf,l 3Y1T,1 1Y2,2Y3 5Y3:,1 1+ Y, stlf,l 1Yo, 2Y3T,1 3Y3T,1 1+ Y, 75Y1T,1 1Y2T,1 4Y2,2Y3 5Y3T,1 1
"’Yz:l 2Y2_01 )

Y15 -I-Y 3Y2 4 +Y2 2Y3 3 +Y3 1

Y1,77Y1,75 + Y1,77Y1’,3Y2,74 + Y1,77Y2’,2Y3,73 + Y1T_15Y]:,13Y2,76Y2,74

+ Y]:,l 5Y27 — 6Y2T_l 2Y37 -3+ Yzjf 4Y2T_l 2Y37 — 5Y37 -3+ Y]TE 5Y27 — 6Y3T_l 1 + Y17 — 7Y3T_l 1

+ Yzj_l 4Y3, — 5Y3T_1 1 + ngi' 3Y3T_1 1

2, so we can observe that the cluster variables obtainedpatéorming 2 times the



mutation sequencgy are indeedj}-characters of Kirillov-Reshetikhin modules, namely,

Yo0= = Xq(Y2,-4), y(z?zz = Xq(Yo,—6Y2,—4), etc.
Yi_1=Xq(Y1-5), y(f),g = Xq(Y1,-7Y1,-5),  etc.
Vol =XaYas),  Vils=Xq(Ya_7¥s_s), etc.

Example 3.5 Let g be of typeB,. The quiverG~ of the initial seed is displayed in Figuré 2. The
initial cluster variables are

0= Y20, 2 _2=Y2_2Y20, Zo_a=Y2_4Yo _5Y70, etc.
z1_1=Y1_1, 21 5=Y1 5Y1_1, Z4_9g=Y1_9gY1_5Y1_1, €tC.
21 3=Y1.3, s 7=Y1 7Y1.3, Z_11=VY1_-11Y1 7Y1-3, €tcC.
After the mutation sequenges, the first new cluster variables are
(1)

Yoo = Yo at+Yi 3Yy 1y,

1
y(2)2 = Y2 6Y2 4—|—Y1 3Y2 6Y 2+Y1 5Yl 3Y2 4Y 2+Y1 3Yl iy

y(27)_4 = Yz, g8Y2 6Y2 4+ Y1 3Y2 gY2 6Y2 L+ Y151 3Ys 8Y2 4Y2 2
+ Y1, _7Y1,5Y1 _ 3Y2 6Y2 4Y2 2—|—Y1 7Y 3Y1 1Y2 6+Y1 1Y1 3Y2_s,
y(ll), 1 = Y15 —I—Y1,,1Y2,74Y2,72 —I—Y2.74Y2’0 +Y1.73Y2,,2Y2,017

1 _ _ 1o
y(l,),5 = Y15Y1,9+Y1 oYy ° LYo 4o 2+ Yi _oYs 4Y20 +Y1, oY1, 3Y27_12Y2701

+ Y- 5Y1 1Yo, gY2 6Y2 aYa - 2+Y1 1Yo Y2 62 4Y20
+ Yl 5Y1 3Y2,_gYo 6Y2 2Y20 +Yy_3Yo 3Y2 4Y2 2Y20
+ Yl,77Yl,f3Y2,76Y27—4Y27—2Y27o )
1 _ _ 1o _
Vs = it YRV eVo st Yo ey LY s, LY, LY,
ity = Yo-7Yi_1ai+Yio11Yy - LYo 6Ya 4+Yi 112 6Yp - LY 11Y1 75Y2T,14Y2112
+ Y - 7Y1 LYo 10Y2 gY2 6Y2, 4+Y1 LYo 10Y2 gYo - 6Y2 -2
+ Y - LY1 Y2 _10Y2, 8Y2 4Y2 L+Y1 sYs, 10Y2 6Y2 4Y2 2
+ Y1, 9Y1,5Y, ° 8Y2 6Y2 4Y2 Ly —oYy = 1Y2 8Y2 e (W) A
+Y1 1Y2 10Y 6+Y1 7Y1 1Y2 10Y2 8+Y1 5Y1 1-

Hereh’/2 = 3/2, and we can observe that certain cluster variables are eta@-gharacters of
Kirillov-Reshetikhin modules. But some already are, ngmel

y(f)_g = Xq(Y1,-7), y(171)_7 = Xq(Y1-7Y1,-11),  etc.

After a second application of the mutation sequenge since 2> 3/2, all the new cluster vari-
ables aray-characters of Kirillov-Reshetikhin modules. For example

Vg = Yo g+ Vi Y, L+ YV 4t Ys = Xq(Yas).

g

3.2 Proof of Theorem 3.1

The proof relies on two main ingredients which we shall fiestiew, namely, thd -systems, and
the truncatedj-characters.

10



3.2.1 T-systems

With the quantum affine algebtdy(g) is associated a system of difference equations called a
T-system|KNS1]. Its unknowns are denoted by

Tk(i) (iel,keN,rez).

7r’

We fix the initial boundary condition

=1 (el rez). )

,r

If gis of typeA,, Dn, En, the T-system equations are

Tk(.|r)+1Tk(,lr)71 =T ursr a1+ Nl lTk(,:)7 (iel, k=1 rez). (8
) Gj=—

If g is not of simply laced type, thE-system equations are more complicated. They can be written
in the form

() (O —0)] () i) :
Tervd Ter—d = Tkevrd Tertr—d +§(<7r7 (iel, k=1 reZ), )

wheres,) is defined as follows. 16 > 2 then

§(< |_| Tkr_ |_| Td(i{gr—di—&-l' (10)

jicji=—1 JiCjis—

If di =1 andt =2, then

[ Tkr [ Tlr Ir+27 if k=2,

§<i) ) Bai=-1 jrgj=-2 (11)
T ()
) Tkr I_I TI+1rTI r+2 if k=21+1.
J: Gj=— jrcj=—

Finally, if d, = 1 andt = 3, that is, ifg is of type G,, denoting byj the other vertex o we have
dj =3 and

TI(rJ)TI(rJErZTI(rJEM if k=3I,
o= T TT . k=311 12)
(i) j (i) ;
T T ot ifk=31+2

Example 3.6 Let g be of typeB,. The Cartan matrix is

(% 7)

and we havel; = 2 andd, = 1. TheT-system reads:

1) +(1 (1 (1 (2

Tk(.r+2Tk,r)—2 = ka>:L,r+2Tk+>1.r72+T2k.)rfl7 (k>1,rez),
(2) (2) _ (2) (2) (ESESEY)

TirsaTair-a = Dl it Ty T (121, 1€Z),
2) 2) (2 (2 (1 (1

T2(I+l,r+1T2(I+l,r71 = T2I,r)+1T2I+)2.rfl+TI+Z)L.rTI.rJ>rZ7 (>0, rez).

11



It was conjectured iNnKNS1], and proved in[N2] (for g of type A,D,E) and H] (general
case), that thg-characters of the Kirillov-Reshetikhin modulesf(g) satisfy the corresponding
T-system. More precisely, we have

Theorem 3.7 ([N2][H]) Foriel, ke N, r € Z,
T = xe (W)
is a solution of the T-system in the riﬁg{\ﬁl (i,r) el x Z}.

3.2.2 Truncatedg-characters

Let ¥~ be the full subcategory of the category of finite-dimensidigg)-modules whose ob-
jects have all their composition factors of the fokifm) wherem is a dominant monomial in the
variables ofY ~.

Lemma 3.8 The g-character of an object i~ belongs tdZ [\ﬁl | Yir € Y} .

Proof — A simple object ofg’~ is a quotient of a tensor product of fundamental representat
of ¥~. But theg-character of a fundamental representation can be cacula means of the
Frenkel-Mukhin algorithm(EM]. At each step the algorithm produces monomials which werol
only variablesy;; € Y. Hence the result. O

Note that for a dominant monomiah in the variables ofY —, the g-characterxy(m) may
contain Laurent monomialsi involving variablesY;; € Y \ Y. Following [HL1], we define the
truncated g-characteg, (m) to be the Laurent polynomial obtained frggg(m) by discarding all

these monomialst. So, by definitionxg (M) € Z [\ﬁl Y, € Y‘].

Example 3.9 Let g be of typeB,. We keep the notation of Example B.6. The fundamental msdule
L(Y1_3) andL(Y> _4) haveg-characters equal to

XaY1-3) = Yo 3+Y Yo oYo0+Yo oY + Y1 1Y, Yo5 + Y3,
Xa(Y2—4) = Ya_a+Yi g%, L+ Y Yoo+ Y5

The corresponding truncategcharacters are

Xqg Yi-3) = Yi_3,
Xqg (Yoma) = Yoa+YiaY, %y

Proposition 3.10 (i) ¥~ is a tensor category.

(i) The assignmentL(m)] — Xq (M) extends to an injective ring homomorphism from the
Grothendieck ring K(¢) to Z Y1 | Y;, € Y-]_

Proof — The argument follows the same linesB [} §5.2.4,56.2]. Recall the Laurent monomi-
alsA;, introduced in[(B). ByIER], a Laurent monomiat of theg-character of a simple object of
¢~ can always be written in the form’ = mM wheremis a dominant monomial in the variables

12



of Y=, andM is a monomial in the variable " with (i,k-+d;) € W. Note that theY-variable ap-

pearing inA; ; with the highest spectral parametelYjg,q . It follows thatAi*r1 is aright-negative
monomial in the sense dEM], that is, theY-variable with highest spectrai parameter occuring in
A has a negative exponent.

Let L(m) andL(m) be simple objects o#'~, that is,m andm’ are dominant monomials in
the variables ofy —. If L(m") is a composition factor of (m) ® L(nT), thenm’ is a product of
monomials ofxq(m) andxq(n'). So, we haven’ = mniM whereM is a monomial in the variables
Aifrl. We claim that, sincen’ is dominant, the spectral parameterkave to satisfyr +d; < 0.
Indeed otherwisen” would be right-negative. Therefore, using Lemima 3.8, theongal m’
contains only variables of —, henceL(m”) is in ¥—, and¢~ is a monoidal category. Moreover,
by [CP2, Prop. 5.1], the category~ is stable by duals, so it is a tensor category. This proves (i)

To prove (ii) consider now an arbitrary Laurent monomiélof the g-character of an object
of €~. As above, it can be written in the form = mM wheremis a dominant monomial in the
variables ofY ~, andM is a monomial in the variable& ! with (i,k+ d;) € W. Now v contains
avariableY; s ¢ Y~ if and only if M contains a negative power Af, for some pair(i,r) such that

(i,r+di) W~. So, ifRdenotes the subring @t [Yifl |Yir € Y} generated by all the monomials

of the g-characters of the objects &, and if | denotes the linear span of those monomials
containing a variablé;s € Y \ Y™, we see that is an ideal ofR. Hence, ifimR — R/ is the
natural projection, we can realize the truncatecharacter magy,” as

Xq = Tt Xq,

which shows thal, is a ring homomorphisnKo(4 ™) — Z Yﬁl |Yir € Y~ |. Finally, the fact

that x,, is injective follows from the fact that contains only non-dominant monomials, and that
two g-characters having the same dominant monomials with the saeifficients are equal. O

3.2.3 Proof of the theorem

We first notice that the initial cluster variablag are equal, after the change of variables (3), to
the truncatedj-characters of certain Kirillov-Reshetikhin modules, rdyn

Ziy = |_L Yi,r-i—khi = Xc; <Wk(|lr)r) ’
k>0, r+khij <0

wherek; , is defined as ir[(4). Indeed, the level of truncation is chasetiat after truncation only
the highest dominant monomial of thegeharacters survives.

Now, the main idea of the proof is that the quiver and the mutation sequenge» are
designed in such a way that, at every step of the mutationesegy the exchange relation is
nothing else than &-system equation. Let us first check this whges of rank two.

For g of type Ay, the sequence of mutated quivers obtained at each stgp-aé shown in
Appendix§6.1. The mutations take place at the boxed vertices. Re#éangecond quiver ¢f6.7,
we see that the new cluster variable obtained after the fintation is equal to

Z-2t7-1_ Xq <W2(2—)2) tXa (Wl(l‘)l) — o (W(Z) ) .

220 xa (W) A
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Here we have used Theorém]|3.7 and Proposdition 3.10. Siyitadding the third quiver df6.1,
the new cluster variable obtained after the second mutéiequal to

_ 2 _ 2 _ 1
Xo (W) xq (Wi%5) +xg (Wi¥)
@ =X (W%).
Xa (Wz.fz)
An easy induction shows that, after every vertex of the secotumn has been mutated, each clus-

ter variable of the formy (Wk(z_)zk +2> has been replaced by the new cluster varia@e{Wk(Z_)ZK) :
We now continue by mutating vertices of the first column. W&t fijet, at the top vertex

- W(1_> - W(z_)
x z;@;*l)( o) e i)

Then, mutating at the next vertex gives

Xa (WaYs) xq (Wi¥s) +xq (W2 )
LDt ) )

By induction one sees that, after every vertex of the firstiwwl has been mutated, each cluster
variable of the formy, (Wk(.lfzk +1> has been replaced by a new cluster varia@re(wk(’%kfl).

Moreover, one sees that the new quiver obtained afteris nothing else thais~. Hence we
conclude that one application pf> produces a seed with the same quiver, and in which every
cluster variable(g (Wé?) has been replaced by <Wk(7lr)—2)' In other words, the effect qi.» is
merely a uniform shift of the spectral parametetsy —2.

The argument is similar fog of type B,. The sequence of mutated quivers obtained at each
step ofuy is displayed in Appendi®6.2. Reading the second quiver{@.2, we see that the new
cluster variable obtained after the first mutation is eqoal t

- (W@ — (W@
2 2t+zn-1 X <W2,—2) T Xq (W17—1) (2
o — (W@ —Xq (WH)'
: Xa <W1.0>
Similarly, reading the third quiver 0§6.2, the new cluster variable obtained after the second
mutation is equal to

@ o @ @ Y v (@
Xq (W37—4) Xq <W1;m2>(v—;2(§2)<w’1) Xq (W17—3) —X: (Wz(z_)4)

By induction, after every vertex of the second column hasbeatated, each cluster variable

of the formxg (Wk(i)zk +2> has been replaced by the new cluster varia\qte(wk(.%)%). We now

continue by mutating vertices of the third column. We firdt géthe top vertex

T (W) + xq (a2
ol = >(v+v1<xl?1)< )

14




Then, mutating at the next vertex gives
Xa (W) xq (W) +xg (Wi%)
Xa (Wz(l—)s)

By induction one sees that, after every vertex of the thildrom has been mutated, each cluster
variable of the formy, (Wk(lf K +3> has been replaced by the new cluster variatale(Wk@ 4k71).
For the third part ofts~, we mutate again along the second column. One checks thattzt, each

cluster variable of the forny, <W|f72_)2k) produced after the first part pf» has been replaced by

=Xq <W2(71—)9) :

Xq (Wk(z_)2k_2> . Finally, the fourth part ofi»~ along the first column replaces each cluster variable

of the form x, (Wk(l_) K +1> by the new cluster variablg, (Wk(l_) 4k_3>. Moreover, one sees that
the new quiver obtained aftery is nothing else thafs—. Hence we conclude that one application
of p» produces a seed with the same quiver, and in which everyecluatiablex, (Wk('r)) has

been replaced by <Wk(,lr)—4>' In other words, the effect g~ is merely a uniform shift of the
spectral parametersby —4.

The argument is similar fog of type G,. The quiverG~ for this case is dispayed in Figre 3,
and the mutation sequence is

(2,0),(2,-2),(2,—-4),...,(1,-1),(1,-7),(1,-13),...,
(2,0),(2,-2),(2,-4),...,(1,-3),(1,-9),(1,-15),...,

(2,0),(2,-2),(2,—4),...,(1,-5),(1,-11),(1,-17),....

The sequence of mutated quivers obtained at each step o displayed in Appendi{6.3.

For a generaf, we use a reduction to rank two. Namely, we show that mutet@muences
andT-systems equations are compatible with rank two reductions

First, by construction, the sequence of verticéss a union oftn columns:

y:(y17y27'“7€%n)7

where each columtyy is a subset ofy x Z<q for a certainiy € I. As above we usg 4 to denote
the sequence of mutations indexed.##y. So we have

Hy = Hsn O Mty 1 © - O Koy

For 0< k <tn, we get the mutated quiver

2= (Up oMs 0 0 ls)(2).

For a subsed C |, let us denote byZy); the subquiver ofy obtained by deleting the vertices
(i,r) such thai ¢ J, and the edges whose tail or head is such a vertex. Faramhythe mutation
sequenceuy, modifies(Xy); to itself. Consequently(Zy); = (X); does not depend ok (it is a
disjoint union ofd, semi-infinite linear quivers). Besides, the mutation segag:, modifies
only the edges whose tail (resp. head) i&ir Z and head (resp. tail) is inx Z wherec;,; < 0.
This is because each mutation of the sequence takes place@ér(ix,r) having two incoming
arrows from verticegiy,r £ d;) and outgoing arrows to vertices of the fofjs) with ¢;,j < 0.
Consequently, for eadh# j in I, the effect of the mutation sequenge on (Z)y; j, is the same as
the effect of an iteration of the mutation sequence cormeging to the rank two Lie subalgebra
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(27_ )

(17_3)
)
)

(1,—11)

Figure 3:The quiver G for g of type G.

of g attached td{i, j} C |. But we have established the result for rank two Lie algetsashis
implies
(L (X)) iy = )i gy -

As this is true for any # j in |, we getu»(Z) = .
Secondly, ar-system equation involves only a certain index| and the indiceg € | with
cij < 0. TheT-system equations do not change by reduction, in the seaséothsuch aj, the

powers of the factor; ) in the second terrsy) of the right-hand side of{9) are the same as for
the T-system equation associated with the rank two Lie subadgeby attached td{i, j}. Com-
bining with our results above for the subquivék);; ;;, we have proved that, for a general

all exchange relations of cluster variables of our mutaequence are in fadt-system equa-
tions. Moreover, the mutation sequenge replaces the initial seed by a seed with the same
quiver; the cluster variables, expressed in terms o¥theia (3), are truncated-characters of the
same Kirillov-Reshetikhin modules, the only differencenigethat their spectral parameters are

uniformly shifted by—2t.
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Hence, aftem applications ofu s we will get the truncated-characters

yi(.rrn) = XOT (Wk(.lr), r—2tm> :

Now taking into accountfM|, Corollary 6.14], we see that itéh > th", then all the monomials of
theg-character oWK(_'r)q r_am are lower than the level of truncation, that is,

Xq <W|<Elr)7 r—2tm) = Xq (Wk(.ll r—2tm> .
This finishes the proof of Theoredm 8.1.

4 A geometric character formula for Kirillov-Reshetikhin m odules

4.1 Semi-infinite quivers with potentials

Recall the mapp:V — W of §2.1.3. PuV~ := ¢y~1(W~), and denote by ~ the full subquiver
of I with vertex sel ~. Thusl ™ is the same graph &, but with a change of labelling of its
vertices. (Compare for instance Figlte 3 and Figlire 7.)
For everyi # j in | with ¢; # 0, and everyi,m) in V~, we have il ~ an oriented cycle:
(i,m) (13)

!

(i,m—bii)
(j,m+bij)

(i,m+2bij —|—bii)
|

(i,m+2bij)

There are fjj|/bii = |cij| consecutive vertical up arrows, hence this cycle has ledgtltij|. We
define apotential Sas the formal sum of all these oriented cycles up to cyclicnpgations, see
[DWZ1] §3]. This is an infinite sum, but note that a given arrow of can only occur in a finite
number of summands. Hence all the cyclic derivativeS, afefined as inDWZ1), Definition 3.1],
are finite sums of paths ih~. Let R be the list of all cyclic derivatives db. Let J denote the
two-sided ideal of the path algebtd — generated byr. Following [DWZ1], we now introduce

Definition 4.1 Let A be the infinite-dimensionél-algebraCr — /J.

Example 4.2 Let g be of typeAs. Thenl ~ is the first graph in Figurel 4. The ideals generated
by the following 7 families of linear combinations of paths; everym e Z o,

((1,2m), (2,2m—1),(1,2m—2)),

((3,2m),(2,2m—1),(3,2m— 2)),
((1,2m), (1,2m+2),(2,2m+1)) + ((1,2m),(2,2m—1),(2,2m+1)),
((3,2m), (3,2m+2),(2,2m+1)) + ((3,2m),(2,2m—1),(2,2m+1)),
((2,2m—1),(1,2m—2),(1,2m)) + ((2,2m—1),(2,2m+ 1), (1,2m)),
((2,2m—1),(3,2m—2),(3,2m)) + (( )
(( )+ (( )

2,2m-+1),(1,2m),(2,2m—1

2,2m—1),(2,2m+1),(3,2m)),

)
)
)
)
)
)+ ((2,2m+1),(3,2m),(2,2m - 1)).
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(2,-1) (2,-1)

(1-2) (3-2) -3  (1-3)
(2,-3) (1,-5) (2,-5)

(1,-4) (3,—4) (2,-7) (1,-7)
(2,-5) (1,-9) (2,-9)

(1,—-6) (3,—6)

Figure 4:The quiverd ~ for g of type A and B.

Here, using the fact that there is at most one arrow betweernvéntices off —, we have denoted
unambiguously paths by sequences of vertices. Tflugm), (2,2m—1),(1,2m—2)) denotes the
path of length 2 starting dtl,2m), passing by(2,2m— 1) and ending in(1,2m—2)). Also, for

m = —1, the third and fourth linear combinations of paths redespectively to the single paths

((17—2)7(27_3)7(27_1)) and ((37—2)7(27_3)7(27_1))'

Example 4.3 Let g be of typeB,. Thenl ~ is the second graph of Figuté 4. The iddais
generated by the following 4 families of linear combinatiaf paths, for everyn € Z o,

1,2m—1),(2,2m—3),(1,2m—5)),

1,2m—1),(1,2m+3),(2,2m+1)) + ((1,2m— 1), (2,2m—3),(2,2m— 1), (2, 2m+ 1)),
2.2m—3),(1,2m—5),(1,2m— 1)) + ((2,2m—3),(2,2m—1),(2,2m+ 1), (1,2m— 1)),
2,2m+1),(2,2m+3),(1,2m+ 1), (2,2m— 1)) + ((2,2m+ 1), (1,2m— 1),(2,2m— 3),(2,2m - 1)).

)

)

((
((
((
((

o~ o~ o~ o~

Form= —1 andm= —2 the second linear combinations of paths reduce resphctivéhe single
paths

((17_3)7(27_5)7(27_3)7(27_1)) and ((17_5)7(27_7)7(27_5)7(27_3))‘
Form = —1 the fourth linear combination of paths reduces to the sipgth

((27 _1)7 (17 _3)7 (27 _5)7 (27 _3))

4.2 F-polynomials of A-modules

Let M be a finite-dimensionah-module, and lee € NV be a dimension vector. Let @M) be
the variety of submodules & with dimension vectoe. This is a projective complex variety, and
we denote by (Gre(M)) its Euler characteristic. Followind®WZ2], consider the polynomial

Fu= 5 X(Gr(M) [] ¥ (14)

ecNV ™ (i,r)ev-
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in the indeterminates;, ((i,r) € V™), called theF-polynomialof M. Note that, for Gg(M)
to be nonempty, one must talcbetween 0 and the dimension vectorMf(componentwise).
Moreover, ife=0 ore= dim(M), the variety G&§M) is just a point, sdy is a monic polynomial
with constant term equal to 1.

In the sequel, we shall evaluate the variables offh@olynomials at the inverses of the vari-
ablesA; ; introduced in[(6), namely:

vie = AL=Y Y T Yir [T Yir-tYier [] Yie2YieYirs2e (15

j: Cji=— jicji=—2 jicji=—3

4.3 Generic kernels

Suppose thaX andY areA-modules such that HogtX,Y) is finite-dimensional. Assume also that
there existsf € Homa(X,Y) such that Ke(f) is finite-dimensional. Then, there is an open dense
subsetO of Homa(X,Y) such that the kernels of all elements®@re finite-dimensional. More-
over, since the map sending a homomorphisto the F-polynomial of Ker(f) is constructible
(see |P3, §2]), O contains an open dense sub&eof Homa(X,Y) such that the=-polynomials
of the kernels of all elements @ coincide. We shall say that an element®@fis a generic
homomorphisnfrom X to Y.

Let us denote b n, the one-dimensionah-module supported ofi,m) € V. Letl; , be the
(infinite-dimensional) injectivé\-module with socle isomorphic t§ . The C-vector spacé; m
has a basis indexed by classes modutif paths inl~ with final vertex(i,m). In particular, for
everyk > 0 we have i — a path

((i7m_khi)7(i7m_(k_l)bii)a"'7(i7m)) (16)

of lengthk from (i,m—kb;) to (i,m), whose class moduld is nonzero. Thus thé,m— kk;)-
component of the dimension vectorlgf, is nonzero, and it follows that

Homa (li m, li,m—ki; ) # O, ((i,m eV, k>0). a7

More precisely, Hom(lim, lim-ky; ) has finite dimension equal to ti{g m— kb )-component of
the dimension vector df m. The next Lemma will be proven i#£5.3.

Lemma 4.4 There exists £ Homa(li m, li m—ky; ) with Ker () finite-dimensional.

Because of this lemma, the following definition makes sense.

Definition 4.5 Let K‘E'r)n be the kernel of a generic A-module homomorphism fiagmd i m—ky; -

Example 4.6 Figure[% and Figurgl6 show the structure of some modﬂﬁ{#in type Az. Our
convention for displaying these quiver representatiotkdgollowing. We only keep the vertices
of '~ whose corresponding vector space is nonzero, and the awbase corresponding linear
map is nonzero. Moreover, in these small examples, almbstgices carry a vector space of
dimension 1. The only exception is the modm§23 in Figure[6, whose vertefe, —3) carries a
vector space of dimension 2. The maps associated with thesincident to this vertex have the

following matrices

a:B:y:(é), 0=e=k=(0 1).
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(3,-2) (2,-1) (1,-2)

~ PN N
(2-3) (1-2) (3-2) (2-3)
- O AN
(1,-4) (2-3) (3,-4)
Figure 5:The modules @4, ng, Kf’z4 for g of type A.
(3-2) (2-1) (1,-2)
(2-3) 1-2 « (3-2) (2-3)
a
~ N /B N
(1,-4) (3,-4) -3 7 (1,-4) (3-4)
‘ e 5 PN N |
(2-5) 1-4) v (3-4) (2-5)
- | Y
(1,-6) (2-5) (3-6)

Figure 6:The modules @4, Ké%, and Kf’z4 for g of type A.

All other arrows carry linear maps with matrixt1), whose sign is easily deduced from the
defining relations oA.

It is a nice exercise to check that the modules shown in Fi§uaad Figuré 6 are indeed
the claimed moduIeKlgr)n (see also Example 4.7 below). For instance, one can easlyhs¢
the (1, —6)-component of the dimension vector laf_4 is equal to 1. Hence Honfly —4,11 —6)
is of dimension 1, andl(ill4 is the kernel of any nonzero homomorphism. It is also easy to
see that thé€2, —5)-component of the dimension vector bf_3 is equal to 2. In this case we
have a stratification of the 2-plane Hafly 3,1, _5) with three strata of dimension 0, 1, 2. The
module Kf}S is the kernel of any homomorphism in the open stratum, thaifiany surjective
homomorphism. The image of any homomorphism in the one+usineal stratum is the unique
submoduleX of I, _g with dimension vector given by

1 ifi=2andm= —-5-2jfor somej € N,

dim(Xim) = {

0 otherwise.

The kernel of such a homomorphism is infinite-dimensional.

Example 4.7 Let us assume thatis of typeA, D, E. In this case, the moduldsfz are closely
related to the indecomposable injective modules over thprpjective algebra of 5.

Consider the subalgebfaof A generated by the images modulof the arrows of ~ of the
form (i,m) — (j,m— 1), for every edge betweeinand j in d, and every(i,m) € V~. In other
words, if A5 is the subquiver of ~ obtained by erasing all the vertical arrofigm—2) — (i, m),
thenA is isomorphic to the quotient @Ay by the two-sided ideal generated by the relations

Z ((ivm)v(j>m_1)>(ivm_2)):07 ((I,m)EVi)

j: Gj<0
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Thus,A is aZo-graded version of\. We can of course regard the simplenoduleS; as a/-
module. LetH;, be the injective7\-module with socle5 ;. ThenH; is finite-dimensional. More
precisely, for <1—h, Hi is just a graded version of the indecomposable injedivaodulel;
with socle the one-dimensionA-module§ supported on vertekxof . Forr > 1—h, H;, is a
graded version of a submodule lof

Any A-module X can be given the structure of @amodule by letting the vertical arrows
(i,m—2) — (i,m) act by 0 onX. In particular we can regarHi, as a finite-dimensionah-
module. Then one can check thgt has a unique submodule isomorphidHg, giving rise to a
non-split short exact sequence

O—=Hi;—lir—=lir—2—0, ((i,ryev™).

It follows that the moduIeK() is isomorphic toH; m. In particular, wherm < 1—h, K misa
graded version of the injectlv&-modulel.

4.4 A geometric character formula
Recall theA—moduIeKS? defined ing4.3. We can now state our second main result.

Theorem 4.8 Let (i,r) € V- and ke N. The F-polynomial of [&2 is equal to the normalized
truncated g-character of the Kirillov-Reshetikhin modwié (k-1)g . More precisely, we have

Xg( (') (@ 1d ) (F!Y'f (2s-1)d ) k()

where the variables;y of the F-polynomial are evaluated as (&i5).

Remark 4.9 If r < d; —th’, then the truncateg-character oW( ) (k1) is equal to the complete
g-character. Hence, Theordm }4.8 gives a geometric formmlm&)q—character of any Kirillov-
Reshetikhin module (up to a spectral shift).

Remark 4.10 If M andN are two finite-dimensionah-modules, therysn = FyFn [DWZ2],

Proposition 3.2]. It follows immediately that, replacing Theoreni 418 the modulkélgz by a
direct sum of such modules, we obtain a similar geometricacttar formula for arbitrary ten-
sor products of Kirillov-Reshetikhin modules. In partiaylwe get a geometric formula for the
standard modules, which are isomorphic to tensor prodddtsmdamental modules.

Remark 4.11 Let g be of typeA, D, E. LetV andW be finite-dimensional vector spaces graded
by V. In [N1] (see alsollN4]), Nakajima has introduced a graded quiver varigtyVV,W) and
has endowed the sum of cohomologies

PH* (L (V,W))
\%

with the structure of a standatd},(g)-module, with highest weight encoded %y. It was proved
by Lusztig (in the ungraded case), and by Savage and Tingleli€ graded case), that (V,W)
is homeomorphic to a Grassmannian of submodules of an ivgectodule over the graded pre-

projective algebra (se&é&2, §2.8]). Therefore, using the descnptlonloﬁJ given in Examplé 4]7,

we see that the varieties
Daj ¢
(?% ) )
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(27_ )
(17_6)
)
)
(2,-11)
(1,—12)

Figure 7:The quiver ~ for g of type G.

(1,—14)

involved in our geometrigi-character formula for standard modules in the simply lazzsk are
homeomorphic to certain Nakajima varietiés(V,W). Here, the multiplicitiess;, are the di-
mensions of the graded componentd\dfand we assume that, = 0 if r > 1—h. Similarly the
graded dimension of is encoded by the dimension vector

Example 4.12 Let g be of typeAs. We have
Vir = Ylfrl, 1Y1Tr1+ 1Yor, Vo = Yzjrlf 1Y2}i1Y1,rY3,r7 V3r = Yg:rl, 1Y37r11Y27r-

We continue Example 4.6. The submodule structure ofAtheodules displayed in Figuké 5 is very

simple. Indeed, in this case, all the nonempty varietiegfel(é}ﬁ) are reduced to a single point, and
their Euler characteristics are equal to 1. ThereforeRhaolynomial reduces to a generating

polynomial for the dimension vectors of the (finitely manypmodules OKSE. This yields the
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following well known formulas for the-characters of the fundamental modules:

Xq(L(Ye—5)) = Y1_5(14V1_4+V1_aVo_3+V1_4Vo_3V3_>)
= Yy 5+Y LY, —a+Yy ) 3+Y3 1

Xa(L(Y2—4)) = Y2 4(14+Vo 3+Vy 2Vo 3+V2 3V3 2+Vy 2V2 3V3 2
+ V1 _2Vo _3V3_oVo 1)
= Yo a4+ Y17_3Y2;1 Y3 3+Y 1Yz 3+ Y17_3Y3;1 1Y 1Y27—2Y3;1 1+ Y54,
Similarly, theA-modules shown in Figuf€ 6 give the following Kirillov-Resttkhin g-characters:

Xa(L(Yo—7Y15)) = Yi_7Y1_5(1+v1_4(l+V1 _6+Vo_3+Vi_gVo_3+V2_3V3_»
+ Vi1 -6V2,—3V2 _5+V1_gV2 _3V3_2+V1_6Vo_3Vo_5V3_»
+ Vi,_6V2,_3V2 _5V3 _2V3 _4)),
Xa(L(Y2_eY2-4)) = Yo_6Yo_4(l4+Vo _3(14+V1_2+Vo 5+V3 24+V1_2Vo_5+V1 _2V3_ 2
+ Vo _5V3 _2+V1 _2Vp _5V3 2+ V1 2Vo 5V1 _4+V1_2V3 _2Vo 1
+ Vo _5V3 _2V3_4+V1 _2Vo _5V3_oVi _a+V1_2Vo _5V3_ oV 1
+ V1 -2V2 _5V3 _2V3_4+V1_2Vo _5V3_oV1_ 4V 1
+ V1, _2V2 _5V3 _2V1 _4V3 4+ V1 _2Vo _5V3 _2V3 4Vo 1
+ V1 _2Vo _5V3 _2V1 _4Vo _1V3 4+ V1,f2V2,75V3.72V1,74V2.71V3,74V2.73)),
We omit theg-characters(q(L (Y3 —5)) andxq(L(Y3 —5Y3 7)), since they are readily obtained from
Xq(L(Y1,—s5)) andxq(L(Y1,—5Y1,—7)) via the symmetry % 3.
Example 4.13 Let g be of typeGy,, with the long root beingx;. The quiverl ~ is shown in
Figure[7. The moduIeKilr) and K(z) with r < —10 ands < —11 have dimension 10 and 6,

respectively. For mstanc{s(,1 10 andKi >11 are represented in Figure 8. In the mod&{é 10the
vector space sitting at verte(x? —7) has dimension 2 (all other spaces have dimension 1). The
maps incident to this space are given by the following mesrisee Figuriel 8):

“:<(1)>’ B=(1 0), v:<$>, Yy=(0 1).

The corresponding fundamental modules have dimension
dim L(Y17_13) =15, dim L(Y27_12) =7.

The Grassmannians of submoduleié(éjﬂlO andKflll are in this case again all reduced to points,
and the formula of Theorefm 4.8 amounts to an enumerationeodlithension vectors of all sub-
modules. This gives

Xq(L(Y1-13)) = Yi_13(1+Vvi_10(1+Vo_7(1+Vo _o(14V1_6+Vo_114+V1_eV2 11
+ V1, 6V2—3+V2 _11V1 8+ V1 6V2,—11V2 -3+ V1 6V2,—11V1 -8
+ V1 _6V2—11V2 3V —g(1+ Vo _5(1+ Vo _7(1+V1_4))))))),
Xa(L(Y2—12)) = Y2-12(1+Vo 11(1+Vvy g(1+V2 5(1+ V2 7(1+Vi4a(14+V2-1)))))),

where, following [(15), we have

1 y-1 1 -1
Vir =Yy G 3Y1gY2r+2Y2r Y22, Vor =Y5 1Yo 1 Y1
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(2,-3) (2,-1)

(1,74)
(2,*5)
a (17_4>
(1,-6) y
(27_5>
(2,*7)
y 1-8 _
8 (1,-8) (2,-7)
(2-9 (1,-8)
(1,-10)
(2,-11)
(2,-11)

Figure 8:The modules @10 and Kﬂn for g of type G.

Remark 4.14 Assuming Theorern 4.8, we can easily calculate the dimensiators of theA-
modulesKﬁz for r < d; —th". Indeed, by[EM, Lemma 6.8], the lowest monomial af(Yir—d)

is equal tOsziJj.rfdi+th" wherev is the involution ofl defined bywo(ai) = —ay. Denote by

(djs(Kii},)) the dimension vector d(i'z Then, we have

d; ,S(Kﬁ )
is )

-1 RV
Yv(i)7r—di+th“ =Yir—q
(1,8 eV~
and using[(1b), this equation determines the numbgg(sKEZ). In particular, if we introduce the

ungradeddimension vecto(d;(i)) of Kfz by

di(i) ==Y djs(K)),  (r<di—th),
S
we can deduce from this the nice formula

> diihaj= 5 B, (18)

i,J€l Bed-o
where®- g is the set of positive roots af. This can be observed in Figure 5 and Figure 8 (see
also§6.4, 46.5, 6.8, §6.1 below). Whery is of type A, D, E, as explained in Rematk 4.7 the
modulesKﬁZ are graded versions of the indecomposable injective medwler the preprojective

algebra/\, and formula[(IB) recovers a well known property/of
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4.5 Proof of the theorem

The proof relies on Theorein_3.1, and on the categorificatioaluster algebras by means of

quivers with potentials, developed by Derksen, Weyman agldvihsky DWZ1| [DWZ2]. This

categorification provides (among other things) a desompdif cluster variables in terms of Grass-

mannians of submodules, which will be our key ingredient.iiportant additional result will be

borrowed from PlamondorP]2].

4.5.1 F-polynomials andg-vectors of cluster variables

Recall the cluster algebre’ of §2.2.1, with initial seedz—,G~). Following [FZ3, (3.7)], define
Vo= ] zs [] zs  ((r)ew) (19)

(=0  (,9=0r)

Here the firstiesp.second) product is over all outgoing§p.incoming) arrows at the vertex r)
of the graphG—. The following result is similar tdHIL1, Lemma 7.2].

Lemma 4.15 After performing in(19) the change of variablegS), there holds
/y\ivr :Aijl’l—dﬂ ((I7r) GW_),

where the Laurent monomials Aare given by(G).

Proof — Using the definition of the quive®—, we can rewrite[(119) as

o Lrb Zj r+bij+dj—d;
i,r

- )
Zi,rfbii 1 Zj,rfbijerjfdi

where the product is over ajls such thatcjj # 0. Here we use the convention tr@¢ = 1 for
every(i,s) with s> 0. Using the change of variabldg (3), we obtain

o 1yl
Yir :Yi.r,biiYiJ . |_| YI’,r—di-‘rbij-l-denr—di-&-bij+3dj "'Yr7r—di—bij—dj-
j#i ¢j#0

The result then follows by comparison witf (6), if we notiggmn thath;; + d; = ¢ji + 1 because

of (). O

In [EZ3] Fomin and Zelevinsky attach to every cluster variable .7 a polynomialF, with
integer coefficients in the set of variabigs= {i, | (i,r) € W~}, and a vectogy € ZW ), such
that [FZ3| Corollary 6.3]

X =z FK(Y). (20)

Note thate/ has no frozen cluster variables, so there is no denominat@d). The polynomial
Fx and the integer vectay, are called thd=-polynomialand g-vector of the cluster variable,
respectively. We refer the reader f643] for their definition.

On the other hand, it follows from the theory gfcharacters that for every simplé,(g)-
moduleL(m) in the categorys~, the truncated-charactery, (L(m)) can be written as

Xq (L(m)) = mRy, (21)

wherePy, is a polynomial with integer coefficients in the variabl[ea!!q‘rl_di | (i,r) e W~}. More-
over, P, has constant term 1.
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Now, by the proof of Theorein 3.1, among the cluster variabfeg’, we find all the truncated
g-characters of the Kirillov-Reshetikhin modules#@f . These are of the forra(m) with

. k—1
m=m) = [¥rems (@) €W r (k= 1)by <) (22)
J:

Pr(_)position 4.16 The g-vector of the truncated g-character of the KirilloggRetikhin module
Wk(f) L (m‘((')r) considered as a cluster variable .of, is given by

r =

1 if(j,5) =(,r),
gjis=19 —1 if(j,8)=(i,r+kbj)andr+kb; <0,
0 otherwise.

Proof — Write for shortm= mf(')r and denote by the cluster variablg (L(m)). Then, compar-

ing (20) with [21), we have
Pm — milzg)< I:)(7

where, by Lemm& 4.1%,, andF are polynomials in the same variables
y\if = AiTrlfdi :
SincePy, has constant term 1, it follows thaiz~% is a monomial in the variablgg, which divides
the F-polynomial F. But, by [FZ3| Proposition 5.2]F is not divisible by anyy .. So, using[(B),
Ziy
Zr ikt

¥ =m=

where as above, we sgt = 1 if s> 0. 0

4.5.2 Truncated algebras
Let/ € Zo. Letl, be the full subquiver of ~ with set of vertices
Vo ={(imeV™ |m>/}.

Let S be the corresponding truncation of the potenBathat is,S is defined as the sum of all
cycles inSwhich only involve vertices d¥,. LetJ, denote the two-sided ideal 6f, generated
by all cyclic derivatives of5,. Finally, define théruncated algebra at heightas

A= (CF;/J;;.
Proposition 4.17 For every/ we have:
() the algebra Ais finite-dimensional;
(ii) the quiver with potentiall’, ,J,) is rigid.
Proof — The proof is similar toDWZ1, Example 8.7]. Letr: CI', — A, be the natural projec-

tion. To prove (i), we show tha, is spanned by the images undeof a finite humber of paths.
The arrows of , are of two types:
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(a) thevertical arrows of the form(i,m) — (i,m-+ by );
(b) theobliquearrows of the form(i,m) — (j,m+ bjj) providedc;j < O.

Let us say that a path frogn,m) to (j,s) in I, is going up(resp. dowiif m < s(resp. n> s). Note
that all vertical arrows go up and all oblique arrows go dotach oblique arrow of the boundary
of ', belongs to a single cycle of the potenti&l and each interior oblique arrow belongs to
exactly two cycles. Therefore each interior oblique arroveg rise to a “commutativity relation”
in Ay

n((j,m+ bji),(i,m—l—iji),(i,m—l—iji —|—bii),...,(i,m—bii),(i,m))
== ((jvm+bji)>(jvm+bji +bjj)7"'7(j>m_bji _bjj)>(jvm_bji)>(ivm))

The path in the left-hand side consists of an oblique arrdisvied by |c;; | vertical arrows, while
the right-hand side hds;;| vertical arrows followed by an oblique arrow. Lptoe a path i,
with origin (i,m). Using only the above type of commutativity relations, wa baing a number
of vertical arrows to the front gp and write

m(p) = m(p2) 1(P1),

wherep; is a path with origin(i,m) consisting only of vertical arrows, arm is a path satisfying
the following property: ifg is a maximal factor ofo, containing only vertical arrows, theqis
preceded by at least one oblique arrow, $fys) — (k,s+bj), andq containslessthan |cy;|
arrows. Hence can be non trivial only ifc;| > 1.

In particular in the simply laced case, thpsycontains only oblique arrows. In that case, we
can immediately conclude that all arrowsmfgo up and all arrows of, go down, so the lengths
of p; andp, are both bounded b§, and therefor&, is finite-dimensional.

Otherwise, ifq is non trivial andp, contains other vertical arrows aftgrthenq needs to be
followed by at leastwo oblique arrows. Indeed, using the same notation as algpsensists of
N vertical arrows of the fornfk,r) — (k,r +bi) with 1 <N < |c;j|. Now, by (1), the inequality
lcj| > 1 impliesdq = 1 andd; = |by;|. Let (k,t) — (I,t +by) be the first arrow coming after.
Then, sincedy = 1 we havelck| = 1. If this oblique arrow is followed by a vertical origt +
bw) — (I,t+ by + by ), then we can use the commutativity relation and bring itetbgr with all
the vertical arrows possibly following it, on top gf In this way, we replaceg by a vertical path
d followed by two consecutive oblique arrows.

One then easily checks by inspection that the subpafb, @ontainingq together with the
oblique arrow preceding it and the oblique arrow followinigis going down. Therefore, by
induction, p, can be factored into a product of paths, each of them of lelegththart + 2, and
all these paths go down (except possibly the last one, whightrend with less thah vertical
arrows). So again, the length pj is bounded above, and this proves (i) in all cases.

To prove (i), it is enough to show that every cycle of the fafif) is cyclically equivalent to
an element of,. Up to cyclic equivalence, this cyclecan be written with origin ir{i,m). Then,
we have:

n(y) = n((i,m),(j,m+by),(i,m+2b;), (i,m+ 205 +bsi),..., (I,m—1by),(i,m))
= m((i,m), (j,m+byj), (j,m+bij +bj;),..., (J,m—bij —byj), (j,m—by), (i,m))
= n((i,m),(i,m+1b;),...,(Ii,m—2b; —bj), (i,m—2b;;),(j,m—bij), (i,m)),
and the last path is cyclically equivalent to

((i,m—2bij),(j,m—bij),(i,m),(i,m+bii),...,(i,m—2bij —bii),(i,m—Zbij)).

27



This cycle is nothing else thanshifted vertically up by-2b;;. Hence, iterating this process, we
can replace, moduld, and cyclic equivalence, any cycjeof the form [13) by a similar cycle
y sitting at the top boundary df,. Now the upper oblique arrow of does not belong to any
other cycle, so it gives rise to a zero relationdin In other wordsy is cyclically equivalent to an
element ofJ,. This proves (ii). a

Remark 4.18 In the simply laced case and whgthis less than the Coxeter number, the algehra

arises as the endomorphism algebra of a (finite-dimengioigégdl module over the preprojective
algebra/ associated witld, and appears in the works of Geiss, Schroer and the secdhdrau
(seelGLS1,IGLS?]). This gives another proof of Propositibn 4117 (i) in thase.

4.5.3 Proof of Lemmd4.4 and Theorerh 418

Let (i,r) € V™ andk € N. By Theoren{ 3.1, the truncategicharacterx, (Wkl)r—(Zk—l)di> is a
cluster variablex of 7. By Propositiori 4.16, thg-vector ofx is given by
1 if (j,s) =(i,r —2kd +d),
gis=9 —1 if(j,s)=(r+d), (23)
0 otherwise.

Note that, sincgi,r) € V~, we have(i,r +dj) e W=. For¢ <0, letW,” := ¢(V, ), and put
z, ={z,|(i,r) €W, }. We denote by5, the same quiver ds, , but with vertices labelled by, .
Clearly, the cluster variableis a Laurent polynomial in the variables »f for some/ < 0, and
can be regarded as a cluster variable of the cluster alggbdafined by the initial see@zﬁ , )
By Proposition 4.7 (ii), we can apply the theory ®WZ1, DWZ2] and deduce that thE-
polynomial ofx coincides with the polynomidh, associated with a certafy-moduleM. In order
to identify this module, we apphFI2, Remark 4.1], which states in our setting thats the kernel
of a generic element of the homomorphism space between jegiiire A,-modules corresponding
to the negative and positive components ofghgector ofx. More precisely, let us denote lﬁ{m
the one-dimensionah,-module supported ofi,m) €V, . Let Ifm be the injectiveA,-module
with socle isomorphic t(ﬁ‘;m. Then, using[(23) and taking into account the change of liael
WV, — W, given by [2), we get thail is the kernel of a generic element of Hgrtl{,, I, )-

Finally we can identifyM with the kernel of a generic homomorphism between injecfive
modules. Indeed, fam < ¢ < 0 we have a natural projectioh, — A, whose kernel is generated
by all arrows off, starting or ending at a vertexc Vi, \V,". This induces for everyi,r) € V,~
an embeddlng — ITr , and we can regard themodulel; ;) as the direct limit oﬂ’ 0 along
these maps. élncEM is independent of <« 0, we see thaM is also the kernel o% a generic
element of Hom(liy,lir—ky; ), that is,M = K|£2 In partlcularKliz is finite-dimensional. This
proves Lemmé&4]4 and finishes the proof of Thedrem 4.8.

Remark 4.19 Using the same formula ds {14), we can attach to the infinitexasionalA-module

li m a formal power serieB; , in the variables ;. This series also has an interpretation in terms of
quantum affine algebras. Indeed, BYJ], the category of finite-dimensionély(g)-modules can
be seen as a subcategory of a categ@rgf (possibly infinite-dimensional) representations of a
Borel subalgebra df(g). Theg-character morphism can be extended to the Grothendieglofin

0 (the target ring is also completed). This category contdistinguished simple representations
called negative fundamental representations(i € I, a € C*) [HJ|, Definition 3.7]. Denote by
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Xq( 2 the normalizedy-character ofl_, = that is, itsg-character divided by its highest weight
monomlal This normalized-character is a formal power series in the varial#ie é[HJ Theo-
rem 6.1], and it is obtained as a limit of normalizgdharacters of Kirillov- Reshet|kh|n modules.
It is not difficult to deduce from Theoreim 4.8 and Renfark 4&8,tform < d; — th’,

Xq ( Vs d,) =R

This is the first geometric description of thecharacter of these negative fundamental representa-
tions.

5 Beyond Kirillov-Reshetikhin modules

5.1 Grothendieck rings

Let us consider again the cluster algebrawith initial seed>~ = (z~,G ™) whose cluster variables
z, are given by[(B). The Laurent phenomenon for cluster algeionalies thate is a subring of
Z[Yifl | Yir € Y7]. The following theorem gives the precise relationship leeme/ and the

Grothendieck ring of the categof .

Theorem 5.1 The cluster algebraz is equal to the image of the injective ring homomorphism
from Ko(%'~) to Z[Yijtl | Yir € Y~] given by[L(m)] — X (M) (see Proposition 3.10). Hence is
isomorphic to the Grothendieck ring &f~.

Proof — Let R~ denote the image of the homomorphidnim)| — xq (m). By [ERI], Ko(¢"") is
the polynomial ring in the classes of the fundamental madaf&’—, henceR™ is the polynomial
ring in the truncated}-charactersyq (Yir) (Yir € Y7). By Theoren[3ll,& contains all these
fundamental truncategtcharacters, hence’ containsR™.

To prove the reverse inclusion, we will use a descriptionhefitnage of they-character ho-
momorphism as an intersection of kernels of screening tpsr&R| [EM]. To do this, we need
to work with completei(e. untruncatedyj-characters. So let us consider a§32.2 the larger set
of variablesY. Following [ER], §7.1], for everyi € |, we have a linear operat& from the ring
Z[Yifﬁl |'Yir € Y] to a certain free modul@/ over this ring, which satisfies the Leibniz rule

S(xy) =xS(Y)+yS(¥),  (xyeZNt Y, eY]).

It was conjectured infR] and proved in[EM] that an element c%[Yﬁ?l |Yir € Y]is a polynomial
in theg-charactery(y(Yir) (Yir € Y) if and only if it belongs to

[Kers.

i€l

Let us now introduce an aukxilliary cluster algebv. It is defined using the same initial seed
(z7,G7) as«, but the initial variables of7’ are given by the following modification dfl(3)

Z, = |_L Y kb 21
k>0, r+kh; <0

in which the spectral parameters are all shifted upwardsthy By Theoreni 3.1, if we apply to
this initial seed of«7’ the sequence of mutatiops, repeatedh” times, we will obtain a new seed
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Y’ with the same quiveG~. Moreover, the cluster variable &f sitting at vertex(i,r) e W~ is
nothing else than theomplete q:haractep(q(wé?ﬁr).

Consider a cluster variabbeof «7. By definition,x is obtained fronk by a finite sequence of
mutationsi. We want to show that belongs toR~. By Theoreni 3.1, all cluster variables bf
belong toR~, so by induction on the length, we may assume that the latiaege relation ofiy
is of the form

Xy = Mz + Mg,

wherey is a cluster variable a7, M1 andM are cluster monomials a¥, andy, M, M, belong
to R™. Let us apply the same sequence of mutatipn# the cluster algebras’ to the seed’.
The last exchange relation will be of the form

Xy =M+ My,

wherey’, Mj, M5 are polynomials in the complete fundamerdatharactersyq(Yi,) (Yir € Y7).
Moreover,X, ¥, M}, Mj give backx, y, M1, Mz by application of the truncation ring homomor-
phism. By the Laurent phenomendf1] in the cluster algebra’’, we know thatx', y', M3, M}
are Laurent polynomials in the variablesYof Since§ is a derivation, we have

S(XY) =XS(Y)+YS(X) =S(Mp) +S(My),

henceS(X') = 0 becaus& (y) = S(M;) = S(M5) = 0. It follows thatx’ is annihilated by all the
screening operators, sbis a polynomial in the}-characterg(y(Yir) (Yir € Y™). This implies that
x is a polynomial in the truncategtcharacters(, (Yir) (Yir € Y7), thatisx € R™. O

5.2 Conjectures
5.2.1 Cluster monomials

In view of Theoreni 5]1, it is natural to formulate some conjees. Following/Lel], let us say
that a simpleJq(g)-moduleSis real if S® Sis simple.

Conjecture 5.2 In the above identification of the cluster algebwd with the ring of truncated
g-characters of6’—, the cluster monomials get identified with the truncatecharacters of the
real simple modules &~

Whenyg is of typeA, D, E, Conjecturé 5.2 is essentially equivalentlttiL_fL, Conjecture 13.2].
But the initial seed used here is different and allows a tizennection between cluster expansions
and (truncatedy-characters.

5.2.2 Geometricg-character formulas

Using the methods and tools @, we can translate Conjectulire]5.2 into a new conjecturahgéo
ric formula for the (truncated}-character of a real simple module éf.
Let mbe a dominant monomial in the variabMs € Y . Using the change of variabldd (3),
which we can express as 2
,r
Zi7l'+bii
(where we understargls = 1 if s> 0), we can rewrite

m= z9m -_ |—| ;QJ’il;r(m).

(i,r)ew-

Yir ;o () ewn),
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Figure 9:The A-module Km) for m=Y; _7Y> _4 in type A.

Let us call the integer vectg(m) € Z\W") theg-vector of L(m). Following §4.3, let us attach tm
the A-moduleK (m) defined as the kernel of a genefienodule homomorphism from the injective
A-modulel (m)~ to the injectiveA-modulel (m)*, where

|(m)+ — @ IS?-g_lEjl(m)v |(m)_ — @ IS?"_gldrl(m)‘
ir(m)>0 gir(M)<0

Finally define the~-polynomial Fy i, of K(m) as in§4.2. We can now state the following conjec-
tural generalization of Theorelm 4.8.

Conjecture 5.3 Suppose that(m) is an irreducible real |§(g)-module i ~. Then the truncated
g-character of Ikm) is equal to

Xq (L(M)) = mR¢(m),
where the variables;y of the F-polynomial are evaluated as (&5).

Example 5.4 Let g be of typeAs. Takem=Y; _7Y> 4. We have
L(m)" =1y _g®l2_s, (M)~ =l1_6®l2_3.

The moduleK(m) has dimension 7 and is displayed in Figule 9. Using for ircsiaghe fact that
L(m) is a minimal affinization (in the sense @]), we can compute itg-character. We find:
Xa(L(Y1,-7Y2-24)) = Yi_7Yo _4(1+Vi_6+Vo_3+V1_gVo_3+ V1 _2Vo _3+V2 _3V3_»

+ V1 _6V1_2Vo 3+ V1 _6Vo_3V3 2+ V1 _6V2_3V2 _5+V1_oVo _3V3 2

+ V1,_6V1,—2V2 5V2 3+ V1 _gV1,2V2 —3V3 2+ V1 V2 _5V2 _3V3_2

+ V1 _2Vo _5Vo _3V3_2+V1_gV1 2V _5V2_3V3_»

+ Vi _6V1_2Vo _3Vo _1V3_2+ V1 _gV2 5V _3V3_4V3_»

+ V1,_6V1,—2V2 5V2 _3V3 _4V3 2+ V1 _gV1-2Vo _5V2 _3V2 _1V3_2

+ V1, V1, _2V2 5V2 3V2 1V3_4V3_2),

in agreement with Conjecture 5.3.
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6 Appendix

6.1 Mutation sequence in typeA,

We display the sequence of mutated quivers obtained féormat each step of the mutation se-
guenceus. The first quiver isG~, and in the next quivers the box indicates at which vertex a
mutation has been performed.

20) 20) 20) 20)

- o 7 7
1,-1) (-1 (1,-1) (1,-1)
\
(2~*2) <2~72) (2~*2)
/ /
e <1”3)/ (1 73>/7 o
24 (2,-4) 2-4) (2-4)
175/ / / /
- )\ (1.-5) (1,-5) (1,-5)
A .
&0 @-6 (2-6) (2-6)
- - : e : o e
e &= 1-7) : 1-7)
20 20 20) 20 20
7 e o o
(1-1) D (1-1) 1-1) (1-1)
(2,-2) 22 (2,-2) (2,-2) (2,-2)
e 7 ' e e e
e (L-3) &3 " AN o N
(2-4) ole ol (2-4) (2-4)
7 A \ e o
e @ 75>/1 @ —5>/ ) " NG
&9 26 -6 2.0 e o
1-7) : <1,—7>/ : <1,—7>/1 : <1,77>/ =" :

6.2 Mutation sequence in typeB,

We display the sequence of mutated quivers obtained feormat each step of the mutation se-
quenceu ».
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(20)

PN

(2-2) (1-1

v

(1-3) (2-4)

N N

(2,-6) (1.-5

v

(-7 (2-8)

NN

(2-10) (L-9)

T

(2,-2) =— (1,-1)
(1-3) —> 2-4)
<2 —6) =— (1 _5)

(1,-7) —>

2 10) <—(1 9)

(1,- 11

L EI/ 1
NN

(H/ (jg/

| \<2T10>\1 -9)
e

(20)

T

(2-2) — | (1-Y
(1-3) —= (29
(2-6) <— (1-9

(L-7) —= (2-9)

(2-10 <=— (1-9)

(1,-112)

33

(20)

i

(2-2) =— (-1

i

(1-3 —= (2-9

(2,-6) <— (1,-5)

/ﬂ
¢
=[]
(\L)\
<

=

(

2,-10) —> (1,-9)

(1,-12)

(20)

f

(2-2) —= (-

(1,-3 — (2-/

(2-6) —>| (1,-5)

I

1-7—> (-8

f

(2-10) =— (1,-9)

(1,-12)



20
T
/ - <2 2 — (1-1) [e-2]< -y
(13—>(24 “ 3)_)(2/ / ‘L%

(2v*6) — (-9

(2 —6) (1,-5)

(1,-7) —> (2-8) 1\
(1,-7) —= (2 8)

(1,-112)

(1,-12)

e

(1,-112)

f

(2-10 — (1-9)

(1-11

(2.0)
(2-2) (1,-1)

(1,-3) (2,-4)
! \

(2-6) | <= (1-5)

<1—7>/ <2¢7
’ }

(2-10 —> (1,-9)

(1,-112)

(2,-6) (1-5)
AV
(L-7) (2-8)

(2-10 =— (1-9)

7

(1,-12)

6.3 Mutation sequence in types;

We display the sequence of mutated quivers obtained feormat each step of the mutation se-

quenceu .
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(2-10 —> (1,-9)

(1,-11)
(2,0)
(NN
(2-2) (1,-1)
(1,-3) :

(21\2\
@, 3)/ (2T4/

\?\

2-6) (1.-5)

Ay

L-7 (2-8)

™\

(2-10 =— (1-9)

7

(1,-12)




(1-3

(

=

(2,0) (20)
PN N
/ (2,1:2) (1,-1) (2,-2) — (1,-1)
(1.-3) (2,114) (1,73)/ (21\4
(2-6) e -9 (21\6) T (1-5)
(N (NN
/(2,1:8) 1) (2,-8) <7
(1.-9) (21\% (1,9/(2,T1><
T .0
: (2-12) . (1,-13) (2,12) \ (1.-112)
(2,0) (20)
! !
2,-2) (1,-1) (2,-2) (1,-1)
t <] P
13— (1,-3) (2,-4)

i

\(2‘4/6) — (1,-5)
1 g/ } /<

( (2-
: (2,-12) . (1,-11)
(20
(2-2) 1-1

(2-4)

\(2¢6>\1 5
¢ ) o (1,-9)
/T ><>

S AN

(2,-12) > (1,-1))

<1.—9>/ <2.¢1}><

(1-3

(1-9)

ot

(2-8) —= &&-7)

(2-12

(20)

i

(2-2) (L-1

(2 T‘UK

~ I
(2,1?6) o

(2,-8) (1.-7)

@ 10&

N

(2,-12)

< .

35

(1,-5)

.

(1,-12)

(20)

f

(2-2)

LN T

(1-3) =— (2-4)

<~ @1-

(1-1)

2¢4)K

(1,-3)

19)<—2 10

(2— 12)

(20)

(2-2)

1 >

(2-4)

Nt

(2,-6)

f —

(2,-8) (1,-7)

— 21\10K
ERN

(2,-12)

(1-3




(2-2) (1-1)
f
(1,-3) (2,-4)
N
(2,-6)

36

(2-6)

¢

(2-12

(2-8) &=

f

(1,-9) —= (2,-10) \

(2,-12) <=—

(1.79)</—1 (2.¢10))<\




&=y

(2-8)

(2,-12) <=—

@ 0>

2 -1

2) (1,-
/
—4)

(13—>2

¢
T

(1 —9) <— (2,-10)

f

(2,-12) <=—,

,7)

¢\
(22 (1,-1)

a, 3) (2 —4)
\f _6) (1,-5)
(2,-8) -7
<1.9>—>m/4
\
. (2-12) . (1,-11)

|

(1-3 =— (-9

f

(2,-6)

(1,-9 == (2-109

f

(2,-12) <=—

37

(1,-5)

(1,-112) T

~ —_
| 98
~ =)

(1-3 =— (29

f

(2,-6)

i

(2-8)

f

(1-9) <=— (2-10)

(1-5

| f

(-1 <—

(2,0)
(NN
(2,-2) (1,-1)
i /<
(1,-3) (2,-4)
(ZTG) (1,-5)
(2~8)\\(1>7)
i
(1,-9) (2,-10)
¢ \
(2,-12) ! (1,-11)



6.4 Examples ofA-modules for g of type B,

We describe soma-modulesk. for g of type B,. The quiverd ~ is

(2-1)
oo s
a.sf//@¢5%//
\\\ZTD\\\ i
o z//(T e

Following the convention of Example 4.6, unless otherwpsectied, in the following figures the
vertices carry one-dimensional spaces, and the arrowsg lagaar maps with matrix +1).

The module&(ﬂ5 andKﬂ7 are:
2-3)  (1-3) 1-5  (2-5)

v \\\ N

(1-5)  (2-5) 2-7 (1-7)

The module$<( )5 andK£ )7 are:

(2-1) (2-3)
\ /
(1,-3) (1,-5)

/ \
(2,-5) (2,-7)

Applying Theoreni 4.8, we recover the following well knownrfailas for theg-characters of the
fundamentalq(g)-modules:

Xq(L(Y17_7)) = Y17_7(1 + V17_5(1+ V27_3(1+ V27_5(1+ V17_3)))),

Xa(L(Y2—6)) = Y2_6(1+V2_5(1+V1_3(1+V2_1))).

The module&(éill5 andKézl7 are:

(2,—3) (1,-3) (2,-3)
b | e
(1-5)  (2,-5) (1-5  (2-5)
1 } SN .
@-7  (1-7) @-7  (1-7)
b v
(1-9)  (2-9) (2-9)

They correspond under Theorém]4.8 to the Kirillov-Reslmitiknodules

Wz(.lzll =L(Yy,-11Y1,-7) and Wz(’z,)lo =L(Y2-10Y2_8).
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The moduleé(éll5 and K§7217 are:

(2-3) (1,-3) (2-3)
i .
(1,-5) (2,-5) (1,-5) (2,-5)
i | \VT N
(2-7) (1,-7) 2-7) (1-7)
7 / v
1-9  (2-9) 1-9 " (2-9)
i ~o
(2,-11)  (1,-11) (2,—11)
7
(1,-13)  (2-13)

In K§227, the vertex(2,—7) carries a two-dimensional vector space. The linear mapgeday
the adjacent arrows have the following matrices:

1
a=y=(g). B=y=(0 1.
They correspond under Theorém]4.8 to the Kirillov-Reslmatiknodules:

W3(’J;)15 =L(Yy-15Y1-11Y1-7) and W3(’2,)12 =L(Y2-12Y2_10Y28).

6.5 Examples ofA-modules for g of type B3
Let g be of typeBs, with the short root being;. The quiverm —

/ T
(2,-3) (3,-3) (1,-3)
(1,-5) (3,-5) (2,-5)
(2,-7) (3,-7) (1,-7)
(1,-9) (3,-9) (2,-9)
(2-11)  (3-11) (1,—11)
(1,-13) (3-13)  (2-13
A A A
The modulex|" g is:
(17_3>
/
(3,-5) (2,-5)
(2,-7) (3,-7)
/
(17_9>
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The moduleé(flll and Kflll are:

(3,-5) (2,-5) (3,-3)
(2-7) (3-7) (1,-7) (2,-5)
%// \\\\ %// %//
(1,-9) (3,-9) (2,-9) (3,-7) (1,-7)
(2-11)  (3-11) (2,-9)
/
(3,-11)

The corresponding fundamentay(g)-modules aré (Y1 _11), L(Y2_13), andL(Ys _12), of respec-
tive dimensions 7, 22, and 8.

6.6 Examples ofA-modules for g of type Cs
Let g is of typeCs, with the long root beingrs. The quiverd ~ is:

(17_1>
\\\
(2,-2) (3,-2)
e %
(17_3>
\ \
(2,—-4) (3,-4)
<
(17_5>
\\\
(2,—6) (3,—6)
e %
(1,77)
N \
(2,—8) (3,-8)
<
(1’79)
\\\
(2,—-10) (3,—-10)

e o> |
>



The modules((1> andK(2>

1,-7 1,-g are:
(L-1) (2-2)
(2-2) (1-3)
\ \
(3-4) 2-4)  (3-4)
e (I
(2.-6) (2-6) (39
e e
(1,-7) 1-7)
\
(27_8)
The modulek? g is:
(2-4) (3-4)
1 75)\(1; K >(
| (2.-6) (3-6)
e
(1,-7) y
(2-8) (3-8)

Here, the vector space sitting at ver{@—6) has dimension 2. The maps incident to this space
are given by the following matrices:

a:(é),ﬁ:(?),y:<é>,s:(0 1), k=(0 1),1=(1 0).

The corresponding fundamentay(g)-modules aré (Y _g), L(Y2_10), andL(Ys _10), of respec-
tive dimensions 6, 14, and 14.
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6.7 Examples ofA-modules for g of type F4

Let g be of typeF,;. We label the simple roots;, a;, asz, as, so that the short simple roots are
anda,. The quived ~ is:

(17_1>
\
(2,-2) (3,-2) (4,-2)
(17_3>
(2,—-4) (3,—-4) (4,-4)
U
(1,75)
\ /
(2,—6) (3,—6) (4,—6)
e N
(1,77)
(2,-8) (3,-8) (4,-8)
<P
(1’79)
\ /
(2,—10) (3,-10) (4,-10)
A A A
The moduleKill17 is:
(1,71)
\
(2-2)
\
(3.-4)
/ \
(2,-6) (4,—6)
~ /
(1,-7)
\
(2-8) (3-8
P o<

2,-12) (4,-12)
\ /
(3,-14)

/
(2,-16)

(1,-17)
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The moduler'l16 is:

/

(17_7) y
\
2
(2,-10) (3—
/
(1,—-11) I
\OIA
| 2,-12) (3-12
,/s v %
\
2,—14) (3,-14) \

(4,—16)

(1,-13)

(
(

Here, the vector spaces sitting at vert8x—6) and(2, —12) have dimension 2. The maps incident
to these spaces are given by the following matrices:

a:(é),K:(l O),B:(i),s:(o 1),y:<é>,1:(0 1),

a’:<(l)>,K’:(1 O),B’:(i),s’:(o 1),)/:<(l)>,l’:(0 1).

The corresponding fundamentay(g)-modules aré (Y1 _1g) andL(Ys _1g), of respective dimen-
sions 26, and 53.
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