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Quantum Grothendieck rings and derived Hall algebras

D. Hernandez, B. Leclerc

Abstract

Let g = n⊕h⊕n− be a simple Lie algebra overC of typeA,D,E, and letUq(Lg) be the
associated quantum loop algebra. Following Nakajima [N3], Varagnolo-Vasserot [VV1], and
the first author [He2], we study at-deformationKt of the Grothendieck ring of a tensor cate-
goryCZ of finite-dimensionalUq(Lg)-modules. We obtain a presentation ofKt by generators
and relations.

Let Q be a Dynkin quiver of the same type asg. Let DH(Q) be the derived Hall algebra
of the bounded derived categoryDb(mod(FQ)) over a finite fieldF , introduced by Toën [T].
Our presentation shows that the specialization ofKt at t =

√
|F | is isomorphic toDH(Q).

Under this isomorphism, the classes of fundamentalUq(Lg)-modules are mapped to scalar
multiples of the classes of indecomposable objects inDH(Q).

Our presentation ofKt is deduced from the preliminary study of a tensor subcategory
CQ of CZ analogous to the heart mod(FQ) of the triangulated categoryDb(mod(FQ)). We
show that thet-deformed Grothendieck ringKt,Q of CQ is isomorphic to the positive part
of the quantum enveloping algebra ofg, and that the basis of classes of simple objects of
Kt,Q corresponds to the dual of Lusztig’s canonical basis. The proof relies on the algebraic
characterizations of these bases, but we also give a geometric approach in the last section.

It follows that for every orientationQ of the Dynkin diagram, the categoryCQ gives a
new categorification of the coordinate ringC[N] of a unipotent groupN with Lie algebran,
together with its dual canonical basis.
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1 Introduction

1.1 Letg be a simple Lie algebra of typeA,D,E overC. We denote byg= n⊕h⊕n− a triangular
decomposition ofg. Let v be an indeterminate, and let

Uv(g) =Uv(n)⊗Uv(h)⊗Uv(n−)

be the corresponding Drinfeld-Jimbo quantum enveloping algebra overC(v), defined via av-
analogue of the Chevalley-Serre presentation ofU(g). Using a geometric realization ofUv(n) in
terms of perverse sheaves on varieties of representations of a quiverQ of the same Dynkin type
asg, Lusztig [Lu1] has defined a canonical basisB of Uv(n) with favorable positivity properties.
This was inspired by a seminal work of Ringel [Ri2], showing that the twisted Hall algebra of the
category mod(FQ) of representations ofQ over a finite fieldF , is isomorphic to the specialization
of Uv(n) at v=

√
|F|.

1.2 One can associate withg another quantum algebra. LetLg=C[t, t−1]⊗g be the loop algebra
of g. Let q be a nonzero complex number, which is not a root of unity. Via aq-analogue of the
loop presentation ofU(Lg), Drinfeld [D] has defined the quantum loop algebraUq(Lg), an algebra
overC. The finite-dimensional representations ofUq(Lg) have attracted a lot of attention, because
of their connection with the trigonometric solutions of thequantum Yang-Baxter equation with
spectral parameter. In this paper we focus on a tensor subcategoryCZ of the category of finite-
dimensionalUq(Lg)-modules, whose simple objects are parametrized by a discrete set (for the pre-
cise definition ofCZ see [HL, §3.7] or§5.2 below). Denote byR the complexified Grothendieck
ring of CZ. Let t be another indeterminate. By works of Nakajima [N3] and Varagnolo-Vasserot
[VV1], the C-algebraR has an interestingt-deformationRt overC(t). The first author [He2]
has introduced a slightly different deformationKt . Theset-deformations are important because
they contain for every simple objectL of CZ a “class”[L]t which can be characterized by axioms
similar to those of Lusztig for the canonical basisB. As a consequence, Nakajima [N3] has shown
that one can calculate algorithmically the character ofL.

1.3 Surprisingly, these deformed Grothendieck rings have not been much studied from the ring
theoretic point of view, and for instance, to the best of our knowledge, there is no available pre-
sentation by generators and relations in the literature. One of the main results of this paper (Theo-
rem 7.3) is a presentation ofKt , with a similar flavor as the familiar Drinfeld-Jimbo presentation
of Uv(n). More precisely, this presentation shows thatKt is obtained by taking an infinite number
of copies ofUt(n) labelled bym∈ Z, and then imposingt-boson relations between generators of
copies sitting at adjacent integers, andt-commutation relations between generators of non-adjacent
copies.

1.4 Let Db(mod(FQ)) be the bounded derived category of mod(FQ). Toën [T] has attached to
this triangulated category an associative algebra called the derived Hall algebra ofDb(mod(FQ))
(see also [XX]). Let DH(Q) denote the twisted derived Hall algebra obtained by twisting Toën’s
multiplication by means of the Ringel form, as in [S]. It follows from our presentation ofKt that:

Theorem 1.1 (a) The specialization ofKt at t =
√
|F | is isomorphic to DH(Q).

(b) Under this isomorphism, the classes of fundamental Uq(Lg)-modules are mapped to scalar
multiples of the classes of indecomposable stalk complexesin DH(Q), and the basis of
classes of standard Uq(Lg)-modules is mapped to a rescaling of the natural basis of DH(Q)
indexed by isoclasses of objects of Db(mod(FQ)).
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There is a similar result for thet-deformed Grothendieck ringRt of [N3, VV1], but the twisted
derived Hall algebra should be replaced by a non-twisted one(Remark 8.4).

1.5 To obtain our presentation ofKt we first consider a tensor subcategoryCQ of CZ which
“looks like mod(FQ) insideDb(mod(FQ))”. Recall that in [HL] we have introduced an increasing
sequence(Cℓ)ℓ>0 of subcategories ofCZ. WhenQ is a bipartite orientation of the Dynkin diagram
and the Coxeter numberh is even,CQ is just the subcategoryCℓ with ℓ = h/2− 1. The general
definition of CQ for an arbitrary orientationQ will be given in §5.11 below. LetKt,Q be the
subalgebra ofKt spanned by the elements[L]t associated with the simple objectsL of CQ. Note
thatKt andKt,Q are algebras overC(t1/2), wheret1/2 is a square root oft.

The quantum algebraUv(n) is endowed with a distinguished scalar product. LetB∗ be the
basis ofUv(n) adjoint to the canonical basisB with respect to this scalar product. Letv1/2 be a
square root ofv, and setUv(n) := C(v1/2)⊗Uv(n). The main step for obtaining the presentation
of Kt is:

Theorem 1.2 (a) There is aC-algebra isomorphismΦ : Kt,Q
∼
→Uv(n) with Φ(t1/2) = v1/2.

(b) For every simple object L ofCQ, the imageΦ([L]t) belongs toB∗ (up to some half-integral
power of v).

Nakajima obtained in [N4] similar results for the first subcategoryC1 of [HL]. Namely, he
showed that the classes[L]t of simple objects ofC1 can be identified with a subset of the basisB̃∗

of Uv(ñ). Hereñ denotes the positive part of the Kac-Moody algebra of rank 2rk(g) attached to
the decorated Dynkin diagram ofg, andB̃ is Lusztig’s canonical basis ofUv(ñ). For example, ifg
has typeA3, g̃ has typeE6. Note that in Theorem 1.2, we do not useñ, but onlyn.

1.6 Let Av(n) be the graded dual of the vector spaceUv(n). It can be endowed with a multipli-
cation coming from the comultiplication ofUv(g), and regarded as the quantum coordinate ring of
the unipotent groupN with Lie algebran (seee.g. [GLS]). The basisB∗ can be identified with
a basis ofAv(n) called the dual canonical basis. It specializes whenv 7→ 1 to a basisB of the
coordinate ringC[N].

By specializingv1/2 andt1/2 to 1 in Theorem 1.2, we see that the complexified Grothendieck
ring RQ of CQ can be identified with the coordinate ringC[N] in such a way that the basis ofRQ

consisting of the classes of simple objects becomes Lusztig’s dual canonical basisB of C[N]. We
can therefore state:

Theorem 1.3 The tensor categoryCQ is a categorification of the ringC[N] and its dual canonical
basisB.

Note that, by work of Khovanov-Lauda [KL], Rouquier [Ro], and Varagnolo-Vasserot [VV2],
(C[N],B) has another categorification in terms of KLR-algebras. In type An, KLR-algebras are
isomorphic to blocks of affine Hecke algebras, and the category CQ for an equi-oriented quiverQ
is related to a category of representations of affine Hecke algebras through the quantum affine
Schur-Weyl duality. It would be interesting to find for otherDynkin quiversQ similar functors
betweenCQ and the module categories of the corresponding KLR-algebras.

1.7 The first author [He4] has shown that tensor products of simple objects ofCZ have the
following remarkable property: a tensor productL1⊗·· ·⊗Lk of simple objectsLi is simple if and
only if for every pair 1≤ i < j ≤ k the tensor productLi ⊗L j is simple. Using Theorem 1.2 this
yields the following:
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Corollary 1.4 A product b1 · · ·bk of elements bi of the dual canonical basisB∗ of Uv(n) belongs
to B∗ up to a power of v if and only if for every pair1≤ i < j ≤ k the product bib j belongs toB∗

up to a power of v.

Corollary 1.4 was expected in relation with the program of Berenstein and Zelevinsky [BZ1, BZ2]
of describingB∗ in terms of quantum cluster algebras. But it was only known ina few low rank
cases.

1.8 Theorem 1.2 also gives new supporting evidence for some conjectures formulated in [GLS]
and [HL]. It was conjectured in [HL, §13] that for everyℓ∈N, the Grothendieck ringRℓ of Cℓ has
a particular cluster algebra structure for which all cluster monomials are classes of simple objects.
In [GLS], it is shown thatUv(n) has a quantum cluster algebra structure, and it is conjectured
that all quantum cluster monomials belong toB∗. Suppose thatQ is bipartite andh is even. Set
h′ = h/2− 1. By comparing initial seeds, one sees that the quantum cluster structure ofKt,Q

obtained by transporting viaΦ−1 the quantum cluster structure ofUv(n) is a t-analogue of the
cluster structure ofRh′ conjectured in [HL]. Thus, by Theorem 1.2, the two conjectures of [GLS]
for Uv(n) and of [HL] for Rh′ are essentially equivalent.

In [HL] and [N4], the conjecture forRℓ was proved in the first non trivial caseℓ= 1. (In [HL]
some combinatorial steps of the proof were only verified forg of type An andD4; the proof of
[N4] is general and uses geometric representation theory.) SinceC1 is a tensor subcategory ofCQ

(for everyg exceptsl2 andsl3), Kt,Q contains a subringKt,1 corresponding toC1. It is easy to
see thatΦ(Kt,1) is equal to the subalgebraUv(n(w)) of [GLS] wherew= c2 is the square of the
Coxeter element of the Weyl group ofg corresponding to the bipartite quiverQ. This is a quantum
cluster algebra of finite cluster type, equal to the Dynkin type ofg in the classification of Fomin
and Zelevinsky. Thus, using [HL, N4, Q], Theorem 1.2 readily implies:

Corollary 1.5 Let w= c2 be as above. ThenB∗∩Uv(n(w)) is equal to the set of quantum cluster
monomials of Uv(n(w)).

For g of type An, Lampe [La] has given a direct proof of the fact that the quantum cluster
variablesof Uv(n(w)) belong toB∗.

1.9 Since the basesB∗ and {[L]t} have geometric origin, it is natural to ask for a geometric
explanation of Theorem 1.2 (b). In the final part of the paper,we show (Theorem 9.11) that
the quiver representation spacesEd used by Lusztig to define the canonical basis ofUv(n) are
isomorphic to some particular graded quiver varietiesM•

0(W
d) used by Nakajima for describing

the classes[L]t of the simple objectsL of CQ. Moreover the intersection cohomology sheaves of
closures ofGd-orbits inEd can be identified with the intersection cohomology sheaves of closures
of strata inM•

0(W
d). This is inspired by a similar result of Nakajima [N4] for the categoryC1.

1.10 We now give an overview of the structure of the paper. In Section 2, we set up our notation
and introduce an important bijectionϕ between the set of fundamental modules ofCZ and the
vertices of the Auslander-Reiten quiver ofDb(KQ). We use this bijection to express the entries
of the inverse of the quantum Cartan matrix ofg in terms of the Ringel form ofQ, or in terms
of the scalar product of the weight lattice ofg (Proposition 2.5). By construction, the quantum
Grothendieck ringKt is a subring of a quantum torusYt overC(t1/2). Thet-commutation relations
between generators ofYt are expressed in terms of entries of the inverse of the quantum Cartan
matrix of g [He2], hence by Proposition 2.5, in terms of scalar products of weights of g. The
quantum Grothendieck ringKt,Q is a subring of a subtorusYt,Q of Yt , of rank r equal to the
number of positive roots ofg. On the other hand, by [GLS], Uv(n) has an explicit embedding
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into a quantum torusTv,Q of rankr overC(v1/2), whose generators are certain unipotent quantum
flag minors. The explicitv-commutation relations between these minors involve scalar products of
roots and weights ofg. Comparing these two presentations, we show that there is anisomorphism
Φ : Yt,Q→Tv,Q mappingt1/2 to v1/2 (Proposition 3.8).

The proof thatΦ restricts to an isomorphism fromKt,Q to Uv(n) is based on some explicit
systems of algebraic identities satisfied by the generatorsof both algebras. In Section 4, we recall
from [GLS] a system of quantum determinantal identities occuring inUv(n), and in Section 5 we
derive a quantumT-system for the(q, t)-characters of the Kirillov-Reshetikhin modules. (In [N2,
§4], a quantumT-system was already obtained for thet-deformed product used in [N3, VV1].
A quantum cluster algebra related to the quantumT-system of typeA1 is also studied in [DFK].)
Comparing these two systems we obtain thatΦ maps the classes of the Kirillov-Reshetikhin mod-
ules ofCQ to certain quantum minors ofUv(n) (multiplied by explicit half-integral powers ofv).
In particular,Φ maps the classes of the fundamental modules ofCQ in Kt,Q to the generators of
the dual PBW-basis ofUv(n) associated withQ (up to powers ofv1/2). This proves the first part
of Theorem 1.2. The second part is deduced from the algebraiccharacterizations ofB∗ and of the
classes[L]t (Section 6). After some examples, we give the proof of Corollary 1.4.

The above-mentioned presentation ofKt (Theorem 7.3) is deduced from Theorem 1.2 in Sec-
tion 7, and in Section 8 we prove the isomorphism with the derived Hall algebraDH(Q) stated
in Theorem 1.1. Finally, in Section 9, we explain our geometric approach to Theorem 1.2 (b)
(Theorem 9.11).

2 Cartan matrices and Auslander-Reiten quivers

2.1 Cartan matrix

Let g be a simple Lie algebra of typeA,D,E. We denote byI the set of vertices of its Dynkin
diagram, and we putn= |I |. TheCartan matrixof g is theI × I matrixC with entries

Ci j =





2 if i = j,
−1 if i and j are adjacent vertices of the Dynkin diagram,
0 otherwise.

We shall often use the shorthand notationi ∼ j to say thatCi j =−1.
We denote byP the weight lattice ofg, and byϖi (i ∈ I) its basis of fundamental weights. The

simple roots are defined by
αi = ∑

j∈I

Ci j ϖ j , (i ∈ I).

The set of simple roots is denoted byΠ := {αi | i ∈ I}. We denote by(·, ·) the scalar product of
P defined by(αi ,ϖ j) = δi j . Equivalently(αi ,α j) = Ci j . The Weyl groupW is generated by the
reflexionssi acting onP by

si(λ ) = λ − (λ ,αi)αi , (λ ∈ P, i ∈ I).

The root system ofg is ∆ :=WΠ. It decomposes as∆ = ∆+⊔∆−, where∆+ = ∆∩ (⊕i∈INαi) and
∆− =−∆+. We writer := |∆+|.

A Coxeter elementof W is a product of the formc= si1 · · ·sin where(i1, . . . , in) is an arbitrary
ordering ofI . All Coxeter elements are conjugate inW. Their common order is called theCoxeter
numberand denoted byh. We havehn= 2r.
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Figure 1:A quiver Q of type D4 and its repetition quiver̂Q.

2.2 Quivers

Let Q be an orientation of the Dynkin diagram ofg. In other words,Q is a Dynkin quiver of the
same Dynkin type asg.

For i ∈ I , we denote bysi(Q) the quiver obtained fromQ by changing the orientation of every
arrow with sourcei or targeti. Let w = si1 · · ·sik ∈W be a reduced decomposition. We say that
i = (i1, . . . , ik) is adaptedto Q if i1 is a source ofQ, i2 is a source ofsi1(Q), . . . , ik is a source of
sik−1 · · ·si1(Q). There is a unique Coxeter element having reduced expressions adapted toQ. We
shall denote it byτ .

We denote byQ1 the set of arrows ofQ. A height functionξ : I → Z on Q is a function
satisfying

ξ j = ξi−1 if i→ j ∈Q1.

SinceQ is connected, two height functions differ by a constant. We fix such a functionξ . Define

Î := {(i, p) ∈ I ×Z | p−ξi ∈ 2Z}.

We attach toQ the infiniterepetition quiverQ̂, defined as the oriented graph with vertex setÎ and
two types of arrows:

(i) if there is an arrowi→ j in Q we have arrows(i, p)→ ( j, p+1) in Q̂ for all (i, p) ∈ Î ;

(ii) if there is an arrowi→ j in Q we have arrows( j,q)→ (i,q+1) in Q̂ for all ( j,q) ∈ Î .

Note thatQ̂ depends only on the Dynkin diagram, and not on the choice of orientationQ. In fact, it
is well known thatQ̂ is the quiver of aZ-covering of the preprojective algebra associated withQ.
In the literature, this quiver is often denoted byZQ. An example is shown in Figure 1, where the
height function isξ1 = ξ2 = 0, ξ3 = 1, ξ4 = 2.

Let ∆̂ := ∆+×Z. We now describe a natural labelling of the vertices ofQ̂ by ∆̂. For i ∈ I , let
B(i) be the subset ofI consisting of allj ’s such that there is a path fromj to i in Q. Define

γi := ∑
j∈B(i)

α j , (i ∈ I).
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Figure 2:The labelling ofQ̂ by ∆̂ for Q of type D4.

We haveγi ∈ ∆+. There is a unique bijectionϕ : Î → ∆̂ defined inductively as follows:

(a) ϕ(i,ξi) = (γi ,0) for i ∈ I ;

(b) suppose thatϕ(i, p) = (β ,m); then

• ϕ(i, p−2) = (τ(β ),m) if τ(β ) ∈ ∆+;

• ϕ(i, p−2) = (−τ(β ),m−1) if τ(β ) ∈ ∆−;

• ϕ(i, p+2) = (τ−1(β ),m) if τ−1(β ) ∈ ∆+;

• ϕ(i, p+2) = (−τ−1(β ),m+1) if τ−1(β ) ∈ ∆−.

Note that this second labelling of̂Q depends onQ. This is illustrated in Figure 2.

2.3 Auslander-Reiten theory

The quiverQ̂ with its labelling by∆̂ arises in the representation theory of the path algebraKQ of Q
over a fieldK, as we shall now recall. We refer the reader to [ARS, ASS, GR, Ri1] for background
on quiver representations and Auslander-Reiten theory.

Let mod(KQ) be the abelian category of representations ofQ over K. For an objectX of
mod(KQ) we write dim(X) for its dimension vector. We define the Ringel bilinear form

〈X,Y〉 := dim(Hom(X,Y))−dim(Ext1(X,Y)), (X,Y ∈mod(KQ)),

and the symmetric form(X,Y) := 〈X,Y〉+ 〈Y,X〉. It is known that these forms depend only on
the dimension vectors dim(X) and dim(Y). Moreover, if we identify in the standard way dim(X)
and dim(Y) with elements of the root lattice ofg, then(X,Y) coincides with the natural scalar
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product(dim(X),dim(Y)). In this picture,αi is the dimension vector of the simpleKQ-moduleSi

supported on vertexi, andγi is the dimension vector of its injective envelopeIi . Recall that, by
Gabriel’s theorem, the isoclasses of indecomposableKQ-modules are in natural bijection with∆+.
They form the vertices of the Auslander-Reiten quiverΓQ of mod(KQ). The mapβ 7→ (β ,0)
identifiesΓQ with the full subgraph of̂Q with set of vertices∆+×{0}. The mapτ restricted to
the dimension vectors in∆+ of non projectiveKQ-modules is the Auslander-Reiten translation of
mod(KQ) [ARS].

Let Db(mod(KQ)) be the bounded derived category ofKQ. Its indecomposable objects are
the stalk complexesX[i], consisting of an indecomposable objectX of mod(KQ) sitting in degree
i ∈ Z, and zero objects in all other degrees. Thus, the isoclassesof indecomposable objects of
Db(mod(KQ)) are naturally labelled bŷ∆. Using this labelling, the quiver̂Q is identified with the
Auslander-Reiten quiver of the triangulated categoryDb(mod(KQ)) [Ha].

2.4 Quantum Cartan matrix

Let zbe an indeterminate, and letC(z) be the matrix with entries

Ci j (z) =





z+z−1 if i = j,
−1 if i ∼ j,
0 otherwise.

ThusC(1) is just the Cartan matrixC of g. Since det(C) 6= 0, det(C(z)) 6= 0. We denote bỹC(z)
the inverse of the matrixC(z). This is a matrix with entries̃Ci j (z) ∈ Q(z). Denoting byA the
adjacency matrix of the Dynkin diagram we have

C(z) = (z+z−1)I −A,

therefore
C̃(z) = ∑

k≥0

(z+z−1)−k−1Ak.

Hence the entries of̃C(z) have power series expansions inzof the form

C̃i j (z) = ∑
m≥1

C̃i j (m)zm,

whereC̃i j (m) ∈ Z. Note that sinceC(z) is a symmetric matrix, we havẽCi j (m) = C̃ji (m).

2.5 Formula for C̃i j (m)

We will now give several equivalent expressions for the coefficientsC̃i j (m). For other expressions
of C̃i j (z) in typeAn andDn, see [FR1, Appendix C].

Fix an orientationQ of the Dynkin diagram, and recall from§2.2 and§2.3 the associated
notationξi , γi , the Coxeter transformationτ , and the Ringel form〈·, ·〉.

Proposition 2.1 Let m≥ 1. If m+ξi−ξ j −1 is odd thenC̃i j (m) = 0. Otherwise

C̃i j (m) =
(

τ (m+ξi−ξ j−1)/2(γi),ϖ j

)
. (1)

Equivalently,

C̃i j (m) =
〈

τ (m+ξi−ξ j−1)/2(Ii), I j

〉
. (2)
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Proof — Let us denote temporarily byDi j (m) the value ofC̃i j (m) predicted by the proposition.
We want to show that

∑
k∈I , m≥1

Cik(z)Dk j(m)zm = δi j , (i, j ∈ I).

Using the definition ofCik(z), this is equivalent to show that

∑
m≥1

(
(
z+z−1)Di j (m)−∑

k∼i

Dk j(m)

)
zm = δi j , (i, j ∈ I). (3)

The coefficient ofz0 in the left-hand side is equal toDi j (1). If ξi−ξ j is odd then by definition
Di j (1) = 0. Otherwise, ifξi −ξ j = 2l , thenDi j (1) = (τ l (γi),ϖ j) is the coefficient ofα j in τ l(γi).
Let (β ,m) be the vertex ofQ̂ in the column of(γi ,0) and at the same height as(γ j ,0). Such a
vertex exists becauseξi − ξ j is even, and clearlyβ = ±τ l(γi). Now it is a well-known fact from
the combinatorics of Auslander-Reiten quivers that for allvertices(γ ,s) of Q̂ at the same height as
(γ j ,0) the coefficient ofα j in γ is 0, except if(γ ,s) = (γ j ,0) in which case it is equal to 1. Hence
we haveDi j (1) = δi j .

Consider now the coefficient ofzm (m≥ 1) in (3). We need to show that

Di j (m+1)+Di j (m−1)− ∑
k:k∼i

Dk j(m) = 0, (i, j ∈ I , m≥ 1). (4)

Note that fork∼ i we haveξk = ξi±1, hence ifm+ξi−ξ j is odd, all summands of the left-hand
side are zero. Otherwise, writingm+ξi−ξ j = 2l , the left-hand side of (4) is

(
τ l (γi)+ τ l−1(γi)−∑

k∼i

τ l+(ξk−ξi+1)/2(γk) , ϖ j

)
.

Now it is again a familiar fact from the combinatorics of Auslander-Reiten quivers that

τ l(γi)+ τ l−1(γi) = ∑
k∼i

τ l+(ξk−ξi+1)/2(γk),

since the rootsτ l (γi), τ l−1(γi), andτ l+(ξk−ξi+1)/2(γk) with k∼ i, form a mesh. This proves (1).
Finally, if β = dimX then(β ,ϖ j) is equal to the coefficient ofα j in β , hence

(β ,ϖ j) = dim(Hom(X, I j)) = 〈X, I j〉,

becauseI j is injective. This proves (2). ✷

Example 2.2 Takeg of typeA4. One has for instance

C̃11(z) = z1−z9+z11−z19+ · · ·

C̃12(z) = z2−z8+z12−z18+ · · ·

C̃13(z) = z3−z7+z13−z17+ · · ·

C̃14(z) = z4−z6+z14−z16+ · · ·

C̃21(z) = z2−z8+z12−z18+ · · ·

C̃22(z) = z1+z3−z7−z9+z11+z13−z17−z19+ · · ·

C̃23(z) = z2+z4−z6−z8+z12+z14−z16−z18· · ·

C̃24(z) = z3−z7+z13−z17+ · · ·

9



Let us choose the sink-source orientationQ with height functionξ1 = 0,ξ2 = 1,ξ3 = 0,ξ4 = 1.
Thenτ = s2s4s1s3, and sinceτ5 = 1, the rootsτ l (γi) are all determined by:

γ1 = α1+α2, γ2 = α2, γ3 = α2+α3+α4, γ4 = α4,

τ(γ1) = α3+α4, τ(γ2) = α1+α2+α3+α4, τ(γ3) = α1+α2+α3, τ(γ4) = α2+α3,

τ2(γ1) =−α4, τ2(γ2) = α3, τ2(γ3) =−α2, τ2(γ4) = α1,

τ3(γ1) =−α2−α3, τ3(γ2) =−α2−α3−α4, τ3(γ3) =−α1−α2−α3−α4, τ3(γ4) =−α1−α2,

τ4(γ1) =−α1, τ4(γ2) =−α1−α2−α3, τ4(γ3) =−α3, τ4(γ4) =−α3−α4.

For instance by Proposition 2.1,C̃23(6) is equal to the coefficient ofα3 in τ3(γ2) =−α2−α3−α4,
namely to−1.

Corollary 2.3 For i, j ∈ I and m≥ 1 we have

C̃i j (m+2h) = C̃i j (m).

Proof — Sinceτh = 1, this follows immediately from Proposition 2.1. ✷

3 Quantum tori

3.1 The quantum torus Yt

Recall from§2.2 the labelling set̂I of Q̂. Define

Y := C

[
Y±1

i,p | (i, p) ∈ Î
]

to be the Laurent polynomial ring generated by a collection of commutative variablesYi,p labelled
by Î . This ring is related to a tensor subcategoryCZ of the category of finite-dimensionalUq(Lg)-
modules considered in [HL] (see below§5.2).

Let t be an indeterminate. Following [He2] we introduce at-deformed version(Yt ,∗) of Y ,
with noncommutative multiplication denoted by∗. This is theC(t)-algebra generated by variables
still denoted byYi,p, subject to thet-commutation relations

Yi,p ∗Yj,s := tN (i,p; j,s)Yj,s∗Yi,p, ((i, p), ( j,s) ∈ Î ), (5)

where

N (i, p; j,s) := C̃i j (p−s−1)−C̃i j (p−s+1)−C̃i j (s− p−1)+C̃i j (s− p+1). (6)

Here we have extended the definition ofC̃i j (m) to everym∈ Z by settingC̃i j (m) = 0 if m≤ 0.
Note that, sincẽC(z) is symmetric, we have

N (i, p; j,s) =−N ( j,s; i, p), (i, j ∈ I , p,s∈ Z). (7)

If p= s thenN (i, p; j,s) = 0. Otherwise, without loss of generality we can assume thatp< s.
Then, (6) simplifies as

N (i, p; j,s) = C̃i j (s− p+1)−C̃i j (s− p−1), (p< s). (8)

We regard the noncommutative ring(Yt ,∗) as a quantum torus of infinite rank.
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Remark 3.1 In [VV1] and [N3], the construction of at-deformed Grothendieck ring is based on
a slightly different quantum torus. Namely, in these papersthe product is defined by:

Yi,p ·Yj,s := tN
′(i,p; j,s)Yj,s ·Yi,p, ((i, p), ( j,s) ∈ Î ), (9)

where instead of (6) the following exponent is used:

N
′(i, p; j,s) :=−2

(
C̃i j (p−s−1)−C̃i j (s− p−1)

)
. (10)

For instance, in typeA3, we have

Y1,0 ∗Y2,1 = tY2,1 ∗Y1,0, whereas Y1,0 ·Y2,1 =Y2,1 ·Y1,0.

In [N3, VV1], the definition of the product comes from a convolution operation for certain per-
verse sheaves on quiver varieties, and the deformation parametert encodes the natural grading
of complexes of sheaves. Our product∗ comes from [He2] and the original construction ofq-
characters. Indeed in [FR2], the variablesYi,p ∈ Y are defined as formal power series in elements
of Uq(Lg), and they pairwise commute. In [He2], these formal power series are replaced by cer-
tain infinite sumsỸi,p in elements of the quantum affine algebraUq(ĝ) (with non trivial central
chargec), which can be seen as vertex operators. The original variable Yi,p is just one factor of the
complete variablẽYi,p. The relations of the quantum affine algebra then give rise tot-commutation
relations between thẽYi,p, where the parametert appears as a formal power series with coefficients
in C[c±1] [He2, Theorem 3.11]. The defining relations (5) (6) of∗ are obtained by replacingt by
t−1 in thoset-commutation relations.

Recall from§2.2 the bijectionϕ : Î → ∆̂.

Proposition 3.2 Let (i, p) and( j,s) be elements of̂I with p< s. There holds

N (i, p; j,s) =
(

τ (s−p+ξi−ξ j )/2(γi), γ j

)
.

Moreover, ifϕ(i, p) = (β ,m) andϕ( j,s) = (δ , l), then

N (i, p; j,s) = (−1)l−m(β ,δ ).

Proof — First note that the definition of̂I implies thats− p+ ξi− ξ j ∈ 2Z. By Proposition 2.1,
we have

N (i, p; j,s) = C̃i j (s− p+1)−C̃i j (s− p−1)

=
〈

τ (s−p+ξi−ξ j )/2(Ii), I j

〉
−
〈

τ (s−p+ξi−ξ j )/2−1(Ii), I j

〉
.

Now recall the classical formula

〈τ−1(X),Y〉=−〈Y,X〉, (X,Y ∈mod(FQ)).

It follows that

N (i, p; j,s) =
〈

τ (s−p+ξi−ξ j )/2(Ii), I j

〉
+
〈

I j ,τ (s−p+ξi−ξ j )/2(Ii)
〉

=
(

τ (s−p+ξi−ξ j )/2(Ii), I j

)

=
(

τ (s−p+ξi−ξ j )/2(γi), γ j

)
.
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This proves the first equality. The second equality is immediately deduced from the first one if we
note that, by definition of the bijectionϕ ,

τ (ξi−p)/2(γi) = (−1)mβ , τ (ξ j−s)/2(γi) = (−1)l δ .

✷

Remark 3.3 For the product of [VV1] and [N3], we have, forp< s, a similar expression

N
′(i, p; j,s) = 2

〈
τ (s−p+ξi−ξ j )/2−1(γi), γ j

〉
=−2

〈
γ j ,τ (s−p+ξi−ξ j )/2(γi)

〉
= (−1)l−m+12〈δ ,β 〉,

in which the symmetric scalar product(·, ·) is replaced by the non-symmetric Ringel form〈·, ·〉.

3.2 Commutative monomials

Let us adjoin a square roott1/2 of t and extend the quantum torus(Yt ,∗) to

(Yt ,∗) := C(t1/2)⊗C(t) (Yt ,∗).

We notice that the expression

t
1
2N ( j,s; i,p)Yi,p ∗Yj,s = t

1
2N (i,p; j,s)Yj,s∗Yi,p ∈ Yt

is invariant under permutation of(i, p) and( j,s). We can then denote it as acommutativemono-
mial Yi,pYj,s =Yj,sYi,p, and write

Yi,p ∗Yj,s = t
1
2N (i,p; j,s)Yi,pYj,s.

More generally, for a family(ui,p | (i, p) ∈ Î ) of integers with finitely many nonzero components,
the expression

t
1
2 ∑(i,p)<( j,s) ui,puj,sN ( j,s; i,p)

−→

*(i,p)∈Î Y
ui,p
i,p

does not depend on the chosen ordering ofÎ used to define it. We will denote it as a commutative
monomial∏(i,p)∈Î Y

ui,p
i,p , and write

−→

*
(i,p)∈Î

Y
ui,p
i,p = t

1
2 ∑(i,p)<( j,s) ui,puj,sN (i,p; j,s) ∏

(i,p)∈Î

Y
ui,p
i,p .

The commutative monomials form a basis of theC(t1/2)-vector spaceYt . It will be convenient to
denote commutative monomials by

m= ∏
(i,p)∈Î

Y
ui,p(m)
i,p .

A commutative monomialm is said to bedominantif ui,p(m)≥ 0 for every(i, p) ∈ Î .
The noncommutative product of two commutative monomialsm1 andm2 is given by

m1∗m2 = t
1
2D(m1,m2)m1m2 = tD(m1,m2)m2∗m1, (11)

where
D(m1,m2) = ∑

(i,p),( j,s)∈Î

ui,p(m1)u j,s(m2)N (i, p; j,s),

and
m1m2 = ∏

(i,p)∈Î

Y
ui,p(m1)+ui,p(m2)
i,p ,

denotes the commutative product.
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3.3 The quantum torus Yt,Q

Recall the bijectionϕ : Î → ∆̂ of §2.2. Define

Î Q := ϕ−1(∆+×{0})⊂ Î ,

and letYt,Q be the theC(t)-subalgebra of(Yt ,∗) generated by the variablesYi,p ((i, p) ∈ Î Q). This
is a quantum torus of rankr = |∆+|. We will also use the extended torus

(Yt,Q,∗) := C(t1/2)⊗C(t) (Yt,Q,∗).

Example 3.4 We takeg of typeD4 and chooseQ as in Figure 1 and Figure 2. Comparing the two
figures we see thatYt,Q is generated by

Y±1
1,0 , Y±1

1,−2, Y±1
1,−4, Y±1

2,0 , Y±1
2,−2, Y±1

2,−4, Y±1
3,1 , Y±1

3,−1, Y±1
3,−3, Y±1

4,2 , Y±1
4,0 , Y±1

4,−2.

3.4 The quantum torus Tv,Q

Let w0 be the longest element ofW. Let i = (i1, . . . , ir) be a reduced expression ofw0 adapted toQ
(see§2.2). Following [GLS, §11], we introduce a quantum torusTv,Q of rank r overC(v). (The
indeterminatev is denoted byq in [GLS]). Its generators are certain unipotent quantum minors

Dϖik ,λk
, (1≤ k≤ r)

in the quantum coordinate ringAv(n). Hereλk is the weight given by

λk = si1 · · ·sik(ϖik), (1≤ k≤ r).

The definition ofAv(n) will be recalled in§4.1 below. At this stage we only need to know the
explicit v-commutation relations satisfied by these minors. It is shown in [GLS, Lemma 11.2] that
for k< l there holds

Dϖik ,λk
Dϖil ,λl

= v(ϖik−λk, ϖil +λl )Dϖil ,λl
Dϖik ,λk

. (12)

For 1≤ k≤ r, setk− := max({s< k | is = ik}∪{0}). Define

Zk := Dϖik ,λk

(
Dϖik−

,λk−

)−1
, (13)

where ifk− = 0 we understandDϖik−
,λk−

= 1. Clearly,Zk (1≤ k≤ r) is another set of generators
of Tv,Q. Let

βk = si1 · · ·sik−1(αik), (1≤ k≤ r). (14)

Note that we have
λk = λk− −βk, (1≤ k≤ r), (15)

where ifk− = 0 we use the conventionλk− = ϖik.

Proposition 3.5 For 1≤ k< l ≤ r, we have:

ZkZl = v−(βk,βl )Zl Zk. (16)
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Proof — Let us introduce the integersµkl andνkl such that

Dϖik ,λk
Dϖil ,λl

= vµkl Dϖil ,λl
Dϖik ,λk

, ZkZl = vνkl Zl Zk, (1≤ k, l ≤ r).

By definition ofZk we have

νkl = (µkl −µk− l )− (µkl− −µk−l−),

where we use the convention thatµk− l = 0 if k− = 0, µkl− = 0 if l− = 0, andµk− l− = 0 if k− = 0
or l− = 0. Sincek− < k< l , we have

µkl −µk−l = (ϖik−λk, ϖil +λl)− (ϖik−λk− , ϖil +λl) = (βk,ϖil +λl). (17)

(a) If k< l− we have similarly

µkl− −µk−l− = ((βk,ϖil +λl−)

and so
νkl = (βk,ϖil +λl)− (βk,ϖil +λl−) =−(βk,βl ),

as required.
(b) If k= l− thenµkl− = 0 andµk− l = (ϖik−λk− , ϖik +λk). Hence

νkl = (βk,ϖil +λl )+ (ϖik−λk− , ϖik +λk)

= (βk,ϖik +λk)− (βk,βl )+ (ϖik−λk− , ϖik +λk)

= −(βk,βl )+ (ϖik−λk−+βk, ϖik +λk)

= −(βk,βl )+ (ϖik−λk, ϖik +λk)

= −(βk,βl )

as required, because(ϖik−λk, ϖik +λk) = (ϖik,ϖik)− (λk,λk) = 0.
(c) If k> l− thenµkl− =−µl−k =−(ϖil −λl− , ϖik +λk). Hence

−µkl− +µk−l− = (ϖil −λl− , ϖik +λk)+ (ϖik−λk− , ϖil +λl−)

= −(βk, ϖil +λl−)+ (ϖil −λl− , ϖik +λk)+ (ϖik−λk, ϖil +λl−)

= −(βk, ϖil +λl−)+2(ϖik,ϖil )−2(λk,λl−)

= −(βk, ϖil +λl−).

Indeed, sincel− < k< l , we have

(λk,λl−) = (sil−+1
· · ·sik(ϖik), ϖil ) = (ϖik,sik · · ·sil−+1

(ϖil )) = (ϖik,ϖil ).

It follows that again,νkl = (βk,ϖil +λl)− (βk,ϖil +λl−) =−(βk,βl ), as required. ✷

3.5 An isomorphism

It is well known that the rootsβk (1≤ k≤ r) give an enumeration of∆+. Therefore, for every
(i, p) ∈ Î Q there is a uniquek such thatϕ(i, p) = (βk,0).
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Proposition 3.6 The assignment

t 7→ v,

Yi,p 7→ Zk, where(i, p) ∈ Î Q, andϕ(i, p) = (βk,0),

extends to an isomorphism of quantum tori fromYt,Q to Tv,Q.

Proof — This follows immediately from Proposition 3.2 and Proposition 3.5 if we note that when
ϕ(i, p) = (βk,0) andϕ( j,s) = (βl ,0), p< s implies thatk> l . ✷

3.6 The involution σ and the rescaled generators Xk

Let Tv,Q := C(v1/2)⊗C(v) Tv,Q. Forγ = ∑i ciαi in the root lattice ofg, we set

degγ := ∑
i

ci , N(γ) :=
(γ ,γ)

2
−degγ . (18)

Following [GLS], we introduce an involutionσ of Tv,Q, defined as theC-algebra anti-automor-
phism satisfying

σ(v1/2) = v−1/2, σ
(

Dϖik ,λk

)
= vN(ϖik−λk)Dϖik ,λk

. (19)

We rescale the generatorsZk of Tv,Q by defining

Xk :=

{
vN(βk)/2Zk if 1 ≤ k≤ n,

vN(βk)/2+(ϖik−λk−n, βk)Zk if n+1≤ k≤ r.
(20)

Note that these elements live inTv,Q.

Lemma 3.7 For 1≤ k≤ r we have:
σ(Xk) = Xk.

Proof — For convenience, we setλk−n = ϖik if k− n≤ 0. Using (13), (12), and the definition
of σ , we have

σ(Zk) = vN(ϖik
−λk)−N(ϖik

−λk−n)−(ϖik
−λk−n, ϖik

+λk)Zk.

A simple calculation using (15) shows that

N(ϖik−λk)−N(ϖik−λk−n)− (ϖik−λk−n, ϖik +λk) = N(βk)+2(ϖik−λk−n, βk),

and the lemma follows. ✷

Clearly, the rescaled generatorsXk satisfy the same commutation relations as theZk. Therefore,
if we define fora := (a1, . . . ,ar) ∈ Zr ,

Xa := v
1
2 ∑i< j aiaj (βi ,β j )Xa1

1 · · ·X
ar
r , (21)

we have by Proposition 3.5,

σ(Xa) = v−
1
2 ∑i< j aiaj (βi ,β j )Xar

r · · ·X
a1
1 = Xa. (22)

Thus,Xa is σ -invariant, and more generally an element ofTv,Q is σ -invariant if and only if all the
coefficients of its expansion with respect to the basis{Xa | a ∈ Zr} are invariant under the map
v1/2 7→ v−1/2. Moreover, one checks easily that

XaXb = v
1
2 ∑i< j (aj bi−aibj )(βi ,β j )Xa+b = v∑i< j (ajbi−aibj )(βi ,β j )XbXa. (23)
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3.7 The isomorphism Φ

We can now state the main result of this section, which follows immediately from Proposition 3.6
and Equations (11), (23).

Proposition 3.8 There is aC-algebra isomorphismΦ : Yt,Q→Tv,Q given by

Φ(t1/2) = v1/2, Φ(Yi,p) = Xk for (i, p) ∈ Î Q and ϕ(i, p) = (βk,0).

More generally, let

m= ∏
(i,p)∈Î Q

Y
ui,p(m)
i,p

be acommutativemonomial inYt,Q, as in§3.2, and leta = (a1, . . . ,ar) where ak = u(i,p)(m) if
ϕ(i, p) = (βk,0). Then we have

Φ(m) = Xa.

✷

4 Quantum groups

4.1 Background

Let n denote a maximal nilpotent subalgebra ofg. Let Uv(n) be the Drinfeld-Jimbo quantum
enveloping algebra ofn overC(v), with Chevalley generatorsei (i ∈ I) subject to the quantum
Serre relations:

ei ej −ej ei = 0 if Ci j = 0,

e2
i ej − (v+v−1)ei ej ei +ej e2

i = 0 if Ci j =−1.

It is endowed with a natural scalar product(·, ·) which we normalize by(ei ,ei) = 1 (seee.g.[GLS,
§4.3]). We denote byAv(n) the graded dual vector space ofUv(n). The mapx 7→ (x, ·) is a vector
space isomorphism fromUv(n) to Av(n), which allows to define a multiplication onAv(n) by
transporting the multiplication ofUv(n).

Thus,Uv(n) andAv(n) are isomorphic algebras, but they have dual integral forms and therefore
they specialize differently atv= 1. One should regardAv(n) as a quantum coordinate ring of the
unipotent groupN with Lie algebran. For example, the elementsDϖik ,λk

of §3.4 are quantum
analogues of certain generalized minors onN. We set

Uv(n) := C(v1/2)⊗C(v)Uv(n), Av(n) := C(v1/2)⊗C(v) Av(n).

Since the basis involved in Theorem 1.2 (b) is the dual canonical basisB∗, it is more natural to
think of the quantum algebra of Theorem 1.2 (a) as beingAv(n) rather thanUv(n).

The algebraUv(n) has a natural grading by the root lattice ofg, given by deg(ei) = αi . The
above isomorphism allows to transfer this grading toAv(n).
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4.2 Determinantal identities

In [GLS], it is shown thatAv(n) has a quantum cluster algebra structure. In particular, an explicit
realization ofAv(n) as a subalgebra of the quantum torusTv,Q is given. This goes as follows.

For u,w ∈W andλ ∈ P+, one has unipotent quantum minorsDu(λ),w(λ) ∈ Av(n) (see [GLS,
§5.2]). They satisfy

Du(λ),w(λ) =

{
1 if u(λ ) = w(λ ),

0 if u(λ ) 6≤ w(λ ).

Let i = (i1, . . . , ir) be as in§3.4. In [GLS, §5.4], a system of identities relating the quantum minors

D(b,d) := Dsi1···sib(ϖib), si1···sid (ϖib)
, (0≤ b≤ d≤ r, ib = id ∈ I), (24)

is derived, which we now recall. By convention, we writeD(0,b) = Dϖib, si1···sib(ϖib)
. Note that the

minorsD(0,b) (1≤ b≤ r) form by definition a system of generators ofTv,Q. We will also use the
following shorthand notation:

b−( j) := max({s< b | is = j}∪{0}) , (25)

b− := max({s< b | is = ib}∪{0}) , (26)

µ(b, j) := si1 · · ·sib(ϖ j). (27)

In (27) we understand thatµ(0, j) = ϖ j .

Proposition 4.1 ([GLS]) Let1≤ b< d≤ r be such that ib = id = i. There holds

vAD(b,d)D(b−,d−) = v−1+BD(b,d−)D(b−,d) + vC
−→

∏
j∼i

D(b−( j),d−( j)) (28)

where
A= (µ(d, i), µ(b−, i)−µ(d−, i)), B= (µ(d−, i), µ(b−, i)−µ(d, i)),

and
C = ∑

j<k
j∼i, k∼i

(µ(d, j), µ(b,k)−µ(d,k)) .

This system of identities allows to express inductively every minor D(b,d) as a rational func-
tion of the flag minorsD(0,c). Moreover, it follows from [GLS, Theorem 12.3] that all these
rational functions belong in fact toTv,Q, and thatAv(n) is the subalgebra ofTv,Q generated by the
minorsD(b−,b) (1≤ b≤ r).

4.3 The dual canonical basis B∗

Let us write
E∗(βk) := D(k−,k), (1≤ k≤ r), (29)

and fora = (a1, . . . ,ar) ∈ Zr ,

E∗(a) = v−∑r
k=1 ak(ak−1)/2E∗(β1)

a1 · · ·E∗(βr)
ar . (30)

ThenE∗ = {E∗(a) | a ∈ Zr} is aC(v)-basis ofAv(n), dual to a basis ofUv(n) of PBW-type, as
defined by Lusztig. The basisE∗ is called thedual PBW-basisof Av(n).

The involutionσ of Tv,Q (see§3.6) can be restricted toAv(n). Lusztig [Lu1] has constructed
a canonical basisB of Uv(n). The dual basisB∗ = {B∗(a) | a ∈ Nr} of Av(n) can be characterized
as follows (seee.g. [GLS]).
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Proposition 4.2 For a = (a1, . . . ,ar ) ∈Nr , the vector B∗(a) is uniquely determined by the follow-
ing conditions:

(a) B∗(a) ∈ E∗(a)+∑c6=a v−1Z[v−1]E∗(c);

(b) let β (a) := ∑1≤k≤r akβk. Thenσ(B∗(a)) = vN(β(a))B∗(a).

The integerN(γ) of (b) is defined in (18). Note thatβ (a) is just the weight ofB∗(a) or E∗(a) in
the natural grading ofAv(n) by the root lattice ofg. The basisB∗ is called thedual canonical basis
of Av(n).

5 Quantum Grothendieck rings

5.1 Background

For recent surveys on the representation theory of quantum loop algebras, we invite the reader to
consult [CH] or [Le].

Let Lg be the loop algebra attached tog, and letUq(Lg) be the associated quantum enveloping
algebra. We assume that the deformation parameterq∈C∗ is not a root of unity.

By [FR2], every finite-dimensionalUq(Lg)-moduleM (of type 1) has aq-characterχq(M).
Theseq-characters generate a commutativeC-algebra isomorphic to the complexified Grothen-
dieck ring of the category of finite-dimensional irreducible Uq(Lg)-modules. Nakajima [N3],
Varagnolo and Vasserot [VV1], and Hernandez [He2], have studiedt-deformations of theq-
characters of the standard modules and of the simple modules, as well as correspondingt-deforma-
tions of the Grothendieck ring. Although slightly different, theset-deformed Grothendieck rings
are essentially equivalent, and in particular they give rise to the same(q, t)-characters for the sim-
ple modules. In what follows, we will use the version of [He2]. Its definition will be recalled in
the next sections.

5.2 The subcategory CZ

The simple finite-dimensional irreducibleUq(Lg)-modules (of type 1) are usually labelled by Drin-
feld polynomials. Here we shall use an alternative labelling by dominant monomials (see [FR2]).
Moreover, as in [HL], we shall restrict our attention to a certain tensor subcategory CZ of the
category of finite-dimensionalUq(Lg)-modules. The simple modules inCZ are labelled by the
dominant monomials inY , or equivalently, by the dominant commutative monomials in(Yt1/2,∗)
(see§3.2), and theirq-characters belong toY . We shall denote byL(m) the simple module la-
belled by the dominant monomialm. Whenm=Yi,p is reduced to a single variable,L(m) is called
a fundamental module. Whenm is the only dominant monomial occuring inχq(L(m)), L(m) is
said to beminuscule. Fundamental modules are examples of minuscule modules [FM].

5.3 Standard modules

To a dominant commutative monomialm is also attached a tensor product of fundamental modules
called astandard module M(m) defined by

M(m) :=
−→⊗

(i,p)∈Î

L(Yi,p)
⊗ui,p(m), (31)
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where the product is ordered according to the following partial order onÎ :

(i, p) < ( j,s) ⇐⇒ p< s.

Note that for any fixedp∈ Z and any total order onI , the tensor product

−→⊗

i∈I

L(Yi,p)
⊗ui,p(m)

is irreducible, and its isomorphism classL
(

∏i∈I Y
k
i,p

)
does not depend on the order of the factors,

hence (31) is well defined up to isomorphism (see [FM, Proposition 6.15]). The classes[M(m)]
of the standard modulesM(m) form a second basis of the Grothendieck group ofCZ.

5.4 The ring Kt

We introduce the commutative monomials [FR2]

Ai,p =Yi,p+1Yi,p−1∏
j∼i

Y−1
j,p , ((i, p−1) ∈ Î ). (32)

Recall from§3.2 that commutative monomials inY can be regarded as elements of(Yt ,∗). More
generally, the commutative polynomials

Yi,p

(
1+A−1

i, p+1

)
=Yi,p + Y−1

i,p+2∏
j∼i

Yj,p+1, ((i, p) ∈ Î )

can be regarded as elements of(Yt ,∗). For i ∈ I , let Ki,t be theC(t1/2)-subalgebra ofYt (for the
noncommutative product∗) generated by

Yi,p

(
1+A−1

i, p+1

)
, Y±1

j,s ,
(
(i, p),( j,s) ∈ Î , j 6= i

)
.

(In [He1], Ki,t is identified with the kernel of at-deformed screening operator.) Define

Kt :=
⋂

i∈I

Ki,t .

It is shown in [He2] that an element ofKt is uniquely determined by the coefficients of its domi-
nant monomials. Moreover, for any dominant monomialm, there is a uniqueF(m) ∈Kt such that
m occurs inF(m) with multiplicity 1 and no other dominant monomial occurs inF(m). These
F(m) form aC(t1/2)-basis ofKt .

5.5 Comparison with other t-deformations

The product∗ used in this paper is the same as that of [He2], except that we have replacedt
by t−1. The product of [He2] is slightly different from the products of [N3] and [VV1] (see
Remark 3.1). However, as shown in [He2, Proposition 3.16], for every(i, p),( j,s) ∈ Î the pairs
(Yi,p,A j,s) and(Ai,p,A j,s) aret-commutative with thesame exponents of tfor the three products of
[N3, VV1, He2]. This implies that thet-deformations of the Grothendieck ringR of CZ associated
with the three products are essentially equivalent, as willbe explained below.
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5.6 (q, t)-characters of standard modules

For a dominant commutative monomialm∈ Yt1/2, define

[M(m)]t := tα(m)
←−

*
p∈Z

F

(

∏
i∈I

Y
ui,p(m)
i,p

)
∈Kt . (33)

Here,α(m) ∈ 1
2Z is chosen so thatm occurs with coefficient 1 in the expansion of[M(m)]t on

the basis of commutative monomials ofYt1/2. The coefficients of[M(m)]t on this basis belong to
Z[t±1] and may therefore be specialized att = 1. The obtained specialization of[M(m)]t at t = 1
is equal toχq(M(m)), theq-character of the standard moduleM(m). Therefore we may use the
alternative notation

χq,t(M(m)) := [M(m)]t ,

and call this element ofKt the(q, t)-character of M(m).

5.7 The bar involution

One shows that there is a uniqueC-algebra anti-automorphism of(Yt ,∗) such that

t1/2 = t−1/2, Yi,p =Yi,p, ((i, p) ∈ Î ).

Clearly, thecommutativemonomials are bar-invariant, as in [N3, VV1]. The subringKt is stable
under the bar involution, since eachKi,t is obviously stable. It follows that the elementsF(m) are
bar-invariant (sincem is the unique dominant monomial ofF(m)). Hence the coefficients of the
expansion ofF(m) on the basis of commutative monomials are unchanged under the replacement
of t by t−1. Therefore,F(m) is the same as in [He2]. Since we have used in (33) the reverse
product

←
∗ , the elementsχq,t(M(m)) also coincide with the corresponding elements of [N3, VV1,

He2], i.e. the coefficients of their expansion on the basis of commutative monomials are the same.

5.8 (q, t)-characters of simple modules

Proposition 5.1 ([N3]) For every dominant monomial m, there is a unique element[L(m)]t of Kt

satisfying

(a) [L(m)]t = [L(m)]t ,

(b) [L(m)]t ∈ [M(m)]t + ∑
m′<m

t−1Z[t−1] [M(m′)]t .

Here m′ ≤m means that m(m′)−1 is a product of elements Ai,p in Y .

By §5.7, the elements[L(m)]t coincide with the corresponding elements of [N3, VV1, He2]. Using
the geometry of quiver varieties, Nakajima has shown:

Theorem 5.2 ([N3]) The specialization of[L(m)]t at t = 1 is equal toχq(L(m)), and the coeffi-
cients of the expansion of[L(m)]t as a linear combination of monomials in the Yi,p’s belong to
N[t±1].

Therefore we may use the alternative notation

χq,t(L(m)) := [L(m)]t ,

and call this element ofKt the(q, t)-character of L(m).
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Corollary 5.3 (a) If L(m) is minuscule,χq,t(L(m)) = F(m).

(b) If χq(L(m)) is multiplicity-free, thenχq,t(L(m)) = χq(L(m)) does not depend on t when
expressed on the basis of commutative monomials.

Proof — By the positivity statement of Theorem 5.2, every monomial occuring in χq,t(L(m))
already occurs inχq(L(m)). Thus, if L(m) is minuscule thenχq,t(L(m)) is an element ofKt

containing the unique dominant monomialm, which proves (a). Ifχq(L(m)) is multiplicity-free,
then the coefficient of every commutative monomial inχq,t(L(m)) is of the formtk for somek∈Z.
But sinceχq,t(L(m)) is bar-invariant, we must havek= 0, which proves (b). ✷

5.9 Multiplicative structure

We shall regard the noncommutative ring(Kt ,∗) as at-deformed version of the Grothendieck ring
R. But one should be aware that only the simple modulesL(m) and the standard modulesM(m)
have well-defined “classes”χq,t(L(m)) andχq,t(M(m)) in Kt .

For any dominant monomialsm1 andm2, write

χq,t(L(m1))∗χq,t(L(m2)) =∑
m

cm
m1,m2

(t1/2)χq,t(L(m)).

Note that every irreducible(q, t)-character is of the formχq,t(L(m)) = m(1+∑k Mk), where the
Mk are monomials in theA−1

i,p with coefficients inN[t, t−1] (see [He2]). So, by§5.5, the above

coefficientscm
m1,m2

(t1/2) are obtained from the corresponding ones in [N3, VV1] by multiplying
by sometk with k∈ Z/2. Varagnolo and Vasserot have shown the following positivity result:

Theorem 5.4 ([VV1]) The structure constants cm
m1,m2

(t1/2) belong toN[t1/2, t−1/2].

Corollary 5.5 L(m1)⊗L(m2)≃ L(m) is a simple module if and only if

χq,t(L(m1))∗χq,t(L(m2)) = t2kχq,t(L(m2))∗χq,t(L(m1)) = tkχq,t(L(m))

for some k∈ Z/2.

Proof — If L(m1)⊗L(m2)≃ L(m) thenχq(L(m1))∗χq(L(m2)) = χq(L(m)). Hencecm
m1,m2

(1) =
1, and it follows from Theorem 5.4 thatχq,t(L(m1)) ∗ χq,t(L(m2)) = tkχq,t(L(m)) for somek ∈
Z/2. Applying the bar involution, we getχq,t(L(m2))∗χq,t (L(m1)) = t−kχq,t(L(m)). If conversely
χq,t(L(m1))∗χq,t(L(m2)) = tkχq,t(L(m)), then specializingt to 1 we get

χq(L(m1))χq(L(m2)) = χq(L(m1)⊗L(m2)) = χq(L(m)),

henceL(m1)⊗L(m2)≃ L(m). ✷
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5.10 Quantum T-system

For (i, p) ∈ Î andk∈ N, let m(i)
k,p :=Yi,pYi,p+2 · · ·Yi,p+2k−2. The simpleUq(Lg)-module

W(i)
k,p := L

(
m(i)

k,p

)

is called aKirillov-Reshetikhin module. (By convention, ifk = 0 thenW(i)
k,p is the trivial one-

dimensional module.) Theq-characters of the Kirillov-Reshetikhin modules satisfy the following
system of algebraic identities calledT-system[KNS, N2, He3]. For every(i, p) ∈ Î andk > 0,
there holds

χq

(
W(i)

k,p

)
χq

(
W(i)

k,p+2

)
= χq

(
W(i)

k−1,p+2

)
χq

(
W(i)

k+1,p

)
+∏

j 6=i

χq

(
W( j)

k,p+1

)−Ci j

.

This can be lifted to at-deformedT-system inKt , as shown by the next proposition (see also
[N2, §4], where a differentt-deformed product is used, as explained in Remark 3.1 and§5.5).
Before stating it, we note that

⊗
j∼i W

( j)
k,p+1 is a simple module, hence by Corollary 5.5 the(q, t)-

charactersχq,t(W
( j)
k,p+1) pairwiset-commute inKt . Moreover, it is easy to check that, sincẽC(z)

is symmetric, for anyj ∼ i and j ′ ∼ i, one hasm( j)
k,p+1∗m( j ′)

k,p+1 = m( j ′)
k,p+1 ∗m( j)

k,p+1, hence the(q, t)-

charactersχq,t(W
( j)
k,p+1) do in fact pairwise commute inKt . So we may write∗

j∼i
χq,t

(
W( j)

k,p+1

)

without specifying an ordering of the factors.

Proposition 5.6 In Kt there holds:

χq,t

(
W(i)

k,p

)
∗χq,t

(
W(i)

k,p+2

)
= tα(i,k)χq,t

(
W(i)

k−1,p+2

)
∗χq,t

(
W(i)

k+1,p

)
+ tγ(i,k) ∗

j∼i
χq,t

(
W( j)

k,p+1

)
,

where

α(i,k) =−1+
1
2

(
C̃ii (2k−1)+C̃ii (2k+1)

)
, γ(i,k) = α(i,k)+1. (34)

Proof — Using Theorem 5.4, we see that the claimed identity holds forsome integersα(i,k) and
γ(i,k), and we only have to check (34). To do so it is enough to comparethe coefficients of some

particular monomials on both sides. We havem(i)
k,p∗m(i)

k,p+2 = tαm(i)
k−1,p+2∗m(i)

k+1,p, where

α =
k−1

∑
a=1

N (i, p; i, p+2a)+
1
2
N (i, p; i, p+2k)

=
k−1

∑
a=1

(
C̃ii (2a+1)−C̃ii (2a−1)

)
+

1
2

(
C̃ii (2k+1)−C̃ii (2k−1)

)

= −C̃ii (1)+
1
2

(
C̃ii (2k−1)+C̃ii (2k+1)

)
.

Thusα(i,k) = α =−1+(C̃ii (2k−1)+C̃ii (2k+1))/2, as claimed.

Similarly, χq(W
(i)
k,p) contains the monomialm := m(i)

k,pA−1
i,p+2k−1 · · ·A

−1
i,p+3A−1

i,p+1 with coeffi-

cient 1, and we havemm(i)
k,p+2 = ∏ j∼i m

( j)
k,p+1. Now

m∗m(i)
k,p+2 =

((
m(i)

k,p+2

)−1

∏
j∼i

m( j)
k,p+1

)
∗m(i)

k,p+2 = tγ ∏
j∼i

m( j)
k,p+1,
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where

γ =
1
2 ∑

j∼i

k

∑
a=1

k

∑
b=1

N ( j, p+2a−1; i, p+2b)

=
1
2 ∑

j∼i

k

∑
a=1

k

∑
b=1

(
C̃ji (2(a−b)−2)−C̃ji (2(a−b))−C̃ji (2(b−a))+C̃ji (2(b−a)+2)

)

=
1
2 ∑

j∼i

k

∑
a=1

(
C̃ji (2(a−k)−2)−C̃ji (2(a−1))−C̃ji (2(1−a))+C̃ji (2(k−a)+2)

)

=
1
2 ∑

j∼i

k

∑
a=1

(
−C̃ji (2(a−1))+C̃ji (2(k−a)+2)

)

=
1
2 ∑

j∼i

C̃ji (2k).

Thusγ(i,k) = γ =
(

∑ j∼i C̃ji (2k)
)
/2=

(
∑ j∼i C̃i j (2k)

)
/2= (C̃ii (2k−1)+C̃ii (2k+1))/2, as clai-

med. Here, the last equality comes from the definition ofC̃(z) (see the proof of Proposition 2.5).
✷

Example 5.7 (a) Takeg of typeA1. We have

C̃(z) = z−z3+z5−z7+z9−·· · ,

henceα(k) =−1 for all k> 0. Thus we get

χq,t
(
Wk,p

)
∗χq,t

(
Wk,p+2

)
= t−1χq,t

(
Wk−1,p+2

)
∗χq,t

(
Wk+1,p

)
+1.

(b) Takeg of typeA3. Choosei = 1, k= 1, andp= 0. Using for example Proposition 2.5, we can

calculate

C̃11(z) = z−z7+z9−z15+ · · · , C̃12(z) = z2−z6+z10−z14+ · · · ,

hence

α(1,1) =−1+
1
2

(
C̃11(1)+C̃11(3)

)
=−

1
2
, γ(1,1) =

1
2

C̃12(2) =
1
2
.

Thus Proposition 5.6 gives

χq,t

(
W(1)

1,0

)
∗χq,t

(
W(1)

1,2

)
= t−1/2χq,t

(
W(1)

2,0

)
+ t1/2χq,t

(
W(2)

1,1

)
.

5.11 The subcategory CQ

Recall the quantum torusYt,Q of §3.3. The dominant commutative monomials inYt,Q parametrize
the simple objects of an abelian subcategoryCQ of CZ. More precisely, we defineCQ as the full
subcategory ofCZ whose objects have all their composition factors of the formL(m) wherem is
a dominant commutative monomial inYt,Q. WhenQ is a sink-source orientation of the Dynkin
diagram and the Coxeter numberh is even,CQ is one of the subcategoriesCℓ introduced in [HL];
namely,CQ = Ch′ whereh′ = h/2−1.
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Lemma 5.8 CQ is closed under tensor products, hence is a tensor subcategory of CZ.

Proof — This is a slight modification of the proof of [HL, Proposition 3.2]. LetL(m) andL(m′)
be inCQ. This means thatm andm′ are monomials in the variablesYi,p, (i, p) ∈ ÎQ. If L(m′′) is a
composition factor ofL(m)⊗L(m′) thenm′′ is a product of monomials ofχq(L(m)) andχq(L(m′)).
So we havem′′ = mm′M whereM is a monomial in theA−1

j,r . Then it is checked as in [HL, Section

5.2.4] that, form′′ to be dominant, these( j, r) have to satisfy( j, r−1) ∈ ÎQ and( j, r +1) ∈ ÎQ. It
follows thatm′′ depends only on the variablesYi,p, (i, p) ∈ ÎQ, becausêI Q is a “convex slice” of̂I ,
that is, it satisfies:

(i) if (i, p), (i, p+2k) ∈ Î Q for i ∈ I , p∈ Z, k> 0, then(i, p+2 j) ∈ Î Q for 1≤ j ≤ k−1;

(ii) if (i, p), (i, p+2) ∈ Î Q for i ∈ I , p∈ Z, then for everyj ∼ i we have( j, p+1) ∈ Î Q.

Hence the result. ✷

Example 5.9 We continue Example 3.4. We takeg of typeD4 and chooseQ as in Figure 1. The
simple objects ofCQ are of the formL(m), where

m=Y
u1,0

1,0 Y
u1,−2

1,−2 Y
u1,−4

1,−4 Y
u2,0

2,0 Y
u2,−2

2,−2 Y
u2,−4

2,−4 Y
u3,1

3,1 Y
u3,−1

3,−1 Y
u3,−3

3,−3 Y
u4,2

4,2 Y
u4,0

4,0 Y
u4,−2

4,−2 .

andui,p ∈ N.

5.12 The ring Kt,Q and the truncated (q, t)-characters

We denote byKt,Q theC(t1/2)-subalgebra ofKt spanned by the(q, t)-charactersχq,t(L(m)) of
the simple objectsL(m) in CQ. We callKt,Q thet-deformed Grothendieck ring ofCQ.

The (q, t)-character of a simple objectL(m) of CQ contains in general many monomialsm′

which do not belong toYt,Q. By discarding these monomials we obtain atruncated(q, t)-charac-
ter. We shall denote bỹχq,t(L(m)) the truncated(q, t)-character ofL(m). One checks that for
a simple objectL(m) of CQ, all the dominant monomials occuring inχq,t(L(m)) belong to the
truncated(q, t)-character̃χq,t(L(m)) (the proof is similar to that of [HL] for the categoryC1, as
for the proof of Lemma 5.8 above). Therefore the truncation map

χq,t(L(m)) 7→ χ̃q,t(L(m))

extends to an injective algebra homomorphism fromKt,Q to Yt,Q. In the sequel we shall identify
Kt,Q with the subalgebra ofYt,Q given by the image of this homomorphism.

6 An isomorphism between quantum Grothendieck rings and quan-
tum groups

6.1 The isomorphism between Kt,Q and Av(n)

Recall the isomorphismΦ : Yt,Q→Tv,Q of Proposition 3.8, and the notation

Av(n) := C(v1/2)⊗Av(n).

Define therescaled dual canonical basisof Av(n):

B̃∗ :=
{

B̃∗(a) := vN(β(a))/2B∗(a) | B∗(a) ∈ B∗
}
.
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Clearly, the elements of̃B∗ are invariant under the involutionσ . The next theorem is Theorem 1.2
in a slightly more precise formulation.

Theorem 6.1 (a) Φ restricts to an isomorphism

Kt,Q
∼
−→Av(n).

(b) The basis ofKt,Q consisting of the irreducible truncated(q, t)-charactersχ̃q,t(L(m)) is
mapped byΦ ontoB̃∗.

Proof — We introduce some necessary notation. For 1≤ k≤ r, letkmin :=min{1≤ s≤ r | is= ik}.
Setk(0) := k and, for a negative integerj, definek( j) = (k( j+1))−, where the notationb− is as in
Equation (26). We also note that, by definition ofλk andβk, if k− 6= 0 thenτ−1(λk) = λk− and
τ−1(βk) = βk− .

Let us fix some(i, p) ∈ Î Q. By definition ofΦ, we have:

Φ(Yi,p) = Xk for (i, p) ∈ Î Q and ϕ(i, p) = (βk,0).

Note that this relation between(i, p) andβk implies in particular thatik = i. Since ifk− 6= 0,

ϕ(i, p+2) = (τ−1(βk),0) = (βk− ,0),

we deduce thatΦ
(
Yi,pYi,p+2Yi,p+4 · · ·Yi,ξi

)
is equal up to a power ofv to XkXk−Xk(−2) · · ·Xkmin, that is,

up to a power ofv, to D(0,k). Since the commutative monomialYi,pYi,p+2 · · ·Yi,ξi
is bar-invariant,

its image isσ -invariant, so it has to be equal tovN(ϖik−λk)/2D(0,k). NowYi,pYi,p+2 · · ·Yi,ξi
is equal

to the truncated(q, t)-character of the Kirillov-Reshetikhin moduleW(i)
1+(ξi−p)/2, p. Hence we have

shown that
Φ
(

χ̃(q,t)

(
W(i)

1+(ξi−p)/2, p

))
= vN(ϖik−λk)/2D(0,k).

We now want to show that, more generally, for 1≤ s≤ (ξi − p)/2+1 we have

Φ
(

χ̃(q,t)

(
W(i)

s, p

))
= vN(λ

k(−s)−λk)/2D(k(−s),k). (35)

This will be proved by comparing Proposition 4.1 and Proposition 5.6. Let us denote by

D̃(b,d) := vN(λb−λd)/2D(b,d)

the rescaled quantum minors. Note that

N(λb−λd) =
1
2
(λb−λd, λb−λd)−deg(λb−λd) = (λb, λb−λd)−deg(λb−λd).

We can rewrite Proposition 4.1 as

D̃(b,d)D̃(b−,d−) = vX D̃(b,d−)D̃(b−,d) + vY
−→

∏
j∼i

D̃(b−( j),d−( j)) (36)

where

X := −1+B−A+
1
2
((λb, λb−λd)+ (λb− , λb− −λd−)− (λb−, λb− −λd)− (λb, λb−λd−)) ,
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and

Y :=C−A+
1
2

(
(λb, λb−λd)+ (λb−, λb− −λd−)−∑

j∼i

(
λb−( j), λb−( j)−λd−( j)

)
)
.

ReplacingA andB by their values from Proposition 4.1, and simplifying the resulting expression,
we easily get

X =−1+
1
2
(λb+λb− , λd− −λd).

Now, writing ib = id = i andb= d(−s),

(λb+λb−, λd− −λd) = (λb,λd−)− (λb− ,λd) = (ϖi ,τs−1(ϖi))− (ϖi,τs+1(ϖi)).

Hence, using thatτs−1(ϖi)− τs+1(ϖi) = τs(γi)+ τs−1(γi), by Proposition 2.1 we get

X =−1+
1
2

(
C̃ii (2s−1)+C̃ii (2s+1)

)
.

Similarly, replacingA andC by their values from Proposition 4.1, and simplifying the resulting
expression, we get

Y = (ϖi , τ(ϖi)− τs+1(ϖi))+ (ϖi, ϖi− τs(ϖi))−
1
2 ∑

j∼i
∑
k∼i

(τ (ξ j−ξk)/2ϖ j , ϖk− τs(ϖk)).

Using the identities

ϖi− τs(ϖi) =
s−1

∑
l=0

τ l(γi), τ l(γi)+ τ l+1(γi) = ∑
k∼i

τ l+(1+ξk−ξi)/2(γk),

we get

(ϖi , τ(ϖi)− τs+1(ϖi))+ (ϖi, ϖi− τs(ϖi)) = ∑
k∼i

(
τ (ξi−ξk−1)/2(ϖi), ϖk− τs(ϖk)

)
,

hence,

Y =
1
2 ∑

k∼i

(
τ (ξi−ξk−1)/2

(
2ϖi−∑

j∼i

τ (ξ j−ξi+1)/2(ϖ j)

)
, ϖk− τs(ϖk)

)
.

Now,

2ϖi −∑
j∼i

τ (ξ j−ξi+1)/2(ϖ j) = 2ϖi − ∑
j∼i; ξ j−ξi=1

τ(ϖ j)− ∑
j∼i; ξ j−ξi=−1

ϖ j = αi + ∑
j∼i; ξ j−ξi=1

γ j = γi .

Hence

Y =
1
2 ∑

k∼i

(
τ (ξi−ξk−1)/2(γi), ϖk− τs(ϖk)

)

= −
1
2 ∑

k∼i

(
τ−s+(ξi−ξk−1)/2(γi), ϖk

)

=
1
2 ∑

k∼i

(
τs+(ξi−ξk−1)/2(γi), ϖk

)

=
1
2 ∑

k∼i

C̃ik(2s).
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ThereforeX = α(i,s), Y = γ(i,s), and by Proposition 5.6 we see that, for any(i, p′) ∈ Î Q, there
holds inKt :

χq,t

(
W(i)

s, p′

)
∗χq,t

(
W(i)

s, p′+2

)
= tXχq,t

(
W(i)

s−1, p′+2

)
∗χq,t

(
W(i)

s+1, p′

)
+ tY ∗

j∼i
χq,t

(
W( j)

s, p′+1

)
. (37)

It was shown in [GLS] that one can express every quantum minorD(b,d) as a (noncommutative)
Laurent polynomial in the quantum flag minorsD(0,k), by means of an explicit sequence of appli-
cations of Proposition 4.1. Equivalently, every rescaled quantum minorD̃(b,d) can be expressed
as a Laurent polynomial in thẽD(0,k)’s with coefficients inZ[v±1/2], by means of an explicit
sequence of applications of (36). By comparing (36) and (37), we see that the(q, t)-character of

W(i)
s, p (whereϕ(i, p) = (βd,0) andb= d(−s)) can be expressed by thesameLaurent polynomial in

the(q, t)-characters

χq,t

(
W( j)

1+(ξ j−p′)/2, p′

)
, (( j, p′) ∈ Î Q),

wherev1/2 is replaced byt1/2. This proves (35). In particular, we have

Φ(χ̃q,t (L(Yi,p))) = Φ
(

χ̃q,t

(
W(i)

1,p

))
= D̃(d−,d) = vN(βd)/2E∗(βd), ((i, p) ∈ Î Q).

Thus,Φ maps the truncated(q, t)-characters of the fundamental modules ofCQ, that is, a set of
algebra generators ofKt,Q, to the rescaled dual PBW generators ofAv(n). This proves (a).

It follows that Φ maps the truncated(q, t)-characters of the standard modules ofCQ to the
elements of the dual PBW-basis ofAv(n) up to some power ofv. Let us calculate this power
of v. By Proposition 5.1, we have that[M(m)]t − [L(m)]t is a linear combination of[L(m′)]t with
coefficients int−1Z[t−1], where[L(m)]t and the[L(m′)]t are bar-invariant. On the other hand,
note that the rescaling factorvN(β(a))/2 of the dual canonical basis depends only on the weight
of the vectorB∗(a). Hence if we writeẼ∗(a) = vN(β(a))/2E∗(a), the transition matrix between
the rescaled dual PBW-basis{Ẽ∗(a)} and the rescaled dual canonical basis{B̃∗(a)} is identical
to the transition matrix between the original bases. Thus, by Proposition 4.2,̃E∗(a)− B̃∗(a) is
a linear combination of̃B∗(a′) with coefficients inv−1Z[v−1], whereB̃∗(a) and theB̃∗(a′) are
σ -invariant. By Proposition 3.8,Φ maps the set of bar-invariant elements ofKt,Q to the set of
σ -invariant elements ofAv(n). This implies thatΦ maps the basis ofKt,Q given by the truncated
(q, t)-characters of the standard modules ofCQ, to the rescaled dual PBW-basis{Ẽ∗(a)} of Av(n).
Finally, using again Proposition 4.2 and Proposition 5.1, this yields (b). ✷

Example 6.2 Let g be of typeA2. Let Q be the quiver of typeA2 with height functionξ1 = 2 and
ξ2 = 1. We havei = (1,2,1), and

D(0,1) = Dϖ1,s1(ϖ1), D(0,2) = Dϖ2,s1s2(ϖ2), D(1,3) = Ds1(ϖ1),s1s2s1(ϖ1) = Dϖ2,s2(ϖ2).

Let e1 ande2 be the Chevalley generators ofUv(n). In the identificationAv(n) ≡Uv(n) we have
D(0,1) ≡ e1 andD(1,3) ≡ e2.

In this case the quantum torusYt,Q is generated byY1,0,Y1,2,Y2,1, so Kt,Q is generated by
χ̃q,t(L(Y1,0)), χ̃q,t(L(Y1,2)), χ̃q,t(L(Y2,1)). The isomorphismΦ of Theorem 6.1 satisfies

Φ(χ̃q,t(L(Y1,2))) = D(0,1), Φ(χ̃q,t(L(Y1,0))) = D(1,3).

Thus Theorem 6.1 implies that̃χq,t(L(Y1,2)) andχ̃q,t(L(Y1,0)) generateKt,Q and satisfy the quan-
tum Serre relations.
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This can easily be checked by means of the quantumT-system. Indeed we have by Proposi-
tion 5.6:

χq,t(L(Y1,0))∗χq,t(L(Y1,2)) = t−1/2χq,t(L(Y1,0Y1,2))+ t1/2χq,t(L(Y2,1)),

and by applying the bar-involution

χq,t(L(Y1,2))∗χq,t(L(Y1,0)) = t1/2χq,t(L(Y1,0Y1,2))+ t−1/2χq,t(L(Y2,1)).

Eliminatingχq,t(L(Y1,0Y1,2)) we get

(t−1/2− t3/2)χq,t(L(Y2,1)) = χq,t(L(Y1,2))∗χq,t(L(Y1,0))− tχq,t(L(Y1,0))∗χq,t(L(Y1,2)),

which shows thatKt,Q is generated bỹχq,t(L(Y1,2)) andχ̃q,t(L(Y1,0)). Finally, using that

χq,t(L(Y2,1))∗χq,t(L(Y1,0)) = t−1χq,t(L(Y1,0))∗χq,t(L(Y2,1))

we obtain that

χq,t(L(Y1,2))∗χq,t(L(Y1,0))
2− tχq,t(L(Y1,0))∗χq,t(L(Y1,2))∗χq,t(L(Y1,0))

= t−1χq,t(L(Y1,0))∗χq,t(L(Y1,2))∗χq,t(L(Y1,0))− χq,t(L(Y1,0))
2∗χq,t(L(Y1,2)),

which is the first quantum Serre relation. The second one is obtained similarly.

Example 6.3 In this example, we illustrate the calculations behind the proof of Theorem 6.1.
Let g be of typeA3. Let Q be the quiver of typeA3 with height functionξ1 = ξ3 = 2 andξ2 = 3.
ThusQ has source 2 and sinks 1, 3. We takei = (2,1,3,2,1,3), hence

β1 = α2, β2 = α1+α2, β3 = α2+α3, β4 = α1+α2+α3, β5 = α3, β6 = α1,

and

λ1 = ϖ2−α2, λ2 = ϖ1−α1−α2, λ3 = ϖ3−α2−α3,

λ4 = ϖ2−α1−2α2−α3, λ5 = ϖ1−α1−α2−α3, λ6 = ϖ3−α1−α2−α3.

Note that in this casew0 = c2 wherec= s2s1s3 is a Coxeter element. Thus, this example illustrates
also Corollary 1.5. The quantum unipotent minors generating Tv,Q are

D(0,1) = Dϖ2,s2(ϖ2), D(0,2) = Dϖ1,s2s1(ϖ1), D(0,3) = Dϖ3,s2s1s3(ϖ3),

D(0,4) = Dϖ2,s2s1s3s2(ϖ2), D(0,5) = Dϖ1,s2s1s3s2s1(ϖ1), D(0,6) = Dϖ3,w0(ϖ3).

The generators of the dual PBW-basis are

E∗(β1) = D(0,1), E∗(β2) = D(0,2), E∗(β3) = D(0,3),

E∗(β4) = Ds2(ϖ2),s2s1s3s2(ϖ2), E∗(β5) = Ds2s1(ϖ1),s2s1s3s2s1(ϖ1), E∗(β6) = Ds2s1s3(ϖ3),w0(ϖ3).

The new generatorsXi of Tv,Q are

X1 = D(0,1), X2 = v−1/2D(0,2), X3 = v−1/2D(0,3),

X4 = v−1D(0,4)D(0,1)−1, X5 = v−1D(0,5)D(0,2)−1, X6 = v−1D(0,6)D(0,3)−1.

Let us define integersλi j andµi j by

D(0, i)D(0, j) = vλi j D(0, j)D(0, i), XiXj = vµi j XjXi, (1≤ i, j ≤ 6).

28



The matricesL = [λi j ] andM = [µi j ] are given by

L =




0 −1 −1 0 0 0
1 0 0 0 1 −1
1 0 0 0 −1 1
0 0 0 0 0 0
0 −1 1 0 0 0
0 1 −1 0 0 0



, M =




0 −1 −1 0 1 1
1 0 0 −1 1 −1
1 0 0 −1 −1 1
0 1 1 0 −1 −1
−1 −1 1 1 0 0
−1 1 −1 1 0 0



.

The generators ofYt,Q areY1,0,Y3,0,Y2,1,Y1,2,Y3,2,Y2,3. The isomorphismΦ is defined by

Φ(Y1,0) = X5, Φ(Y3,0) = X6, Φ(Y2,1) = X4, Φ(Y1,2) = X2, Φ(Y3,2) = X3, Φ(Y2,3) = X1.

The truncated(q, t)-characters of the fundamental modules ofCQ are expressed in terms of com-
mutative monomials by

χ̃q,t(Y1,2) = Y1,2, χ̃q,t(Y1,0) = Y1,0+Y−1
1,2 Y2,1+Y−1

2,3 Y3,2,

χ̃q,t(Y2,1) = Y2,1+Y1,2Y
−1
2,3 Y3,2, χ̃q,t(Y2,3) = Y2,3,

χ̃q,t(Y3,2) = Y3,2, χ̃q,t(Y3,0) = Y3,0+Y−1
3,2 Y2,1+Y−1

2,3 Y1,2,

Here, we have used the shorthand notationχ̃q,t(m) instead of̃χq,t(L(m)). We also have

χ̃q,t(Y1,0Y1,2) =Y1,0Y1,2, χ̃q,t(Y2,1Y2,3) =Y2,1Y2,3, χ̃q,t(Y3,0Y3,2) =Y3,0Y3,2.

Using the expression ofD(0,k) in terms ofXj ’s and the definition ofΦ, one checks that

Φ(Y2,3) = D(0,1), Φ(Y1,2) = v−1/2D(0,2), Φ(Y3,2) = v−1/2D(0,3),

Φ(Y2,1Y2,3) = v−1D(0,4), Φ(Y1,0Y1,2) = v−1D(0,5), Φ(Y3,0Y3,2) = v−1D(0,6),

in agreement with Theorem 6.1. By Proposition 4.1, we have

v−1D(1,4)D(0,1) = v−1D(1,1)D(0,4)+D(0,2)D(0,3),

hence
v−1D(1,4) = (v−1D(0,4)+D(0,2)D(0,3))D(0,1)−1.

Therefore

Φ−1(v−1D(1,4)
)
= (Y2,1Y2,3+ tY1,2∗Y3,2)∗Y

−1
2,3 =Y2,1+ tY1,2 ∗Y3,2 ∗Y

−1
2,3 =Y2,1+Y1,2Y3,2Y

−1
2,3 ,

where the last equality follows from (11). Thus we have

Φ−1(v−1D(1,4)
)
= Φ−1(v−1E∗(β4)

)
= χ̃q,t(Y2,1),

in agreement with Theorem 6.1. Next, we have again by Proposition 4.1,

D(2,5)D(0,2) = v−1D(0,5)+D(1,4).

Hence
Φ−1(D(2,5)) =

(
Y1,0Y1,2+ t(Y2,1+Y1,2Y

−1
2,3 Y3,2)

)
∗ (t1/2Y1,2)

−1.

Now,
(Y1,0Y1,2)∗Y

−1
1,2 = t1/2Y1,0 ∗Y1,2 ∗Y

−1
1,2 = t1/2Y1,0,
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and similarly

Y2,1 ∗Y
−1
1,2 = t−1/2Y2,1Y

−1
1,2 , (Y1,2Y

−1
2,3 Y3,2)∗Y1,2)

−1 = t−1/2Y−1
2,3 Y3,2.

Therefore,

Φ−1(D(2,5)) = Φ−1 (E∗(β5)) =Y1,0+Y−1
1,2 Y2,1+Y−1

2,3 Y3,2 = χ̃q,t(Y1,0).

Similarly, starting from the minor identity

D(3,6)D(3,0) = v−1D(0,6)+D(1,4).

we deduce that

Φ−1(D(3,6)) = Φ−1 (E∗(β6)) =Y3,0+Y−1
3,2 Y2,1+Y−1

2,3 Y1,2 = χ̃q,t(Y3,0).

Thus we have checked thatΦ maps the fundamental characters

χ̃q,t(Y1,0), χ̃q,t(Y3,0), χ̃q,t(Y2,1), χ̃q,t(Y1,2), χ̃q,t(Y3,2), χ̃q,t(Y2,3),

to the rescaled dual PBW generatorsvN(βk)/2E∗(βk), in agreement with Theorem 6.1.

6.2 Proof of Corollary 1.4

Let b1, . . . ,bk ∈ B∗, and letL1, . . . ,Lk be the simple objects ofCQ such that

Φ(χ̃q,t(Li)) ∈ vZ/2bi , (1≤ i ≤ k).

We haveΦ(χ̃q,t(L1) ∗ · · · ∗ χ̃q,t(Lk)) ∈ vZ/2b1 · · ·bk, thus, by Theorem 6.1,b1 · · ·bk ∈ vZB∗ if and
only if χ̃q,t(L1)∗ · · · ∗ χ̃q,t(Lk) is the(q, t)-character of a simple module up to a power ofv, that is
by Corollary 5.5, if and only ifL1⊗·· ·⊗Lk is simple. Hence Corollary 1.4 follows from [He4].

7 A presentation of quantum Grothendieck rings

In the remaining sections we drop the symbol∗ for the t-deformed product ofKt , and simply
write xy instead ofx∗y.

7.1 The generators

Fix an orientationQ of the Dynkin diagram ofg. Define an involutionν of I by w0(αi) =−αν(i).

For i ∈ I write ϕ−1(αi ,0) = (ki , pi) ∈ Î Q. Define the following elements ofKt :

xQ
i,m := χq,t

(
L
(
Yνm(ki),pi+mh

))
, (i ∈ I , m∈ Z). (38)

The elementsxQ
i,0 belong toKt,Q and map to the Chevalley generatorsDϖi ,si (ϖi) ≡ ei of Av(n) ≡

Uv(n) under the isomorphismΦ of Theorem 6.1. HenceKt,Q has a presentation given by the
generatorsxQ

i,0 (i ∈ I) subject to the relations (see§4.1)

xQ
i,0 xQ

j,0−xQ
j,0xQ

i,0 = 0 if Ci j = 0,

(xQ
i,0)

2 xQ
j,0− (t + t−1)xQ

i,0 xQ
j,0 xQ

i,0+xQ
j,0(xQ

i,0)
2 = 0 if Ci j =−1.
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In particular, everyχq,t (L(Yi,p)) with (i, p) ∈ Î Q can be written as a noncommutative polynomial
in thexQ

i,0’s.

Form∈ Z, let K (m) be the subalgebra ofKt generated by thexQ
i,m (i ∈ I). ThusK (0) =Kt,Q,

andK (m) is isomorphic toK (0) for everym∈ Z. This comes from the fact thatKt is generated
by the fundamental(q, t)-charactersχq,t (L(Yi,p)) ((i, p) ∈ Î ), and that the assignment

χq,t (L(Yi,p)) 7→ χq,t
(
L(Yν(i), p+h)

)

extends to an algebra automorphismΣ of Kt . (In fact, L(Yi,p) is theUq(Lg)-module dual to
L(Yν(i), p+h) [CP, §5], see also [FM, Cor. 6.10].) Let̂I Q,m :=ϕ−1(∆+×{m}). Thusχq,t (L(Yi,p))∈

K (m) for (i, p) ∈ Î Q,m. Therefore, we have proved:

Lemma 7.1 The elements xQ
i,m (i ∈ I ,m∈ Z) generateKt . ✷

7.2 The presentation

We start with the following:

Lemma 7.2 Let (i, p) ∈ Î and ( j, p+h) ∈ Î . Write V := L(Yi,p)⊗L(Yj, p+h).

(a) If j 6= ν(i) then V is simple.

(b) If j = ν(i) thenχq(V) = χq
(
L(Yi,pYν(i), p+h)

)
+1.

(c) In general we have

χq,t (L(Yi,p))χq,t
(
L(Yj,p+h)

)
= t−(αi ,αν( j))χq,t

(
L(Yj,p+h)

)
χq,t (L(Yi,p))+δi ν( j)(1− t−2),

whereδik is the Kronecker symbolδ .

Proof — Consider the productπ := χq (L(Yi,p))χq
(
L(Yν(i), p+h)

)
. By [FM, §6], χq (L(Yi,p)) con-

tains only one dominant monomial, namelyYi,p, one anti-dominant monomial, namelyY−1
ν(i),p+h,

and all its other monomials involve only variables of the form Y±1
j,m with p < m< p+ h. It fol-

lows that, if j 6= ν(i), thenπ contains no other dominant monomial thanYi,pYj, p+h, henceV is
irreducible and isomorphic toL(Yi,pYν(i), p+h). This proves (a).

If j = ν(i) thenπ contains only two dominant monomials, that is,Yi,pYν(i), p+h and 1. Therefore
V has at most two composition factors,L(Yi,pYν(i), p+h) and the trivial one-dimensional represen-
tation. SinceL(Yi,p) = L(Yν(i), p+h)

∗, the trivial representation is indeed a composition factorof V
becauseUq(Lg) is a Hopf algebra. This proves (b).

It follows that

χq(L(Yi,p))χq
(
L(Yj,p+h)

)
= χq

(
L(Yi,pYj,p+h)

)
+δi ν( j).

In Kt , this identity getst-deformed as

χq,t (L(Yi,p))χq,t
(
L(Yj,p+h)

)
= t

1
2N (i,p; j,p+h)χq,t

(
L(Yi,pYj,p+h)

)
+δi ν( j).

Now using Proposition 3.2 and a sink-source orientationQ where i is a source, we see that
N (i, p; j, p+h) = N (i,0; j,h) =−(αi ,αν( j)). Using the bar involution, we also have

χq,t
(
L(Yj,p+h)

)
χq,t (L(Yi,p)) = t−

1
2N (i,p; j,p+h)χq,t

(
L(Yi,pYj,p+h)

)
+δi ν( j).

Then (c) follows by eliminatingχq,t
(
L(Yi,pYj,p+h)

)
between these two equations. ✷

We can now give a presentation ofKt .

31



Theorem 7.3 The algebraKt is isomorphic to theC(t1/2)-algebraA presented by generators
yi,m (i ∈ I ,m∈ Z) subject only to the following relations:

(R1) for every m∈ Z,

yi,my j,m−y j,myi,m = 0 if (αi ,α j) = 0,

y2
i,my j,m− (t + t−1)yi,my j,myi,m+y j,my2

i,m = 0 if (αi ,α j) =−1;

(R2) for every m∈ Z and every i, j ∈ I,

yi,my j,m+1 = t−(αi ,α j )y j,m+1 yi,m+δi j (1− t−2);

(R3) for every p> m+1 and every i, j ∈ I,

yi,my j,p = t(−1)p−m(αi ,α j ) y j,p yi,m.

Proof — We fix a sink-source orientationQ. We first check that thexQ
i,m satisfy the above relations.

The relations (R1) are the Drinfeld-Jimbo relations for thesubalgebraK (m), as explained in§7.1.
The relations (R2) follow from Lemma 7.2 (c) whenξi = ξ j . If ξi 6= ξ j , thenxQ

i,mxQ
j,m+1 corresponds

to a tensor product of the formL(Yi,p)⊗L(Yj,p+1) or L(Yi,p)⊗L(Yj,p+2h−1). These two types of
tensor products are always irreducible [FM, Proposition 6.15]. Using Corollary 5.5, it follows that
xi,m andx j,m+1 t-commute, and the exponent oft is calculated by means of Proposition 3.2. For
the relations (R3) we note thatL(Yi,p)⊗L(Yj,s) is irreducible ifs− p> h [FM, Proposition 6.15],
and we conclude similarly.

It follows that we have a surjective homomorphismF from A to Kt given byyi,m 7→ xQ
i,m, and

we have to show that this is an isomorphism. DefineA (m) as we have definedK (m) before. Then
A (m) is presented by the relations (1) (withxQ

i,m replaced byyi,m), soF restricts to an isomorphism

from A (m) to K (m). It follows from the relations (R2) and (R3) that every monomial M in the
yi,m’s can be rewritten as a linear combination of monomials of the formMk1Mk2 · · ·Mks with Mkj ∈

A (kj ) andk1 > k2 > · · · > ks. So we haveA =
←

∏
m∈Z

A
(m). Now eachK (m) has a basisB(m)

consisting of the(q, t)-characters of standard modules that it contains. Taking

B
′ := {bk1bk2 · · ·bks | bkj ∈A

(kj ), F(bkj ) ∈B
(kj ), k1 > · · ·> ks, s∈ N},

we get a spanning set ofA such thatF(B′) is a basis ofKt , consisting of the(q, t)-characters of
all the standard modules ofCZ. HenceB′ is a basis ofA andF is an isomorphism. ✷

Example 7.4 Let g = sl2. By Theorem 7.3,Kt is presented by generatorsym := χq,t(L(Y2m))
indexed bym∈ Z, subject to

ymym+1 = t−2ym+1ym+1− t−2,

ymyp = t2(−1)p−m
ypym, if p> m+1.

Remark 7.5 (a) It was shown by Frenkel and Reshetikhin [FR2, Corollary 2] that the (classical)
Grothendieck ringR of CZ is the polynomial ring in the classes of all fundamental modules
L(Yi,p) ((i, p) ∈ Î ). More recently, a presentation ofR in terms of Kirillov-Reshetikhin modules
andT-systems was given in [IIKNS, Corollary 2.9].
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Note that our presentation ofKt doesnot yield a new presentation ofR. Indeed, in order to
obtainR from Kt by specializingt at 1, one needs to use the integral formKt defined in§8.2
below, and thexQ

i,m are not generators ofKt if g 6= sl2.

(b) Form∈ Z, let K (m,m+1) denote the subalgebra ofKt generated byyi,m,yi,m+1 (i ∈ I). It
follows from Theorem 7.3 thatK (m,m+1) is isomorphic to thet-deformed boson algebraBt(g)
introduced by Kashiwara [K, §3.3].

8 Derived Hall algebras

8.1 The Hall algebra H(Q)

Let F be a finite field, and letu := |F|1/2 ∈ R>0. Let mod(FQ) be the abelian category of rep-
resentations ofQ overF. The twisted Hall algebraH(Q), introduced by Ringel, is theC-algebra
with basis{zX} labelled by the isoclasses of objects in mod(FQ), with multiplication

zXzY = u〈Y,X〉∑
W

gW
X,YzW,

wheregW
X,Y is the number of submodulesT of W such thatT ≃ X andW/T ≃ Y. Ringel [Ri2,

Ri3, Ri4] has shown thatH(Q) is isomorphic to theC-algebraUu(n) obtained fromUv(n) by
specializingv at u. In this isomorphism, the basis{zX} is mapped to a PBW-basis ofUu(n). In
particular, ifSi denotes the 1-dimensional simple supported oni ∈ I , zSi is mapped to the Chevalley
generatorei .

8.2 The derived Hall algebra DH(Q)

Let Db(mod(FQ)) be the bounded derived category of mod(FQ). Toën [T, §7] has associated
with this triangulated category an associative algebraDH(Q) with the following presentation. The

generatorsz[m]
X are labelled by all pairs(X,m) whereX is an isoclass of mod(FQ) andm∈Z. (The

pair (X,m) corresponds to the stalk complex withX in degreem.) The relations are:

(D1) for everym∈ Z,
z[m]
X z[m]

Y = u〈Y,X〉∑
W

gW
X,Yz[m]

W ;

(D2) for everym∈ Z,
z[m]
X z[m+1]

Y = u−〈Y,X〉 ∑
W,T

u−〈W,T〉γT,W
X,Y z[m+1]

T z[m]
W ;

(D3) for p> m+1,
z[m]
X z[p]Y = u(−1)p−m(X,Y)z[p]Y z[m]

X .

Here, the Hall numberγT,W
X,Y is defined by Toën as

γT,W
X,Y :=

|Ex(W,Y,X,T)|

|Aut(X)||Aut(Y)|
,

where Ex(W,Y,X,T) is the finite subset of Hom(W,Y)×Hom(Y,X)×Hom(X,T) consisting of
exact sequences 0→W→Y→ X→ T → 0. Note that, as in§8.1, we have twisted the multipli-
cation by inserting in the original Hall productz[m]

X z[p]Y of [T] a factoru(−1)p−m〈Y,X〉, see [S].

Consider the elementszi,m := z[m]
Si

for i ∈ I andm∈ Z. As in §7.1, we see that thezi,m generate
DH(Q). More precisely, we have:
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Proposition 8.1 The algebra DH(Q) is generated by the zi,m (i ∈ I ,m∈ Z) subject only to the
following relations:

(H1) for every m∈ Z,

zi,mzj,m−zj,mzi,m = 0 if (αi ,α j) = 0,

z2
i,mzj,m− (u+u−1)zi,mzj,mzi,m+zj,mz2

i,m = 0 if (αi ,α j) =−1;

(H2) for every m∈ Z and every i, j ∈ I,

zi,mzj,m+1 = u−(αi ,α j )zj,m+1 zi,m+δi j
u−1

u2−1
;

(H3) For every p> m+1 and every i, j ∈ I,

zi,mzj,p = u(−1)p−m(αi ,α j ) zj,p zi,m.

Proof — The relations (H1) follow immediately from (D1) and Ringel’s theorem. The relations
(H3) follow immediately from (D3). Let us deduce the relations (H2) from (D2).

If i 6= j, the only exact sequences 0→W→ Sj → Si → T→ 0 are of the form

0→ Sj
f
→ Sj

0
→ Si

g
→ Si → 0

where 0 means the zero map, andf andg are isomorphisms. Clearly there are(|F | − 1)2 such

sequences, and since|Aut(Si)|= |Aut(Sj)|= |F |−1, we get thatγSj ,Si

Si ,Sj
= 1. Hence

zi,mzj,m+1 = u−〈Sj ,Si〉u−〈Si ,Sj 〉zj,m+1 zi,m = u−(αi ,α j )zj,m+1 zi,m.

If i = j, we have two types of exact sequences 0→W→ Si → Si → T→ 0, namely

0→ Si
f
→ Si

0
→ Si

g
→ Si → 0, and 0→ 0

0
→ Si

h
→ Si

0
→ 0→ 0,

where f ,g,h are isomorphisms. It follows that

γSi ,Si
Si ,Si

= 1, and γ0,0
Si ,Si

=
1

|F |−1
=

1
u2−1

,

hence

zi,mzi,m+1 = u−(Si ,Si )zi,m+1 zi,m+u−〈Si ,Si〉
1

u2−1
.

This proves (H2). Finally, the proof that relations (H1), (H2), (H3) give a presentation ofDH(Q) is
entirely similar to the proof of the analogous statement in Theorem 7.3 (the basisB(m) is replaced
by {z[m]

X | X isoclass of mod(FQ)}), and we omit it. ✷
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8.3 The isomorphism between Ku and DH(Q)

Define the integral form
Kt :=

⊕

L

C[t1/2, t−1/2] χq,t(L)⊂Kt ,

where the sum runs over all isoclassesL of simple objects inCZ. By Theorem 5.4, this is a subring
of Kt . Set

Ku := C⊗C[t1/2,t−1/2] Kt,

whereC is regarded as aC[t1/2, t−1/2]-module via the specializationt1/2 7→ u1/2.

For β ∈ ∆̂ = ∆+×Z, we denote byz[m]
β the basis elementz[m]

X of DH(Q) with X ∈mod(FQ)

indecomposable of dimension vectorβ .
The following is a slightly more precise formulation of Theorem 1.1.

Theorem 8.2 There is aC-algebra isomorphismι : Ku
∼
→ DH(Q) such that:

(a) the class of the fundamental Uq(Lg)-module L(Yi,p) ofCZ is mapped byι to a scalar multiple

of z[m]
β , where(β ,m) = ϕ(i, p).

(b) the basis of classes of standard Uq(Lg)-modules ofCZ is mapped byι to a rescaling of the
natural basis of DH(Q) labelled by all isoclasses of objects of Db(mod(FQ)).

Proof — We first assume, as in the proof of Theorem 7.3, thatQ is a sink-source orientation of
the Dynkin diagram. We can rescale the generatorsxQ

i,m of Kt by setting

x̃Q
i,m :=

1

u1/2(u−u−1)
xQ

i,m, (i ∈ I , m∈ Z).

Clearly the new generators̃xQ
i,m still satisfy the homogeneous relations (R1) and (R3) of Theo-

rem 7.3, and the relations (R2) become

x̃Q
i,m x̃Q

j,m+1 = t−(αi ,α j )x̃Q
j,m+1 x̃Q

i,m+δi j
1− t−2

u(u−u−1)2 .

Let xQ
i,m = 1⊗ x̃Q

i,m ∈Ku. By Theorem 7.3, Proposition 8.1, the assignmentx̃Q
i,m 7→ zi,m extends to

an algebra isomorphismι . Indeed, in the relations (R2) we have

1−u−2

u(u−u−1)2 =
u−1

u2−1

so the generatorsxQ
i,m of Ku andzi,m of DH(Q) give rise to identical presentations.

Since the PBW-basis ofUv(n) is orthogonal with respect to the bilinear form of§4.1, it only
differs from the dual PBW-basisE∗ by scalar multiples. Hence by Ringel’s theorem, it follows
from Theorem 6.1 that the classes of fundamental modules inCQ, which correspond underΦ to

the elementsE∗(β ) (β ∈ ∆+) of Uv(n), are mapped byι to scalar multiples of thez[0]β . So, if

ϕ(i, p) = (β ,0) we haveι([L(Yi,p)]u) = λi,pz[0]β for someλi,p ∈C. Therefore, using on one side the
automorphism ofKu given by [L(Yi,p)]u 7→ [L(Yi,p−2)]u, and on the other side the corresponding
automorphism ofDH(Q) induced by the Auslander-Reiten translationτ of Db(mod(FQ)), we
get (a).
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Since the classes of standard modules are the ordered products of the[L(Yi,p)]u (up to powers

of u), and the basis elements ofDH(Q) are the ordered products of thez[m]
β (up to powers ofu),

we get (b).
Therefore we have proved Theorem 8.2 in the case of a sink-source orientation. But theC-

algebrasKu andDH(Q) are both independent ofQ. ForKu this is clear. On the other hand ifQ′ is
another orientation of the Dynkin diagram, thenDb(mod(FQ)) andDb(mod(FQ′)) are equivalent
triangulated categories, soDH(Q) andDH(Q′) are isomorphic. ThusKu is isomorphic toDH(Q)
for an arbitrary orientation. More precisely, recall that the mapϕ = ϕQ : Î → ∆̂ depends on the
choice ofQ. There is a triangle equivalenceFQQ′ : Db(mod(FQ))→ Db(mod(FQ′)) such that the
induced isomorphismfQQ′ : DH(Q)→ DH(Q′) satisfies

fQQ′

(
z[m]

β

)
= z[m

′]
β ′ where (β ′,m′) = ϕQ′ϕ−1

Q (β ,m).

Therefore (a) and (b) hold for an arbitrary orientation. ✷

In the proof of Theorem 7.3, we have shown that ifQ is a sink-source orientation, the gen-
eratorsxQ

i,m of Kt satisfy the relations (R1), (R2), (R3). We can see now that this holds for any
orientationQ.

Corollary 8.3 The generators xQi,m of Kt satisfy the same relations for every orientation Q of the
Dynkin diagram, namely the relations (R1), (R2), (R3) of Theorem 7.3.

Proof — Let Q be any orientation, by Theorem 8.2, the elementsxQ
i,m of Ku are mapped byι to

scalar multiples of the generatorszi,m of DH(Q). Now the relations (H1), (H2), (H3) satisfied by
the zi,m are independent ofQ. Moreover, they are all homogeneous except for (H2) withi = j.
Since scalar multiplication does not affect homogeneous relations, the elements 1⊗ xQ

i,m of Ku

satisfy the relations (R1), (R2)(i 6= j), (R3) with t replaced byu= |F |1/2. Since this is true for
every finite fieldF, it follows that the elementsxQ

i,m of Kt satisfy the relations (R1), (R2)(i 6= j),
(R3) wheret is an indeterminate.

Finally, the relations (R2)(i = j) follow from Lemma 7.2 (c) withi = ν( j). ✷

Remark 8.4 Using Remark 3.3, one can modify the presentation ofKt to obtain a presentation of
the deformed Grothendieck ringRt of [N3, VV1]. This presentation shows that the specialization
of Rt at t = u−1 is isomorphic to thenon-twistedderived Hall algebra ofDb(mod(FQ)) with the
opposite product.

9 Quiver varieties

In this section we show that the varietyEd of representations ofQ with dimension vectord can
be regarded as a Nakajima graded quiver varietyM•

0(W
d) for an appropriatêI -graded vector

spaceWd. Moreover the stratification ofEd by Gd-orbits coincides with Nakajima’s stratifica-
tion of M•

0(W
d). It follows that the set of perverse sheaves used by Lusztig to define the (dual)

canonical basis ofUv(n) can be identified with a subset of the set of perverse sheaves used by
Nakajima for describing the classes[L]t of simpleUq(Lg)-modules. This gives a geometric way
of understanding Theorem 6.1 (b).
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9.1 The quiver representation space Ed

Let d= (di)i∈I ∈N
I denote a dimension vector forQ. We will identify d with the element∑i∈I diαi

of the root lattice ofg. The varietyEd of representations ofQ of dimensiond is by definition

Ed :=
⊕

i→ j

HomC(C
di , Cdj ),

the sum being over all arrowsi→ j of Q. This is just aC-vector space of dimension∑i→ j did j , but
the interesting geometry comes from the following stratification. Consider the algebraic group

Gd := ∏
i∈I

GL(di ,C).

It acts onEd by base change. There are finitely many orbits in one-to-one correspondence with
the isomorphism classes of representations ofQ of dimensiond. Thus, using Gabriel’s theorem,
these orbits have a natural labelling by the set

Id :=

{
a = (ak) ∈ Nr |

r

∑
k=1

akβk = d

}
,

where the positive rootsβk are enumerated as in (14). LetOa denote the orbit labelled by the
elementa of Id. Let IC(Oa) be the intersection cohomology complex ofOa, extended by zero on
the complement ofOa. Let H i(IC(Oa)) be its ith cohomology sheaf, andH i(IC(Oa))c the stalk
of this sheaf at a point ofOc.

Recall from§4.3 the dual PBW basisE∗ and the dual canonical basisB∗ of Av(n). Write

E∗(c) = ∑
a∈Id

κa,c(v)B∗(a).

Lusztig has shown:

Theorem 9.1 [Lu1, §9, §10] The coefficientsκa,c(v) are given by

κa,c(v) = vdimOc−dimOa ∑
i≥0

vi dimH
i(IC(Oa))c. (39)

9.2 Nakajima’s variety M•0(W)

Let
W =

⊕

(i,p)∈Î

Wi(p)

be a finite-dimensional̂I -gradedC-vector space. In his geometric construction of representations
of Uq(Lg), Nakajima [N3] has associated withW an affine varietyM•

0(W) whose definition we
shall now recall.

Let Ĵ := {(i, p) ∈ I ×Z | (i, p−1) ∈ Î }, and let

V =
⊕

(i,s)∈Ĵ

Vi(s)
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be a finite-dimensional̂J -gradedC-vector space. Define

L•(V,W) =
⊕

(i,s)∈Ĵ

Hom(Vi(s),Wi(s−1)),

L•(W,V) =
⊕

(i,p)∈Î

Hom(Wi(p),Vi(p−1)),

E•(V) =
⊕

(i,s)∈Ĵ ; j∼i

Hom(Vi(s),Vj (s−1)).

PutM•(V,W) = E•(V)⊕L•(W,V)⊕L•(V,W). An element ofM•(V,W) is written(B,α ,β ), and
its components are denoted by:

Bi j (s) ∈ Hom(Vi(s),Vj (s−1)),

αi(p) ∈ Hom(Wi(p),Vi(p−1)),

βi(s) ∈ Hom(Vi(s),Wi(s−1)).

We denote byΛ•(V,W) the subvariety of the affine spaceM•(V,W) defined by the equations

αi(s−1)βi(s)+∑
j∼i

ε(i, j)B ji (s−1)Bi j (s) = 0, ((i,s) ∈ Ĵ), (40)

whereε(i, j) = 1 (resp.ε(i, j) = −1) if i→ j is an arrow ofQ (resp. i→ j is not an arrow ofQ).
The algebraic group

GV := ∏
(i,s)∈Ĵ

GL(Vi(s))

acts onM•(V,W) by base change inV:

g· (B,α ,β ) =
(
(g j(s−1)Bi j (s)gi(s)

−1), (gi(p−1)αi(p)), (βi(s)gi(s)
−1)
)
.

Note that there is no action onW. This action ofGV preserves the subvarietyΛ•(V,W). One
defines the affine quotient

M•
0(V,W) := Λ•(V,W)�GV .

By definition, the coordinate ring ofM•
0(V,W) is the ring ofGV-invariant functions onΛ•(V,W),

andM•
0(V,W) parametrizes the closedGV-orbits. If Vi(s) ⊆ V ′i (s) for every (i,s) ∈ Ĵ , then we

have a natural closed embeddingM•
0(V,W)⊂M•

0(V
′,W). Finally, one defines

M•
0(W) :=

⋃

V

M•
0(V,W).

This is an affine variety, acted upon by the algebraic group

GW := ∏
(i,p)∈Î

GL(Wi(p)).

Let M• reg
0 (V,W) be the open subset ofM•

0(V,W) parametrizing the closedfree GV-orbits. For a
givenW, we haveM• reg

0 (V,W) 6= /0 only for a finite number ofV ’s. Nakajima has shown that this
gives a stratification ofM•

0(W):

M•
0(W) =

⊔

V

M
• reg
0 (V,W).
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A necessary condition forM• reg
0 (V,W) to be nonempty is that

dimWi(p)−dimVi(p+1)−dimVi(p−1)+∑
j∼i

dimVj(p)≥ 0

for every(i, p) ∈ Î . In this case we say that(V,W) is adominant pair. Equivalently, by (32), the
pair (V,W) is dominant if and only if the monomialYWAV ∈ Y is dominant, where we use the
shorthand notation

YW := ∏
(i,p)∈Î

YdimWi(p)
i,p , AV := ∏

(i,s)∈Ĵ

A−dimVi(s)
i,s .

Note that this stratification ofM•
0(W) isGW-invariant. Hence each stratum is a union ofGW-orbits.

Given a dominant pair(V,W) such thatM• reg
0 (V,W) 6= /0, we denote byICW(V) the intersec-

tion cohomology complex of the closure of the stratumM• reg
0 (V,W). Let H i(ICW(V)) be itsith

cohomology sheaf, andH i(ICW(V))V ′ be the stalk of this sheaf at a point ofM
• reg
0 (V ′,W).

For a dominant monomialm∈ Y , recall from§5.6 and§5.8 the(q, t)-charactersχq,t(M(m))
andχq,t(L(m)) of the standard and of the simpleUq(Lg)-modules labelled bym. Write

χq,t(M(m′)) = ∑
m′

ζm,m′(t)χq,t(L(m)).

Nakajima has shown:

Theorem 9.2 [N3, §8] The coefficientsζm,m′(t) are given by

ζm,m′(t) = tdimM
• reg
0 (V ′,W)−dimM

• reg
0 (V,W) ∑

i≥0

t i dimH
i(ICW(V))V ′ , (41)

for any pair of strataM• reg
0 (V,W) andM• reg

0 (V ′,W) such that m=YWAV and m′ =YWAV′ .

Remark 9.3 (a) In order to make the comparison between Theorem 9.1 and Theorem 9.2 easier,
we stated Nakajima’s formula (41) in a different way from theoriginal one. In [N3], Nakajima
writes

tdimM
• reg
0 (V′,W) ∑

i≥0

t−i dimH
i(i!xV′

ICW(V))

for the right-hand side of (41), but in his degree conventionthe trivial local system on the open
stratumS= M

• reg
0 (V,W) appears in the intersection cohomology complex ofS in degree dimS,

while in Lusztig’s convention it appears in degree 0. Here wefollow Lusztig’s convention. More-
over Nakajima uses the costalki!x at a pointx instead of the stalki∗x, which explains the change of
t i into t−i.

(b) A dominant monomialm can be written in several ways asm=YWAV . The fact that the
right-hand side of (41) depends only on the monomialsmandm′, and not on the particular choices
of spacesW,V,V ′, follows from a transversal slice argument [N1, §3].

9.3 An isomorphism

Let d = (di) be a dimension vector, as in§9.1. Recall the bijectionϕ : Î → ∆̂ of §2.2. We define
an Î -graded spaceWd by taking

Wd
j (p) := Cdi if ϕ( j, p) = (αi ,0),

andWd
j (p) := 0 for all others( j, p) ∈ Î . Clearly, the groupGWd is isomorphic toGd and we may

identify GWd ≡Gd.
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Proposition 9.4 There is a Gd-equivariant closed immersion of affine varieties

Ψ : M•
0(W

d)−→Ed.

The proof of Proposition 9.4 will follow from the next two lemmas.

Lemma 9.5 Let i 6= i′ ∈ I and set( j, p) = ϕ−1(αi ,0), ( j ′, p′) = ϕ−1(αi′ ,0). Assume that p′ ≤ p,
and writeϕ( j ′,ξ j + p′− p+2) = (β ,0). Then, the coefficient ofα j in the expansion of the rootβ
on the basis of simple roots is equal to1 if there is an arrow i→ i′ in Q, and to0 otherwise.

Proof — By definition of( j, p), ( j ′, p′), and ofϕ (see§2.2), we have

αi = τ (ξ j−p)/2(γ j), αi′ = τ (ξ j′−p′)/2(γ j ′).

It follows that
β = τ−1+(ξ j′−ξ j−p′+p)/2(γ j ′) = τ−1+(p−ξ j)/2(αi′).

Recall the Ringel bilinear form〈·, ·〉. It may be characterized by

〈αi ,γ j〉= δi j , (i, j ∈ I).

Hence, the coefficient ofα j in β is equal to:

〈β ,γ j 〉= 〈τ−1+(p−ξ j)/2(αi′),γ j〉= 〈τ−1(αi′),τ (ξ j−p)/2(γ j)〉= 〈τ−1(αi′),αi〉=−〈αi ,αi′〉.

Now
−〈αi ,αi′〉=−dim(Hom(Si ,Si′))+dim(Ext1(Si ,Si′)) = dim(Ext1(Si ,Si′)),

and this is equal to 1 if there is an arrow fromi to i′ in Q, and to 0 otherwise. ✷

We now introduce an algebrãΛQ defined by a quiver̃ΓQ with relations. The vertices of̃ΓQ are
of two types:

• w j(p) for every( j, p) = ϕ−1(αi ,0) (i ∈ I);

• v j(p−1) for every pair( j, p) ∈ Î Q such that( j, p−2) ∈ Î Q.

The arrows of̃ΓQ are of three types:

• a j(p) : w j(p)→ v j(p−1);

• b j(p) : v j(p)→ w j(p−1);

• Bi j (p) : vi(p)→ v j(p−1) if j ∼ i.

The relations are:
ai(p−1)bi(p) = ∑

j∼i

ε(i, j)B ji (p−1)Bi j (p).

Obviously, as suggested by the notation, the definition ofΛ̃Q is so that the affine varietyΛ•(V,Wd)

is nothing but the representation variety ofΛ̃Q consisting of representations for which the spaces
Wd

j (p)=Cdi are attached to the verticesw j(p), and the spacesVj(p−1) are attached to the vertices

v j(p−1) (we assume thatVj(p−1) = 0 if v j(p−1) is not a vertex of̃ΓQ).
For i ∈ I , we denote byεi the idempotent of̃ΛQ associated with the vertexw j(p) such that

( j, p) = ϕ−1(αi ,0). We endowI with a total ordering such thati > i′ if p > p′, where as above
ϕ−1(αi′ ,0) = ( j ′, p′). It is well-known that if there is an arrowi→ i′ in Q theni > i′.
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Lemma 9.6 For i 6= i′ ∈ I, we have

dim
(

εi′Λ̃Qεi

)
=

{
1 if there is a path from i to i′ in Q,

0 otherwise.

Proof — If i < i′ then p≤ p′ and clearlyεi′Λ̃Qεi = 0. On the other hand ifi < i′ there can be no
path fromi to i′ in Q. Thus the lemma is clear in this case, and we may assume from now on that
i > i′.

Let x∈ εi′Λ̃Qεi , and leti′′ ∈ I . Thenx∈ εi′Λ̃Qεi′′Λ̃Qεi if and only if x belongs to the two-sided
ideal of Λ̃Q generated bya j ′′(p−1)b j ′′(p) whereϕ( j ′′, p−1) = (αi′′ ,0). This is becauseb j ′′(p)
is the only arrow entering inw j ′′(p−1), anda j ′′(p−1) is the only arrow exiting fromw j ′′(p−1).
Note thatεi′Λ̃Qεi′′Λ̃Qεi 6= 0 implies thati > i′′ > i′.

Let I be the the two-sided ideal of̃ΛQ generated by all the degree two paths:

a j(p−1)b j(p), (( j, p−1) = ϕ−1(αi ,0), (i ∈ I)).

Then, the algebrãΛQ/I is defined by the same relations as the graded preprojective algebraΛ̂
of [Le, §2.8] (but we have the additional verticesw j(p) and only a finite set of verticesv j(p)).

It follows that dim
((

εi′Λ̃Qεi

)
/(εi′I εi)

)
is equal to thev j ′(p′+1)-component of the dimension

vector of the indecomposable projectiveΛ̂-module with topv j(p−1). Now it is well-known that
this dimension vector can be read off from the Auslander-Reiten quiver ofQ. Namely, using our
notation, thev j(p−1)-component of the dimension vector of the projective with top vi(ξi −1) is
equal to the coefficient ofαi in the rootβ such thatϕ( j, p) = (β ,0). The dimension vectors of
the remaining indecomposable projectives are obtained from these particular ones by translation.
It follows that we can reformulate Lemma 9.5 as follows:

dim
((

εi′Λ̃Qεi

)
/(εi′I εi)

)
=

{
1 if there is an arrow fromi to i′ in Q,

0 otherwise.
(42)

In particular if i′ is the successor ofi in the descending total order defined above, thenεi′I εi = 0,
and we have

dim
(

εi′Λ̃Qεi

)
=

{
1 if there is an arrow fromi to i′ in Q,

0 otherwise.
(43)

Assume now thati > i′ are such that there is no path fromi to i′ in Q. Then in particular there
is no arrowi→ i′, so by (42) we have

εi′Λ̃Qεi = εi′I εi = ∑
i′< j<i

(
εi′Λ̃Qε j

)(
ε jΛ̃Qεi

)
.

For each summand, we have either no path fromi to j or no path fromj to i′. So we can iterate
the splitting until we obtain an expression of the form

εi′Λ̃Qεi = ∑
i′<i1<···<ik<i

(
εi′Λ̃Qεik

)
· · ·
(

εi1Λ̃Qεi

)
,

where in the right-hand side each factorεkΛ̃Qε j is such that either we have a path fromj to k or
k is the successor ofj and there is no arrow fromj to k. Moreover, since we have no path from
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i to i′ each summand contains at least one factor of the second type,which is equal to 0 by (43).
Hence we have shown thatεi′Λ̃Qεi = 0.

Assume now that there is an arrowi→ i′ in Q. Then we have as above

εi′I εi = ∑
i′< j<i

(
εi′Λ̃Qε j

)(
ε jΛ̃Qεi

)
,

where for eachj we have either no path fromi to j or no path fromj to i′ (because the Dynkin

diagram is a tree). Thus it follows from above thatεi′I εi = 0, so by (42) we get dim
(

εi′Λ̃Qεi

)
= 1.

Finally, if there is a pathi→ i1→ ··· → ik→ i′ in Q, with k≥ 1, then there is no arrow from
i to i′, and by (42) we haveεi′Λ̃Qεi = εi′I εi. Moreover, this path is unique, and arguing as above
we can write

εi′Λ̃Qεi =
(

εi′Λ̃Qεik

)
· · ·
(

εi1Λ̃Qεi

)
,

where each factor has dimension 1, so again dim
(

εi′Λ̃Qεi

)
= 1. ✷

Proof of Proposition 9.4 — Let V be a Ĵ-graded space, and pick(B,α ,β ) ∈ Λ•(V,Wd). As
explained above, we can regard(B,α ,β ) as a representation of̃ΛQ. Choose two verticesi and i′

of Q, and set as before

( j, p) = ϕ−1(αi ,0), ( j ′, p′) = ϕ−1(αi′ ,0).

By Lemma 9.6 we have dim(εi′Λ̃Qεi) ≤ 1. Let θii ′ be a generator ofεi′Λ̃Qεi. By the proof of
Lemma 9.6, we can normalize theθii ′ so that they verifyθi′ i′′θii ′ = θii ′′ for everyi, i′, i′′ ∈ I . More
precisely, if there is a pathi → i1→ ··· → ik→ i′ in Q, thenθi,i′ = θiki′ · · ·θii1, and if there is no
path fromi to i′ thenθii ′ = 0. Evaluatingθii ′ in the representation(B,α ,β ) we obtain a linear map
ψii ′ : Wd

j (p)→Wd
j ′ (p

′). The collection of maps(ψii ′) for all arrowsi→ i′ of Q can be regarded as a
representationψ of Q of dimension vectord. It follows easily from the definition of theGV-action
that ψ depends only on theGV-orbit of (B,α ,β ). Hence the assignment(B,α ,β ) 7→ ψ induces
a morphism of varietiesΨV : M•

0(V,W
d)→ Ed. Moreover, it follows from the known description

of the generators of the coordinate ring ofM•
0(V,W

d) (see [N4, §3.1]) that this coordinate ring is
generated by the matrix coefficients of the linear mapsψii ′ for all pairs(i, i′). HenceΨV induces
a surjective morphism fromC[Ed] to C[M•

0(V,W
d)], thusΨV is a closed immersion. Since forV

large enough we haveM•
0(V,W

d) =M•
0(W

d), we obtain a closed immersionΨ : M•
0(W

d)→ Ed.
By construction,Ψ commutes with the actions ofGd on both varieties. ✷

Example 9.7 Takeg of type D4. We label the Dynkin diagram so that the central node is num-
bered 3, and we chooseξ1 = ξ2 = ξ4 = 4 andξ3 = 5. ThusQ has a sink-source orientation with
source 3 and sinks 1,2,4. Given a dimension vectord = (d1,d2,d3,d4), the corresponding graded
spaceWd is given by

Wd
1 (0) = Cd1, Wd

2 (0) = Cd2, Wd
3 (5) = Cd3, Wd

4 (0) = Cd4,

and the otherWi(p)’s are zero (see the Auslander-Reiten quiver ofQ in Figure 4). An element
(B,α ,β ) of Λ(V,Wd) is represented in Figure 3. The defining equations (40) read

B13(3)B31(4)+B23(3)B32(4)+B43(3)B34(4) = 0,

B31(2)B13(3) = B32(2)B23(3) = B34(2)B43(3) = 0.
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Figure 3:(B,α ,β ) in type D4.

Thus,
β1(1)B31(2)B43(3)B34(4)α3(5) =−β1(1)B31(2)B23(3)B32(4)α3(5)

and
β1(1)B31(2)B13(3)B31(4)α3(5) = 0.

Hence we can take
ψ31 := β1(1)B31(2)B43(3)B34(4)α3(5),

and similarly

ψ32 := β2(1)B32(2)B13(3)B31(4)α3(5), ψ34 := β4(1)B34(2)B23(3)B32(4)α3(5).

We get a representationψ := (ψ31, ψ32, ψ34) of Q on the spaceWd.

Proposition 9.8 There is a bijection between the set of (nonempty) strataM
• reg
0 (V,Wd) and the

set Id of Gd-orbits.

Proof — Let us first consider a stratumM• reg
0 (V,Wd). By §9.2, the pair(V,Wd) is a dominant

pair. This means that we have nonnegative integersa j (1≤ j ≤ r) such that

YWd
AV =

r

∏
j=1

Y
aj
i j ,pj

. (44)

Here for 1≤ j ≤ r, we have put(i j , p j) = ϕ−1(β j ,0). Indeed, by definition, every dominant
commutative monomial of the formYWd

AV belongs toYt,Q. Moreover we have a natural grading
of Yt,Q by the root lattice ofg given by

deg(Yi j ,pj ) = β j , (1≤ j ≤ r).

It is easy to see that for everyAi,s∈ Yt,Q we have degAi,s = 0. Therefore

r

∑
k=1

a jβ j = deg
(
YWd

)
= d.
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α2+α3

55❦❦❦❦❦❦❦❦❦❦
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ii❙❙❙❙❙❙❙❙❙❙
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α1+α3+α4

55❦❦❦❦❦❦❦❦
α1+α2+α3

ii❙❙❙❙❙❙❙❙

α1+α2+α3+α4

ll❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨
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55❦❦❦❦❦❦❦❦❦
α4

ii❙❙❙❙❙❙❙❙❙

Figure 4:The skeleton ofCQ and the Auslander-Reiten quiver in type D4.

Hence, to every stratumM• reg
0 (V,Wd) corresponds an elementa of Id given by (44).

Conversely, ifa ∈ Id, we need to show thatma := ∏r
j=1Y

aj
i j ,pj

can be written in the form (44)

for some nonempty stratumM• reg
0 (V,Wd). By [N1, Th. 14.3.2], this is equivalent to the fact

that ma appears in theq-character of the standard moduleM(YWd
). For i ∈ I write as in§7.1

(ki , pi) = ϕ−1(αi ,0). Then we have by definition ofWd

YWd
= ∏

i∈I

Ydi
ki ,pi

.

By §7.1 we know that the(q, t)-characters of the fundamental modulesL(Yki ,pi ) (i ∈ I) generate
Kt,Q. Hence the simple moduleL(ma), which is an object ofCQ, is a composition factor of a
standard module of the formM(∏i∈I Y

ei
ki ,pi

) for some nonnegative integersei . But, as before, we
must have

d = deg(ma) =∑
i∈I

ei deg(Yki ,pi ) = ∑
i∈I

eiαi ,

henceei = di for everyi. Thereforema is indeed a weight ofM(YWd
). This proves the claim.✷

Remark 9.9 The proof of Proposition 9.8 shows thatM• reg
0 (V,Wd) is a nonempty stratum of

M•
0(W

d) if and only if (V,Wd) is a dominant pair, a purely combinatorial condition. In gen-
eral Nakajima [N1, Th. 14.3.2] only shows that this is a necessary condition. In representation-
theoretic terms, this means that every dominant monomial ofthe formYWd

AV occurs in theq-
character of the standard moduleM(YWd

).

Example 9.10 We continue Example 9.7. There are 12 positive rootsβk, which we identify with
the vertices of the Auslander-Reiten quiver ofQ represented in Figure 4. The numbering is ob-
tained by reading this graph from top to bottom and left to right:

β1 = α3, β2 = α1+α3, β3 = α2+α3, β4 = α3+α4, · · · , β12 = α4.

The corresponding generatorsYik,pk of Yt,Q can be read at the corresponding place on the left side
of Figure 4. Letd = (d1,d2,d3,d4) be a dimension vector forQ. Then

YWd
=Yd1

1,0Y
d2
2,0Y

d3
3,5Y

d4
4,0.
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The elements ofId are 12-tuplesa ∈ N12 encoding the decompositions ofd into a sum of positive
roots. By Proposition 9.8, they are in one-to-one correspondence with the dominant monomials of
the formYWd

AV . This bijection can be read immediately from Figure 4.
For example, ifd = (1,1,1,1) ≡ α1+α2+α3+α4, the correspondence is:

(α1)+ (α2)+ (α3)+ (α4) ↔ Y1,0Y2,0Y3,5Y4,0 ↔ 1,

(α1+α3)+ (α2)+ (α4) ↔ Y1,4Y2,0Y4,0 ↔ A1,1A3,2A2,3A4,3A3,4,

(α2+α3)+ (α1)+ (α4) ↔ Y2,4Y1,0Y4,0 ↔ A2,1A3,2A1,3A4,3A3,4,

(α3+α4)+ (α1)+ (α2) ↔ Y4,4Y1,0Y2,0 ↔ A4,1A3,2A1,3A2,3A3,4,

(α1+α2+α3)+ (α4) ↔ Y4,2Y4,0 ↔ A1,1A2,1A2
3,2A1,3A2,3A4,3A3,4,

(α1+α3+α4)+ (α2) ↔ Y2,2Y2,0 ↔ A1,1A4,1A2
3,2A1,3A2,3A4,3A3,4,

(α2+α3+α4)+ (α1) ↔ Y1,2Y1,0 ↔ A2,1A4,1A2
3,2A1,3A2,3A4,3A3,4,

(α1+α2+α3+α4) ↔ Y3,1 ↔ A1,1A2,1A4,1A2
3,2A1,3A2,3A4,3A3,4.

It is obtained by replacing each rootβk in a decomposition ofα1 +α2 +α3 +α4 by the corre-

sponding variableYik,pk. The third column gives the monomialYWd
(

∏r
k=1Yak

ik,pk

)−1
.

We can now state the main result of this section.

Theorem 9.11 (a) We have a Gd-equivariant isomorphism of varietiesΨ : M•
0(W

d)
∼
−→ Ed.

(b) M•
0(W

d) is an affine space of dimension∑i→ j did j .

(c) Lusztig’s perverse sheaves IC(Oa) on Ed are the same as Nakajima’s perverse sheaves
ICWd(V) onM•

0(W
d).

Proof — In Proposition 9.4 we have constructed aGd-equivariant closed immersionΨ of M•
0(W

d)
into Ed. Since each stratumM• reg

0 (V,Wd) is Gd-invariant, Ψ maps every stratum to a union of
orbitsOa. SinceΨ is injective and the number of strata is equal to the number oforbits (Proposi-
tion 9.8), it follows thatΨ maps each stratum ofM•

0(W
d) to a singleGd-orbit in Ed, so every orbit

is contained in the image ofΨ. ThusΨ is surjective. Since a surjective closed immersion between
reduced schemes is an isomorphism, this proves (a). Claim (b) follows immediately from (a), and
claim (c) is again a consequence of Proposition 9.8, which shows that the stratifications used for
defining the perverse sheaves are the same. ✷

Remark 9.12 (a) By the proof of Proposition 9.8, for every dominant monomial m in Yt,Q there
is a unique pair(V,Wd) such thatm= YWd

AV . Hence, even if the varietiesM•
0(W

d) involve
very particular spacesWd, the isomorphismsΨ : M•

0(W
d)

∼
−→ Ed are enough to identify all the

irreducible(q, t)-characters ofCQ.
Thus Theorem 9.1, Theorem 9.2, and Theorem 9.11 provide a geometric explanation of part (b)

of Theorem 6.1. By comparing convolution diagrams in [Lu2] and [VV1], it should also be
possible to understand in a geometric manner part (a) of Theorem 6.1, that is, the multiplicative
structure (see [N4, §3.5]).

(b) If we take forQ a quiver of typeA with all arrows in the same direction, thenM•
0(W

d) is just a
space of graded nilpotent endomorphisms as in the Ginzburg-Vasserot construction [GV] of type
A quantum loop algebras (seee.g. [Le, §2.5.3]). So Theorem 9.11 becomes tautological in this
case.
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