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Abstract. Traditionally, one inquires as to what is the form of a physical property tensor invariant under the point group of a crystal. For
example, one finds listings showing 16 distinct forms of the piezomagnetic tensor that can arise in a crystal. Alongside each of these 16
distinct forms is listed the point groups which give rise to that specific form (see Birss (1966) for example). This is a classification of the
form of piezomagnetic tensors in crystals. We claim however that this classification is quite ambiguous in the sense that it hides the very
difference between microscopic and macroscopic symmetries. The topic of the paper is the both a clarification of the difference between
material and behaviour symmetries and a classification of piezomagnetic tensors in behaviour equivalences classes, found to be 15.

1 Introduction

All physical properties of crystals are related to their structure. This elementary observation is at the start of crystal physics. However, as
one moves away from microscopic field to macroscopic behavior, the tools, techniques and models evolve sufficiently so that, finally, they
are not any more considered in their continuity. For example, with regard to elasticity, for which symmetries play an eminent role in the
mathematical formulation of its principles, the crystallographic point of view of matter’s properties is often forsaken and, most of the time,
the macroscopic prospect only remains. Within this framework, one finds in Huo & Del Piero (1991) the first attempt to classify hyperelastic
tensors according to their type of symmetry by building equivalence classes. This classification was then definitively established in Forte
& Vianello (1996) and, with regard to photoelastic tensors, in Forte & Vianello (1997). See Forte & Vianello (1996) for a detailed history
of the step in elasticity.

The method initiated in these two references is particularly adapted to all types of mechanical behavior. In Geymonat & Weller (2002)
it is extended to piezoelectricity. The step is here considered in the micro-macro continuity and applied to piezomagnetism.

Piezomagnetic crystals are characterized by the appearance of a magnetic moment under the application of a stress. In addition to
the usual symmetry operations which one meets in crystallography (namely: orthogonal transformations, i.e. elements of the orthogonal
group denoted O(3)) we consider a generally denoted R operation whose action is to change the sign of the moment. This is why it is often
associated to time-reversal (cf. Landau & Lifchitz, 1969; Laughlin et al., 2000; Sivardière, 1995). The symmetry operations which act on
piezomagnetic crystals thus require the definition of the extended orthogonal group denoted Oµ(3) (cf. Sirotine & Chaskolskaïa (1984) as
well as (9) formula).

The common background between microscopic and macroscopic approaches is the construction of equivalence classes. On the one
hand, each crystalline structure is associated to a subgroup of the (eventually extended) orthogonal group : its point group. Of course,
one can also build its Bravais lattice or its space group, which correspond to other kinds of equivalence classes. On the other hand, if
we consider that tensors accurately translate the physical properties of matter, we are brought to build actions which, as for crystals, will
enable us to associate a subgroup of O(3), or eventually Oµ(3), to a given tensor. This subgroup is the tensor symmetry class. We will use
the Cauchy-Born hypothesis to bind these two types of symmetry.

In §2 we recall traditional results of crystallography by using the mathematical tools developed in Pitteri & Zanzotto (1996, 1998, 2003).
Crystal lattices are then rigorously classified in equivalence classes. Those can be arithmetic or geometric, then defining respectively the
14 Bravais lattices and the 7 crystal systems. Crystals are then ranged in 32 point groups and 230 space groups. These numbers increase to
90 point groups and 1421 space groups in the piezomagnetic crystals case, due to the additional time-reversal operation.

These results are very traditional. We nevertheless insist on the manner that is used to define and range these equivalence classes, because
these methods are then transposed to piezomagnetic tensors by the use of the Cauchy-Born hypothesis, introduced in §3. Piezomagnetic
tensors are axial tensors. We show in §3.3 the way we consider the action of the extended orthogonal group on such tensors. It is shown
in particular that, via an isomorphism, piezomagnetic tensors can be viewed as piezoelectric ones. The mathematical tools which make it
possible to exhaust symmetry classes of such tensors are the harmonic and Cartan decompositions.

Harmonic decomposition maps a tensor of any order into a n-uplet of totally symmetric tensors (invariant by any permutations of its
indexes) which are also traceless (the trace with respect to any pair of indexes is zero). These traceless totally symmetric tensors are then
identified via an isomorphism to harmonic homogeneous polynomials (within the Laplacian sense) of corresponding degree. This is why a
traceless totally symmetric tensor is known as harmonic (cf. Forte & Vianello, 1996, 1997; Schouten, 1954; Spencer, 1970). As to Cartan
decomposition (cf. Golubitsky et al., 1998), it is an operation by which harmonic polynomials are rewritten in spaces where symmetry
operations become elementary.
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Each piezomagnetic tensor is then associated to a subgroup of Oµ(3), i.e. to a kind of behavior which is connected, in §4, to the magnetic
point groups which give it birth. It is in particular shown that these point groups should not be classified in 16 but in 15 symmetry classes.

2 Preliminaries: formulation of microscopic equivalence classes

2.1 Crystal lattices

Mathematical modelings of crystal lattices and, in general, of crystallography, have been explored by a rich and various literature (see for
instance Coxeter, 1989; Pitteri & Zanzotto, 1996, 1998, 2003; Weigel, 1972; Yale, 1968). We here take the way as it has been opened
by Pitteri & Zanzotto (1996, 1998, 2003) within the framework of phase transition in solids mechanics.

We note Lin the space of second-order tensors, I the unit element in Lin and Lt the transpose of the element L ∈ Lin. We recall that
O(3) = {L ∈ Lin : L Lt = LtL = I} is the space of orthogonal transformations and that the subgroup of all elements of O(3) with
determinant equal to 1 (or rotations group) is denoted SO(3).

Let R3 be the three-dimensional Euclidean vector space. Three linearly independent vectors ea (a= 1,2,3) of R3 define a basis denoted
{ea} = (e1, e2, e3). The convention of summation over repeated indexes being understood, we define the (simple) latticeR({ea}) by:

R({ea}) := {x ∈ R3 : x = Maea,
a = 1,2,3, Ma ∈ Z}. (1)

We also say that the 3 linearly independent vectors ea (a = 1,2,3) are the basis vectors ofR({ea}). The parallelepiped P({ea}) spanned
by ea (a = 1,2,3) is called the unit cell ofR({ea}).

It is well known that lattices can be ranged in 7 crystal systems or 14 Bravais lattices. These two types of classification correspond to
two types of equivalence classes: "geometrical" equivalence classes and "arithmetic" equivalence classes. These two kinds of equivalence
classes arise on the one hand from geometrical actions (namely: elements Q of O(3)) and on the other hand from arithmetic actions
(elements m of GL(3,Z), the space of 3× 3 invertible unimodular matrices with integral entries). We thus define in the following the way
these elements act on lattices and then build the equivalence classes which result from these actions.

An element Q ∈ O(3) acts on {ea} in the following way:

Q{ea} := (Q e1,Q e2,Q e3) = {Q ea}. (2)

As to arithmetic actions m = (mb
a) ∈ GL(3,Z), they are defined by:

m{ea} := (mb
1 eb,mb

2 eb,mb
3 eb) = {mb

a eb}. (3)

These actions are quite different: notice that elements Q ∈ O(3) act on each basis vector independently, while it is not the case of elements
m ∈ GL(3,Z).

Of course, a lattice is not attached to a unique basis. A lattice basis is only determined up to arithmetic transformations. More precisely,
let {ea} and {fa} be two basis of R3, we have:

R({ea}) =R({fa})
⇐⇒ ∃m ∈ GL(3,Z),{fa} = m{ea}. (4)

This invariance property is not the one which enables us to build interesting equivalence classes, but it is at the source of the various types
of lattice symmetries.

We thus call geometrical holoedry P ({ea}) of R({ea}) the closed and finite subgroup of all orthogonal transformations Q ∈ O(3)
leavingR({ea}) unchanged. It is written:

P ({ea}) := {Q ∈ O(3) : Q{ea} = m{ea},
m ∈ GL(3,Z)}. (5)

As to the lattice group (or arithmetic holohedry), it is defined by:
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L({ea}) := {m ∈ GL(3,Z) : m{ea} = Q{ea},
Q ∈ O(3)}. (6)

Roughly speaking, the geometric holohedry represents the "macroscopic family", while the lattice group informs about the manner of
laying out triply periodically points in space.

Taking into account that

P (m{ea}) = P ({ea}) if m ∈ GL(3,Z) ,

P (Q{ea}) = QP ({ea}) Qt if Q ∈ O(3), (7)

we see that P ({ea}) only depends on the lattice R({ea}) itself, and not on its basis. Since P ({ea}) describes geometric properties of
R({ea}) regarded as identical in any (geometrically) equivalent lattice, it is natural to put the initial R3 basis aside. Thus, rather than
the holohedry P ({ea}), we consider its equivalence class in O(3). These equivalence classes are the crystal systems. Therefore, we say
that two lattices are (geometrically) equivalent when their holohedries are conjugate in O(3), which means that they belong to the same
crystal system. There are 7 such equivalence classes, widely known under the following denomination: triclinic, monoclinic, orthorhombic,
tetragonal, trigonal, hexagonal and cubic.

We also have:

L(Q{ea}) = L({ea}) if Q ∈ O(3),

L(m{ea}) = m−1L({ea})m if m ∈ GL(3,Z). (8)

That means that an orthogonal transformation does not modify the lattice group L({ea}). Moreover, a change of lattice basis transforms
L({ea}) into a conjugate within GL(3,Z). Thus, it will be said that two lattices R({ea}) and R({fa}) (or two lattice basis {ea} and
{fa}) are arithmetically equivalent if their lattice groups are conjugate within GL(3,Z). They then belong to the same Bravais class and
we write {ea}

Z∼ {fa}.
The arithmetic criterion is more precise than the data of an equivalence class in O(3). The reason is that conjugacy within GL(3,Z) is

more stringent than within O(3). Thus, a geometric holohedry P ⊂ O(3) determines most of the time various lattice groups (the 14 Bravais
lattices are obtained from the 7 crystal systems by introducing a node point at the center of the unit cell or at the center of the cell faces).

2.2 Magnetic crystals as bicolor multilattices

We here consider the three-dimensional real affine space A3. The subgroup of affine isometries of A3 is denoted E(3). Once an origin 0 is
chosen, any isometry e ∈ E(3) can be represented by a couple (t,Q) where t is the vector from 0 to e(0) and where Q ∈ O(3).

Now, studying magnetic crystals, we need to introduce an additional operation that will be seen as reversing the sign of the magnetic
moment when opering. This operation is generally denoted R and can be regarded as reversing the course of time (not its sign) (cf. Landau
& Lifchitz, 1969; Laughlin et al., 2000; Sivardière, 1995; Sirotine & Chaskolskaïa, 1984). This internal degree of freedom is the reason
why one often speaks of black and white symmetry (see Shubnikov, 1964). Each color then represents the sign of the magnetic moment.

We therefore consider in the following the extended orthogonal group (cf. Sirotine & Chaskolskaïa, 1984) of all orthogonal and anti-
orthogonal (i.e. associated to time-reversal) operations:

Oµ(3) := O(3)× {±1}. (9)

An Oµ(3) element is thus a couple (Q, δ) where Q is an orthogonal transformation associated (if δ =−1) or not (if δ = 1) to time-reversal.
Let (Q, δ) and (R, θ) be two elements of Oµ(3). The composition law in Oµ(3) is given by

(Q, δ)(R, θ) = (QR, δθ). (10)

Moreover, for later use (cf. relation (47) for instance), we denote µId the subgroup {(I,+1), (-I,+1)}. We also denote Eµ(3) the set of all
affine isometries and anti-isometries of A3, i.e. the set of all couples (t,Q) ∈ R3 ×Oµ(3).

Following Pitteri & Zanzotto (2003), it is a simple matter of notation to extend to the magnetic case a translate of a simple lattice:

L(P±, ea) := P± +R({ea}) ⊂ A3,

with P ∈ A3, (11)
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where P± stands for the sign of the spin attached to the particle P in A3. It is then clear that R P+ = P− and vice-versa. This simply
means: when reversing the course of time, the sign of the spin attached to the particle P ∈ A3 changes.

Then, according to Proposition 11.1 of Pitteri & Zanzotto (2003), we can also define a magnetic crystalMµ as the subset of A3 such
that

Mµ = Mµ(P±0 , · · · , P
±
n−1, ea)

:= ∪n−1
i=0 L(P±i , ea). (12)

We adress the reader to Pitteri & Zanzotto (2003) for further details.

2.3 Space and point groups

To get informations about the crystal structure, we introduce two types of symmetries, as in §2.2. Classically, they are known as point group
symmetries and space group symmetries (this latter takes into account the translations).

We call magnetic space group of a multilatticeMµ(P±i , ea) the group denoted by S(Mµ) and defined as follows:

S(Mµ) := {e ∈ Eµ(3) : e(Mµ) =Mµ}. (13)

We then say that e ∈ S(Mµ) is an affine symmetry of the multilatticeMµ. As in (7)2 and (8)2 we have

S(eMµ) = eS(Mµ)e−1. (14)

Therefore, an affine symmetry ofMµ changes S(Mµ) into a conjugate in Eµ(3).
We now consider the group P(Mµ) collecting all (anti)orthogonal transformations Q ∈ Oµ(3) preservingMµ when coupled with a

suitable translation. We call P(Mµ) the magnetic point group ofMµ.
The following result is known for a long time, we extract it from Bhagavantam (1966) (see also Birss (1966 and Sivardière (1995)) and

formulate it as Theorem 11.5 in Pitteri&Zanzotto (2003) for the non magnetic case:

Theorem 1. There are 1421 conjugacy classes of magnetic space groups in the set of all the orientation-preserving (anti)affine transfor-
mations of A3.

There are 90 conjugacy classes of magnetic point groups in Oµ(3).

3 A macroscopic point of view: tensors symmetry classes

3.1 A bridge: the Cauchy-Born hypothesis

The Cauchy-Born hypothesis is, roughly speaking, the statement that lattices vectors behave as material vectors. It simply means that when
a crystal in the reference configuration with latticeR({e0a}) experiences a homogeneous deformation whose gradient is F, we have:

ea = Fe0a, (15)

where ea are the lattice vectors of the crystal in the deformed configuration.
This quite simple hypothesis (whose validity is discussed in Pitteri & Zanzotto (2003)) allows us to transfer symmetry properties studied

up to now to the macroscopic level, then passing from geometrical to constitutive symmetry.
To this aim we first take for granted that the structure of crystals can be described by means of a simple lattice in all their allowed

configurations. Second, we assume that the free energy w per unit cell of a deformable crystalline body whose current configuration is a
simple latticeR({ea}) can be written as (in the following, we neglect the temperature θ):

w = w(ea). (16)

We just have to write that

w = w(ea) = w(Fe0a) = w̃(F) = ŵ(C)1, (17)
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to obtain, by classical arguments (see Pitteri & Zanzotto (2003) or Bhattacharya (2002) for example)

ŵ(C) = ŵ(HtCH), (18)

for all symmetric and positive definite tensor C and for all H in GL(3,Z).

3.2 Application to piezomagnetism

For the sake of simplicity, we won’t speak about the Pitteri-Ericksen neighborhoods in the following and we will just focus on the main
step of the derivation of macroscopic equivalence classes (see Pitteri & Zanzotto (2003) for further details).

In the piezomagnetic case, the energy is a function of the strain tensor E (whose Cauchy-Green tensor is C) and of the magnetization
polar2 vector b:

w = w̃(E,b) = ŵ(C,b). (19)

Restricting the invariance relation in (18) to the orthogonal transformations, we have:

ŵ(C,b) = ŵ(QtCQ, det (Q) Qb),

∀Q ∈ P ({e0a}), (20)

because b is an axial vector (see relation (27)). Moreover, as the sign of the magnetization vector b directly depends on the course of time,
we have Rb = −b and therefore:

w̃(C,b) = w̃(C,−IRb). (21)

Now, the piezomagnetic tensor p is given by:

p =
∂2ŵ

∂C∂b
. (22)

So,in the linear case, since E = 1
2
(C− I), relations (20) and (21) lead to:

Q p[b] Qt = det (Q) p[Q b],

Qt p[E] = p[QtE Q], (23)

for all Q in P ({e0a}), all b in R3 and all second order symmetric tensor E. Furthermore,

Rp = -I p = −p, (24)

which means that the piezomagnetic tensor is odd according to time-reversal (this is meaningless in (23)2 because in this relation, the
piezomagnetic tensor acts on E which do not depend on the course of time).

It is important here to compare (23)1 and (24) to the action that will arise in (32). It is clearly show how, in this way, some of the
symmetry elements present in a crystal can be brought across the microscopic level to the macroscopic one, where another equivalence
classes can be built. In fact, (23)1 says that each element of the geometrical holoedry of a studied crystal is an element of the symmetry
group of the piezomagnetic tensor of this crystal. This has to be compared to the Neumann’s Principle, which states that "the symmetry
group of any property of a crystal must include the point group of this last". We emphasize on the fact that all hypothesis that have been
made since we introduced the Cauchy-Born hypothesis concern the crystal viewed as a lattice. The point groups therefore cannot appear
in this approach.The important fact, anyway, is how the ? action that will be introduced in the next section, and which is of fundamental
use in the tensors symmetries study, naturally arises from the crystal structure via the Cauchy-Born hypothesis (see also Pitteri & Zanzotto
§6.6.2).

2 See §3.3 for further details on polar variables.
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3.3 Polar and axial variables

The distinction between polar and axial variables is related to the need of defining, when necessary, an orientation in the three dimensional
Euclidean space. We shall speak of polar variable when it is defined without ambiguity by the nature. In particular, its sign does not depend
on any anthropomorphic convention, nor on any reference to a basis. On the other hand, a variable is known as axial if its sign cannot be
fixed without a human reference to space orientation. An axial variable is only defined in an oriented affine space.

In order to formalize this, we consider a tensor of any order noted T. Its components in a given basis R = (O; u,v,w) are denoted
T···ijk···. Let Q ∈O(3) be an orthogonal transformation. In the new basisR′ = (O; Qu,Qv,Qw) = QR, the components of T are mapped
into

(Q ?T)···ijk··· := · · ·QipQjqQkr · · ·T···pqr···. (25)

Let us now consider the alternating tensor εijk. It is easy to see that for Q ∈ O(3) we have

(Q ? ε)ijk = QipQjqQkr εpqr = det(Q) εijk. (26)

The fact that the determinant of the orthogonal transformation Q appears in this relation means that the alternating tensor components are
sensitive to space orientation. We shall say that they are pseudo-scalars or axial scalars and note them εscalars. More precisely: as these
scalars represent the alternating tensor, they are εscalars. On the other hand, variables which are not sensitive to space orientation, in the
sense that they transform as T in (25), are called polar variables.

Let us take another example: let v ∈ R3 be a vector and let V be the antisymmetric tensor defined by Vij = εijkvk. Then vk = 1
2
εijkVij .

We write v = f(V). Consequently:

f(Q ?V) = det(Q)f(V). (27)

This relation means that f , which maps V into v, is axial. It is therefore because the vector v represents a second-order antisymmetric tensor
that we call it εvector. We in fact say that v itself is axial, and note it εv. By extension, we denote εT the tensors which do not transform as
T in (25) but as the ε components in (26), translating that they are pseudo-tensors, or axial tensors.

Finally, for two tensors T (polar) and εT (axial) of same order and with the same components, we shall write

T = εId(εT). (28)

Such tensors are called twin tensors in the following.

3.4 The piezomagnetic tensors symmetries

>From now on R3 is associated to a fixed orthonormal basis denoted (i, j,k).
Let εMagn be the space of third-order pseudo-tensors which are symmetric according to their first two indexes and odd according to

time-reversal:

εMagn := {εM : εMijk = εMjik , R
εM = -εM}. (29)

We also consider the set denoted Piez of all third-order polar tensors, symmetric according to their first two indexes:

Piez := {P : Pijk = Pjik}. (30)

A tensor P ∈ Piez is called piezoelectric tensor.
In a piezomagnetic material, the magnetic polarization pseudo-vector εb is connected to the stress tensor σ via the relation

εbk = εMijk σij , (31)

where εM ∈ εMagn. When an (anti-)orthogonal transformation operates on a piezomagnetic tensor εM we thus have

(Q, δ)~ εM := δ det(Q) Q ? εM,

for (Q, δ) ∈ Oµ(3), (32)
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where ? is defined in (25).
We now consider the function which maps each element (Q, δ) of Oµ(3) into the automorphism of εMagn defined by εM 7→ (Q, δ)~

εM. It is an action of Oµ(3) on εMagn. The symmetry group G(εM) of εM ∈ εMagn thus takes the following form:

G(εM) := {(Q, δ) ∈ Oµ(3) : (Q, δ)~ εM = εM}, (33)

i.e. G(εM) collects all the orthogonal and anti-orthogonal operations that leave εM unchanged. For all εM ∈ εMagn we observe that the
symmetry group G(εM) contains the element (-I,+1) of Oµ(3). Therefore, recalling (cf. §2.5.) that µId is the subgroup {(I,+1), (-I,+1)}
and that ⊕ is the direct sum of subgroups in Oµ(3), we necessarily have

G(εM) = g̃(εM)⊕ µId, (34)

where g̃(εM) is defined by:

g̃(εM) := {(Q, δ) ∈ SOµ(3) :

(Q, δ)~ εM = δQ ? εM = εM}, (35)

and where SOµ(3) := SO(3)× {±1}.
When now define the symmetry group g(M) of an element M ∈ Piez by:

g(M) := {Q ∈ O(3) : Q ?M = M}. (36)

We are going to show that the symmetry group G(εM) of the (axial) piezomagnetic tensor εM is intimately related to the symmetry group
g(M) = g(εId(εM)) of its polar twin piezoelectric tensor. To this end, we introduce the isomorphism Iso defined by:

SOµ(3) 3 (Q, δ) Iso7−→ δQ ∈ O(3), (37)

and:

O(3) 3 Q Iso−1

7−→ (det(Q) Q,det(Q)) ∈ SOµ(3). (38)

We then have:

Iso(g̃(εM)) = {Q ∈ O(3) : Q ? εId(εM) = εId(εM)}
= {Q ∈ O(3) : Q ?M = M}
= g(M). (39)

Thanks to (34), the symmetry group G(εM) ⊂ Oµ(3) of the piezomagnetic pseudo-tensor εM is thus mapped into the symmetry group
g(M) ⊂ O(3) of its twin tensor, and vice versa. In other words, due to (37) and (38) the characterization of piezomagnetic tensors symme-
tries is strictly equivalent to the piezoelectric tensors symmetries one.

In this direction, we first of all observe that, by continuity, the groups g(M) defined in (39) are closed subgroups of O(3). To classify
them in an understandable way, we build an equivalence relation as in §2.2. First of all, we note that g(M) is conjugate through Q ∈ O(3)
to g(Q ?M):

g(Q ?M) = Qg(M) Qt , ∀ Q ∈ O(3). (40)

The idea is as follows: we will say that two tensors M1 and M2 in Piez are equivalent if there is an element Q of O(3) such that g(M1) =
g(Q ?M2). In other words, M1 and M2 are equivalent when their symmetry groups are conjugate:

M1
?∼M2 ⇐⇒ {∃Q ∈ O(3) :

g(M1) = Qg(M2) Qt}. (41)

Since g(M) = g(-M), it is easily checked that :
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M1
?∼M2 ⇐⇒ {∃Q ∈ SO(3) :

g(M1) = Qg(M2) Qt}. (42)

This relation translates the physical intuition that whenever two material bodies can be rigidly rotated so that their symmetry groups become
identical, they share the same “symmetry”.

Therefore, the equivalence classes of Piez which result from ?∼ are called symmetry classes and we note {M} the symmetry class of
M ∈ Piez. In the same direction, for G a subgroup of O(3), we note {G} the collection of all its conjugate among the subgroups of O(3).
The question we ask now is: how many symmetry classes are there in Piez and which are there?

In order to give an accurate answer, we first of all point out some traditional results concerning the closed subgroups of O(3). It is
well known (see for instance Forte & Vianello, 1996, 1997; Golubitsky et al., 1988; Sivardière, 1995) that they fall in three categories (cf.
Appendix A):

1. The closed subgroups of SO(3) or class I closed subgroups: Id, Zm (m ≥ 2), Dm (m ≥ 2), I, O, T , SO(2), O(2) and SO(3).
2. The class II closed subgroups: G⊕ {±I}, where G is a class I closed subgroup.
3. The class III closed subgroups. They are not contained in SO(3) and do not contain -I: Z−2m (m ≥ 1), Dd2m (m ≥ 2), Dzm (m ≥ 2),
O− and O(2)−.

Since the symmetry groups of the elements M ∈ Piez are closed subgroups of O(3), each M ∈ Piez is therefore associated to a unique
subgroup G defined above such that G is conjugate to g(M). We write Piez(G) for the collection of all tensors whose symmetry group is
conjugate to G:

Piez(G) := {M ∈ Piez : g(M) ∈ {G}}. (43)

Obviously, we can apply the above results to tensors εM ∈ εMagn and to subgroups µG ⊂ Oµ(3). We then have:

εMagn(µG) := {εM ∈ εMagn : G(εM) ∈ {µG}}. (44)

In other words, the symmetry classes of Piez and εMagn are related by the relations:

∀ G ⊂ O(3),

Piez(G) = εId(εMagn(Iso−1(G)⊕ µId)), (45)

and:

∀ µG ⊂ Oµ(3),
εMagn(µG) = εId(Piez(Iso(µG ∩ SOµ(3)))). (46)

In the following, for any subgroup G of O(3), we will note µG the subgroup of Oµ(3) defined by

µG := Iso−1(G)⊕ µId. (47)

Harmonic decomposition Any second-order tensor E can be seen as the sum of a symmetric tensor S = 1
2
(E + Et) and of an

antisymmetric tensor W = 1
2
(E − Et) associated to an axial vector εw such that Wij = εijk

εwk, where εijk are the components of
the alternating tensor. We note tr for the trace operator. The relation S = SD + 1

3
(tr S)I = SD + 1

3
(tr E)I, where SD is the deviatoric part

of S, points out an isomorphism φ between Lin and Dev×R3×R where Dev is the space of second-order traceless and symmetric tensors.
We therefore write:

Lin 3 E ≈ (SD, εw, 1

3
(tr E)) ∈ Dev×R3 ×R. (48)

Moreover, according to (25) and (26) we have:



9

Q ?E ≈ (Q ? SD,det(Q) (Q ? εw),
1

3
(tr E)). (49)

Thus the symmetry class of E verifies:

g(E) = g(SD)∩ εg(εw), (50)

where g(E) is defined as in (39) and where

εg(εw) = {Q ∈ O(3) : Q ? εw = det(Q) εw}. (51)

The generalization of the correspondence φ as noted in (48) to tensors of any order (cf. Spencer (1970) and Appendix B) is called
harmonic decomposition. A tensor is harmonic when it is totally symmetric (its components are unchanged under any permutations of
indexes) and traceless (the trace with respect to any pair of indexes is null). Applied to Piez, this decomposition makes it possible to write:

Piez 3M ≈ (H, εC, ν,v) ∈ Hrm× εDev×R3 ×R3, (52)

where Hrm is the space of third-order harmonic tensors and εDev the space of harmonic and axial second-order tensors. Some examples
of this decomposition can be found in Forte & Vianello (1997) and Schouten (1954). It is detailled in Appendix B. We then have:

∀Q ∈ O(3),
Q ?M ≈ (Q ?H,det(Q) (Q ? εC),Q ? ν,Q ? v), (53)

and thus:

g(M) = g(H)∩ εg(εC)∩ g(ν)∩ g(v),

∀ M ∈ Piez, (54)

where εg(εC) follows from (51).

Cartan decomposition Let r = xi + yj + zk be a vector of R3 and let Pn be the space of homogeneous polynomials of degree n in
the three variables x, y and z. There is a classical isomorphism ψ between Pn and Symn, the space of totally symmetric tensors of order
n (cf. Forte & Vianello, 1997):

Symn 3 T 7→ ψ(T) := T[r, r, · · · , r]

= Ti1i2···inri1ri2 · · · rin ∈ Pn, (55)

where the convention of summation over repeated indexes is understood. Thus, the second-order symmetric tensor S = (Sij) defined in
the preceding paragraph is mapped into

ψ(S) = S11 x
2 + 2S12 xy+ 2S13 xz

+ S22 y
2 + 2S23 yz + S33 z

2. (56)

A polynomial h ∈ Pn is harmonic when ∆h = 0, where ∆ is the Laplacian operator. We write h ∈ Hn. It is easy to check that the
space of harmonic tensors of order n is isomorphic via ψ toHn.

The isomorphism (55) enables us to extend the action ? defined in (25) to Pn: for p = ψ(T) ∈ Pn and Q ∈ O(3), we define

(Q ? p)(x, y, z) := T[Qtr,Qtr, · · · ,Qtr]

= Ti1i2···inrj1rj2 · · · rjnQj1i1Qj2i2 · · ·Qjnin . (57)
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Moreover, the linear mapping ψ is O(3)-invariant in the following sense

∀Q ∈ O(3), Q ? ψ(T) = ψ(Q ?T). (58)

An essential property of Pn is that it is the direct sum ofHn andQn, the space of polynomials which are multiples (by polynomials of
Pn−2) of ρ := x2 + y2 + z2 (it is a traditional result, cf. Golubitsky et al., 1988 p.109). Therefore, for each p ∈ Pn, there exists a unique
q ∈ Pn−2 such that h := (p+ ρq) ∈ Hn. We call h the harmonic part of p. The link with the harmonic decomposition is obvious: for
n = 2 and p = ψ(S) we have h = ψ(SD) and q = ψ( 1

3
tr (S)).

The goal is now to map harmonic polynomials (and consequently harmonic tensors) into spaces where the action ? will become
elementary. This purpose is achieved by the Cartan decomposition, which is an SO(2)-invariant decomposition ofHn. To give a preliminary
idea of it, let us consider a second-order harmonic polynomial f in the three variables x, y and z. We then have f ∈ H2. It is clear that f
can be expressed on the following "basis":

u := z2 − 1

3
ρ,

(s1, t1) := (xz, yz),

(s2, t2) := (x2 − y2,2xy). (59)

This decomposition can also be viewed as the decomposition of second-order deviatoric tensors on the following basis (up to constants):

U =

 1 0 0
0 1 0
0 0 −2

 ,

S1 =

 0 0 1
0 0 0
1 0 0

 ,T1 =

 0 0 0
0 0 1
0 1 0

 ,

S2 =

 1 0 0
0 −1 0
0 0 0

 ,T2 =

 0 1 0
1 0 0
0 0 0

 ,

All these tensors are traceless, symmetric and translate very simply the action of orthogonal transformations which operate on them.
In the general case, letw := x+ iy be a complex number. For 06 l 6 nwe note sl the harmonic part of zn−l<(wl) and tl the harmonic

part of zn−l=(wl). In the following we write u instead of s0. We also notice that t0 = 0. We finally define

K0 := vect(u),

Kl := vect(sl, tl), 1 6 l 6 n. (60)

The Cartan decomposition is stated as follows: the spaceHn of harmonic polynomials of degree n has an SO(2)-invariant decomposition
denoted

K0 ⊕K1 ⊕ · · · ⊕Kn. (61)

Moreover, each rotation Q(k, θ) ∈ SO(2) about k of angle θ acts as the unit element on K0 and like a rotation of angle θ on Kl for
1 6 l 6 n:

Q(k, θ) ? sl = sl cos(lθ) + tl sin(lθ),

Q(k, θ) ? tl = −sl sin(lθ) + tl cos(lθ). (62)

Finally, Q(i, π) acts as a reflection on Kl (0 6 l 6 n):
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Q(i, π) ? u = (−1)nu,

Q(i, π) ? sl = (−1)n−lsl,

Q(i, π) ? tl = (−1)n−l+1tl. (63)

Arguments which amount to the above results are described in Golubitsky et al. (1988 p.109-111).
One of the immediate consequences of the Cartan decomposition is that to each h ∈ Hn correspond 2n+ 1 real numbers λ,αl, βl (1 6

l 6 n) such that

h = λu+ αlsl + βltl, 1 6 l 6 n. (64)

The isomorphism ψ defined in (55) enables us to transfer the Cartan decomposition from Hn into the space of harmonic tensors of
degree n. The latter is then the direct sum of n+ 1 subspaces ψ−1(Kl) (0 6 l 6 n) for which we use again the same symbol Kl to
simplify the notations.

If n = 3, we consider an element H ∈ Hrm and write ψ(H) = h = λu+ αlsl + βltl (1 6 l 6 3). Simple computations (see Forte &
Vianello, 1997; Golubitsky et al., 1988) show that a basis for Kl (0 6 l 6 3) is given by:

u = z3 − 3ρz/5,

(s1, t1) = (z2x− ρx/5, z2y− ρy/5),

(s2, t2) = (z(x2 − y2), xyz),

(s3, t3) = (x3 − 3xy2,3x2y− y3). (65)

Let U := ψ−1(u), Sl := ψ−1(sl) and Tl := ψ−1(tl). For H ∈ Hrm, we can write H = H0 + H1 + H2 + H3 where H0 := λU and, for
16 l 6 3, Hl := αlSl +βlTl. The straightforward consequence of results (61)-(63) is the description and characterization of the symmetry
groups of H ∈ Hrm through the properties of the "components" Hl (it will be said in the following that Hl is "horizontal" if it is a multiple
of Sl and "vertical" if it is a multiple of Tl):

Proposition 1. For a third-order harmonic tensor H = H0 + H1 + H2 + H3, we have:

(i) g(H) ⊃ SO(2) ⇐⇒ H = H0 ⇐⇒ g(H) ⊃ O(2)− ⇐⇒ g(H ) ⊃ Dzk ⇐⇒ g(H) ⊃ Zk,
(k ≥ 4);

(ii) g(H) ⊃ O(2) ⇐⇒ H = 0 ⇐⇒ g(H) ⊃ Dd2k
⇐⇒ g(H) ⊃ Z−2k ⇐⇒ g(H) ⊃ Dk, (k ≥ 4);

(iii) g(H) ⊃ Z2 ⇐⇒ H1 = H3 = 0;

(iv) g(H) ⊃ D2 ⇐⇒ H is vertical in K2

⇐⇒ g(H) ⊃ T ⇐⇒ g(H) ⊃ Dd4
⇐⇒ g(H) ⊃ O−;

(v) g(H) ⊃ Z3 ⇐⇒ H1 = H2 = 0;

(vi) g(H) ⊃ D3 ⇐⇒ H is horizontal in K3;
(vii) g(H) ⊃ Z−2 ⇐⇒ H0 = H2 = 0;

(viii) g(H) ⊃ Dz2 ⇐⇒ H = H0 + H2

with H2 horizontal in K2;
(ix) g(H) ⊃ Z−4 ⇐⇒ H = H2;

(x) g(H) ⊃ Dd6 ⇐⇒ H = H3

with H3 horizontal in K3;
(xi) g(H) ⊃ Dz3 ⇐⇒ H = H0 + H3

with H3 vertical in K3;
(xii) g(H) ⊃ Z−6 ⇐⇒ H = H3;
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Remark 1. A third-order harmonic tensor H has 7 components (three couples (αl, βl)1≤l≤3 and λ). The Cartan decomposition is
particularly adapted to the determination of the number of constants which rise from a given symmetry. To take an example, part (iii) above
indicates that Z2 symmetry requires three constants (one for H0 and two for H2). By applying this method to the other elements of the
harmonic decomposition, we obtain the minimum number of constants of a tensor M ∈ Piez having a given symmetry. The determination
of the optimal basis in which a given tensor is indeed written with this minimal number of constants requires a specific study however
(cf. Berthaud, François & Geymonat (1998) in the elasticity case).

Proof. – Relations concerning closed subgroups of SO(3) have been shown in Forte & Vianello (1997). They are an immediate
consequence of the Cartan decomposition. The other results easily come from Golubitsky et al. (1988 pp. 122 and 123).�

Symmetry classes of Piez We first show the

Lemma 1. Let εC ∈ εDev and v ∈ R3. Then:

(a) εg(εC) is conjugate to D2, Dd4 , O(2) or O(3),
(b) g(v) is conjugate to O(2)− or O(3).

Proof. – (a) It is an extension of Forte & Vianello (1996, Theorem 3): if the three eigenvalues of εC are distinct and if none of them
is zero then it does not exist an orthogonal transformation which maps εC into −εC. We then are in the case of Forte & Vianello (1996,
Theorem 3). If one only of the eigenvalues is zero, then the two others are opposite and different from zero. The rotations of angle π about
the characteristic axes leave εC unchanged while an inversion of the characteristic axes associated to non zero eigenvalues maps εC into
-εC. This subgroup is conjugate to Dd4 .
(b) If v is different from zero then there is a rotation Q such that Q ? v is parallel to k. Thus g(v) = O(2)−.�

>From proposition 1 and from Lemma 1 rises the

Corollary 1. Let M ∈ Piez, we have:

(a) g(M) ⊃ Zk ⇐⇒ g(M) ⊃ SO(2), (k ≥ 4),
(b) g(M) ⊃ Dk ⇐⇒ M = 0 ⇐⇒ g(M) ⊃ Z−2k
⇐⇒ g(M) ⊃ Dd2k, (k ≥ 4),

(c) g(M) ⊃ Z−6 ⇒ {∃ Q ∈ SO(3) : g(Q ?M) ⊃ Dd6},
(d) g(M) ⊃ Z−2k ⇐⇒ g(M) ⊃ O(2), (k ≥ 4),
(e) g(M) ⊃ Dzk ⇐⇒ g(M) ⊃ O(2)−, (k ≥ 4),
(f) g(M) ⊃ T ⇐⇒ g(M) ⊃ O−.

Proof. – We just show part (c) with M = (H, εC, ν,v): if g(M)⊃ Z−4 then, according to part (a) of Lemma 1, we have εg(εC)⊃ SO(2)
; moreover, ν = v = 0 and H = H3 according to part (xii) of Proposition 1. But since there is a rotation Q ∈ SO(2) which makes H3 vertical
in K3, we conclude by part (x) of Proposition 1 above and with Forte & Vianello (1996, Lemma 2).�

We consequently obtain trivially the

Corollary 2. Let k≥ 4 andm≥ 3, then Piez(Zk), Piez(Dk), Piez(Dd2k), Piez(Dzk), Piez(Z−2m), Piez(T ), Piez(O), Piez(I) and Piez(SO(3))
are empty. Moreover, Piez(O(3)) = {0}.

These results do not mean that there are no tensors in Piez that have, for example, a Zk symmetry when k ≥ 4, but such tensors then have
necessarily a "higher" symmetry.

We finally have

Theorem 2. The following sets are not empty: Piez(Id), Piez(Z2), Piez(Z3), Magn(Z−2 ), Magn(Z−4 ), Piez(Dz2), Piez(Dz3), Piez(D2),
Piez(D3), Piez(Dd4), Piez(Dd6), Piez(O−), Piez(SO(2)), Piez(O(2)) and Piez(O(2)−).

Proof. – The method consists in suitably choosing each element of the harmonic decomposition of M = (H, εC, ν,v) in a similar
way to that used in Forte & Vianello (1996, 1997). Thus, by for example choosing a vertical tensor H in K2 as the only non zero element
in the harmonic decomposition of M ∈ Piez, we have g(M) = O−.�
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4 Conclusions

By considering the relations (45)-(47), the results obtained above are extended to εMagn. The containment relations between symmetry
classes of εMagn are presented on Fig. 1. This caracteristic tree shows the natural diagram of evolution of constitutive symmetries (relating
to the behavior, i.e. to tensors (cf. Zheng & Boelher, 1994)).

We recapitulate in Tab. 1 the bond between constitutive symmetries and microstructure symmetries (concerning notations cf. Bhaga-
vantam (1996) and Birss (1996) for example). Each of the magnetic point groups 6, 6̄ and 6/m are subgroups of µZ−6 . However, µZ−6 is
not a constitutive symmetry group of the piezomagnetic phenomenon. This is a consequence of parts (c) of corollary 1 which states that
piezomagnetic tensors cannot have µZ−6 symmetry without having a larger one. Therefore, with an appropriate rotation, any piezomagnetic
tensor εM with symmetry group containing µZ−6 can be transformed into a piezomagnetic tensor with symmetry group containing µDd6 .
This is why µZ−6 do not appear as piezomagnetic constitutive symmetry.

We then reduce to 15 the number of equivalence classes of piezomagnetic tensors, up to now considered to be 16.

APPENDIXES

A - Closed subgroups of O(3)

As it was announced in §3.4, the closed subgroups of O(3) fall in three categories.
The class I subgroups are closed subgroups of SO(3) and are conjugate to one of the following groups:

• Id, the trivial subgroup, formed by the unit element I.
• Zm (form≥ 2), the set of rotations about k of angle multiple of 2π/m. It is a cyclic group withm elements generated by Q(k,2π/m).
• Dm (for m ≥ 2), the dihedral group, generated by Zm and Q(i, π). It has 2m elements.
• T , the tetrahedral group containing the 12 symmetry elements of the tetrahedron.
• O, the octahedral group containing the 24 symmetry elements of the octahedron or of the cube.
• I, the symmetry group of icosahedron or dodecahedron. It has 60 elements.
• SO(2), the subgroup of rotations that leave k unchanged.
• O(2), the subgroup of rotations which map k into ±k.
• SO(3).

The class II subgroups simply derive from class I subgroups (cf. §3.3).
As to class III subgroups, they have the characteristic not to be included in SO(3) and not to contain -I. They are defined in Golubitsky

et al. (1988) for example. We detail here the structure of the Z−2m (m ≥ 1), Dd2m (m ≥ 2) and Dzm (m ≥ 2) subgroups.
The Z−2 subgroup is generated by  1 0 0

0 1 0
0 0 −1

 .

Moreover, there are three nonconjugate subgroups of O(3) isomorphic to D2m, namely: D2m, Dz2m and Dd2m. The cyclic subgroup Z2m is
present inside both D2m and Dz2m. The Dz2m group is generated by Z2m and the reflection across the x-axis in the (x, y)-plane affected by 1 0 0

0 −1 0
0 0 1

 .

The cyclic subgroup of order 2m in Dd2m is not the standard cyclic subgroup Z2m ⊂ SO(3) but the class III subgroup Z−2m generated by
the rotation  cos π

m
sin π

m
0

− sin π
m

cos π
m

0
0 0 1

 .

The reflection across the x-axis in Dd2m is the same as in D2m.

B - Harmonic Decomposition

As announced in §3.4.1, the harmonic decomposition is based on a method introduced by Spencer (1970). We apply it to the third-order
tensors which are symmetric according to their first two indexes (in this direction, see Forte & Vianello, 1997). We first point out the
general step.
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Let Ai1i2i3···in be the components of a tensor A of order n. We note A(i1i2···ir)ir+1···in the tensor obtained by symmetrization of A
according to its first r indexes. It is in fact the sum (divided by r!) of the r! components obtained from Ai1i2i3···in by applying all the
permutations to its first r! indexes. The fundamental relation due to Spencer (1970) is:

rA(i1i2···ir−1)irir+1···in = rA(i1i2···ir)ir+1···in

+ εi1iris εipiqis A(ipi2i3···ir−1)iqir+1···in

+ εi2iris εipiqis A(ipi1i3···ir−1)iqir+1···in

+ · · ·+ εir−1iris εipiqis A(ipi1i3···ir−2)iqir+1···in , (66)

where εi1i2i3 are the components of the alternating tensor.
We define

Bi1i2i3···ir−2ir+1···inis := εipiqis A(ipi1i2···ir−2)iqir+1···in . (67)

Thus A(i1i2···ir−1)ir···in is the sum of the symmetrization of the tensor A = Ai1i2i3···in with respect to its first r! indexes and some
terms obtained by contraction of Bi1i2i3···ir−2ir+1···inis with the alternating tensor. These terms are therefore pseudo-tensors. Applying
by recurrence the equality above, we are finally able to express Ai1i2i3···in as a sum of (pseudo-)tensors totally symmetric of order equal
or less than n, suitably contracted with isotropic tensors.

Let M ∈ Piez. By definition, we have M = M(ij)k. We note it Mijk = M(ij)k. Applying the relation above we find:

3M(ij)k = 3M(ijk) + εikp εabpMajb + εjkp εabpMaib. (68)

Thus M(ijk) is a third-order totally symmetric tensor. It again breaks up into a third-order harmonic tensor H and a vector ν ∈ R3. In
addition, by letting εCjp = εabpMajb, we obtain:

2 εCij = 2 εC(ij) + εijp vp, (69)

where vp are the components of a vector v ∈ R3.
It is thus seen that εC(ij) is a second-order symmetric pseudo-tensor. Simple calculations show that it is traceless: εC is harmonic.
We then show that any tensor M ∈ Piez corresponds to a quadruplet including a third -order harmonic tensor H (with 7 components),

a second-order harmonic pseudo-tensor εC (5 components) and two vectors v and ν (3 components each). We therefore verify that M =
M(ij)k ∈ Piez has 18 components. This is the reason why such tensors are most of the time presented in the form of a 3× 6 matrix.
This correspondence is linear like every operations that intervene in the harmonic decomposition. Its kernel is {0}: it is consequently an
isomorphism. The property of SO(3)-invariance according to the ? action rises simply from the following equality, due to (25) and (26):

∀Q ∈ SO(3), Q ?M
= (Q ?H, det (Q) Q ? εC,Q ? v,Q ? ν). (70)
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Table 1. Constitutive symmetries of the piezomagnetic phenomenon related to the magnetic point groups which give them birth

Constitutive
symmetries
(Gproperty)

Magnetic point groups (Gpoint)

µId 1, 1̄
µZ−2 m, 2, 2/m
µZ−4 4, 4̄, 4/m
µZ2 m, 2, 2/m
µZ3 3, 3̄
µDz2 2mm, 2mm, 222, mmm
µD2 2mm, 222, mmm
µDz3 32, 3m, 3̄m
µD3 32, 3m, 3̄m
µDd4 422 ,4mm, 4̄2m, 4̄ 2m, 4/mmm
µDd6 6, 6̄, 6/m, 622, 6mm, 6̄m2, 6̄m2,

6/mmm
µO− 23, m3, 432, 4̄3m, m3m
µSO(2) 4, 4̄, 4/m, 6, 6̄, 6/m
µO(2) 422, 4mm, 4̄2m, 4/mmm, 622,

6mm, 6̄m2, 6/mmm
µO(2)− 422, 4mm, 4̄2m, 4/mmm, 622,

6mm, 6m2, 6/mmm

Fig. 1. Characteristic tree of εMagn symmetry classes.

µId

µZ−2
µZ2

µZ3

µZ−4
µDz2 µD2

µDz3 µD3

µDd4 µDd6

µO−

µSO(2)

µO(2)µO(2)−
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