
Vol. 29 no. 8 2013, pages 996–1003
doi:10.1093/bioinformatics/btt098

Improvements on bicriteria pairwise sequence alignment:

algorithms and applications

Maryam Abbasi1, Luı́s Paquete1,*, Arnaud Liefooghe2, Miguel Pinheiro3 and Pedro Matias1

1CISUC, Department of Informatics Engineering, University of Coimbra, Pó lo II, 3030-290 Coimbra, Portugal, 2LIFL, UMR
CNRS 8022, Bâ t. M3, Université Lille 1, 59655 Villeneuve d’Ascq, France and 3Bioinformatics Unit, Biocant, 3060-197
Cantanhede, Portugal

ABSTRACT

Motivation: In this article, we consider the bicriteria pairwise se-

quence alignment problem and propose extensions of dynamic pro-

gramming algorithms for several problem variants with a novel pruning

technique that efficiently reduces the number of states to be pro-

cessed. Moreover, we present a method for the construction of phylo-

genetic trees based on this bicriteria framework. Two exemplary cases

are discussed.

Results: Numerical results on a real dataset show that this approach

is very fast in practice. The pruning technique saves up to 90% in

memory usage and 80% in CPU time. Based on this method, phylo-

genetic trees are constructed from real-life data. In addition of provid-

ing complementary information, some of these trees match those

obtained by the Maximum Likelihood method.

Availability and implementation: Source code is freely available

for download at URL http://eden.dei.uc.pt/�paquete/MOSAL, imple-

mented in C and supported on Linux, MAC OS and MS Windows.

Contact: paquete@dei.uc.pt

Received on October 15, 2012; revised on January 31, 2013; accepted

on February 20, 2013

1 INTRODUCTION

Recently, there has been a growing interest on the multi-criteria

formulation of optimization problems that arise in computa-

tional biology (see an extensive review in Handl et al., 2007).

However, exact solution approaches for most of these new for-

mulations have not been thoroughly investigated, with the ex-

ception of the work of Roytberg et al. (1999) for bicriteria

pairwise sequence alignment.

For an alignment ’ of sequences A :¼ ða1, . . . , an1 Þ and

B :¼ ðb1, . . . , bn2 Þ, we denote by sð’Þ the substitution score of

alignment ’ according to a substitution matrix M, and by dð’Þ

and gð’Þ, the number of indels and gaps (maximal consecutive

run of indels) of ’. The two following score vector functions are

considered:

VSDð’Þ :¼ sð’Þ, � dð’Þð Þ

VSGð’Þ :¼ sð’Þ, � gð’Þð Þ

Two bicriteria problems that consist of finding the alignments

that are ‘maximal’ with respect to the score vector functions

above are as follows:

arg vmax ’ : VSDð’Þ, ’ 2 �
� �

ðVSDPÞ

arg vmax ’ : VSGð’Þ, ’ 2 �
� �

ðVSGPÞ

where � denotes the set of all feasible alignments. The image of

set � in the score function space is called feasible score set. To

give a proper meaning to the operator vmax, we introduce the

following dominance relation between score vectors in Problem

(VSDP): Given two alignments ’ and ’0, VSDð’Þ4VSDð’0Þ

(’ dominates ’0) if and only if it holds that sð’Þ � sð’0Þ,
dð’Þ � dð’0Þ and VSDð’Þ 6¼ VSDð’0Þ. An alignment ’ is Pareto

optimal if there exists no other alignment ’� such that

VSDð’�Þ4VSDð’Þ. The set of all Pareto optimal alignments is

called Pareto optimal alignment set. The image of a Pareto opti-

mal alignment in the score function space is a non-dominated

score, and the set of all non-dominated scores is called non-domi-

nated score set. The dominance relation and the above notation

also apply to Problem (VSGP) with the necessary changes.

Computing the Pareto optimal alignment set can be an intract-

able task: consider the sequences A :¼ Gn and B :¼ TðGTÞ2n and

the substitution matrix M½i, i� :¼ 1 and M½i, j� :¼ 0, i 6¼ j; then,

there exist 2n
n

� �
Pareto optimal alignments that match Gn in

both sequences, as there exists no other alignment with larger

substitution score and lesser number of indels (3nþ 1 indels).

The aforementioned example also applies to the number of

gaps (nþ 1 gaps). However, the size of the non-dominated

score set is bounded by minð‘, n1 þ n2 � 2‘Þ, where ‘ is the size

of longest common subsequence of A and B (Roytberg et al.,

1999).

Interesting properties of this formulation in relation to para-

metric sequence alignment (see Gusfield et al., 1992) are dis-

cussed in Roytberg et al., 1999: an optimal alignment for the

parametric score function with positive parameters is a Pareto

optimal alignment. However, there may exist Pareto optimal

alignments that are not optimal for any parameter setting.

These alignments, and corresponding scores, are called supported

and non-supported, respectively (Ehrgott, 2005). From a geomet-

rical point of view, supported scores are those that lie in the

convex-hull boundary of the non-dominated score set.*To whom correspondence should be addressed.

http://eden.dei.uc.pt/~paquete/MOSAL
http://eden.dei.uc.pt/~paquete/MOSAL

Furthermore, it is common to distinguish between extreme

and non-extreme supported scores (Ehrgott, 2005). A score is

extreme supported if it is a vertex of the convex hull boundary

of the feasible score set; otherwise it is a non-extreme supported

score. Although it is relatively easy to find all extreme supported

scores (Gusfield et al., 1992), it is more challenging to find all

those that are non-extreme. Finding the whole non-dominated

score set would allow identifying both extreme and non-extreme

supported non-dominated scores, as well as non-supported non-

dominated scores.

Therefore, multicriteria sequence alignment brings advantages

to the practitioner, as it allows to get rid of parameters and to

explore a tractable set of alignments that are not reachable by

any other methods. However, to the best of our knowledge, few

work has been done on multi-criteria sequence alignment

(Paquete and Almeida, 2009; Roytberg et al., 1999; Taneda,

2010). In this article, we propose extensions of dynamic program-

ming algorithms for several bicriteria problem variants with a

pruning technique that is based on the comparison of lower

and upper bounds, as performed in branch-and-bound proced-

ures. Moreover, we describe an experimental analysis on a real

dataset and discuss the use of bicriteria pairwise sequence align-

ment in the context of phylogenetic tree construction.

2 ALGORITHMS

In the following sections, we describe dynamic programming

techniques for solving several formulations of the bicriteria pair-

wise sequence alignment as well as a novel pruning technique

that reduces the number of states in practice.

2.1 Multicriteria dynamic programming

For the sake of clarity, we introduce the dynamic programming

algorithm for Problem (VSDP) as proposed in Roytberg et al.

(1999) but with a different formulation. For a given alignment ’,
we define a state p :¼ VSDð’Þ. To compute the non-dominated

scores, a matrix P is constructed where each entry P½i, j�, for

ði, jÞ 2 f1, . . . , n1g � f1, . . . , n2g, will store the set of states corres-

ponding to the Pareto optimal alignments of subsequences

ða1, . . . , aiÞ and ðb1, . . . , bjÞ. The recurrence for P½i, j� is as

follows:

P½i, j� :¼ vmax

pþ ð�ði, jÞ, 0Þ : p 2 P½i� 1, j� 1�
� �
pþ ð0, � 1Þ : p 2 P½i� 1, j�
� �
pþ ð0, � 1Þ : p 2 P½i, j� 1�
� �

8><
>:

where �ði, jÞ is the substitution score for ðai, bjÞ. The bases cases

are P½0, 0� :¼ fð0, 0Þg, P½i, 0� :¼ fð0, � iÞg, P½0, j� :¼ fð0, � jÞg,

for 1 � i � n1 and 1 � j � n2. Operator vmax keeps only

the non-dominated states at entry P½i, j�. Roytberg et al. (1999)

suggested the use of a log-linear algorithm for this operation.

However, this can be performed in linear time by extending

the MERGE algorithm in Beier and Vöcking (2011) for

three sorted lists of non-dominated scores. The overall time

and space-complexity of the algorithm above is

Oðn1 	 n2 	 ðn1 þ n2ÞÞ.

The dynamic programming algorithm for Problem (VSGP) is

briefly discussed in Roytberg et al. (1999). We give a more

detailed explanation of this approach, which extends the
algorithm in Gusfield (1997, pp. 244). For a given alignment
’ :¼ ðA0,B0Þ, we define a state q :¼ VSGð’Þ. For computing

the set of non-dominated scores, we keep four dynamic program-
ming matrices: Q, R, S and T. For a given

ði, jÞ 2 f1, . . . , n1g � f1, . . . , n2g, entry R½i, j�, S½i, j� and T½i, j�
will store the set of states corresponding to Pareto optimal align-
ments of subsequences ða1, . . . , aiÞ and ðb1, . . . , bjÞ that end with

ðai, bjÞ, ð
0
�0, bjÞ and ðai,

0�0Þ, respectively, where 0�0 is a gap
character. The entry Q½i, j� will store the states corresponding

to Pareto optimal alignments of subsequences ða1, . . . , aiÞ and
ðb1, . . . , bjÞ. Then, the recursion is as follows:

Q½i, j� :¼ vmax
R½i, j�
S½i, j�
T½i, j�

8<
:

R½i, j� :¼ qþ ð�ði, jÞ, 0Þ : q 2 Q½i� 1, j� 1�
� �

S½i, j� :¼ vmax
S½i, j� 1�
qþ ð0, � 1Þ : q 2 Q½i, j� 1�
� ��

T½i, j� :¼ vmax
T½i� 1, j�
qþ ð0, � 1Þ : q 2 Q½i� 1, j�
� ��

The base cases of the matrices are as follows:
Q½0, 0� :¼ fð0, 0Þg, Q½i, 0� :¼ S½i, 0� :¼ Q½0, j� :¼ T½0, j� :¼ fð0, � 1Þg,

for 1 � i � n1 and 1 � j � n2. Operation vmax takes also linear
amount of time by using the same technique as for Problem

(VSDP). As the number of gaps is bounded from above by the
number of indels in an alignment, the time and space-complexity
is also Oðn1 	 n2 	 ðn1 þ n2ÞÞ.

2.2 Bounds in problem (VSDP)

We describe a pruning technique for the dynamic programming
algorithm for Problem (VSDP) that is able to reduce the number
of states by comparing their upper bounds with a pre-computed

lower bound set. Upper and lower bounds have also been used
within scalarized score functions (Roytberg, 1992).

2.2.1 Lower bound set For the definition of lower bounds on
the non-dominated score set for Problem (VSDP), we introduce

the notions of lexicographic and scalarized score functions.
We say that a vector x 2 R

2 is lexicographically larger than or

equal to a vector y 2 R
2
ðx4lexyÞ if x14y1 or if x1 ¼ y1 and

x2 � y2. In this article, we consider two problems that consist
of finding an alignment that is lexicographic maximal (lexmax)

according to a given order of priority on the optimization of the
two score function components:

arg lexmax ’ : sð’Þ,�dð’Þð Þ, ’ 2 �
� �

ðLexSDPÞ

arg lexmax ’ : �dð’Þ, sð’Þð Þ, ’ 2 �
� �

ðLexDSPÞ

The order of the function components indicates the priority
that is considered among the criteria.

Let ’s and ’d be the lexicographic maximal alignments
for Problems (LexSDP) and (LexDSP), respectively. Let

MAX :¼ VSDð’sÞ and MIN :¼ VSDð’dÞ. By the definition of
optimality for Problem (VSDP), it holds that MAX and MIN
belong to the non-dominated score set (Ehrgott, 2005).

Moreover, they indicate that there cannot exist a Pareto optimal

Bicriteria pairwise sequence alignment

alignment with larger (smaller) substitution score value and

more (less) indels than given by the components of MAX

(MIN). Hence, the two score vectors give a bound on the

possible ranges of the non-dominated score set. In fact, if

MAX ¼MIN, then the non-dominated score set contains only

a single element and no further computation is required.
Another lower bound is given by the solution to a scalarized

version of the bicriteria alignment problem. We consider the

weighted sum scalarization approach:

WSDð’Þ :¼ ws 	 sð’Þ � wd 	 dð’Þ

where ws and wd are positive real weighting coefficients. The goal

is to find the alignment that maximizes the scalarized score func-

tion as follows:

arg max ’ : WSDð’Þ, ’ 2 �
� �

ðWSDPÞ

Other scalarized functions are also possible (Ehrgott, 2005).

In the particular case of the weighted sum function, the align-

ment that is optimal to Problem (WSDP) is also Pareto optimal

to Problem (VSDP), although the opposite does not hold in

general (Ehrgott, 2005). Let ’w denote the optimal alignment

for Problem (WSDP) for a given ws and wd and let

MID :¼ VSDð’wÞ. It is also important to highlight that the sca-

larized problem can be solved several times for different coeffi-

cients to get a tighter lower bound set.
The score vectors MAX, MID and MIN allow to define a

lower bound set on the non-dominated score set of Problem

(VSDP). Let R denote the region

R ¼ r 2 R�R
�
0 : b4r, b 2 MAX,MID,MINf g

� �
:

Figure 1 illustrates the location of MAX, MID and MIN and

definition of R (shaded area). There may exist further Pareto

optimal alignments whose score vectors are located in the com-

plement of R. However, any alignment whose score vector is in

the interior of R cannot be Pareto optimal, as it would be domi-

nated by an alignment with a score vector equals to MIN, MID

or MAX.

The computation of the three score vectors can be performed

with the algorithm of Needleman and Wunsch (1970) by keeping

the components separately in the dynamic programming matrix

and choosing the state at each entry that maximizes the scalar-
ized score function WSD, for the case of MID, or according to
the lexicographic ordering for the case of MAX and MIN, re-

spectively. Therefore, the three score vectors can be found in
Oðn1 	 n2Þ-time.

In the following, we only introduce the recurrence relation
required for computing the lexicographic maximal alignment

for Problem (LexSDP), which gives the score vector MAX. We
consider a dynamic programming matrix L, where the entry

L½i, j�, for ði, jÞ 2 f1, . . . , n1g � f1, . . . , n2g, will store the state cor-
responding to the lexicographic maximal alignment of subse-

quences ða1, . . . , aiÞ and ðb1, . . . , bjÞ. The elements of matrix L

are calculated recursively by

L½i, j� :¼ lexmax
L½i� 1, j� 1� þ ð�ði, jÞ, 0Þ
L½i, j� 1� þ ð0, � 1Þ
L½i� 1, j� þ ð0, � 1Þ

8<
:

with basis cases L½0, 0� :¼ ð0, 0Þ, L½i, 0� :¼ ð0, � iÞ and L[0, j]:¼

ð0, � jÞ, for 1 � i � n1 and 1 � j � n2. The operator lexmax
keeps only the lexicographic maximum of the three states in

the recursive step.

2.2.2 Upper bound The pruning technique proposed in this art-
icle follows a branch-and-bound principle. Let t :¼ ðs, � dÞ be a

state at entry P½i, j�. Let u be the maximum substitution score and
v the minimum number of indels that can be achieved from entry

P½i, j� to entry P½n1, n2�. Then, for either 1 � i5n1 or 1 � j5n2,
we consider the following upper bound for t:
ubðtÞ :¼ ðsþ u, � d� vÞ. If ubðtÞ is located in the interior of

R, then state t will not lead to any state that corresponds to a
score vector of a Pareto optimal alignment and can be discarded

from entry P½i, j�.
The value of u can be computed with the algorithm of

Needleman and Wunsch (1970) with a null indel penalty for
the sequences ðaiþ1, . . . , an1 Þ and ðbjþ1, . . . , bn2 Þ. This can be

easily obtained for every entry in matrix P in a pre-processing
step. The minimum number of indels v is computed by the ab-
solute difference between the sizes of two subsequences

ðai, . . . , an1 Þ and ðbj, . . . , bn2 Þ, i.e. v :¼ ðn2 � jÞ � ðn1 � iÞ
�� ��.

Therefore, ubðsÞ :¼ ðsþ u, � d� vÞ is a valid upper bound for

state t. This bound may not correspond to a feasible alignment.
Matrix L as well as the algorithm of Needleman and Wunsch

(1970) can be computed in a pre-processing phase in Oðn1 	 n2Þ-
time. Hence, the upper bound at each matrix entry can be com-

puted in a constant amount of time during the main phase of the
algorithm.

2.3 Bounds in problem (VSGP)

For Problem (VSGP), the computation of lower and upper

bounds follow the same reasoning as for Problem (VSDP). In
the following, we will only give a brief explanation and highlight

the main differences.

2.3.1 Lower bound set The lexicographic and scalarized prob-
lems described in Section 2.2.1 can also be formalized in terms of
gaps. In this case, MAX and MIN correspond to the score vec-

tors of the Pareto optimal alignments that maximize the substi-
tution score and minimize the number of gaps, respectively. Also,

MID corresponds to the score vector of the Pareto optimal

)ϕ()ϕ()ϕ(s

−d(ϕ)

MIN

MID

MAX

Fig. 1. Illustration of the lower bound set for problem (VSDP)

M.Abassi et al.

alignment that maximizes a scalarized score function by taking

into account the number of gaps (we use wg instead of wd).
Score vectors MAX and MID can be computed in Oðn1 	 n2Þ-

time by using the algorithm described in Gusfield (1997) with the

necessary changes (see Section 2.2.1). However, score vector

MIN can be computed faster. The minimum number of gaps

can only be zero or one, the latter case arising when n1 6¼ n2.

Assume w.l.o.g. that n15n2. Then, the computation of the max-

imum substitution score that is possible for one gap can be per-

formed by comparing the substitution score for each of the

n1 þ 1 possible locations of a gap. This can be performed in

Oðn1Þ-time in an incremental manner.

2.3.2 Upper bound In this problem, the computation of the

maximum substitution score that can be achieved in entry

Q½n1, n2� by a state t at entry Q½i, j� follows the same procedure

as explained in Section 2.2.2.

For the computation of the minimum number of gaps, we

consider a partition of matrix Q into three sections; w.l.o.g.,

we assume that n15n2. Let QD :¼ Q½i� n2 þ n1, i�, for

n2 � n1 � i � n2, which corresponds to the diagonal in Q start-

ing at Q½0, n2 � n1� and ending at Q½n1, n2�. Let QA and QB

denote the entries in matrix Q that are located above and

below QD, respectively. From this partitioning of Q, we can

derive the following results for v, the minimum number of

gaps, that is achieved at Q½n1, n2� by a state t (we relate state t

with a partial alignment ’ :¼ ðA0,B0Þ):

(i) If state t 2 QD, then v :¼ 0;
(ii) If state t 2 QA ðQB) and alignment ’ ends with a gap in

A0 ðB0), then v :¼ 0;
(iii) If state t 2 QA ðQB) and alignment ’ ends with two char-

acters or a gap character in B0 ðA0), then v :¼ 1.

Conditions (ii) and (iii) can be determined by keeping an add-

itional variable that stores whether state t was obtained from

matrix R, S, or T in the recursion. Therefore, the upper bound

for the case of gaps can also be computed in a constant amount

of time.

2.4 Performance of the pruning technique

We performed an experimental analysis for comparing the per-

formance of the algorithms described in the previous sections,

with and without the pruning technique (Prune and NoPrune,

respectively) and for both problem variants with substitution

matrix PAM250 (Dayhoff et al., 1978). The implementations

were coded in C and compiled with gcc version 4.6.1 with the -

O3 compiler option, in a computer with 2 processors Intel Xeon

5620, 2.4GHz, 4 core and 16 GB RAM, with operating system

Ubuntu 11.10. Except of the compiler option, no other code

optimization technique was used in the experiments.
We considered the sequences available from the benchmark

BAliBase version 3.0 (Thompson et al., 2005) reference set 9.

The subsets RV911, RV912 and RV913 were chosen, as they

are organized into three different groups according to the se-

quence variability:520%, 20–40% and 40–80% identity, respect-

ively. From the datasets, we extracted the sequences from

the following groups: RV911-BOX096 (12 sequences),

RV911-BOX115 (7 sequences), RV911-BOX010 (18 sequences),

RV912-BOX075 (13 sequences), RV912-BOX258 (16 sequences),
RV912-BOX154 (5 sequences), RV913-BOX158 (55 sequences),
RV913-BOX222 (7 sequences) and RV913-BOX063 (8 se-

quences). Our implementations were run on all pairs of se-
quences of the same group.
Preliminary experiments indicated that only three bounds

(MAX, MID and MIN) were insufficient for obtaining
good performance. For this reason, several weighted sum
problems were solved for different weight combinations to

obtain a tighter lower bound set: 5, 10, 15 and 20. For each
bound w, the weights were varying in the following manner:
ws :¼ i, wd :¼ w� i, i 2 f1, . . . ,w� 1g. Other experiments that

we performed indicated that no improvement in terms of pruning
can be obtained for w values larger than 20. In a second set of
experiments for Problem (VSGP), we observed that the pruning

technique was only being effective for entriesQ½i, j�, i � n1=2 and
j � n2=2. Therefore, to reduce the overall CPU time, we switched

off the pruning technique for lower indices.
Tables 1 and 2 give the results obtained for both problem

variants, where size is the average sequence length, #nd corres-

ponds to the average number of non-dominated states, CPU time
gives the average and standard deviation of CPU times in se-
conds to terminate and %prun gives the percentage of states that

were pruned in the Prune(w) version. A bold value indicates the
best average CPU time; in case of a tie, the value with the largest
pruning percentage was chosen, as it suggests less memory usage.

The results show that the Prune version is able to prune from
31 to 92% of the states that are generated by the NoPrune ver-
sion for Problem (VSDP). The improvement in terms of CPU

time can go up to 80% in the set RV913-BOX063. However, no
improvement can be found for RV912-BOX075 and RV912-
BOX154, although all versions were extremely fast in those

cases (� 0:5 s). For Problem (VSGP), the pruning can reach
83% and CPU time improved up to 60% in RV913-BOX222.
In both problems, it is possible to observe that the increase of

parameter w does not translate directly into faster CPU time; for
instance, in the sets RV911 for Problem (VSGP), the best CPU

time was obtained with w ¼ 10, although better pruning percent-
age was obtained with w ¼ 20ð� 20%). Clearly, the larger the
lower bound set, the higher the required time for comparison.

Moreover, the pruning seems to be more effective for large levels
of residue identity.
It is also noteworthy to mention that the number of non-

dominated states is a small fraction of the average size of the
genes. We also observed that both algorithms on Problem
(VSGP) take roughly 4–5 times more CPU time than on

Problem (VSDP).

3 PHYLOGENETIC TREE CONSTRUCTION

Phylogenetic trees are diagrams that illustrate historical relation-
ships among the species. They have a valuable application in

evolutionary and population biology [we refer to Schuh and
Brower (2009) for more details]. In the context of our bicriteria
framework, it is important to understand whether the non-domi-

nated score set can provide further information than that pro-
vided by existing methods. In this section, we describe a method
for constructing phylogenetic trees from the non-dominated

score set and discuss its application for deriving further

Bicriteria pairwise sequence alignment

information about the reliability of the tree branches. Two

datasets are used for illustration purpose, and the resulting

trees are compared with those obtained with the well-known

technique of Maximum Likelihood (ML).

3.1 The bicriteria method

Given a collection of non-dominated score sets, each one ob-

tained for each pair of sequences, our approach consists of build-

ing a phylogenetic tree for each gap/indel value that arises from

the union of all non-dominated scores sets. First, for each gap/

indel value found, we collect the set of substitution score values,

one for each pair of species under study. The substitution score

value from the resulting score vector is normalized between zero

and one. Then, the distance between two species for a given gap/

indel value is computed as one minus the normalized substitution

score value. In our experiments, we used the resulting distance

matrix to build each phylogenetic tree by the Neighbor-Joining

method (Saitou and Nei, 2007) using PHYLIP package

(Felsenstein, 1985).
An important aspect of the analysis is to understand how often

certain phylogenetic tree topologies exist. A less frequent top-

ology, or tree branch, may indicate a less reliable relation be-

tween the corresponding species. Therefore, we count how many

times each branch arises in all phylogenetic trees and add the

corresponding relative frequency to each branch. This informa-

tion is analogous to the bootstrap values introduced by

Felsenstein (1985); instead of the sampling process, we use the

non-dominated score sets. In the following, we describe two ex-

periments with real-life data.

3.2 First experiment

The first dataset consists of Candida genes, Candida albicans

PAPa, C.albicans PAPalpha, Candida tropicalis PAPalpha,

C.tropicalis PAPa and Candida dubliniensis PAPa, as well as

the genes Pichia stipitis PAPa, and Saccharomyces cerevisiae

PAP. [See Butler et al. (2009) for a more detailed description

of these genes.] For each pair of genes, we computed the non-

dominated score set with respect to Problem (VSGP) with sub-

stitution matrix M½i, i� :¼ 1 and M½i, j� :¼ �1, i 6¼ j; see the com-

plete non-dominated score sets with staircase line representation

in Figure 2. It is possible to observe that there exists a large

number of non-extreme supported score vectors, as indicated

by the straight lines, which cannot be found by a parametric

sequence alignment (see Steuer, 1986, Chapter 14).

We constructed 567 phylogenetic trees by using our method,

but only two different tree topologies were obtained. One of two

tree topologies was discarded from the analysis, as it arose only

once of the 576 trees. Figure 3a shows the remaining tree

Table 2. Experimental results for the pruning technique for problem (VSGP)

Datasets Size #nd CPU-time (%prun)

noPrune Prune (1) Prune (5) Prune (10) Prune (15) Prune (20)

RV911-BOX115 750 239 3.8
 0.9 3.5
 1.4 (1%) 3.3
 1.4 (10%) 3.3
 1.4 (16%) 3.4
 1.5 (19%) 3.5
 1.5 (21%)

RV911-BOX096 793 264 4.9
 2.2 4.6
 3.5 (0%) 4.5
 3.6 (9%) 4.5
 3.7 (15%) 4.6
 3.8 (18%) 4.8
 3.9 (19%)

RV911-BOX010 1133 382 13.7
 5.6 13.6
 9.1 (0%) 12.8
 8.8 (10%) 12.6
 8.9 (14%) 12.8
 9.1 (18%) 13.1
 3.4 (22%)

RV912-BOX075 458 139 0.8
 0.1 0.8
 0.1 (1%) 0.6
 0.1 (30%) 0.5
 0.1 (46%) 0.5
 0.1 (52%) 0.5
 0.1 (54%)

RV912-BOX258 608 153 1.8
 0.5 1.8
 0.8 (3%) 1.2
 0.5 (43%) 0.9
 0.4 (59%) 0.8
 0.4 (65%) 0.8
 0.4 (69%)

RV912-BOX154 1076 243 5.3
 1.2 5.3
 2.0 (1%) 4.7
 1.6 (14%) 4.3
 1.4 (26%) 4.2
 1.3 (31%) 4.2
 1.3 (34%)

RV913-BOX158 671 69 1.1
 0.2 1.3
 0.3 (2%) 0.5
 0.2 (66%) 0.3
 0.1 (79%) 0.3
 0.1 (82%) 0.3
 0.1 (83%)

RV913-BOX222 983 180 5.1
 0.8 4.9
 1.3 (5%) 2.7
 0.7 (47%) 1.9
 0.6 (65%) 1.7
 0.6 (71%) 1.6
 0.6 (74%)

RV913-BOX063 1374 275 10.4
 1.5 10.6
 2.6 (5%) 7.3
 2.1 (54%) 5.0
 1.7 (70%) 4.3
 1.5 (75%) 4.1
 1.4 (77%)

Table 1. Experimental results for the pruning technique for problem (VSDP)

Datasets Size #nd CPU-time (%prun)

noPrune Prune (1) Prune (5) Prune (10) Prune (15) Prune (20)

RV911-BOX115 750 190 0.5
 0.2 0.4
 0.2 (45%) 0.4
 0.2 (53%) 0.4
 0.2 (58%) 0.4
 0.2 (59%) 0.4
 0.2 (60%)

RV911-BOX096 795 189 0.6
 0.3 0.5
 0.2 (38%) 0.4
 0.2 (55%) 0.4
 0.2 (60%) 0.4
 0.2 (62%) 0.4
 0.2 (63%)

RV911-BOX010 1134 269 2.1
 1.3 1.5
 1.2 (31%) 1.4
 1.1 (35%) 1.3
 1.1 (62%) 1.4
 1.2 (63%) 1.4
 1.2 (65%)

RV912-BOX075 457 114 0.1
 0.0 0.1
 0.0 (53%) 0.1
 0.0 (71%) 0.1
 0.0 (75%) 0.1
 0.0 (76%) 0.1
 0.0 (77%)

RV912-BOX258 607 106 0.3
 0.1 0.1
 0.1 (67%) 0.1
 0.1 (84%) 0.1
 0.1 (86%) 0.1
 0.1 (87%) 0.1
 0.1 (87%)

RV912-BOX154 1076 164 0.8
 0.4 0.5
 0.3 (59%) 0.4
 0.2 (71%) 0.4
 0.2 (74%) 0.4
 0.2 (75%) 0.4
 0.2 (76%)

RV913-BOX158 664 74 0.2
 0.1 0.1
 0.0 (83%) 0.0
 0.0 (91%) 0.0
 0.0 (92%) 0.0
 0.0 (92%) 0.0
 0.0 (92%)

RV913-BOX222 983 149 0.8
 0.2 0.3
 0.2 (72%) 0.2
 0.1 (86%) 0.2
 0.1 (88%) 0.2
 0.1 (89%) 0.2
 0.1 (89%)

RV913-BOX063 1374 206 2.0
 0.4 0.7
 0.3 (76%) 0.4
 0.2 (88%) 0.4
 0.2 (90%) 0.4
 0.2 (91%) 0.4
 0.2 (91%)

M.Abassi et al.

obtained for a gap value of 283, the median of all gap values

found; the value close to each branch indicates the relative fre-

quency of that branch. For comparison, we computed the evo-

lutionary tree using the ML method based on the model from

Jukes and Cantor (1969) obtained by MEGA5 (Tamura et al.,

2011); see Figure 3b. The bootstrap consensus tree inferred from

1000 replicates (Felsenstein, 1985) was taken to represent the

evolutionary history of the taxonomic analysis. There were a

total of 1613 positions in the final dataset with all of them

having 590% site coverage removed. The percentage of trees

in which the associated taxa clustered together is shown next

to the branches. Initial tree(s) for the heuristic search were ob-

tained automatically as follows: when the number of common

sites was5100 or less than one-fourth of the total number of

sites, the maximum parsimony method was used; otherwise

BIONJ method with MCL distance matrix was used. The tree

is drawn to scale, with branch lengths measured in the number of

substitutions per site.
By comparing both trees, it is possible to infer that they have a

similar topology and similar relative branch frequency. This con-

clusion can also be understood by the regularity of the lines of

Figure 2. The nearest genes are C.albicans PAPalpha and

C.dubliniensis PAPa, which corresponds to the black line in

Figure 2, with the largest substitution score. In the same figure,

the three pink lines allow us to infer the positioning of C. tropicalis

PAPalpha with respect to C.albicans PAPalpha and C. dublinien-

sis PAPa, as well as the branch (C.albicansPAPa, C. dubliniensis

PAPa). As expected, P.stipitis PAP and S.cerevisiae PAP are the

most distant species, as seen by the green dot-dash line in Figure 2.

Finally, both phylogenetic trees indicate a lower value for the

branch that contains P.stipitis PAP gene. We relate this value to

the crossed lines between the pairs formed by P.stipitis PAP and

others genes (see blue lines in Fig. 2).

3.3 Second experiment

The second dataset is a classic example of comparison between

primates: Homo sapiens haplogroup J1c3, Homo sapiens nean-

derthalensis, Gorilla gorilla graueri, Pan troglodytes troglodytes

and Pongo abelii species. We performed the same analysis as

Fig. 2. Staircase line representation of the non-dominated score sets for the first experiment

(a)

(b)

Fig. 3. Phylogenetic trees for the first experiment: Bicriteria model for a

gap value of 283 (a) and ML model (b)

Bicriteria pairwise sequence alignment

described in the previous section. Figure 4 shows the non-domi-

nated score sets with staircase line representation. The figure

shows a large number of non-extreme supported score vectors

and some intersecting lines. This last point indicates that the

relationship between those species, in the context of evolutionary

studies, may depend of the score vectors chosen (or the scalarized

score function used). We conjecture that the existence of inter-

sections may indicate a less reliable conclusion about the evolu-

tionary relationship.
By using our bicriteria method, a total of 144 phylogenetic

trees were obtained, which gave rise to two different tree topol-

ogies. Plots (a) and (b) of Figure 5 show the two trees topologies

obtained for a gap value of 22 and 54, respectively; these gaps

values correspond to the median of all gap values found in the

phylogenetic trees with the same topology. The evolutionary tree

using the ML method was also computed using the same method

described in the previous section. The tree with the highest log

likelihood (�1351.1512) is shown in Figure 5c. All positions with

560% site coverage were eliminated. That is,540% alignment

gaps, missing data and ambiguous bases were allowed at any

position. There were a total of 376 positions in the final dataset.
The two trees obtained with our method differ slightly in re-

lationship to the Pan traglodytes traglodytes with the remaining

species: in plot (a), this species arose in the top of the branch

(Homo sapiens neanderthalensis, Homo sapiens haplogrop J1c3),

whereas in plot (b), it arises in a different clade, paired

with Gorilla gorilla graueri. The relative branch frequencies

suggest that the tree of plot (b) may be more reliable.

Interestingly, this is also confirmed by the tree obtained with

the ML method.

4 CONCLUSION

In this article, a pruning technique is introduced to improve the
performance of dynamic programming algorithms for bicriteria
pairwise sequence alignment, which uses lower and upper bounds

to discard states in early stages of the process. This technique can
easily be extended for the case of affine gap by performing the

necessary changes in the recurrence relation of matrices S and T

Fig. 4. Staircase line representation of the non-dominated score sets for the second experiment

Fig. 5. Phylogenetic trees for the second experiment: Bicriteria model for

a gap value of 22 (a) and 54 (b) and ML model (c)

M.Abassi et al.

(see Section 2.1). They can also be extended for the three criteria
case, where the substitution score, the number of indels and the
number of gaps are simultaneously considered in the score vector
function. In addition, this pruning technique can also be used

in multi-criteria multiple sequence alignment, for instance, in
the context of progressive alignment with sum-of-pairs score
function.

In the second part of this article, we showed for the first time a
successful link between non-dominated score sets and phylogen-
etic tree construction. We present a simple method based on our

bicriteria framework that allows to construct phylogenetic trees
as well as to give information about the reliability of the tree
branches. The advantage of this method is that no assumption

about a priori knowledge on users preferences is required, there-
fore, being less unbiased. The two real-life test cases showed that
few phylogenetic trees can be obtained and are matched with
those obtained with the ML method. Further research is

needed to derive theoretical relation between ML estimations
and the information provided by the non-dominated score set
for tree branch reliability.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the anonymous referees
for their valuable comments and suggestions on the paper.

Funding: Portuguese Foundation for Science and Technology

and FEDER, Programa Operacional Factores de
Competitividade - COMPETE, FEDER - FCOMP-01-0124-
FEDER-010024, under the project ‘Multiobjective Sequence

Alignment’ (PTDC/EIA-CCO/098674/2008).

Conflict of Interest: none declared.

REFERENCES

Beier,R. and Vöcking,B. (2011) The knapsack problem. In: Algorithms Unplugged.

Springer-Verlag, Berlin, Heidelberg, pp. 375–381.

Butler,G. et al. (2009) Evolution of pathogenicity and sexual reproduction in eight

candida genomes. Nature, 459, 657–662.

Dayhoff,M. et al. (1978) A model of evolutionary change in proteins. In:

Dayhoff,M. (ed.) Atlas of Protein Sequence and Structure, Vol. 5. National

Biomedical Research, Washington, D.C., pp. 345–358.

Ehrgott,M. (2005) Multicriteria Optimization. Springer-Verlag, Berlin, Heidelberg.

Felsenstein,J. (1985) Confidence limits on phylogenies: an approach using the boot-

strap. Evolution, 39, 783–791.

Gusfield,D. et al. (1992) Parametric optimization of sequence alignment. In:

Proceedings of the Third Annual ACM-Siam Symposium on Discrete

Algorithms. pp. 432–439.

Gusfield,D. (1997) Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology. Cambridge University Press, New York,

NY, USA.

Handl,J. et al. (2007) Multiobjective optimization in bioinformatics and computa-

tional biology. IEEE/ACM Trans. Comput. Biol. Bioinform., 4, 279–292.

Jukes,T.H. and Cantor,C.R. (1969) Evolution of Protein Molecules. Academy Press,

New York.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol.

Biol., 48, 443–453.

Paquete,L. and Almeida,J. (2009) Experiments with bicriteria sequence alignment.

In: Cutting-Edge Research Topics on Multiple Criteria Decision Making. Vol. 35

of CCIS. Springer-Verlag, Berlin, Heidelberg, pp. 45–51.

Roytberg,M. (1992) Fast algorithm for optimal aligning of symbol sequences. In:

Mathematical Methods of the Analysis of Biopolymer Sequences. Vol. 8 of

DIMACS Series in Discrete Mathematics and Theoretical Computer Science

AMS, Providence, RI, pp. 113–127.

Roytberg,M. et al. (1999) Pareto-optimal alignment of biological sequences.

Biophysics, 44, 565–577.

Saitou,N. and Nei,M. (2007) The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.

Schuh,R. and Brower,A. (2009) Biological Systematics: Principles and Applications.

Cornell University Press, Ithaca, NY.

Steuer,R.E. (1986) Multiple Criteria Optimization: Theory, Computation, and

Application. Wiley & Sons, New York, NY.

Tamura,K. et al. (2011) Mega5: molecular evolutionary genetics analysis using

maximum likelihood, evolutionary distance, and maximum parsimony methods.

Mol. Biol. Evol., 28, 2731–2739.

Taneda,A. (2010) Multi-objective pairwise RNA sequence alignment.

Bioinformatics, 26, 2383–2390.

Thompson,J. et al. (2005) Balibase 3.0: latest developments of the multiple sequence

alignment benchmark. Proteins, 61, 127–136.

Bicriteria pairwise sequence alignment

