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This paper describes the modeling of quantum dots lasers with the aim of assessing the conditions
for stable cw dual-mode operation when the mode separation lies in the THz range. Several pos-
sible models suited for InAs quantum dots in InP barriers are analytically evaluated, in particular
quantum dots electrically coupled through a direct exchange of excitation by the wetting layer or
quantum dots optically coupled through the homogeneous broadening of their optical gain. A stable
dual-mode regime is shown possible in all cases when quantum dots are used as active layer whereas
a gain medium of quantum well or bulk type inevitably leads to bistable behavior. The choice of a
quantum dots gain medium perfectly matched the production of dual-mode lasers devoted to THz
generation by photomixing.
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I. INTRODUCTION

CW THz and millimeter wave generation using the
beating frequency of a dual-mode laser is a topic that has
attracted many efforts during recent years because there
is currently a lack of versatile and easy to use sources
at these frequencies1. To fill this gap, THz photomixing
has many strengths, including the use of photonic tech-
nologies as the manufacture of laser diodes and complex
optical systems or the ability to carry the beat on opti-
cal fiber. In all cases the conversion of the optical signal
is provided by a photomixer which transforms the fast
variations of the optical intensity in the electromagnetic
radiation. Since a few years these components exist at
once in GaAs technology for wavelengths ≈ 0.8µm2 and
InGaAs technology around ≈ 1.55µm3.

Regarding the optical beat source, several alternatives
were considered. The easiest way is to combine two inde-
pendent lasers that are stabilized in frequency and ampli-
tude. This solution is now commercial but it is expensive
because of the use of extended cavity lasers or high power
DFB requiring sophisticated control electronics4. In ad-
dition, the use of two independent lasers implies that
the drift and noise are added in the beat noise which
directly blames the linewidth of the THz signal gener-
ated. The implementation of this solution in the case of
high-resolution spectroscopy requires a metrological sta-
bilization of lasers that remains difficult in practice5.

The use of a single laser seems more simple and should
allow an improvement of compactness. Two solutions are
possible. In the first the laser operates in pulsed mode
either by gain-switching or by active or passive mode

locking. The THz beating is then obtained by filter-
ing the high-frequency harmonics of the pulse repetition.
Because the consistency of the optical phase is main-
tained in these modes, extremely fine laser linewidths
can be obtained6,7. Besides tunability weakness in the
case of mode-locking, the major drawback of this tech-
nique lies in the sophisticated filtering process which is
itself a source of high attenuation and that needs to be
offset by several optical amplifiers. This undermines the
simplicity and cost of final assembly. Alternatively the
use of a suitable structure in the active layer allows for
the dual-mode filtering task within the passively mode-
locked laser itself. Millimeter frequency generation has
been demonstrated that way8, however, the complexity
is transferred to the laser fabrication that must include
a specific longitudinal structure along the optical waveg-
uide.

The second solution to generate THz with a sin-
gle component is to use a laser operating in the dual-
mode regime. Again several techniques have been pro-
posed. First with the advent of manufacturing tech-
nologies, semiconductor lasers can now include a com-
plex structure with multiple DFB sections operating
independently9,10. The fact that the two modes inject
each other can lead to instabilities and may seriously de-
crease the tuning range. An elegant solution has been
demonstrated with a diode-pumped solid-state laser us-
ing either a separation of the two polarization eigenstates
or a spatial separation of the two modes using an intra-
cavity birefringent crystal11. These latter structures have
shown excellent performance both in terms of noise and
beating tunability12,13.
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To simplify, we may want to use a single Fabry-
Perot edge-emitting laser. Under certain conditions, it is
then possible to obtain structures exhibiting a dual-mode
beating at the roundtrip time of the optical cavity14,15.
This was used once to build an very compact imaging sys-
tem at millimeter waves16. Similarly we may want to use
a vertical-cavity semiconductor-laser which by construc-
tion has much less longitudinal modes available in the
gain curve. One must then stack two cavities within the
structure17,18 to obtain the required two separate longitu-
dinal modes spaced in frequency by an amount dependent
of the optical coupling. This concept has been recently
taken over by some of us with a single vertical-cavity
Bragg-mirror resonator and a photonic-crystal support-
ing a slow optical Bloch mode19. These structures have
many advantages for planar applications. Encapsulating
the two cavities within the same small component ensures
that any optical-cavity frequency-drift, for example due
to temperature variations, will apply similarly to both
modes. As a consequence the beating frequency will be
insensitive to such drifts at first order. A built-in dual-
mode laser is also an integrated component extremely
compact and easily integrated into a system for which the
stability of the beat will be easily obtained by monitoring
the overall operating parameters of a single component
(temperatures, currents, . . . ). To enjoy these benefits,
however, it is necessary that the modal competition does
not destroy the desired dual-mode operation.

Modal competition is at the heart of the stable dual-
mode operation of a single semiconductor laser. Since
the seminal work of Lamb20, it is well known that even
if the laser cavity allows two simultaneous modes with
similar quality factors and gains, the gain medium non-
linearity sometimes forbids their simultaneous emission.
A stable dual-mode operation is only allowed when the
coupling factor between the modes is not strong enough.
Otherwise the laser operates in a bistable regime where
one mode dominates. Although unwanted, this case un-
fortunately happens with gain media such as bulk semi-
conductor or quantum wells (QWs). The physical ori-
gin is the short conduction-band intraband relaxation-
time that couple two adjacent modes sharing the same
carrier population. Following Agrawal21 and taking an
intraband relaxation time below 100 fs which is consis-
tent with InGaAsP active layers22 or InGaAs QW23, it
is not possible to have a stable dual-mode operation if
the two modes are separated by less than 1.6 THz. This
result was also obtained from rate-equations24,25. Such
an estimation moreover neglects the spatial hole burn-
ing which is also involved in the coupling of longitudinal
modes26. This leaves no chance for a semiconductor laser
emitting at 1.55µm and incorporating a bulk or QW gain
medium to operate dual-mode with a beating of≈ 1 THz.
The dynamics of multimode VCSEL27 or edge-emitting
laser28,29, and even multisection DFB lasers30 claims this.

Our dual-mode laser design involving a slow optical
Bloch mode in a vertical cavity structure is supposed
to operate dual-mode19. It is thus mandatory to incor-

porate a gain medium that will not preclude the laser to
operate in the desired regime because of a too strong cou-
pling between modes. As shown by the above analysis,
this coupling is mainly due to the sharing of the same
carrier populations in the conduction band by the two
adjacent modes. The proposed solution to circumvent
this strong coupling is to use InAs quantum dots (QDs).
The purpose of this work is then to verify that either
optical or electrical coupling between InAs dot popula-
tions will remain at a sufficiently low level to maintain
the dual-mode operation. Dots are optically coupled by
the homogenous broadening of the optical gain that is
estimated a few meV at 300 K31–35. Dots are also elec-
trically coupled by their common interaction with the
wetting layer that may allow a transfer of excitation from
one dot to another.
The rest of the paper is organized as follows. Section

II reminds the analytical modeling of dual-mode lasers
with a single gain medium. Section III details the case of
dual-mode lasers including QDs by successively assum-
ing first that dots are not coupled, and then coupled by
a chemical-like equilibrium law linking excited dot pop-
ulations through an interaction with the wetting layer,
and finally assuming that the QDs are optically coupled
through their homogeneous emission width. The conclu-
sion is given in section IV.

II. DUAL-MODE SEMICONDUCTOR LASER

WITH A SINGLE GAIN MEDIUM

A steady dual-mode operation requires special condi-
tions for the allowed modes of a laser. The analysis ini-
tially given by Lamb20 is still the most relevant and eas-
ier to understand, it is based on two coupled differential
equations that describe the time evolution of the modes
in the laser cavity. These modes are characterized by
their respective intensities I1 and I2

dI1
dt

= (α1 − β1I1 − θ12I2) I1 (1a)

dI2
dt

= (α2 − β2I2 − θ21I1) I2 (1b)

where αi are the unsaturated optical gains and where βi

and θij are the self-saturation and cross-saturation gain
coefficients. The stable solutions of these equations are
obtained by canceling the derivatives

Iss1 =
α1 − (θ12/β2)α2

(1− C)β1

Iss2 =
α2 − (θ21/β1)α1

(1− C) β2

(2)

with

C =
θ12θ21
β1β2

a dimensionless coupling factor introduced by Lamb who
showed using a perturbation analysis20 that it controls
the existence and stability of the dual-mode operation. If
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C > 1, i.e. in the case of a strong coupling between the
modes, only single mode is enabled, the system is bistable
and the laser operates continuously only on either of the
two modes.
Starting from this conditions, it may be possible how-

ever to obtain a stable dual-mode regime changing the
gain medium itself. This has been shown in several ways:

• by adding a saturable absorber in the cavity9;

• by physically decoupling the two gain areas (for
example by writing a dual-period DFB within the
cavity36,37, or a solid-state laser where the gain is
physically separated into two different paths, for
example by changing the polarization12).

Neither of these solutions is satisfactory and feasible
for our application where both modes share the same gain
location19. We will further investigate the link between
this model and the most common rate-equations model
of semiconductor lasers.
A semiconductor laser with a bulk or QW gain medium

is generally described on the basis of population rate evo-
lutions. Ahmed and Yamada38 gave a fairly complete
version of it from which one has extracted the equations
describing a dual-mode laser

dN

dt
= κ−

N

τn
−A1NS1 −A2NS2 (3a)

dS1

dt
= −

S1

τp1
+A1NS1 (1− ε1S1 − ϑ1S2) (3b)

dS2

dt
= −

S2

τp2
+A2NS2 (1− ε2S2 − ϑ2S1) (3c)

where N is the carrier density beyond transparency,
κ = I/(eV ) is the pumping parameter which depends
directly on the injection current I and volume of the ac-
tive region V , τn is the carrier recombination time, the
Ai are the differential gains and Si the corresponding
photon densities, τpi are the photon lifetime within the
cavity, εi and ϑi the self-saturation and cross-saturation
coefficients of optical gains. Indices i refer of course to
the various modes allowed by the cold cavity here reduced
to 2. Considering a laser running well above threshold, it
is possible to neglect the non-radiative recombination of
carriers N/τn whose contribution can be seen as implic-
itly counted by a slight modification of the κ-values which
reflects the pumping threshold. In Eqs. (3) the coupling
terms between the two modes appear explicitly with ϑi.
As their physical origin is similar to the self-saturation
gain terms εi, these must also be taken into account. The
omission of the correction factor (1− εiSi − ϑiSj) in the
equation carriers however provides a great simplification
of the calculations at the cost of a very weak approxima-
tion.
Like with the Lamb model, simple calculations allow

to obtain the stationary solutions of Eqs. (3). Among
the solutions, only the one with simultaneous nonzero
optical intensities S1 and S2 corresponds to a dual-mode

laser, others accounting instead of bistable operations.
In the general case these solutions are quite complicated
but in the simplistic case where the two modes are close
to the gain maximum with a spacing small enough that
their parameters are very similar, then εi = ε, ϑi = ϑ,
τpi = τp and Ai = A and the stationary values are

Sss
1 = Sss

2 =
κ

2u
N ss =

u

A
(4)

with u = 1
2
(ε+ ϑ)κ+ 1

τp
.

The stability of this solution is further demonstrated
by an analysis of variations around the operating point.
To do this we replace in (3) rates by their stationary
values of (4) plus a small variation, N = N ss + n,
Si = Sss

i +si. Keeping only the first order perturbations,
we obtain a matrix system of three coupled first-order
differential-equations that one writes in matrix form.
The dual-mode stationary solution is then stable if the
variations diminish over time, which is true if and only
if the real parts of the eigenvalues of the corresponding
matrix Θ are negative.
In our particular case, the matrix is

Θ =







−Aκ
u

−u −u
Aκ

2u2τp
− εκ

2
−ϑκ

2
Aκ

2u2τp
−ϑκ

2
− εκ

2






(5)

whose characteristic polynomial is

P(λ) = −
(

λ−
κ

2
(ϑ− ε)

)

(

λ2 + λ

(

Aκ

u
+

κ

2
(ϑ+ ε)

)

+
Aκ

u

(

1

τp
+

κ

2
(ϑ+ ε)

))

(6)

The eigenvalues of Θ are the roots of P , that is κ
2
(ϑ− ε)

and the two roots of the polynomial of degree two on
the right side. With our choice of parameters, all coef-
ficients of this polynomial are positive and then the two
roots always exhibit negative real parts. Consequently,
the dual-mode stationary solution proposed is stable if
and only if ϑ < ε.
The self-saturation and cross-saturation coefficients

can be calculated using a quantum model of the gain
medium and the result shows typically ϑ ≈ 4ε/321,38,39.
In such conditions, natural dual-mode behavior is not ex-
pected from a semiconductor laser, unless strong disper-
sive effects are included in the cavity to remove the condi-
tion assumed here: εi = ε, ϑi = ϑ, τpi = τp and Ai = A.
This was recently confirmed by numerical simulations of
the dynamics of semiconductor lasers made with typ-
ical parameters from GaAs or InGaAsP technologies.
Bistable behavior or highly multimode with a total power
usually spread over a large number of modes is always ob-
tained, in perfect agreement with experiments25,38. This
result was also confirmed with a Maxwellian modeling of
laser29 which only shows possibilities of either a single-
mode behavior (actually bistable), or highly multimode.



4

Both our analysis and these works indicate that dual-
mode semiconductor lasers are of course totally unex-
pected!
A similar extensive stability analysis was proposed in27

to account for the degeneracy of the two polarization
modes of VCSELs. This question is mathematically anal-
ogous to our problem invoking two longitudinal modes
except that there is no theoretical estimations of the cou-
pling factor in that case. A fairly comprehensive system
behavior was reported, including the polarization switch-
ing of a VCSEL based on the gain saturation in a manner
consistent with what is observed experimentally.

III. QUANTUM-DOTS DUAL-MODE LASERS

QD lasers are significantly different from bulk or QW
semiconductor lasers discussed above. Indeed QDs once
created have little interaction with each other and sub-
stantially the same ability to capture a free carrier from
the barrier. Several things differentiate strongly this type
of material gain with previous ones:

1. The total number of active QD in resonance with a
given mode is determined by the construction, and
even if this number is high, it remains much smaller
than the possible number of states allowed in the
conduction band of a bulk or QW gain medium.

2. QDs are much less interconnected than the ex-
cited states in the conduction band of a more usual
semiconductor laser. In particular, they cannot di-
rectly exchange carriers either within the QD pop-
ulation of the same mode, or between QD popu-
lations addressing different modes. In practice the
exchange of carriers between two QDs must involve
first thermionic emission to the barrier and capture
of this carrier by another QD. This indirect process
considerably weakened the coupling as compared
to the case of bulk or QW lasers. Given the values
??of the energy levels at stake in a system with InAs
QDs in InP barrier, we neglect this coupling here
although it could be taken into account in a subse-
quent Monte Carlo numerical model of dual-mode
operation of the laser.

3. According to the QDs manufacturing method, a
monoatomic InAs wetting layer appearing at the
growth interface is often common to all dots. Ow-
ing to this layer, the QDs are likely to have a kind of
direct electrical coupling that can transfer the exci-
tation of a dot family to another family addressing
another mode. The coupling effectiveness obviously
depends on the average distance between dots, and
on the nature and thickness of this wetting layer
which is intimately dependent of the growth tech-
nology.

4. The homogeneous optical linewidth of a single
QD is estimated between 3 and 12 meV at room

temperature31–35. A direct optical coupling thus
necessarily occurs between two QD populations ad-
dressing optical modes separated energetically by
≈ 4.2 meV to obtain a beating at ≈ 1 THz.

We will evaluate these situations in sequence and esti-
mate analytically how the various coupling effects inter-
act with the stability of the dual-mode laser.

A. Uncoupled quantum-dots

Let us first assume an ideal dual-mode QD laser with
two uncoupled dots families perfectly centered on the two
optical modes allowed by the dual-mode cavity. Rate-
equations thus write

dNi

dt
= αiκ−

Ni

τni

−Ai (Ni(Si + 1)− PiSi) (7a)

dSi

dt
= −

Si

τpi
+Ai (Ni(Si + 1)− PiSi) (7b)

with i = 1, 2 and Bi = Ni + Pi the total number of QD
addressing mode i, Ni the number of excited dots and
Pi the number of unexcited dots, κ the total pumping
and 0 ≤ αi ≤ 1 with α1 + α2 = 1 two parameters that
reflect the distribution of the pump between the two QD
families. As above Ai terms, τni and τpi account for the
modal gains, the carrier lifetime in the excited state and
the photon lifetime within the cavity for each of the two
modes.
The reality of a QD laser is not exactly the one de-

scribed here. In practice, the size dispersion of quantum
dots produces an inhomogenously broadened gain cover-
ing almost uniformly the two allowed modes with respect
of our assumption of a THz-beating dual-mode laser. As
a result many dots are excited but unable to feed a laser
mode, thereby contributing to an increase of the laser
temperature and a degradation of its quantum efficiency.
Although neglected in Eqs. (7), this effect could be taken
into account by an adequate reduction of the effective
pumping term κ for both QD populations.
A careful inspection of Eqs. (7) clearly shows that there

is no direct coupling between the two QD populations.
The stationary solution obtained by canceling the deriva-
tives and keeping only the dual-mode physical solution
with positive populations is

N ss
i =

1

4τpi

(

τi + τ ′i −

√

(τi − τ ′i)
2
+ 4τniτ

′

i

)

(8a)

Sss
i =

1

4τni

(

τ ′i − τi +

√

(τi − τ ′i)
2
+ 4τniτ

′

i

)

(8b)

where i = 1, 2 depending on the considered mode and
τi =

1
Ai

+Biτpi+ τni and τ ′i = 2αiκτpiτni. Of course the
number of unexcited QDs directly derived, P ss

i = Bi −

N ss
i . Similarly the threshold is calculated analytically

as the pumping level where a break occurs in the slope
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of the photon stationary solution, τ ′i = τi − 2τni.
40 In

fact, Eqs. (8) describe a behavior of two completely inde-
pendent lasers with quantum efficiencies and thresholds
evidencing no modal competition. Assuming Sss

i ≫ 1, it
is easy to verify with the method proposed by Lamb that
this solution is stable and that it can be generalized to
any number of n juxtaposed modes.

B. Quantum-dots electrically coupled through the

wetting layer

To go beyond this first simple view of a QD laser
where the decoupling between modes is total and there-
fore where no modal competition will affect the two-mode
regime, we now imagine that the two QD populations can
interact with each other directly. Presumably an excited
dot of the first family can transfer to an unexcited dot of
the second family, the difference in photon energy being
supplied or absorbed by the states involved in the wetting
layer. This direct interaction is similar to a chemical-like
equilibrium law between populations

N1 + P2 ↔ N2 + P1 (9)

In practice Eqs. (7) becomes

dN1

dt
= α1κ+ k1N2P1 − k2N1P2 −

N1

τn1

−A1 (N1(S1 + 1)− P1S1)

(10a)

dN2

dt
= α2κ+ k2N1P2 − k1N2P1 −

N2

τn2

−A2 (N2(S2 + 1)− P2S2)

(10b)

dS1

dt
= −

S1

τp1
+A1 (N1(S1 + 1)− P1S1) (10c)

dS2

dt
= −

S2

τp2
+A2 (N2(S2 + 1)− P2S2) (10d)

where ki are constants reflecting the exchange rate of
the excited states between the two QD families. Clearly
if ki = 0 QDs are not coupled anymore and one retrieve
the previous situation. Instead, if ki constants are strong
enough their corresponding rates in Eqs. (10) quickly be-
come of paramount importance as compared to any other
rate. This is because they are assigned to products of two
carrier populations that correspond to the highest values
involved in Eqs. (10). Thus the proper operation of the
laser is obtained when these two rates almost annihilate
or equivalently

k2N1P2 ≈ k1N2P1 ⇐⇒ N1P2 ≈ CN2P1 with C =
k1
k2

which is the analogue of chemical equilibrium described
by Eq. (9) where carrier populations are strongly coupled.
For the sake of simplicity we now neglect the terms in

this ‘+1’ that account for spontaneous emission in each

mode in Eqs. (10). Dual-mode stationary solution for
carriers is then simply given by

N ss
i =

Bi

2
+

1

2Aiτpi
with i = 1, 2 (11)

But the dual-mode stationary solution for photons is
much more complicated in the general case. Two spe-
cial cases are however interesting to consider:

(a) when the coupling induced by the wetting layer are
identical, ki = k

Sss
i = αiκτpi

−
1

2

(

Biτpi
τni

+
1

Aiτni

+ kτpi

[

Bj

Aiτpi
−

Bi

Ajτpj

])

(12)

(b) when the material and cavity parameters are iden-
tical for the two modes, i.e. Ai = A, Bi = B,
τpi = τp, τni = τn.

Sss
i = αiκτp

−
1

2

(

Bτp
τn

+
1

Aτn
+ (ki − kj)τp

[

1

2A2τ2p
−

B2

2

])

(13)

where (i, j) = (1, 2) or (2, 1). If cases (a) and (b) occur
simultaneously, the situation is similar to that of §III A
because the ki-dependent terms cancel in Eqs. (12) and
(13), therefore the coupling by the wetting layer becomes
inefficient. Out of this particular case, the coupling by
the wetting layer induces a differentiation between the
thresholds of the two laser modes obtained approximately
here by setting Si = 0 in (12) et (13). The mode that had
the lowest threshold before coupling feeds its population
of excited QDs by direct transfer from the one who had
the highest threshold, the result is an amplification of
the threshold difference. In the extreme case where the
constants ki are larges, the population of excited QDs
which reaches the first its stimulated emission threshold
is clamped and in turn saturates the population of excited
QDs for the other mode to a level below its own threshold.
Strong coupling between QD populations thus leads to
the destruction of the two-mode regime.

In the case where the coupling is sufficiently moderate
so that the dual-mode laser regime is preserved, the sta-
bility analysis is conducted as in §II. We report the sta-
tionary values plus a small fluctuation in the rate equa-
tions (10) to obtain the evolution matrix of these fluctu-
ations

Θ =







−σ1 ζ2 −δ1 0
ζ1 −σ2 0 −δ2
β1 0 0 0
0 β2 0 0






(14)
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with

β1 = 2A1S
ss
1 β2 = 2A2S

ss
2

ζ1 = k1N
ss
2 + k2P

ss
2 ζ2 = k2N

ss
1 + k1P

ss
1

δ1 = A1(N
ss
1 − P ss

1 ) δ2 = A2(N
ss
2 − P ss

2 )

σ1 = β1 + ζ1 + 1/τn1 σ2 = β2 + ζ2 + 1/τn2

which are all positive terms since the population inversion
above the threshold requires N ss

i > P ss
i .

Fluctuations may return to equilibrium if and only if
the eigenvalues λ of Θ have negative real part. These
eigenvalues are the roots of the characteristic polynomial

P(λ) = λ4 + (σ1 + σ2)λ
3 + (π1 + π2 + σ1σ2 − ζ1ζ2)λ

2

+ (π1σ2 + π2σ1)λ + π1π2. (15)

Because σi > ζi, all the coefficients of P(λ) are posi-
tive. According to the Routh-Hurwitz criterion, all roots
will then have their real part negative if and only if41

(σ1 + σ2)(π1 + π2 + σ1σ2 − ζ1ζ2)

− (π1σ2 + π2σ1) >
(σ1 + σ2)

2π1π2

π1σ2 + π2σ1

(16)

We can rewrite the difference of the two members of (16)

(σ1+σ2)(σ1σ2−ζ1ζ2)+(π1σ1+π2σ2)−
(σ1 + σ2)

2π1π2

π1σ2 + π2σ1

= (σ1 + σ2)(σ1σ2 − ζ1ζ2) + σ1σ2

(π1 − π2)
2

π1σ2 + π2σ1

(17)

and remark that since σi > ζi this difference is always
positive. We then conclude that the dual-mode station-
ary solution obtained from Eqs. (10) is stable. It proves
that the coupling of carriers by a chemical-like equilib-
rium law between the two QD populations does not pro-
hibit a dual-mode behavior in the sense of modal com-
petition, even if it is likely to push the threshold up to
an unacceptable value for one of the lasing mode if too
strong.

C. Quantum-dots optically coupled through the

homogeneous linewidth

We now consider the two QD families coupled only
through the homogeneous gain width of each dot, the
rate equations then become

dN1

dt
= α1κ−

N1

τn1

−A1(N1 − P1)(S1 + ǫS2) (18a)

dN2

dt
= α2κ−

N2

τn2

−A2(N2 − P2)(S2 + ǫS1) (18b)

dS1

dt
= −

S1

τp1
+A1(N1 − P1)S1 + ǫA2(N2 − P2)S1

(18c)

dS2

dt
= −

S2

τp2
+A2(N2 − P2)S2 + ǫA1(N1 − P1)S2

(18d)

with of course the particle conservation of each QD family
Ni+Pi = Bi and assuming above threshold operation for
each mode which removes the spontaneous emission term
‘+1’ in photon density equations. The variable ǫ here ac-
counts for the direct optical coupling between dots of the
two modes. It depends on the value of the homogeneous
gain width and thus ranges from ≈ 10% to 60% for a
1 THz frequency separation, depending on whether one
considers a broadening of 3 meV or 10 meV.
In the general case the expression of the stationary

solutions is complex, but in the particular case of two
populations having the same QD material parameters
τni = τn, τpi = τp, Ai = A, Bi = B, and identical
pumps αi = 1/2, the stationary solutions are

N ss
i =

B

2
+

1

2A(1 + ǫ)τp
(19a)

Sss
i =

κτp
2

−
Bτp
2τn

−
1

2A(1 + ǫ)τn
(19b)

These formulas are close to those obtained in §III A for
uncoupled QDs. In fact only the term 1 + ǫ differs and
makes the calculated thresholds apparently lower in this
case as compared to uncoupled QDs. This distortion
effect does not hold if we consider that the differential
gain of a laser with high homogeneous linewidth will in-
evitably be far lower than that of a laser with a narrower
linewidth. No decrease in thresholds related to modal
coupling should be expected as a simplistic reading of
Eq. (19b) suggests.
Like in previous section with carriers coupled by the

wetting layer, the stability analysis of the dual-mode
regime has been conducted in the general case. Again
this stability is governed by the sign of the real parts of
the eigenvalues of the evolution matrix

Θ =







−σ1 0 −δ1 −ǫδ1
0 −σ2 −ǫδ2 −δ2
β1 ξ2 0 0
ξ1 β2 0 0






(20)

Again we have chosen to define as positive all the terms
of this matrix

β1 = 2A1S
ss
1 β2 = 2A2S

ss
2

ξ1 = 2ǫA1S
ss
2 ξ2 = 2ǫA2S

ss
1

δ1 = A1(N
ss
1 − P ss

1 ) δ2 = A2(N
ss
2 − P ss

2 )

σ1 = β1 + ξ1 + 1/τn1 σ2 = β2 + ξ2 + 1/τn2

and the eigenvalues are the roots of the following charac-
teristic polynomial (assuming πi = δ1(ǫξi+βi) for further
simplification)

P(λ) = λ4 + (σ1 + σ2)λ
3 + (σ1σ2 + π1 + π2)λ

2

+ (π1σ2 + π2σ1)λ+ (1− ǫ2)δ1δ2(β1β2 − ξ1ξ2) (21)

As ξ1ξ2 = ǫ2β1β2, the constant term can be written
more simply as c = (1 − ǫ2)2δ1δ2β1β2, and all the coeffi-
cients of P(λ) are then positive since 0 < ǫ < 1. Accord-
ing to the Routh-Hurwitz criterion, P(λ) roots exhibit
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negative real parts if and only if the following amount r
is positive41

r = (σ1+σ2)(π1+π2+σ1σ2)−(π1σ2+π2σ1)−
(σ1 + σ2)

2c

π1σ2 + π2σ1

yielding after simplification

r = (σ1 + σ2)σ1σ2 + (π1σ1 + π2σ2)−
(σ1 + σ2)

2c

π1σ2 + π2σ1

(22)

where we see that r is an increasing function of ǫ on [0, 1]
as a sum of functions of such type. The required proof
is thus obtained by just checking if the value at ǫ = 0 is
positive. Noting that at ǫ = 0, c = π1π2, allows to write
as in §III B Eq. (17)

(π1σ1 + π2σ2)−
(σ1 + σ2)

2c

π1σ2 + π2σ1

= σ1σ2

(π1 − π2)
2

π1σ2 + π2σ1

This proves that r > 0 and concludes again to the sta-
bility of the dual-mode regime in that case. It should be
noted, however, that if ǫ tends to 1, which corresponds
to a gain width very large compared to the energy gap of
the two modes, then two eigenvalues tend to zero making
the behavior of the dual-mode laser extremely unstable.
This is a limit case where the laser is very to close to
a bistable behavior but this is not the scenario we have
chosen for THz radiation by photomixing with an energy

gap of 4.1 meV between modes and QD homogeneous
linewidths between 3 and 10 meV.

IV. CONCLUSION

We studied different semiconductor laser types devoted
to operate continuously in stable dual-mode emission.
The proposed analysis is based on the rate-equations and
Lamb’s theory. After considering the case of laser with
bulk or QW gain mediums for which it is demonstrated
that the natural behavior is bistable and not dual-mode,
we evaluated analytically what should be expected from
QD semiconductor lasers. We have considered uncoupled
as well as coupled QDs either electrically through a direct
exchange of excitation by the wetting layer, or optically
through the homogeneous broadening of the gain. In all
cases we have shown analytically that a stable dual-mode
emission is possible.
If the objective of building a dual-mode semiconduc-

tor laser producing a stable beating frequency in the
THz range is highlighted, the selection of a QDs as gain
medium is the most suitable as compared to bulk or QWs
that inevitably lead to a bistable behavior. The incorpo-
ration of QDs in the active membranes of future photonic
crystal optoelectronic components for the 2.5D THz ra-
diation by photomixing is on the way42.
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