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HOMOGENIZATION OF NONCONVEX INTEGRALS WITH
CONVEX GROWTH

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. We study homogenization by I'-convergence of periodic multiple
integrals of the calculus of variations when the integrand can take infinite
values outside of a convex set of matrices.

1. INTRODUCTION

In this paper we are concerned with homogenization by I'-convergence of multiple
integrals of type

(1.1) /QW (;vu(x)) dz,

where Q C R? is a bounded open set with Lipschitz boundary, u € W1P(£;R™)
with p > 1, W : R x M™*4 — [0, 00] is a Borel measurable function which is
p-coercive, 1-periodic with respect to its first variable and not necessarily convex
with respect to its second variable and ¢ > 0 is a (small) parameter destined to
tend to zero. This non-convex homogenization problem was studied for the first
time by Braides in 1985 (see [Bra85] and [BD98, Theorem 4.5 p. 111]) and then by
Miiller in 1987 (see [Miil87, Theorem 1.3]). It is proved that if W is of p-polynomial
growth, i.e.,

(1.2) W(z,€) < c(1+|EP) for all (x,€) € RY x M™*4 and some ¢ > 0,

then (1.1) I'-converges, as the parameter £ tends to zero, to the homogeneous
integral

(1.3) / Whom (Va(x))dz,
Q
where u € WP (Q; R™) and Wiom : M™*4 — [0, 00] is given by the formula

(1.4) Whom (&) = HW () := inf inf W(z, &+ Vo(x))dx
k21 gpewy? (kY R™)) kY

with Y :=]0, 1[?. As is well known, because of the p-polynomial growth assumption
(1.2), this homogenization theorem is not compatible with the following two basic
conditions of hyperelasticity: the non-interpenetration of the matter, i.e., W(x,§) =
oo if and only if det(I + &) < 0, and the necessity of an infinite amount of energy to
compress a finite volume into zero volume, i.e., for every z € R¢, W(z,&) — oo as
det(I + &) — 0. Tt is then of interest to develop techniques for the homogenization
of integrals like (1.1) when W is not necessarily of p-polynomial growth: this is the
general purpose of the present paper. For works in the same spirit, we refer the

Key words and phrases. Homogenization, nonconvex integrands, convex growth, determinant
type constraints, hyperelasticity.
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reader to [AHLM, AHM] (see also [BB00, Syc05, AHMO07, AHMO08, AH10, Sycl0]
for the relaxation case).

In this paper, our main contribution (see Theorem 2.1 and Corollaries 2.2 and 2.4) is
to prove that for p > d, if W takes infinite values outside a convex set G of matrices
and has a nice behavior near to the boundary 9G of G, then (1.1) T'-converges, as
the parameter ¢ tends to zero, to (1.3) with Wy given by the formula (see also
Remark 2.3)

ZHW(E) = inf / HW (& + Vo(y))dy if € € int(G)
PEAf (Y R™) Jy
Whom(8) = lim inf ZHW (i) if € € 9G
—
o0 otherwise,

which, in general, is different from the classical one (1.4), where int(G) denotes the
interior of G and Affy(Y;R™) is the space of continuous piecewise affine functions
¢ from Y to R™ such that ¢ = 0 on the boundary dY of Y. Another interesting
thing is the potential relevance of this result with respect to the basic conditions of
hyperelasticity (see §2.2 for more details).

The paper is organized as follows. In Section 2 we state the main results of the
paper, i.e., Theorem 2.1 and Corollaries 2.2 and 2.4, and indicate how these results
could be applied in the framework of hyperelasticity (see Propositions 2.5 and 2.6).
Section 3 is devoted to the statements and proofs of auxiliary results needed in
the proof of Theorem 2.1. In particular, the key concept of ru-usc function, which
roughly means that W has nice behavior on 0G, see (2.4) and (2.5), is developed
in §3.1 following the ideas introduced in [AH10, AHM]. Finally, Theorem 2.1 is
proved in Section 4.

2. MAIN RESULTS

2.1. General results. Let d,m > 1 be two integers and let p > 1 be a real number.
Let W : R4 x M™*? — [0, 00] be a Borel measurable function which is p-coercive,
i.e., there exists ¢ > 0 such that

(2.1) W(z, &) > cl¢|P for all (z,£) € RT x M™*4,
and 1-periodic with respect to its first variable, i.e.,
(2.2) Wz +2,6) = W(x,€) for all z € RY, all 2 € Z¢ and all £ € M™*.

Let G : M™*? — [0, 00] be a convex function such that 0 € int(G), where G denotes
the effective domain of G. We assume that W is of G-convex growth, i.e., there
exist a, 8 > 0 such that

(2.3) aG (&) < W(z, &) < B(1+ G(€)) for all (z,£) € RY x M™%,

Under (2.3) it is easy to see that, for each z € RY, the effective domain of W(z, )
is equal to G, i.e., domW (z,-) = G for all z € R%. For each a € L (R%]0, 00]) we
define A{, : [0,1] =] — 00, 00] by

W(iE, t&) — W(.’E, 5)
(2.4) Ay (t) :== sup sup
v ccrigec  a(z) + W(z,§)
and we further suppose that W is periodically ru-usc (see §1.3 for more details),
i.e., there exists a € L _(R?]0,c]) such that a is 1-periodic and

loc

(2.5) lim sup Afy, (t) < 0.
t—1
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Let © C R? be a bounded open set with Lipschitz boundary and let I, ’7{[,\], ZHI :
WLP(Q;R™) — [0, 00] be defined by:

x
¢ I(u):= /QW <E,Vu(x)) dx;
. @(u) ::/W(Vu(x))dz;
Q
. Z/\Hl(u) = / m(Vu(x))dm,
Q
where € > 0 is a (small) parameter and HW, ’gV\V,Z’HVV, ZHW - M™<d [0, 0]
are given by:
¢ HW () = éI;fl inf{ W(x, &+ Vo(z))dr : ¢ € Wol’p(k‘Y;]Rm)};
2 kY
o HIV() = lim inf MV (£6);
—

o ZHW(E) = inf {/ HW (€ + V(y))dy : ¢ € AHO(Y;R’”)};
Y
o ZHW(E) = lim inf ZHW ()

with Y :=]0,1[? and Affo(Y;R™) := {qb € Aff(Y;R™) : ¢ = Oon 8Y} where
Aff(Y;R™) denotes the space of continuous piecewise affine functions from Y to
R™. The main result of the paper is the following.

Theorem 2.1. Let W : R? x M™*4 — [0,00] be a Borel measurable function
satisfying (2.1), (2.2), (2.3) and (2.5) and let u € WHP(Q; R™).
(i) If p > d and if {uc}. € WP(QR™) is such that ||ue — ul| Lo (mrm) — 0,
then
liminf I, (u:) > @(u)
e—0
(ii) If Q is strongly star-shaped, see Definition 3.13, then there exists {u.}. C
WEe(Q;R™) such that ||ue — ul|r(rm) — 0 and

lim sup I (u.) < Z/m'(u)

e—0

Let Ihom : WHP(Q; R™) — [0, 00] be defined by

Ihorn(u) = o Whom(vu(fﬂ))dl‘

with Whom : M™*? — [0, 00| given by

ZHW (€) if £ € int(G)
Whom (§) := h?iiflf ZHW(tE) if &€ dG
%) otherwise,

where int(G) denotes the interior of G. The following homogenization result is a
consequence of Theorem 2.1.

Corollary 2.2. Let W : R4 x M™*? — [0,00] be a Borel measurable function
satisfying (2.1), (2.2), (2.3) and (2.5). If p > d and Q is strongly star-shaped then

I(LP)-lim L. = Thom.
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Proof. As ZHI < ’;l\l, from Theorem 2.1 we deduce that
(0(L)- i 1.) (u) = ZAT(u) = / ZHW (Vu(x))dz
e—0 Q
for all w € WHP(Q;R™). Denote the effective domain of ZHW by ZHW. As
domW (z,-) = G for all z € R? it is easy to see that ZHW = G. On the other

hand, as G is convex we have tG C int(G) for all ¢ €]0,1[, and so m = Whom
by Corollary 3.8. B

Remark 2.3. Under the assumptions of Corollary 2 2 we have Whom = HW with
HW denoting the Isc envelope of HW . Indeed, as Z’HI < ’HI from Theorem 2.1
we see that F(Lp) lim._,o I. = HI, and consequently HI = Thom by Corollary 2.2.
Thus Whom = HW . Denote the effective domain of HW by HW. As domW (z,-) =

G for all x € RY we have HW = G where, because of G is convex, tG C int(G)
for all ¢ €]0,1[. On the other hand, as W satisfies (2.5), f/r(im Proposition 3.7 we

can assert that HW is ru-usc (see Definition 3.1) and so HW = HW by Theorem
3.5(iii).

To be complete, let us give the Dirichlet version of Corollary 2.2. For each € > 0,
let J. : Wy P(Q;R™) — [0, 00] be defined by

J.(w) ::{ L(u) if u € WyP(Q;R™)

00 otherwise.
Using the Dirichlet version of Theorem 2.1 and arguing as in the proof of Corollary
2.2 we can establish the following result.

Corollary 2.4. Let W : R? x M™% — [0,00] be a Borel measurable function
satisfying (2.1), (2.2), (2.3) and (2.5). If p > d then

[(LP)-lim J: = Jhom
e—0
with Jhom : WHP(Q; R™) — [0, 00] given by

.7 Ihom(u) qu S WOLP(Q,Rm)
Fhom (u) = { o0 otherwise.

The main difference with Corollary 2.2 is that we do not need to assume that
Q is strongly star-shaped. Roughly, this comes from the fact that we can use
[ET74, Proposition 2.8 p. 292] instead of Lemma 3.14. To reduce technicalities
and emphasize the essential difficulties, in the present paper we have restricted our
attention on Theorem 2.1 and Corollary 2.2. The details of the proof of Corollary
2.4 are left to the reader.

2.2. Towards applications in hyperelasticity. Let d > 1 be an integer and let
p > d be a real number. Given a convex function g : M?*¢ — [0, 0] and a Borel
function h : R — [0, 00] such that h(t) = oo if and only if ¢ < 0 and h(t) — oo as
t — 0, we consider D[g; h] C M%*? given by

Dlg; h] := {€ € M7 : h(det(I +€)) < g(€) < oo}
and we define the convex function G : M?*¢ — [0, 0o] by

(2.6) G(¢) == { €7 +9(8) ifEeG

(%) otherwise,
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where G is a convex subset of D[g; h] such that 0 € int(G). Let W : R% x M*? —
[0, 00] be defined by

(2.7) Wz, €) ::{ F(z,6)+g(&) fEeG

%) otherwise,

where F : R? x M*d [0, 00] is a quasiconvex function, 1-periodic with respect
to its first variable and of p-polynomial growth, i.e., there exist ¢, C' > 0 such that
(2.8) clélP < F(z,§) < C(1 + [¢7)

for all (x,&) € RY x M4, The following proposition makes clear the fact that such
a W is consistent with the assumptions of Corollaries 2.2 and 2.4 as well as with the
two basic conditions of hyperelasticity, i.e., the non-interpenetration of the matter
and the necessity of an infinite amount of energy to compress a finite volume of
matter into zero volume.

Proposition 2.5. Let W : R? x M*4 — [0, c0] be defined as above. Then:
(i) W is p-coercive;
(ii) W is 1-periodic with respect to the first variable;
(iil) W satisfies (2.3) with G given by (2.6);
(iv) W satisfies (2.5) with a = 2;
(v) for every (z,€) € R x G, W(z,€) < oo if and only if det(I + &) > 0;
(vi) for every x € R%, W(xz,£) — oo as det(I + &) — 0.

Proof. (i) and (ii) are obvious.
(iii) As F satisfies (2.8) it is clear that for every (x,&) € R? x Mx4,

clgl” +9(§) < W(z,§) < C(A+[£7) +9(8),

and so
aG(§) < W(z,&) < B(1+G(E))

for all (x,¢) € R? x M?%4, where o := min{c, 1}, 8 := max{C,1} and G is given
by (2.6).
(iv) Fix any ¢ € [0,1], any z € R? and any ¢ € G. First of all, as F is quasiconvex
and satisfies (2.8), there exists K > 0 such that
(2.9) [F(z,¢) = Fz,¢)| < K|¢ = |1+ [P~ + [¢]P7)
for all z € R? and all ¢, ¢’ € M¥*4, Using (2.9) with ¢ = t£ and ¢’ = ¢ and taking
the left inequality in (2.8) into account, we obtain
(2.10) Fla,t) - F(z,€) < K'(1 - )(1 + F(z,£))
with K’ := 3K max{1, %} On the other hand, as g is convex we have

g(t§) — g(§) < tg(&) + (1 —1)g(0) — g(§) < (1 —1)g(0),
and consequently
(2.11) 9(t€) — g(&) < (1 = 1)g(0)(1 + g(¢))
since 1+ g(§) > 1. From (2.10) and (2.11) we deduce that
Wz, t§) — W (=, &) < max{K’, g(0)}(1 — £)(2+ W (x,)).
Passing to the supremum on x and £ we obtain

sup sup W(.’E, tf) — W(l‘, 6)

z€R4 £€G 24 W(x,§) < max{K", g(0)}(1 - ¢),
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and, noticing that 0 € G, i.e., g(0) < oo, the result follows by letting ¢t — 1.

(v) As h(t) < oo if and only if t > 0 and G C D[g; h] it is clear that if £ € G then
det(I + &) > 0, which gives result.

(vi) As G C DIg; h] we have W (z,£) > h(det(I + €)) for all (x,&) € R x M4*d,
which gives the result since h(t) = occ ast — 0. B

Thus, to apply Corollaries 2.2 and 2.4, the only, but not trivial, point to study is
to find “interesting” convex sets G C D[g; h], related to suitable g and h, such that
0 € int(G). In the case d = 2, such a (unbounded) convex set can be constructed
(see Proposition 2.6). However, a more detailed study of this problem remains to
be done.

Let us illustrate our purpose in the case d = 2. Let h : R — [0, 00| be defined by
1
— ift>0
h(t) =< 2¢ * -
oo otherwise
and let g : M2*2 — [0, 0o] be given by
1

if£eG
(2.12) o) =1 warg-Trar °
00 otherwise
where tr(¢) denotes the trace of the matrix ¢ and
(2.13) G:= {geMm T+ €| <tr(I+§)}.

It is easy to see that G is a convex open set such 0 € G and ¢ is a convex function.
On the other hand, for each ¢ € M?*2,

2det (I +¢) 2(1 + &11) (1 4 &22) — 261260

(1+&n)+ 1+§22))2— (14&1)% — (14 &0)2 — €2, — €2

(tr(1 +€)" = |+ & = (tr(I +€) — |1 + €N (tr(I + &) + [T +¢)
(tr(f +&) — [ +€[)(tr( + &) — I +&]) = (te(I + &) — [T +¢€])?,
J-

Thus, we have

v

V

and so G C Dig; h
Proposition 2.6. Let W : R? x M?*2 — [0, 00] be defined by (2.7) with g and G

given by (2.12) and (2.13) respectively. Then, W satisfies (i), (ii), (iii), (iv), (v)
and (vi) of Proposition 2.5. In particular, Corollaries 2.2 and 2.4 can be applied.

3. AUXILIARY RESULTS

3.1. Ru-usc functions. Let U C R? be an open set and let L : Ux M™% — [0, 0]
be a Borel measurable function. For each x € U, we denote the effective domain of
L(z,-) by L, and, for each a € L] (U;]0,00]), we define A% : [0,1] —] — 0o, 0] by

a o L(x7t€)_L(xa§)
AL = sup sup = oy F E(0,8)

Definition 3.1. We say that L is radially uniformly upper semicontinuous (ru-usc)
if there exists a € L, (U;]0, oc]) such that

limsup Af (t) < 0.

t—1
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Remark 3.2. If L is ru-usc then
(3.1) limsup L(z,t€) < L(x,§)

t—1

for all x € U and all £ € L. Indeed, given z € U and £ € L., we have
L(z,t§) < A% (t) (a(z) + L(z,§)) + L(x, &) for all t € [0,1],
which gives (3.1) since a(x) + L(z,£) > 0 and limsup,_,; A% (¢) <O0.
Remark 3.3. If there exist € U and £ € L, such that L(x,-) is Isc at £ then
. . alp) >
(3.2) h?i)l{lf AZ(t)>0

for all @ € LL (U;]0,00]). Indeed, given such x € U and & € L,, for any a €

loc
Llloc(U; ]07 OO]) we have

L(Jj’ tf) — L(l‘,f)
a(x) + L(z,§)
which gives (3.2) since a(z) + L(z,£) > 0 and liminf;_; (L(x,t§) — L(x, ) > 0.

AL(t) =

for all ¢ € [0, 1],

The following lemma is essentially due to Wagner (see [Wag09]).
Lemma 3.4. Assume that L is ru-usc and consider x € U such that
(3.3) tL, C L, for all t €]0,1],

where L, denotes the closure of L. Then

liminf L(z,t§) = limsup L(x, t§)
t—1 t—1

for all ¢ € L.
Proof. Fix ¢ € L,. It suffices to prove that
(3.4) limsup L(z, t€) < liminf L(z, t£).
t—1 t—1

Without loss of generality we can assume that liminf;_,; L(x,t£) < co and there
exist {tn}n, {sn}n CJO, 1] such that:

. tn—>1,sn—>1andz—z—>1;

¢ limsup L(z, t&) = lim L(x,t,£);

ol e

. hrthPf L(z,t&) = nh_)rréo L(zx, $p€).
From (3.3) we see that for every n > 1, s,& € L., and so we can assert that for
every n > 1,

tn

(3.5) L(z, t2€) < a(z)A% <> + (1 N (“)) L(z, 506).

Sn Sn
On the other hand, as L is ru-usc we have limsup,,_, . (1 + A% (;—"L)) < 1 and
limsup,,_, . a(x)A} (i—z) < 0 since a(z) > 0, and (3.4) follows from (3.5) by letting
n—oo. A
Define L : U x M™*? — [0, 00] by
L(z,€) := liminf L(z, £€).
t—1

The interest of Definition 3.1 comes from the following theorem.
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Theorem 3.5. If L is ru-usc and if for every x € U,
(3.6) tL, C int(L,) for all t €]0,1]
(in particular (3.3) holds) and L(x,-) is lsc on int(ILy), where int(L,) denotes the
interior of L., then:
L(z, ) if § € int(Le)
(i) L(z,&) = lim Lz, t&) if € € Ly
o0 otherwise;
(ii) L is ru-usc;
(iii) for every x € U, L(z,-) is the lsc envelope of L(x,-).

Proof. (i) Lemma 3.4 shows that, for z € U and ¢ € L,, E(m,f) = limy_,1 L(z, t€).
From remark 3.2 we see that if £ € int(LL,) then limsup,_,; L(z,t€) < L(x,&). On
the other hand, from (3.6) it follows that if £ € int(IL,) then t£ € int(LL,) for all
t €]0,1[. Thus, liminf, ,; L(z,t§) > L(xz,&) whenever ¢ € int(L,) since L(z,-) is
Isc on int(LL,), and (i) follows.
(ii) Fix any ¢t €]0,1] any « € U and any £ € ]Iim where L, denotes the effective
domain of L(z,-). As L, C L, we have ¢ € L, and t¢ € L, since (3.3) holds. From
Lemma 3.4 we can assert that:

¢ L(x,8) = lim L(x, s€);

=R s—1

¢ L(mvtf) = ;L}H}L(&?, 8@5))7

and consequently

L(z,t€) — L L(z,t(s€)) — L
o (0.0 ~ L6 _ | L t(s6)) ~ L(r.56)
a(z) + L(z,§)  s=1  alz)+ Lz, sg)

On the other hand, by (3.3) we have s§ € L, for all s €]0, 1], and so

L(z,t(s€)) — L(x, s€)
a(x) + L(z, s§)

Letting s — 1 and using (3.7) we deduce that A%(t) < Af (¢) for all t €]0, 1], which

gives (ii) since L is ru-usc.

(iii) Given = € U, we only need to prove that if |§, — | — 0 then

(3.8) liminf Z(z,&,) > L(z, €).

< A% (t) for all s €]0, 1].

Without loss of generality we can assume that

liminf L(x,&,) = lim L(z,§,) < oo, and so sup L(x,&,) < 0.
n—oo n— 00 n>1

Thus &, € L, for all n > 1, hence ¢ € L,, and so
L(x,6) = lim L(z,16)

by Lemma 3.4. Moreover, using (3.3) we see that, for any t €]0,1[, t¢ € L, and
t&, € L, for all n > 1, and consequently

liminf L(x,t&,) > L(x, t&) for all t €]0,1]

n— oo
because L(z,-) is Isc on L, and [t§,, — t§| — 0. It follows that
(3.9) lim sup lim inf L(z, t&,) > L(x, €).

t—1 n—
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On the other hand, for every n > 1 and every t € [0, 1], we have
L(z,t&,) < (14+ AL())L(x, &) + a(z)AL(L).
As L is ru-usc, letting n — oo and ¢ — 1 we obtain

lim sup liminf L(x,t&,) < lim L(x,&,),

which gives (3.8) when combined with (3.9). B

In what follows, given any bounded open set A C R%, we denote the space of con-
tinuous piecewise affine functions from A to R™ by Aff(A;R™), i.e., u € Aff(A;R™)
if and only if u € C(A;R™) and there exists a finite family {A;};c; of open dis-
joint subsets of A such that |A \ U;erA;| = 0 and, for each i € I, |0A4;] = 0 and
Vu(r) =& in A; with & € M™*4. Define ZL : U x M™% — [0, 00] by

ZL(x,£) := inf {/Y L(z, £+ Vo(y))dy : ¢ € AHO(Y;Rm)}

with ¥ :=]0,1[* and Affo(Y;R™) := {¢ € Aff(Y;R™) : ¢ = 0 on 9Y}. Roughly,
Proposition 3.6 shows that ru-usc functions have a nice behavior with respect to
relaxation.

Proposition 3.6. If L is ru-usc then ZL is ru-usc.

Proof. Fix any t € [0,1], any « € U and any £ € ZL,, where ZL, denotes the
effective domain of ZL(z,-). By definition, there exists {¢,}, C Affo(Y;R™) such
that:

v 20, = i [ L&+ Voul) du

¢+ Vo, (y) el, foralln >1and a.a. y €Y.
Moreover, for every n > 1,

2Lt < [ Lizt(€+V0,0) dy
Y
since t¢,, € Affy(Y;R™), and so

ZL(x,t¢) — ZL(x,¢) < liminf y (L(z,t(€ + Von(y)) — L(x,& + Von(y)))dy.

n—00
As L is ru-usc it follows that

ZL(0,16) — ZL(2,€) < AL(H) (a(x) + ZL(x,€))
which implies that A%, (t) < A% (¢) for all ¢ € [0,1], and the proof is complete. B
Assume that U = R? and define HL : R x M™*? — [0, oo] by

HL(E) := Igfl inf {][kyL(x,E—F Vé(x))dz : ¢ € Wol’p(k:Y;]Rm)} .

Roughly, Proposition 3.7 shows that ru-usc functions have a nice behavior with
respect to homogenization.

Proposition 3.7. If L is periodically ru-usc, i.e., there exists a € Li (R%;]0, o))
such that a is 1-periodic and limsup Ag (t) <0, then HL is ru-usc.

t—1
Proof. Fix any ¢ € [0, 1] and any £ € HL, where HILL denotes the effective domain
of HL. By definition, there exists {k,; ¢, }, such that:



10 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

o ¢n € Wy P(k,Y;R™) for all n > 1;
¢ HL(E) = lim ][ L(z, &+ Vo (z))dx;
n—o0 knY
¢ £+ Vo, (x)ell, foralln>1and a.a. x € k,Y.

Moreover, for every n > 1,

HL(t€) < ][ Lz, (€ + Vo (@)))dz

knY

since t¢, € WyP(k,Y; R™), and so

ML) ~ HL() < Timint | (L 6+ Vou(0) = Lo, + Toula)))de
As L is periodically ru-usc it follows that

HL(t§) — HL(E) < Af (1) ({a) + HL(S))
with (a) := [, a(y)dy, which implies that A§_‘Z>L (t) < A%(t) for all t € [0, 1], and the
proof is complete. B
As a consequence of Theorem 3.5 and Propositions 3.6 and 3.7 we have

Corollary 3.8. Let W : R x M™*4 — [0, 00| be a Borel measurable function. If
W is periodically ru-usc and if tZHW C int(ZHW) for all t €]0,1[, where ZHW
denotes the effective domain of ZHW , then

ZHW (§) if £ € int(ZHW)
ZHW(E) = { lLim ZHW(t6) if & € O(ZHW)
00 otherwise.

Proof. First of all, we can assert that ZHW is continuous on int(ZHW) because
of the following lemma due to Fonseca (see [Fon88]).

Lemma 3.9. ZL is continuous on int(ZL).

On the other hand, from Proposition 3.7 we see that HW is ru-usc, hence ZHW
is ru-usc by Proposition 3.6, and the result follows from Theorem 3.5. B

3.2. A subadditive theorem. Let Op(R?) be the class of all bounded open sub-
sets of R?. We begin with the following definition.

Definition 3.10. Let S : Oy(R?) — [0, 00] be a set function.
(i) We say that S is subadditive if
S(A) <8(B)+S(0)

for all A, B,C € 0y(R%) with B,C C A, BNC ={ and |A\ BUC| = 0.
(ii) We say that S is Z%-invariant if

S(A+2)=S8(4)
for all A € Oy(R?) and all z € Z%.

Let Cub(R9) be the class of all open cubes in R? and let Y :=]0, 1[¢. The following
theorem is due to Akcoglu and Krengel (see [AKS81], see also [LMO02] and [AMO02,
§B.1]).
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Theorem 3.11. Let S : Oy(RY) — [0,00] be a subadditive and Z%-invariant set
function for which there exists ¢ > 0 such that

(3.10) S(A) < c|A|
for all A € Oy(R?). Then, for every Q € Cub(R9),
1
lim S (IEQ) = in S(-Y)
e—0 |EQ| k>1 k4

Proof. Fix Q € Cub(RY). First of all, it is easy to see that, for each & > 1 and
each ¢ > 0, there exist k. > 1 and z. € Z¢ such that lim._,o k. = oo and

1
(3.11) (ke —2)kKY + k(zc+€) C gQ C k kY + kz.

with é := (1,1,---,1). Fix any ¥ > 1 and any ¢ > 0. As the set function § is
subadditive and Z?-invariant, using the left inclusion in (3.11) we obtain

s (iQ) < (b — 29S(Y) + S (i@\ (ke — 2KV + k(= + é))) .
Moreover, it is clear that

EQ \ ((ks — 2)kY + k(z + é))} \iLGJI(Ai +aq)| =0

where ¢; € Z? and {A;};cs is a finite family of disjoint open subsets of kY with
card(I) = k? — (k. — 2)4, and so

5 (2] = (he = 20 + 0t~ (k. — 27K

by (3.10). It follows that
S(L d_ _9\d
(@) _SGv) | ke~ (ke =2)
HY ke (ke —2)¢

because |1Q| > (k. — 2)?k? by the left inequality in (3.11). Letting ¢ — 0 and
passing to the infimum on k, we obtain
S (L kY
lim sup (fQ) < inf S( y )
e—0 ’gQ| k>1 k
On the other hand, using the right inequality in (3.11) with k = 1, by subadditivity

and Z%invariance we have

S(kY) < S (i@) L ((kEY T\ iQ) |

As previously, since, up to a set of zero Lebesgue measure, the set (k.Y + z¢) \ %@
can be written as the disjoint union of kg — (k. — 2)? integer translations of open
subsets of Y, by using (3.10), we deduce that

S(¥) <5 (1) +olht - (ke - 2,

and consequently

kg — (k. —2)4
+c k'g

g

. . S(kY)
inf kg < ’éQ|

k>1 kd

S(kY) < S(1Q)

<
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because |1Q| < k¢ by the right inequality in (3.11) with k = 1. Letting ¢ — 0 we

obtain )
inf S(kY) < lim inf 5 (EQ) ,
k>1 k4 =0 |LQ]

and the proof is complete. B

Given a Borel measurable function W : R% x M™*4 — [0, 00|, for each ¢ € M™*4,
we define S¢ : Op(R?) — [0, 00] by

(3.12) S¢(A) :=inf {/A W(x,&+Vo(z))dr: ¢ € Wol’p(A;Rm)} .

It is easy that the set function S¢ is subbadditive. If we assume that W is 1-periodic
with respect to the first variable, then S is Z4%invariant. Moreover, if W is such
that there exist a Borel measurable function G : M™*¢ — [0, 00] and 8 > 0 such
that

(3.13) W(z,§) < B(L+G(€))

for all £ € M™*? then
Se(A) < B(1+G(E))IA]

for all A € Oy(R?). Denote the effective domain of G by G. From the above, we
see that the following result is a direct consequence of Theorem 3.11.

Corollary 3.12. Assume that W is 1-periodic with respect to the first variable and
satisfies (3.13). Then, for every £ € G,

1
lim Sgl(EQ) = inf Sg(kY).
e—0 ‘EQ| k>1 k4

3.3. Approximation of integrals with convex growth. We begin with the
following definition.

Definition 3.13. An open set Q C R? is said to be strongly star-shaped if there
exists xg € ) such that

-0+ Q Ct(—xo+ Q) foralt>1.

In what follows, Aff(€2;R™) denotes the space of continuous piecewise affine func-
tions from Q to R™. The following lemma can be found in [Ml87, Lemma 3.6(b)]
(see also [ETT4, Chapitre X, §2.3 p. 288-293]).

Lemma 3.14. Let Q C R? be a bounded open set with Lipschitz boundary which

is strongly star-shaped, let ¥ : M™*9 — [0, 00] be a convex function and let u €
WLP(Q;R™) be such that

/ U (Vu(z))dr < co.
Q

Denote the effective domain of U by D. If D is open then there exists {un}n C
Aff(Q; R™) such that:

¢ lim lun — ullwrr@pe = 0;
¢ lim [|[U(Vu,) = ¥(Vu)| i) = 0.
n— 00

In particular, Vuy,(x) € D for alln > 1 and a.a. = € 2.
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Proof. From the proof of [Miil87, Lemma 3.6(a)] (see also [ET74, Proof of Propo-
sition 2.6 p. 289-291]) we can extract the fact that there exists {vg;Qx}r such
that:

(3.14) for every k > 1, v, € C*°(Q; R™) where Q D Q is a bounded open set;
(3.15) for every k > 1, Vug(x) € D for all z € Q;

(3. 16) ||Uk—UHW1P(QRm) =0
(3.17)

hm [ (Vog) = (V)| L1y = 0.

Fix any k > 1. Taking (3.14) into account, from [ET74, Proposition 2.1 p. 286] we
deduce that there exists {up x}, C Aff(2;R™) such that

A7

(318) nli)H;O ||Un,k — 'UkHWl,oo(Q;Rm) =0.

On the other hand, using (3.14) and (3.15) we deduce that Vug(z) € K C D for all
z € Q, where K D {Vug(z) : z € Q} is a compact set with nonempty interior, and
consequently we can assert that for every n > 1 large enough, Vo, x(z) € K for
a.a. x € { because, from (3.18), Vu,, ; converges uniformly to Vvy. As ¥ is convex
and D is open we see that ¥ is continuous on D, and so W is uniformly continuous
on the compact K. It follows that

(319) nl;rr;o ||\I/(V'Un7k) — \I/(V’Uk)HLoo(Q) =0.
Letting k — oo in (3.18) and (3.19) we obtain:
(3.20) lim hm 1tn i — vkl w10 (mm) = 0;
k—oomn
(3.21) Jm lim ([ (Von k) = U (Vog)l|pe(9) = 0.
Combining (3.16) and (3.17) with (3.20) and (3.21) we conclude that
kl;ngo nlgr;o l|tn, ke — ullwirmrmy = 0 and hm 11_>rr;o ¥ (Vunk) = ¥(Vu)| o) =0,

and the lemma follows by diagonalization. B

Let L : M™*4 — [0, 00| be a Borel measurable function with G-convex growth, i.e.,
there exist a convex function G : M™*¢ — [0, oc] and «, 8 > 0 such that

(3.22) aG(§) < L(§) < B(1+G(S))

for all £ € M™*?. Then, it is easy to see that the effective domain of L is equal to
the effective domain of G denoted by G and assumed to contain 0, i.e., 0 € int(G).
The following proposition is a consequence of Lemma 3.14.

Proposition 3.15. Let Q C R be a bounded open set with Lipschitz boundary
which is strongly star-shaped and let u € WHP(Q; R™) be such that

(3.23) /QL(VU(:E))d:c < 0.

If L is ru-usc and continuous on int(G) then there exists {up}, C Af(Q;R™) such
that:

¢ nhm ||Un —U”Wl P (QuRM) = 0,

) limsup/ L(Vuy(x /L
n—oo Q Q
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Proof. From (3.23) we see Vu(z) € G for a.a. = € 2, and so

(3.24) / L(tVu)dz < (1+ Az(t))/ L(Vu)dx + A7 (t)||a|l 1 (o) for all ¢t €]0,1].
Q Q

Fix any ¢ €]0, 1[. From (3.24) it follows that

(3.25) /QL(tVu(:c))dx < 0.

Let G : Mm*d [0, 00] be the convex function defined by
o G if ¢ € int(G
G { ©) it e nt(C)

00 otherwise.

Then, the effective domain of G is equal to int(G). As G is convex and 0 € int(G)
we have

(3.26) tVu(z) € int(G) for a.a. x € Q.
Using (3.25) and the left inequality in (3.22) we deduce that

(3.27) /QG(tVu(x))dx < 0.

Applying Lemma 3.14 with ¥ = G we can assert there exists {tn,t}n C AE(Q;R™)
such that:

(3.28) Jim ;= tullwr@mm) = 0;

(3.29) nh_)rr;o |Vup i (z) —tVu(z)| =0 for a.a. x € Q;
(3.30) lim (|G (V) = GEV)|| 10y = 0;

(3.31) Vg (z) € int(G) for a.a. x € Q.

From (3.31) and the right inequality in (3.22) we see that
/ L(Vup(z))dz < B|E| + B/ G(tVu(z))dz + Bl|G(Viun) — é’(tVu)HLl(Q)
E E

for all n > 1 and all Borel sets E C 2, which shows that {L(Vuy )}y is uni-

formly absolutely integrable when combined with (3.27) and (3.30). Moreover,
L(Vuy () = L({tVu(z)) for a.a. z € Q because of (3.26), (3.31), (3.29) and the
continuity of L on int(G), and consequently

lim | L(Vup(z))de = / L(tVu(x))dx

by Vitali’s theorem. As L is ru-usc, from (3.24) we deduce that

(3.32) limsup lim [ L(Vu,(x))dr < / L(Vu(z))dx.
t—1 "0 Q

On the other hand, it is easy to see that
[tnt = ullwrr@mm) < lltne = tullwir@pe) + [[tw = ullwie@pm)
for all n > 1 and all ¢ €]0,1[. Hence

(333) }Eﬁ nll_)II;o ||un,t — u”Wl,p(SZ;Rvn) =0

by (3.28), and the result follows from (3.32) and (3.33) by diagonalization. W
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It is easily seen that, using similar arguments as in the proof of Proposition 3.15,
we can prove the following proposition.

Proposition 3.16. Let Q C R be a bounded open set with Lipschitz boundary
which is strongly star-shaped and let u € W1P(Q; R™) be such that

/ L(Vu(z))dx < oo and Vu(z) € int(G) for a.a. x € Q.
Q

If L is continuous on int(G) then there exists {un}, C Af(Q;R™) such that:
¢ lim |lu, — ullwrrrmy = 0;
n— oo
o lim | L(Vup(2))dz = / L(Vu(z))dz.
neo Q

3.4. Approximation of the relaxation formula. Given a Borel measurable
function L : M™*? — [0, 0o] we consider ZL : M™*? — [0, 00| defined by

229 =t { [ Lie+ Volw)dy: o € At R™) |

with ¥V :=]0,1[¢ and Affo(Y;R™) := {¢ € AH(Y;R™) : ¢ = 0 on dY} where
Aff(Y;R™) is the space of continuous piecewise affine functions from Y to R™. The
following proposition is adapted from [AHMO8, Lemma 3.1] (see also [AHMOT]).

Proposition 3.17. Given & € M"™*? and a bounded open set A C R? there exists
{br}r C Affo(A;R™) such that:

. Jggo |kl Lo (aRm) = O;
¢ lim L(§+ Vor(z))dx = ZL(E).
k—o0 A
Proof. Given ¢ € M™*4 there exists {¢,}, C Affo(Y;R™) such that

(3.34) lim [ L(E+Von(y))dy = ZL(E).

n o0 Y
Fix any n > 1 and k£ > 1. By Vitali’s covering theorem there exists a finite
or countable family {a; + a;Y };e; of disjoint subsets of A, where a; € R¢ and
0 < a; < ¢, such that |4\ Uier(a; + o;Y)| = 0 (and so Y, ; af = |A]). Define
On.i € Affg(A;R™) by

¢n,k(m) = ai¢n (

T — a;

) if x € a; + ;Y.

Clearly || ¢n,kl Lo (arm) < %Hd}nHLoo(Y;RnL), hence limg o0 ||@n k|| oo (a;mm) = 0 for
all k£ > 1, and consequently

(335) lim lim H¢n7k||Loo(A;Rm) =0.

n—00 k—oo

On the other hand, we have
[ B+ Vonatnde = ot [ L€+ Yooty = 14| | L&+ ouw)dy
A ier 7Y Y
for all n > 1 and all k£ > 1. Using (3.34) we deduce that

(3.36) lim lim 4 L(§ + Ve i(z))dz = ZL(S),
A

n—o00 k—oo

and the result follows from (3.35) and (3.36) by diagonalization. B
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3.5. Approximation of the homogenization formula. Given a Borel measur-
able function L : R x M™*4 — [0, oo] which is 1-periodic with respect to its first
variable and for which there exists a Borel measurable function G : M™*? — [0, o]
and 8 > 0 such that

(3.37) L(z,€) < B(1+G(8))
for all £ € M™*4 we consider HL : M™*? — [0, oo] defined by

k>1

HL(E) := inf inf {][ Lz, +V¢(x))dr : ¢ € Wol’p(k;Y;Rm)} .
kY
The following proposition is adapted from [Miil87, Lemma 2.1(a)].

Proposition 3.18. Given £ € G, where G denotes the effective domain of G, and
a bounded open set A C R there exists {¢.}. C Wy (A;R™) such that:

¢ lim |fcllLe(amm) = 05

. xr
ol L (g,g + wg(x)) dz = HL(E).

e—0

Proof. Given £ € G there exists {ky; an}n such that:
b € Wol’p(knY;Rm) for all n > 1;
(3.38) lim L(z,€ + Vo (z))dz = HL(E).

n—oo ) 1y
For each n > 1 and € > 0, denote the k, Y -periodic extension of q{)n by ¢, consider
Apn,e C A given by
Apei= U e(z+kY)

z€ln e
with I, . = {z € 7% : e(z + k,Y) C A}, where card(l, ) < oo because A is
bounded, and define ¢,, . € Wy"*(4;R™) by
On.e(T) == ¢y (g) itr e Ay
Fix any n > 1. It is easy to see that

|;I£p(A;Rm) = / |¢n,a(x)‘pd$

n,e

X e O e

z€1, e

B
= 6pk7gH¢nH€p(kny;Rm)

|6,

A

for all ¢ > 0, and consequently lim._,q ||@n e
that

|Lr(agmy = 0 for all n > 1. Tt follows

(339) hm IL)I% ||¢n)s||Lp(A;Rm) = 0

n—oo e
On the other hand, for every n > 1 and every € > 0, we have

X

/AL (Z.6+ Von(@)) do = /A L(Z.6+Vone(a)) do+ /A\AW L(%€) da
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But

/AM L (g’ &+ VQS%E(IC)) dx

[ v (5)) e

Zejn,s
= |An,5\][ L(z,& 4 Vn(z))dz,
k.Y

and consequently

|An[HL(E) < /AL (gg n v¢n75(:c)) de < |A|][k YL(x,€—|— Vén(2))dz
+BIAN\ A (1 +G(E))

by (3.37). As lim. o |A\ Anc| =0 for any n > 1, G(§) < oo and using (3.38) we
see that:

o lim A\ A, [HL(E) = 0;

: : n |A \ An,sl _
¢ lim lm (J[;WL (.6 + Vén(e)) = HL(E)dw + e G(g))) 0.
Hence
o x B
(3.40) nh_{r;() 111;1_?(1)1p ’][AL (g,§ + V(ﬁn,a(a?)) dx — ’HL(Q‘ =0,

and the result follows from (3.39) and (3.40) by diagonalization. W
4. PROOF OF THEOREM 2.1
In this section we prove Theorem 2.1.

4.1. Proof of Theorem 2.1(i). Let u € W?(Q;R™) and let {u.}. C WP (; R™)
be such that ||uc — ul|zr(rm) — 0. We have to prove that

(4.1) T-liminf I, (u.) > HI(u).
e—0
Without loss of generality we can assume that
(4.2) liminf I, (ue) = lim I, (u:) < oo, and so sup I, (u.) < oo.
e—0 e—0 B
Then
(4.3) Vue(xz) € G for all e > 0 and a.a. z € Q

and, up to a subsequence,

(4.4) ue — u in WHP(Q; R™)

since W is p-coercive. As G is convex, from (4.3) and (4.4) it follows that
(4.5) Vu(z) € G for a.a. = € Q.

As p > d, u is differentiable for a.a. x € Q and (4.4) implies that, up to a subse-
quence,

(4.6) |ue — ull Lo (@;rm) — 0.
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Step 1: localization. For each € > 0, we define the (positive) Radon measure p.
on {2 by

pe =W (27 Vug(-)) dx.
From (4.2) we see that sup, u:(2) < oo, and so there exists a (positive) Radon
measure g on 2 such that (up to a subsequence) . Ao e,

lim/ odpe = / @du for all ¢ € C.(),
e—=0 Jo Q
or, equivalently, the following two equivalent conditions holds:
liminf 4. (U) > p(U) for all open sets U C Q
(a) { lirer?soup pie (K) < p(K) for all compact sets K C Q
(b) 31_13(1) ,usg_(mB) = u(B) for all bounded Borel sets B C Q with u(0B) = 0.

By Lebesgue’s decomposition theorem, we have y = u, + s where u, and p, are
(positive) Radon measures such that p, << dzx and ps L dz, and from Radon-
Nikodym’s theorem we deduce that there exists f € L(£;]0, o0[), given by

(4.7) f(z) = }}_ﬁ% M(prl(x)) = gi_r)% W for a.a. x €

with Q,(z) := x + pY, such that

ta(A) = / fdzx for all measurable sets A C Q.
A

Remark 4.1. The support of ps, supp(ps), is the smallest closed subset F' of Q
such that ps(Q2\ F) = 0. Hence, Q \ supp(us) is an open set, and so, given
any x € 0\ supp(us), there exists p > 0 such that Q;(x) C Q\ supp(us) with

Qs(x) == x4+ pY. Thus, for ae. = € Q, u(Q,(z)) = pa(Qp(x)) for all p > 0
sufficiently small.

To prove (4.1) it suffices to show that
(4.8) flz) > W(Vu(w)) for a.a. x € Q.

Indeed, from (a) we see that
liminf I, (ue) = liminf pe () > pw(Q) = pa () + 1s(Q) > pa(Q) = / f(z)dx.
e—0 e—0 Q

But, by (4.8), we have

/Q f(a)de > /Q HW (Vu(x))dz,

and (4.1) follows.
Fix 2o € Q\ N, where N C  is a suitable set such that |N| = 0, and prove that
f(xo) > HW (Vu(zg)). As p() < oo we have u(0Q,(xo)) = 0 for all p €]0,1]\ D
where D is a countable set. From (b) and (4.7) we deduce that

pQr0) _ o pe(@yr0)

= lim 22X\
f(wo) = lim == = lim lim =3

and so we are reduced to show that

x —_—
. i i — > .
(4.9) lim lim Qp(m)W (6 , Vua(ac)) dz > HW (Vu(zo))
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On the other hand, as G is convex and 0 € int(G), from (4.3) it follows that
tVu.(z) € G for all e > 0 and a.a. = €

and so, given any ¢ €]0, 1], we can assert that for every € > 0 and every p > 0,

][Qp(xo)W (g,tVue(xD dr = (1+ A%V(t))][Qp(wo)W (f, Vus(x)> du

3
JrA‘{/V(t)][ a (E) dx
Qp(z0) €
with A{;,(t) given by (2.4). Using the periodicity of a we obtain
A x _ a P il
lim lim Qp(mw (E,tVuE) dr = (14 Afy(1)) lim lim Qp(%)w (8 : Vus) dw
84 (0) | al)dy
As limsup,_,; Afy,(t) <0 and [, a(y)dy > 0 it follows that
lim sup lim lim w (E, tVu, (ac)) dr < lim lim w (E, Vus(m)) dzx.
t—1 p—>0 e—0 Qp(wo) £ p—)o e—0 Qp(wo) £
Consequently, to prove (4.9) it is sufficient to show that
€T —
410 li lim i w(=,tv dz > HW (V .
(4.10) msup iy B e (6 us(x)) x> HW (Vu(z))

Step 2: cut-off method. Fix any ¢, €]0,1[. Let ¢ € C§°(Q,(x0);[0,1]) be a
cut-off function between Q,5(wo) and Q,(wo) such that V| r=(q, ) < ﬁ.
Setting

Ve 1= Que + (1 - ¢>)qu($0)’

where Iy (z0) () = u(xo) + Vu(w) - (¥ — 0), we have

Vue on @Qps(zo)
Voe := ¢ ¢Vue + (1 —¢)Vu(zo) + ¥, onsS,
IS u(zo) on 0Q,(zo),
with S, := Q,(z0) \ Qps(x0) and ¥, , :=Vo ® (uE — qu(zo))- Hence
tVue on Qps(o)
(4.11) tVo. :={ (Ve + (1 — ¢) V(o)) + (1 — 1) (ﬁqu) on S,
S u(zo) on 0Q,(zo),
which, in particular, means that
(4.12) tve — thyuae) € Wo P (Qp(z0); R™).

Using the right inequality in (2.3) it follows that

][Qp(mo)W<§,the>dx < ][Qp(wO)W<§,tVus)dx+pld/SpWC:,thE)dx

X
< W (=, tVu. ) de + B(1 — 54
][Qp(wo) (E ) ( )

+%/ G(tVve)dz.
P Js,
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On the other hand, taking (4.11) into account and using the convexity of G and
the left inequality in (2.3), we have

GitVv.) < G(Vuo) + G(Vu(zo)) + (1 — )G (1:@,)

IN

éw (2. Vu.) + G(Vulao) + (1 - )G <1t_t\11p) :

Moreover, it is easy to see that

t " 2t 1HU ! I
— Y, = U — iy L=(Q Rm
1_¢ °F Lo (Q, (mo)Mrxd) (I—t)(1—=06)p u(zo) (Qp(xo);R™)
THE U
— |lu. — o ()R
p(L—n)(T—g) = TR
where
. 2t 1
(4.13) /}1_% m;”u —Ivu(zo) |2 (@, (x0);Rm) = 0

by the differentiability of u at o which gives lim, o %Hu —Ivu(zo) 2> (Q, (z0)iRm) =
0, and
(4.14) I 2w — | 0 for all p > 0

. im ———————||ue — ul|poo(qrm) = 0 for a

0 p(1—t)(1—g) e~ e @R P
by (4.6), i.e., lim. 0 [|ue — ul| oo (Q;rm) = 0. Since G is convex and 0 € int(G), G is
bounded at the neighbourhood of 0, and so, in particular,
c:= sup G(§) < oo for some 7 > 0.
£€By(0)

By (4.13) there exists p > 0 such that g=53r=5y 514 — IVu(eo) | 2@y @o)mm) < 3
for all 0 < p < p. Fix any 0 < p < p. Taking (4.14) into account we can assert that
there exists €, > 0 such that

t
G (H‘I’ap> <cforall 0 <e<e,.

Thus, for every 0 < € < g,
1
(4.15) ][ W (?twg) dr < ][ W (f,tv%) da + ﬁ—dug(sp)
Qp (o) € Qp (o) € ap
+8(1 = 6N (1 4+ G(Vu(xo))
+c(l —1t).
Step 3: passing to the limit. Taking (4.12) into account we see that for every
0<e<e,
][ w (2, 1v.) d > L (1Q( ))
) UE X = A /. N\l Vu xT - ‘ro )
Qo) @) 7Y \ e

where, for any ¢ € M™% and any open set A C R, S¢(A) is defined by (3.12). By
(4.5) we have Vu(zg) € G, and so tVu(xg) € G because G is convex and 0 € int(G).
From Corollary 3.12 we deduce that

(4.16) lim sup][ w (g, tV’UE) dx > HW (tVu(zg)) for all 0 < p < p.
Qp(xo)

e—0
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On the other hand, as p.(S,) < pe(S,) for all 0 < € < ¢,, S, is compact and
e = p (see (a)), we have limsup,_q pe(S,) < pu(S,). But u(S,) = pa(S,) since
S, C Q,(x0) C Q\ supp(us) (see Remark 4.1), hence, for every 0 < p < p,
1 1
limsup — 1 (S,) < —d/ f(z)dx :][ f(z)dx — §d][ f(x)de,
e=0 P P s, Qp (o) Qps(zo0)

and consequently

. : g1 B d
4.17 limsuplimsup —— p(S,) < —(1 -6 Xo).
(4.17) n SUp 5_>0pozpdu€( )= o )f (20)
Taking (4.15) into account, from (4.16) and (4.17) we deduce that
x
. . e > _ / p _
;1)13% ili% oo W (E,tVuE) dx > HW (tVu(zg)) + c(t — 1) + /(% — 1)

with ¢ := 8+ 8G(Vu(zo)) + gf(xo). Letting ¢ =+ 1 and § — 1 we obtain

lim sup lim lim W (g tVuE) de > lim inf HW (tVu(z0)),
—

t—=1 P00 Qp(zo0)

and (4.10) follows. W

4.2. Proof of Theorem 2.1(ii). Let u € W1P(Q;R™). We have to prove that
there exists {uc}. € WHP(Q;R™) such that |Ju. — ul|pr(@;rm) — 0 and

lim sup I (u.) < Z/@'(u)

e—0

Without loss of generality we can assume that ZHI (u) < o0, and so
(4.18) Vu(z) € ZHW for a.a. = € Q,
where ZHW denotes the effective domain of ZHW.

Step 1: characterization of m . As W is periodically ru-usc, i.e., there

exists a 1-periodic function a € Li, .(R%]0, oc]) such that

lim sup Ay, (¢) <0,
1

t—

from Propositions 3.7 and 3.6 we see that ZHW is ru-usc: precisely, we have

lim sup Ag}g{w(t) < 0 with (a) := / a(y)dy.
t—1 Y
On the other hand, since W is of G-convex growth, i.e., there exist o, 5 > 0 and a
convex function G : M™*¢ — [0, oc] such that
aG(E) < W(x,€) < B(1+ G(€)) for all (z,€) € RY x M™*4,
also is ZHW and so dom(ZHW) = G. As G is convex and 0 € int(G) we have

(4.19) tG C int(G) for all ¢ €]0,1].
From Theorem 3.5(i) and (ii) we deduce that:
ZHW (&) if € € int(G)
(4.20) ZHW(E) = ¢ [m ZHW(K) if & €6
o0 otherwise;

o ~ . . (a)
(4.21) ZHW is ru-usc, i.e., hrflj}lp Am(t) <0.
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Step 2: approximation of ZHW. First of all, it is clear that
(422) }gl} Htu - UHWI,IJ(Q;RHL) =0.
On the other hand, taking (4.18), (4.19) and (4.20) into account we can assert that
(a) ZT (a)
/Q ZHW (tVu(2))dr < (1+ AL (1) /Q ZHW (Vu(x))de + (@) AL (0
for all ¢ €]0, 1], and consequently

(4.23) hIilj}lp/QZHW(tVU(Z‘))dIS/QZHW(VU(I))CZ:C

because (4.21) holds.

Step 3: approximation of ZHW. Fix any ¢ €]0,1[. From (4.20) we see that
ZHW C G, and so tVu(z) € int(G) for a.a. x € Q because G is convex, 0 € int(G)
and (4.18) holds. Moreover, applying Lemma 3.9 with L = HW, we deduce that
ZHW is continuous on int(G). From Proposition 3.16 it follows that there exists
{tn,t}n C Aff(2;R™) such that:

(424) nll—>rrolo ||un)t — t’u,le,p(Q;Rm) = 0,
(4.25) li_>m ZHW (Vuy,(z))de = / ZHW (tVu(z))dz.

Fix any n > 1. As u, € Aff(2;R™) we can assert that there exists a finite family
{Ui }ier of open disjoint subsets of © such that |Q\ U;c;U;| = 0 and, for each i € I,
|0U;| = 0 and Vu,, ,(z) = & in U; with & € M™*<. Thus

(4.26) / ZHW (Vuni(x))de = |[Ui| ZHW ().
a i€l
By Proposition 3.17, for each i € I, there exists {¢; x }x C Affo(U;; R™) such that:
(4.27) im ||¢; kLo wiimm) = 05
k—o00
(4.28) lim f HW(E + Voi(e)de = ZHW(&).

For each k > 1, define uy, ,,, € Aff(;R™) by
Ut (2) = uni(x) + ¢ () if z € U;.

Then
e = un,ell Lo (@mm) = max ikl Loe imm),
and so
(429) lim ||uk,n,t - un,t”L“(Q;R”‘) =0
k—o0

by (4.27). On the other hand, for each k£ > 1, we have
| W (Vuna@)de = W HW (& + Vora(@)d,
Q il Ui
and consequently

(4.30) lim HW(Vuk’n,t(x))dx:/QZHW(Vun,t(x))dx

k—o0 O
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by (4.28) and (4.26).

Step 4: approximation of HW. Fix any k > 1. As uy n; € Aff(;R™) we can
assert that there exists a finite family {V;},c; of open disjoint subsets of £ such
that |Q\ UjesV;| = 0 and, for each j € J, |0V;| = 0 and Vuy n(z) = ¢; in V; with
Gj € M™*4. Thus

(4.31) / HW (Vg (7)) dz = Z [ViIHW(C5).

jeJ

As g’r’-l\l(u) < 00, taking (4.23), (4.25), (4.30) and (4.31) into account, we can assert
that HW(¢;) < oo for all j € J. Moreover, it is clear that dom(HW') = G because
W is of G-convex growth, hence ¢; € G for all j € J. By Proposition 3.18, for each
j € J, there exists {t;.}. C Wy *(V;;R™) such that:

(4.32) L {[9je | e v mem) = 03
(4.33) I W (2.6 + V(@) ) do = HW ()
: =50 v, e’ Pt )= "

For each € > 0, define u. .+ € WHP(;R™) by

Ue kon t(T) = Ut (T) + Y e(2) if x € V.

Then
l[te keint = Uk tll Lo (@mm) = Z %j.ell Lo (v mm)
jeJ
and so
4.34 li — my =
(4.34) L {fue g, rm) =0

by (4.32). On the other hand, for each € > 0, we have
x x
/QW (E’ Vug,k,n,t(x)) de = ]EZJ Vj|][V]W (g, G+ V@bj,s(x)) dz,

and consequently

. X
(4.35) lim | W (E,Vug,k,n’t(m)) dz = /Q HW (Va1 () de.

by (4.33) and (4.31).

Step 5: passing to the limit. Combining (4.34), (4.29), (4.24) with (4.22) and
(4.35), (4.30), (4.25) with (4.23) we deduce that:

(4.36) lim Tim lim 1o {|ue e = ull Lo irm) = 05

(4.37) limsup lim lim lim [ W (g,Vug7k,n7t(x)) dx < m(Vu(x))da:,

t—1 MNn—=0k—o0e—0 Jo £ Q

and the result follows from (4.36) and (4.37) by diagonalization. B
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