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We study homogenization by Γ-convergence of periodic multiple integrals of the calculus of variations when the integrand can take infinite values outside of a convex set of matrices.

Introduction

In this paper we are concerned with homogenization by Γ-convergence of multiple integrals of type (1.1)

Ω W x ε , ∇u(x) dx,
where Ω ⊂ R d is a bounded open set with Lipschitz boundary, u ∈ W 1,p (Ω; R m ) with p > 1, W : R d × M m×d → [0, ∞] is a Borel measurable function which is p-coercive, 1-periodic with respect to its first variable and not necessarily convex with respect to its second variable and ε > 0 is a (small) parameter destined to tend to zero. This non-convex homogenization problem was studied for the first time by [START_REF] Braides | Homogenization of some almost periodic coercive functional[END_REF] (see [START_REF] Braides | Homogenization of some almost periodic coercive functional[END_REF] and [BD98, Theorem 4.5 p. 111]) and then by [START_REF] Müller | Homogenization of nonconvex integral functionals and cellular elastic materials[END_REF] (see [START_REF] Müller | Homogenization of nonconvex integral functionals and cellular elastic materials[END_REF]Theorem 1.3]). It is proved that if W is of p-polynomial growth, i.e.,

(1.2) W (x, ξ) ≤ c(1 + |ξ| p ) for all (x, ξ) ∈ R d × M m×d and some c > 0, then (1.1) Γ-converges, as the parameter ε tends to zero, to the homogeneous integral

(1.3) Ω W hom (∇u(x))dx,
where u ∈ W 1,p (Ω; R m ) and W hom : M m×d → [0, ∞] is given by the formula As is well known, because of the p-polynomial growth assumption (1.2), this homogenization theorem is not compatible with the following two basic conditions of hyperelasticity: the non-interpenetration of the matter, i.e., W (x, ξ) = ∞ if and only if det(I + ξ) ≤ 0, and the necessity of an infinite amount of energy to compress a finite volume into zero volume, i.e., for every x ∈ R d , W (x, ξ) → ∞ as det(I + ξ) → 0. It is then of interest to develop techniques for the homogenization of integrals like (1.1) when W is not necessarily of p-polynomial growth: this is the general purpose of the present paper. For works in the same spirit, we refer the reader to [AHLM, AHM] (see also [BB00, Syc05, AHM07, AHM08, AH10, Syc10] for the relaxation case). In this paper, our main contribution (see Theorem 2.1 and Corollaries 2.2 and 2.4) is to prove that for p > d, if W takes infinite values outside a convex set G of matrices and has a nice behavior near to the boundary ∂G of G, then (1.1) Γ-converges, as the parameter ε tends to zero, to (1.3) with W hom given by the formula (see also Remark 2.3)

W hom (ξ) =        ZHW (ξ) := inf φ∈Aff0(Y ;R m ) Y HW (ξ + ∇φ(y))dy if ξ ∈ int(G) lim inf t→1 ZHW (tξ) if ξ ∈ ∂G ∞ otherwise,
which, in general, is different from the classical one (1.4), where int(G) denotes the interior of G and Aff 0 (Y ; R m ) is the space of continuous piecewise affine functions φ from Y to R m such that φ = 0 on the boundary ∂Y of Y . Another interesting thing is the potential relevance of this result with respect to the basic conditions of hyperelasticity (see §2.2 for more details). The paper is organized as follows. In Section 2 we state the main results of the paper, i.e., Theorem 2.1 and Corollaries 2.2 and 2.4, and indicate how these results could be applied in the framework of hyperelasticity (see Propositions 2.5 and 2.6). Section 3 is devoted to the statements and proofs of auxiliary results needed in the proof of Theorem 2.1. In particular, the key concept of ru-usc function, which roughly means that W has nice behavior on ∂G, see (2.4) and (2.5), is developed in §3.1 following the ideas introduced in [AH10, AHM]. Finally, Theorem 2.1 is proved in Section 4.

Main results

2.1. General results. Let d, m ≥ 1 be two integers and let p > 1 be a real number. Let W : R d × M m×d → [0, ∞] be a Borel measurable function which is p-coercive, i.e., there exists c > 0 such that (2.1) W (x, ξ) ≥ c|ξ| p for all (x, ξ) ∈ R d × M m×d , and 1-periodic with respect to its first variable, i.e.,

(2.2) W (x + z, ξ) = W (x, ξ) for all x ∈ R d , all z ∈ Z d and all ξ ∈ M m×d .

Let G : M m×d → [0, ∞] be a convex function such that 0 ∈ int(G), where G denotes the effective domain of G. We assume that W is of G-convex growth, i.e., there exist α, β > 0 such that

(2.3) αG(ξ) ≤ W (x, ξ) ≤ β(1 + G(ξ)) for all (x, ξ) ∈ R d × M m×d . Under (2.3) it is easy to see that, for each x ∈ R d , the effective domain of W (x, •) is equal to G, i.e., domW (x, •) = G for all x ∈ R d . For each a ∈ L 1 loc (R d ; ]0, ∞]) we define ∆ a W : [0, 1] →] -∞, ∞] by (2.4) ∆ a W (t) := sup x∈R d sup ξ∈G W (x, tξ) -W (x, ξ) a(x) + W (x, ξ)
and we further suppose that W is periodically ru-usc (see §1.3 for more details), i.e., there exists a ∈ L 1 loc (R d ; ]0, ∞]) such that a is 1-periodic and (2.5) lim sup

t→1 ∆ a W (t) ≤ 0.
Let Ω ⊂ R d be a bounded open set with Lipschitz boundary and let I ε , HI, ZHI : W 1,p (Ω; R m ) → [0, ∞] be defined by:

I ε (u) := Ω W x ε , ∇u(x) dx; HI(u) := Ω HW (∇u(x))dx; ZHI(u) := Ω ZHW (∇u(x))dx,
where ε > 0 is a (small) parameter and HW, HW , ZHW, ZHW :

M m×d → [0, ∞]
are given by: 

HW (ξ) := inf k≥1 inf - kY W (x, ξ + ∇φ(x))dx : φ ∈ W 1,p 0 (kY ; R m ) ; HW ( 
u ∈ W 1,p (Ω; R m ). (i) If p > d and if {u ε } ε ⊂ W 1,p (Ω; R m ) is such that u ε -u L p (Ω;R m ) → 0, then lim inf ε→0 I ε (u ε ) ≥ HI(u).
(ii) If Ω is strongly star-shaped, see Definition 3.13, then there exists

{u ε } ε ⊂ W 1,p (Ω; R m ) such that u ε -u L p (Ω;R m ) → 0 and lim sup ε→0 I ε (u ε ) ≤ ZHI(u). Let I hom : W 1,p (Ω; R m ) → [0, ∞] be defined by I hom (u) := Ω W hom (∇u(x))dx with W hom : M m×d → [0, ∞] given by W hom (ξ) :=    ZHW (ξ) if ξ ∈ int(G) lim inf t→1 ZHW (tξ) if ξ ∈ ∂G ∞ otherwise,
where int(G) denotes the interior of G. 

I ε = I hom .
Proof. As ZHI ≤ HI, from Theorem 2.1 we deduce that 

Γ(L p )-lim ε→0 I ε (u) = ZHI(u) = Ω ZHW (∇u(x))dx for all u ∈ W 1,p (Ω; R m ).
ε : W 1,p 0 (Ω; R m ) → [0, ∞] be defined by J ε (u) := I ε (u) if u ∈ W 1,p 0 (Ω; R m ) ∞ otherwise.
Using the Dirichlet version of Theorem 2.1 and arguing as in the proof of Corollary 2.2 we can establish the following result. 

Γ(L p )-lim ε→0 J ε = J hom with J hom : W 1,p (Ω; R m ) → [0, ∞] given by J hom (u) := I hom (u) if u ∈ W 1,p 0 (Ω; R m ) ∞ otherwise.
The main difference with Corollary 2.2 is that we do not need to assume that Ω is strongly star-shaped. Roughly, this comes from the fact that we can use 

D[g; h] := ξ ∈ M d×d : h det(I + ξ) ≤ g(ξ) < ∞
and we define the convex function G :

M d×d → [0, ∞] by (2.6) G(ξ) := |ξ| p + g(ξ) if ξ ∈ G ∞ otherwise,
where G is a convex subset of D[g; h] such that 0 ∈ int(G). Let W : R d × M d×d → [0, ∞] be defined by

(2.7) W (x, ξ) := F (x, ξ) + g(ξ) if ξ ∈ G ∞ otherwise,
where F : R d × M d×d → [0, ∞] is a quasiconvex function, 1-periodic with respect to its first variable and of p-polynomial growth, i.e., there exist c, C > 0 such that (2.8)

c|ξ| p ≤ F (x, ξ) ≤ C(1 + |ξ| p ) for all (x, ξ) ∈ R d × M d×d .
The following proposition makes clear the fact that such a W is consistent with the assumptions of Corollaries 2.2 and 2.4 as well as with the two basic conditions of hyperelasticity, i.e., the non-interpenetration of the matter and the necessity of an infinite amount of energy to compress a finite volume of matter into zero volume.

Proposition 2.5. Let W : R d × M d×d → [0, ∞] be defined as above. Then:

(i) W is p-coercive;
(ii) W is 1-periodic with respect to the first variable;

(iii) W satisfies (2.3) with G given by (2.6);

(iv) W satisfies (2.5) with a ≡ 2; (v) for every

(x, ξ) ∈ R d × G, W (x, ξ) < ∞ if and only if det(I + ξ) > 0; (vi) for every x ∈ R d , W (x, ξ) → ∞ as det(I + ξ) → 0.
Proof. (i) and (ii) are obvious.

(iii) As F satisfies (2.8) it is clear that for every (x, ξ) ∈ R d × M d×d ,

c|ξ| p + g(ξ) ≤ W (x, ξ) ≤ C(1 + |ξ| p ) + g(ξ),
and so αG(ξ) ≤ W (x, ξ) ≤ β(1 + G(ξ)) for all (x, ξ) ∈ R d × M d×d , where α := min{c, 1}, β := max{C, 1} and G is given by (2.6). (iv) Fix any t ∈ [0, 1], any x ∈ R d and any ξ ∈ G. First of all, as F is quasiconvex and satisfies (2.8), there exists K > 0 such that (2.9)

|F (x, ζ) -F (x, ζ )| ≤ K|ζ -ζ |(1 + |ζ| p-1 + |ζ | p-1 )
for all x ∈ R d and all ζ, ζ ∈ M d×d . Using (2.9) with ζ = tξ and ζ = ξ and taking the left inequality in (2.8) into account, we obtain (2.10)

F (x, tξ) -F (x, ξ) ≤ K (1 -t)(1 + F (x, ξ))
with K := 3K max{1, 1 c }. On the other hand, as g is convex we have

g(tξ) -g(ξ) ≤ tg(ξ) + (1 -t)g(0) -g(ξ) ≤ (1 -t)g(0), and consequently (2.11) g(tξ) -g(ξ) ≤ (1 -t)g(0)(1 + g(ξ))
since 1 + g(ξ) ≥ 1. From (2.10) and (2.11) we deduce that

W (x, tξ) -W (x, ξ) ≤ max{K , g(0)}(1 -t)(2 + W (x, ξ)).
Passing to the supremum on x and ξ we obtain sup Let us illustrate our purpose in the case d = 2. Let h : R → [0, ∞] be defined by

x∈R d sup ξ∈G W (x, tξ) -W (x, ξ) 2 + W (x, ξ) ≤ max{K , g(0)}(1 -t),
h(t) := 1 2t if t > 0 ∞ otherwise and let g : M 2×2 → [0, ∞] be given by (2.12) g(ξ) :=    1 (tr(I + ξ) -|I + ξ|) 2 if ξ ∈ G ∞ otherwise
where tr(ζ) denotes the trace of the matrix ζ and

(2.13)

G := ξ ∈ M 2×2 : |I + ξ| < tr(I + ξ) .
It is easy to see that G is a convex open set such 0 ∈ G and g is a convex function.

On the other hand, for each ξ ∈ M 2×2 ,

2det(I + ξ) = 2(1 + ξ 11 )(1 + ξ 22 ) -2ξ 12 ξ 21 ≥ (1 + ξ 11 ) + (1 + ξ 22 ) 2 -(1 + ξ 11 ) 2 -(1 + ξ 22 ) 2 -ξ 2 12 -ξ 2 21 = tr(I + ξ) 2 -|I + ξ| 2 = (tr(I + ξ) -|I + ξ|)(tr(I + ξ) + |I + ξ|) > (tr(I + ξ) -|I + ξ|)(tr(I + ξ) -|I + ξ|) = (tr(I + ξ) -|I + ξ|) 2 ,
and so G ⊂ D[g; h]. Thus, we have Proposition 2.6. Let W : R 2 × M 2×2 → [0, ∞] be defined by (2.7) with g and G given by (2.12) and (2.13) respectively. Then, W satisfies (i), (ii), (iii), (iv), (v) and (vi) of Proposition 2.5. In particular, Corollaries 2.2 and 2.4 can be applied.

Auxiliary results

3.1. Ru-usc functions. Let U ⊂ R d be an open set and let L :

U ×M m×d → [0, ∞] be a Borel measurable function. For each x ∈ U , we denote the effective domain of L(x, •) by L x and, for each a ∈ L 1 loc (U ; ]0, ∞]), we define ∆ a L : [0, 1] →] -∞, ∞] by ∆ a L (t) := sup x∈U sup ξ∈Lx L(x, tξ) -L(x, ξ) a(x) + L(x, ξ) .
Definition 3.1. We say that L is radially uniformly upper semicontinuous (ru-usc) if there exists

a ∈ L 1 loc (U ; ]0, ∞]) such that lim sup t→1 ∆ a L (t) ≤ 0. Remark 3.2. If L is ru-usc then (3.1) lim sup t→1 L(x, tξ) ≤ L(x, ξ)
for all x ∈ U and all ξ ∈ L x . Indeed, given x ∈ U and ξ ∈ L x , we have

L(x, tξ) ≤ ∆ a L (t) (a(x) + L(x, ξ)) + L(x, ξ) for all t ∈ [0, 1], which gives (3.1) since a(x) + L(x, ξ) > 0 and lim sup t→1 ∆ a L (t) ≤ 0. Remark 3.3. If there exist x ∈ U and ξ ∈ L x such that L(x, •) is lsc at ξ then (3.2) lim inf t→1 ∆ a L (t) ≥ 0 for all a ∈ L 1 loc (U ; ]0, ∞]). Indeed, given such x ∈ U and ξ ∈ L x , for any a ∈ L 1 loc (U ; ]0, ∞]) we have ∆ a L (t) ≥ L(x, tξ) -L(x, ξ) a(x) + L(x, ξ) for all t ∈ [0, 1], which gives (3.2) since a(x) + L(x, ξ) > 0 and lim inf t→1 (L(x, tξ) -L(x, ξ)) ≥ 0.
The following lemma is essentially due to Wagner (see [START_REF] Wagner | On the lower semicontinuous quasiconvex envelope for unbounded integrands[END_REF]).

Lemma 3.4. Assume that L is ru-usc and consider x ∈ U such that

(3.3) tL x ⊂ L x for all t ∈]0, 1[, where L x denotes the closure of L x . Then lim inf t→1 L(x, tξ) = lim sup t→1 L(x, tξ)
for all ξ ∈ L x .

Proof. Fix ξ ∈ L x . It suffices to prove that

(3.4) lim sup t→1 L(x, tξ) ≤ lim inf t→1 L(x, tξ).
Without loss of generality we can assume that lim inf t→1 L(x, tξ) < ∞ and there exist {t n } n , {s n } n ⊂]0, 1[ such that:

t n → 1, s n → 1 and tn sn → 1; lim sup t→1 L(x, tξ) = lim n→∞ L(x, t n ξ); lim inf t→1 L(x, tξ) = lim n→∞ L(x, s n ξ).
From (3.3) we see that for every n ≥ 1, s n ξ ∈ L x , and so we can assert that for every n ≥ 1,

(3.5) L(x, t n ξ) ≤ a(x)∆ a L t n s n + 1 + ∆ a L t n s n L(x, s n ξ).
On the other hand, as L is ru-usc we have lim sup n→∞ 1 + ∆ a 

Define L : U × M m×d → [0, ∞] by L(x, ξ) := lim inf t→1 L(x, tξ).
The interest of Definition 3.1 comes from the following theorem.

Theorem 3.5. If L is ru-usc and if for every x ∈ U ,

(3.6) tL x ⊂ int(L x ) for all t ∈]0, 1[ (in particular (3.3) holds) and L(x, •) is lsc on int(L x )
, where int(L x ) denotes the interior of L x , then:

(i) L(x, ξ) =    L(x, ξ) if ξ ∈ int(L x ) lim t→1 L(x, tξ) if ξ ∈ ∂L x ∞ otherwise; (ii) L is ru-usc; (iii) for every x ∈ U , L(x, •) is the lsc envelope of L(x, •).
Proof. (i) Lemma 3.4 shows that, for x ∈ U and ξ ∈ L x , L(x, ξ) = lim t→1 L(x, tξ). From remark 3.2 we see that if ξ ∈ int(L x ) then lim sup t→1 L(x, tξ) ≤ L(x, ξ). On the other hand, from (3.6) it follows that if ξ ∈ int(L x ) then tξ ∈ int(L x ) for all t ∈]0, 1[. Thus, lim inf t→1 L(x, tξ) ≥ L(x, ξ) whenever ξ ∈ int(L x ) since L(x, •) is lsc on int(L x ), and (i) follows. (ii) Fix any t ∈]0, 1[ any x ∈ U and any ξ ∈ L x , where L x denotes the effective domain of L(x, •). As L x ⊂ L x we have ξ ∈ L x and tξ ∈ L x since (3.3) holds. From Lemma 3.4 we can assert that:

L(x, ξ) = lim s→1 L(x, sξ); L(x, tξ) = lim s→1 L(x, s(tξ)),
and consequently

(3.7) L(x, tξ) -L(x, ξ) a(x) + L(x, ξ) = lim s→1 L(x, t(sξ)) -L(x, sξ) a(x) + L(x, sξ) .
On the other hand, by (3.3) we have sξ ∈ L x for all s ∈]0, 1[, and so

L(x, t(sξ)) -L(x, sξ) a(x) + L(x, sξ) ≤ ∆ a L (t) for all s ∈]0, 1[.
Letting s → 1 and using (3.7) we deduce that ∆ a L (t) ≤ ∆ a L (t) for all t ∈]0, 1[, which gives (ii) since L is ru-usc. (iii) Given x ∈ U , we only need to prove that if |ξ n -ξ| → 0 then

(3.8) lim inf n→∞ L(x, ξ n ) ≥ L(x, ξ).
Without loss of generality we can assume that

lim inf n→∞ L(x, ξ n ) = lim n→∞ L(x, ξ n ) < ∞, and so sup n≥1 L(x, ξ n ) < ∞.
Thus ξ n ∈ L x for all n ≥ 1, hence ξ ∈ L x , and so

L(x, ξ) = lim t→1 L(x, tξ)
by Lemma 3.4. Moreover, using (3.3) we see that, for any t ∈]0, 1[, tξ ∈ L x and tξ n ∈ L x for all n ≥ 1, and consequently

lim inf n→∞ L(x, tξ n ) ≥ L(x, tξ) for all t ∈]0, 1[ because L(x, •) is lsc on L x and |tξ n -tξ| → 0. It follows that (3.9) lim sup t→1 lim inf n→∞ L(x, tξ n ) ≥ L(x, ξ).
On the other hand, for every n ≥ 1 and every t ∈ [0, 1], we have

L(x, tξ n ) ≤ (1 + ∆ a L (t))L(x, ξ n ) + a(x)∆ a L (t). As L is ru-usc, letting n → ∞ and t → 1 we obtain lim sup t→1 lim inf n→∞ L(x, tξ n ) ≤ lim n→∞ L(x, ξ n ),
which gives (3.8) when combined with (3.9).

In what follows, given any bounded open set A ⊂ R d , we denote the space of continuous piecewise affine functions from A to R m by Aff(A; R m ), i.e., u ∈ Aff(A; R m ) if and only if u ∈ C(A; R m ) and there exists a finite family 

{A i } i∈I of open dis- joint subsets of A such that |A \ ∪ i∈I A i | = 0 and, for each i ∈ I, |∂A i | = 0 and ∇u(x) = ξ i in A i with ξ i ∈ M m×d . Define ZL : U × M m×d → [0, ∞] by ZL(x, ξ) := inf Y L(x, ξ + ∇φ(y))dy : φ ∈ Aff 0 (Y ; R m ) with Y :=]0, 1[ d and Aff 0 (Y ; R m ) := φ ∈ Aff(Y ; R m ) : φ = 0 on ∂Y .
ZL(x, tξ) -ZL(x, ξ) ≤ lim inf n→∞ Y L(x, t(ξ + ∇φ n (y))) -L(x, ξ + ∇φ n (y)) dy.
As L is ru-usc it follows that

ZL(x, tξ) -ZL(x, ξ) ≤ ∆ a L (t) (a(x) + ZL(x, ξ)) , which implies that ∆ a ZL (t) ≤ ∆ a L (t) for all t ∈ [0, 1]
, and the proof is complete. Assume that U = R d and define HL :

R d × M m×d → [0, ∞] by HL(ξ) := inf k≥1 inf - kY L(x, ξ + ∇φ(x))dx : φ ∈ W 1,p 0 (kY ; R m ) .
Roughly, Proposition 3.7 shows that ru-usc functions have a nice behavior with respect to homogenization.

Proposition 3.7. If L is periodically ru-usc, i.e., there exists a ∈ L 1 loc (R d ; ]0, ∞]) such that a is 1-periodic and lim sup t→1 ∆ a L (t) ≤ 0, then HL is ru-usc.

Proof. Fix any t ∈ [0, 1] and any ξ ∈ HL, where HL denotes the effective domain of HL. By definition, there exists {k n ; φ n } n such that:

φ n ∈ W 1,p 0 (k n Y ; R m ) for all n ≥ 1; HL(ξ) = lim n→∞ - knY L(x, ξ + ∇φ n (x))dx; ξ + ∇φ n (x) ∈ L x for all n ≥ 1 and a.a. x ∈ k n Y . Moreover, for every n ≥ 1, HL(tξ) ≤ - knY L(x, t(ξ + ∇φ n (x)))dx since tφ n ∈ W 1,p 0 (k n Y ; R m
), and so

HL(tξ) -HL(ξ) ≤ lim inf n→∞ - knY L(x, t(ξ + ∇φ n (x))) -L(x, ξ + ∇φ n (x)) dx.
As L is periodically ru-usc it follows that

HL(tξ) -HL(ξ) ≤ ∆ a L (t) a + HL(ξ)
with a := Y a(y)dy, which implies that ∆ a HL (t) ≤ ∆ a L (t) for all t ∈ [0, 1], and the proof is complete.

As a consequence of Theorem 3.5 and Propositions 3.6 and 3.7 we have Corollary 3.8. Let W : R d × M m×d → [0, ∞] be a Borel measurable function. If W is periodically ru-usc and if tZHW ⊂ int(ZHW) for all t ∈]0, 1[, where ZHW denotes the effective domain of ZHW , then

ZHW (ξ) =    ZHW (ξ) if ξ ∈ int(ZHW) lim t→1 ZHW (tξ) if ξ ∈ ∂(ZHW) ∞ otherwise.
Proof. First of all, we can assert that ZHW is continuous on int(ZHW) because of the following lemma due to Fonseca (see [START_REF] Fonseca | The lower quasiconvex envelope of the stored energy function for an elastic crystal[END_REF]).

Lemma 3.9. ZL is continuous on int(ZL).

On the other hand, from Proposition 3.7 we see that HW is ru-usc, hence ZHW is ru-usc by Proposition 3.6, and the result follows from Theorem 3.5. 

A subadditive

for all A ∈ O b (R d ). Then, for every Q ∈ Cub(R d ), lim ε→0 S 1 ε Q 1 ε Q = inf k≥1 S(kY ) k d . Proof. Fix Q ∈ Cub(R d ).
First of all, it is easy to see that, for each k ≥ 1 and each ε > 0, there exist k ε ≥ 1 and

z ε ∈ Z d such that lim ε→0 k ε = ∞ and (3.11) (k ε -2)kY + k(z ε + ê) ⊂ 1 ε Q ⊂ k ε kY + kz ε with ê := (1, 1, • • • , 1)
. Fix any k ≥ 1 and any ε > 0. As the set function S is subadditive and Z d -invariant, using the left inclusion in (3.11) we obtain

S 1 ε Q ≤ (k ε -2) d S(kY ) + S 1 ε Q \ (k ε -2)kY + k(z ε + ê) .
Moreover, it is clear that

1 ε Q \ (k ε -2)kY + k(z ε + ê) \ ∪ i∈I (A i + q i ) = 0
where

q i ∈ Z d and {A i } i∈I is a finite family of disjoint open subsets of kY with card(I) = k d ε -(k ε -2) d
, and so

S 1 ε Q ≤ (k ε -2) d S(kY ) + c(k d ε -(k ε -2) d )k d
by (3.10). It follows that

S 1 ε Q 1 ε Q ≤ S(kY ) k d + c k d ε -(k ε -2) d (k ε -2) d because | 1 ε Q| ≥ (k ε -2) d k d
by the left inequality in (3.11). Letting ε → 0 and passing to the infimum on k, we obtain

lim sup ε→0 S 1 ε Q 1 ε Q ≤ inf k≥1 S(kY ) k d .
On the other hand, using the right inequality in (3.11) with k = 1, by subadditivity and Z d -invariance we have

S(k ε Y ) ≤ S 1 ε Q + S (k ε Y + z ε ) \ 1 ε Q .
As previously, since, up to a set of zero Lebesgue measure, the set (

k ε Y + z ε ) \ 1 ε Q can be written as the disjoint union of k d ε -(k ε -2) d integer
translations of open subsets of Y , by using (3.10), we deduce that

S(k ε Y ) ≤ S 1 ε Q + c(k d ε -(k ε -2) d ),
and consequently

inf k≥1 S(kY ) k d ≤ S(k ε Y ) k d ε ≤ S 1 ε Q 1 ε Q + c k d ε -(k ε -2) d k d ε because | 1 ε Q| ≤ k d ε by the right inequality in (3.11) with k = 1. Letting ε → 0 we obtain inf k≥1 S(kY ) k d ≤ lim inf ε→0 S 1 ε Q 1 ε Q
, and the proof is complete.

Given a Borel measurable function W :

R d × M m×d → [0, ∞], for each ξ ∈ M m×d , we define S ξ : O b (R d ) → [0, ∞] by (3.12) S ξ (A) := inf A W (x, ξ + ∇φ(x))dx : φ ∈ W 1,p 0 (A; R m ) .
It is easy that the set function S ξ is subbadditive. If we assume that W is 1-periodic with respect to the first variable, then S ξ is Z d -invariant. Moreover, if W is such that there exist a Borel measurable function G : M m×d → [0, ∞] and β > 0 such that

(3.13) W (x, ξ) ≤ β(1 + G(ξ)) for all ξ ∈ M m×d , then S ξ (A) ≤ β(1 + G(ξ))|A| for all A ∈ O b (R d ).
Denote the effective domain of G by G. From the above, we see that the following result is a direct consequence of Theorem 3.11.

Corollary 3.12. Assume that W is 1-periodic with respect to the first variable and satisfies (3.13). Then, for every ξ ∈ G,

lim ε→0 S ξ 1 ε Q 1 ε Q = inf k≥1 S ξ (kY ) k d .
3.3. Approximation of integrals with convex growth. We begin with the following definition.

Definition 3.13. An open set Ω ⊂ R d is said to be strongly star-shaped if there exists x 0 ∈ Ω such that

-x 0 + Ω ⊂ t(-x 0 + Ω) for all t > 1.
In what follows, Aff(Ω; R m ) denotes the space of continuous piecewise affine functions from Ω to R m . The following lemma can be found in [ 

lim n→∞ u n -u W 1,p (Ω;R m ) = 0; lim n→∞ Ψ(∇u n ) -Ψ(∇u) L 1 (Ω) = 0.
In particular, ∇u n (x) ∈ D for all n ≥ 1 and a.a. x ∈ Ω.

Proof. From the proof of [Mül87, Lemma 3.6(a)] (see also [ET74, Proof of Proposition 2.6 p. 289-291]) we can extract the fact that there exists {v k ; Ω k } k such that: 

for every k ≥ 1, v k ∈ C ∞ (Ω k ; R m ) where Ω k ⊃ Ω is a bounded open set; (3.14) for every k ≥ 1, ∇v k (x) ∈ D for all x ∈ Ω; (3.15) lim k→∞ v k -u W 1,p (Ω;R m ) = 0; (3.16) lim k→∞ ψ(∇v k ) -ψ(∇u) L 1 (Ω) = 0. (3.
Ψ(∇v n,k ) -Ψ(∇v k ) L ∞ (Ω) = 0.
Letting k → ∞ in (3.18) and (3.19) we obtain: Let L : M m×d → [0, ∞] be a Borel measurable function with G-convex growth, i.e., there exist a convex function G : M m×d → [0, ∞] and α, β > 0 such that

lim k→∞ lim n→∞ u n,k -v k W 1,∞ (Ω;R m ) = 0; (3.
(3.22) αG(ξ) ≤ L(ξ) ≤ β(1 + G(ξ))
for all ξ ∈ M m×d . Then, it is easy to see that the effective domain of L is equal to the effective domain of G denoted by G and assumed to contain 0, i.e., 0 ∈ int(G).

The following proposition is a consequence of Lemma 3.14.

Proposition 3.15. Let Ω ⊂ R d be a bounded open set with Lipschitz boundary which is strongly star-shaped and let u ∈ W 1,p (Ω; R m ) be such that

(3.23) Ω L(∇u(x))dx < ∞.
If L is ru-usc and continuous on int(G) then there exists {u n } n ⊂ Aff(Ω; R m ) such that:

lim n→∞ u n -u W 1,p (Ω;R m ) = 0; lim sup n→∞ Ω L(∇u n (x))dx ≤ Ω L(∇u(x))dx.
Proof. From (3.23) we see ∇u(x) ∈ G for a.a. x ∈ Ω, and so

(3.24) Ω L(t∇u)dx ≤ (1 + ∆ a L (t)) Ω L(∇u)dx + ∆ a L (t) a L 1 (Ω) for all t ∈]0, 1[. Fix any t ∈]0, 1[. From (3.24) it follows that (3.25) Ω L(t∇u(x))dx < ∞.
Let G : M m×d → [0, ∞] be the convex function defined by

G(ξ) := G(ξ) if ξ ∈ int(G) ∞ otherwise.
Then, the effective domain of G is equal to int(G). As G is convex and 0 ∈ int(G) we have

(3.26) t∇u(x) ∈ int(G) for a.a. x ∈ Ω.
Using (3.25) and the left inequality in (3.22) we deduce that

(3.27) Ω G(t∇u(x))dx < ∞.
Applying Lemma 3.14 with Ψ = G we can assert there exists {u n,t } n ⊂ Aff(Ω; R m ) such that: 

lim n→∞ u n,t -tu W 1,p (Ω;R m ) = 0; (3.28)
L(∇u n,t (x))dx ≤ β|E| + β E G(t∇u(x))dx + β G(∇u n,t ) -G(t∇u) L 1 (Ω)
for all n ≥ 1 and all Borel sets E ⊂ Ω, which shows that {L(∇u n,t )} n is uniformly absolutely integrable when combined with (3.27) and (3.30). Moreover, L(∇u n,t (x)) → L(t∇u(x)) for a.a. x ∈ Ω because of (3.26), (3.31), (3.29) and the continuity of L on int(G), and consequently On the other hand, it is easy to see that

u n,t -u W 1,p (Ω;R m ) ≤ u n,t -tu W 1,p (Ω;R m ) + tu -u W 1,p (Ω;R m )
for all n ≥ 1 and all t ∈]0, 1[. Hence If L is continuous on int(G) then there exists {u n } n ⊂ Aff(Ω; R m ) such that: Fix any n ≥ 1 and k ≥ 1. By Vitali's covering theorem there exists a finite or countable family {a i + α i Y } i∈I of disjoint subsets of A, where a i ∈ R d and 0

lim n→∞ u n -u W 1,p (Ω;R m ) = 0; lim n→∞ Ω L(∇u n (x))dx = Ω L(∇u(x))dx.
< α i < 1 k , such that |A \ ∪ i∈I (a i + α i Y )| = 0 (and so i∈I α d i = |A|). Define φ n,k ∈ Aff 0 (A; R m ) by φ n,k (x) := α i φ n x -a i α i if x ∈ a i + α i Y. Clearly φ n,k L ∞ (A;R m ) ≤ 1 k φ n L ∞ (Y ;R m ) , hence lim k→∞ φ n,k L ∞ (A;R m ) = 0 for all k ≥ 1, and consequently (3.35) lim n→∞ lim k→∞ φ n,k L ∞ (A;R m ) = 0.
On the other hand, we have 3.5. Approximation of the homogenization formula. Given a Borel measurable function L : R d × M m×d → [0, ∞] which is 1-periodic with respect to its first variable and for which there exists a Borel measurable function G :

M m×d → [0, ∞] and β > 0 such that (3.37) L(x, ξ) ≤ β(1 + G(ξ))
for all ξ ∈ M m×d , we consider HL : M m×d → [0, ∞] defined by

HL(ξ) := inf k≥1 inf - kY L(x, ξ + ∇φ(x))dx : φ ∈ W 1,p 0 (kY ; R m ) .
The following proposition is adapted from [Mül87, Lemma 2.1(a)].

Proposition 3.18. Given ξ ∈ G, where G denotes the effective domain of G, and a bounded open set A ⊂ R d there exists

{φ ε } ε ⊂ W 1,p 0 (A; R m ) such that: lim ε→0 φ ε L p (A;R m ) = 0; lim ε→0 - A L x ε , ξ + ∇φ ε (x) dx = HL(ξ).
Proof. Given ξ ∈ G there exists {k n ; φn } n such that:

φn ∈ W 1,p 0 (k n Y ; R m ) for all n ≥ 1; lim n→∞ - knY L(x, ξ + ∇ φn (x))dx = HL(ξ). (3.38)
For each n ≥ 1 and ε > 0, denote the k n Y -periodic extension of φn by φ n , consider

A n,ε ⊂ A given by A n,ε := ∪ z∈In,ε ε(z + k n Y ) with I n,ε := z ∈ Z d : ε(z + k n Y ) ⊂ A , where card(I n,ε ) < ∞ because A is bounded, and define φ n,ε ∈ W 1,p 0 (A; R m ) by φ n,ε (x) := εφ n x ε if x ∈ A n,ε . Fix any n ≥ 1. It is easy to see that φ n,ε p L p (A;R m ) = An,ε |φ n,ε (x)| p dx = ε p z∈In,ε ε(z+knY ) φ n x ε p dx ≤ ε p |A| k d n φn p L p (knY ;R m )
for all ε > 0, and consequently lim ε→0 φ n,ε L p (A;R m ) = 0 for all n ≥ 1. It follows that

(3.39) lim n→∞ lim ε→0 φ n,ε L p (A;R m ) = 0.
On the other hand, for every n ≥ 1 and every ε > 0, we have

A L x ε , ξ + ∇φ n,ε (x) dx = An,ε L x ε , ξ + ∇φ n,ε (x) dx + A\An,ε L x ε , ξ dx. But An,ε L x ε , ξ + ∇φ n,ε (x) dx = z∈In,ε ε(z+knY ) L x ε , ξ + ∇φ n x ε dx = |A n,ε |- knY L(x, ξ + ∇ φn (x))dx,
and consequently

|A n,ε |HL(ξ) ≤ A L x ε , ξ + ∇φ n,ε (x) dx ≤ |A|- knY L(x, ξ + ∇ φn (x))dx +β|A \ A n,ε |(1 + G(ξ))
by (3.37). As lim ε→0 |A \ A n,ε | = 0 for any n ≥ 1, G(ξ) < ∞ and using (3.38) we see that:

lim ε→0 |A \ A n,ε |HL(ξ) = 0; lim n→∞ lim ε→0 - knY L x, ξ + ∇ φn (x) -HL(ξ)dx + |A \ A n,ε | |A| (1 + G(ξ)) =0. Hence (3.40) lim n→∞ lim sup ε→0 - A L x ε , ξ + ∇φ n,ε (x) dx -HL(ξ) = 0,
and the result follows from (3.39) and (3.40) by diagonalization.

Proof of Theorem 2.1

In this section we prove Theorem 2.1.

4.1. Proof of Theorem 2.1(i). Let u ∈ W 1,p (Ω; R m ) and let {u ε } ε ⊂ W 1,p (Ω; R m ) be such that u ε -u L p (Ω;R m ) → 0. We have to prove that (4.1) Γ-lim inf ε→0 I ε (u ε ) ≥ HI(u).
Without loss of generality we can assume that

(4.2) lim inf ε→0 I ε (u ε ) = lim ε→0 I ε (u ε ) < ∞, and so sup ε I ε (u ε ) < ∞. Then (4.3) ∇u ε (x) ∈ G for all ε > 0 and a.a. x ∈ Ω
and, up to a subsequence, (4.4)

u ε u in W 1,p (Ω; R m ) since W is p-coercive.
As G is convex, from (4.3) and (4.4) it follows that (4.5) ∇u(x) ∈ G for a.a. x ∈ Ω.

As p > d, u is differentiable for a.a. x ∈ Ω and (4.4) implies that, up to a subsequence, (4.6)

u ε -u L ∞ (Ω;R m ) → 0.
Step 1: localization. For each ε > 0, we define the (positive) Radon measure µ ε on Ω by

µ ε := W • ε , ∇u ε (•) dx.
From (4.2) we see that sup ε µ ε (Ω) < ∞, and so there exists a (positive) Radon measure µ on Ω such that (up to a subsequence) µ ε * µ, i.e., By Lebesgue's decomposition theorem, we have µ = µ a + µ s where µ a and µ s are (positive) Radon measures such that µ a << dx and µ s ⊥ dx, and from Radon-Nikodym's theorem we deduce that there exists f ∈ L 1 (Ω; [0, ∞[), given by (4.7)

f (x) = lim ρ→0 µ a (Q ρ (x)) ρ d = lim ρ→0 µ(Q ρ (x)) ρ d for a.a. x ∈ Ω with Q ρ (x) := x + ρY , such that µ a (A) = A
f dx for all measurable sets A ⊂ Ω.

Remark 4.1. The support of µ s , supp(µ s ), is the smallest closed subset F of Ω such that µ s (Ω \ F ) = 0. Hence, Ω \ supp(µ s ) is an open set, and so, given any x ∈ Ω \ supp(µ s ), there exists ρ > 0 such that Q ρ(x) ⊂ Ω \ supp(µ s ) with Q ρ(x) := x + ρY . Thus, for a.e. x ∈ Ω, µ(Q ρ (x)) = µ a (Q ρ (x)) for all ρ > 0 sufficiently small.

To prove (4.1) it suffices to show that (4.8) f (x) ≥ HW (∇u(x)) for a.a. x ∈ Ω.

Indeed, from (a) we see that

lim inf ε→0 I ε (u ε ) = lim inf ε→0 µ ε (Ω) ≥ µ(Ω) = µ a (Ω) + µ s (Ω) ≥ µ a (Ω) = Ω f (x)dx.
But, by (4.8), we have

Ω f (x)dx ≥ Ω HW (∇u(x))dx,
and (4.1) follows. Fix x 0 ∈ Ω \ N , where N ⊂ Ω is a suitable set such that |N | = 0, and prove that f (x 0 ) ≥ HW (∇u(x 0 )). As µ(Ω) < ∞ we have µ(∂Q ρ (x 0 )) = 0 for all ρ ∈]0, 1] \ D where D is a countable set. From (b) and (4.7) we deduce that

f (x 0 ) = lim ρ→0 µ(Q ρ (x 0 )) ρ d = lim ρ→0 lim ε→0 µ ε (Q ρ (x 0 )) ρ d ,
and so we are reduced to show that (4.9) lim

ρ→0 lim ε→0 - Qρ(x0) W x ε , ∇u ε (x) dx ≥ HW (∇u(x 0 )).
On the other hand, as G is convex and 0 ∈ int(G), from (4.3) it follows that t∇u ε (x) ∈ G for all ε > 0 and a.a. x ∈ Ω, and so, given any t ∈]0, 1[, we can assert that for every ε > 0 and every ρ > 0,

- Qρ(x0) W x ε , t∇u ε (x) dx = (1 + ∆ a W (t)) - Qρ(x0) W x ε , ∇u ε (x) dx +∆ a W (t)- Qρ(x0) a x ε dx
with ∆ a W (t) given by (2.4). Using the periodicity of a we obtain

lim ρ→0 lim ε→0 - Qρ(x0) W x ε , t∇u ε dx = (1 + ∆ a W (t)) lim ρ→0 lim ε→0 - Qρ(x0) W x ε , ∇u ε dx +∆ a W (t) Y a (y) dy.
As lim sup t→1 ∆ a W (t) ≤ 0 and Y a(y)dy ≥ 0 it follows that lim sup

t→1 lim ρ→0 lim ε→0 - Qρ(x0) W x ε , t∇u ε (x) dx ≤ lim ρ→0 lim ε→0 - Qρ(x0) W x ε , ∇u ε (x) dx.
Consequently, to prove (4.9) it is sufficient to show that (4.10) lim sup

t→1 lim ρ→0 lim ε→0 - Qρ(x0) W x ε , t∇u ε (x) dx ≥ HW (∇u(x 0 )).
Step 2: cut-off method. Fix any t, δ ∈]0,

1[. Let φ ∈ C ∞ 0 (Q ρ (x 0 ); [0, 1]) be a cut-off function between Q ρδ (x 0 ) and Q ρ (x 0 ) such that ∇φ L ∞ (Qρ(x0)) ≤ 2 ρ(1-δ) . Setting v ε := φu ε + (1 -φ)l ∇u(x0)
, where l ∇u(x0) (x) := u(x 0 ) + ∇u(x 0 ) • (x -x 0 ), we have

∇v ε :=    ∇u ε on Q ρδ (x 0 ) φ∇u ε + (1 -φ)∇u(x 0 ) + Ψ ε,ρ on S ρ l ∇u(x0) on ∂Q ρ (x 0 ), with S ρ := Q ρ (x 0 ) \ Q ρδ (x 0 ) and Ψ ε,ρ := ∇φ ⊗ u ε -l ∇u(x0) . Hence (4.11) t∇v ε :=      t∇u ε on Q ρδ (x 0 ) t (φ∇u ε + (1 -φ)∇u(x 0 )) + (1 -t) t 1-t Ψ ε,ρ on S ρ tl ∇u(x0)
on ∂Q ρ (x 0 ), which, in particular, means that (4.12)

tv ε -tl ∇u(x0) ∈ W 1,p 0 (Q ρ (x 0 ); R m ). Using the right inequality in (2.3) it follows that - Qρ(x0) W x ε , t∇v ε dx ≤ - Qρ(x0) W x ε , t∇u ε dx + 1 ρ d Sρ W x ε , t∇v ε dx ≤ - Qρ(x0) W x ε , t∇u ε dx + β(1 -δ d ) + β ρ d Sρ G(t∇v ε )dx.
On the other hand, taking (4.11) into account and using the convexity of G and the left inequality in (2.3), we have

G(t∇v ε ) ≤ G(∇u ε ) + G(∇u(x 0 )) + (1 -t)G t 1 -t Ψ ε,ρ ≤ 1 α W x ε , ∇u ε + G(∇u(x 0 )) + (1 -t)G t 1 -t Ψ ε,ρ .
Moreover, it is easy to see that

t 1 -t Ψ ε,ρ L ∞ (Qρ(x0);M m×d ) ≤ 2t (1 -t)(1 -δ) 1 ρ u -l ∇u(x0) L ∞ (Qρ(x0);R m ) + 2t ρ(1 -t)(1 -δ) u ε -u L ∞ (Ω;R m ) , where (4.13) lim ρ→0 2t (1 -t)(1 -δ) 1 ρ u -l ∇u(x0) L ∞ (Qρ(x0);R m ) = 0
by the differentiability of u at x 0 which gives lim ρ→0

1 ρ u -l ∇u(x0) L ∞ (Qρ(x0);R m ) = 0, and (4.14) lim ε→0 2t ρ(1 -t)(1 -δ) u ε -u L ∞ (Ω;R m ) = 0 for all ρ > 0 by (4.6), i.e., lim ε→0 u ε -u L ∞ (Ω;R m ) = 0. Since G is convex and 0 ∈ int(G),
G is bounded at the neighbourhood of 0, and so, in particular,

c := sup ξ∈Bη(0)
G(ξ) < ∞ for some η > 0.

By (4.13) there exists ρ > 0 such that

2t (1-t)(1-δ) 1 ρ u -l ∇u(x0) L ∞ (Qρ(x0);R m ) < η 2
for all 0 < ρ < ρ. Fix any 0 < ρ < ρ. Taking (4.14) into account we can assert that there exists ε ρ > 0 such that

G t 1 -t Ψ ε,ρ ≤ c for all 0 < ε < ε ρ .
Thus, for every 0

< ε < ε ρ , - Qρ(x0) W x ε , t∇v ε dx ≤ - Qρ(x0) W x ε , t∇u ε dx + β α 1 ρ d µ ε (S ρ ) (4.15) +β(1 -δ d )(1 + G(∇u(x 0 )) +c(1 -t).
Step 3: passing to the limit. Taking (4.12) into account we see that for every 0

< ε < ε ρ , - Qρ(x0) W x ε , t∇v ε dx ≥ 1 |Q ρ (x 0 )| S t∇u(x0) 1 ε Q ρ (x 0 ) ,
where, for any ξ ∈ M m×d and any open set A ⊂ R d , S ξ (A) is defined by (3.12). By (4.5) we have ∇u(x 0 ) ∈ G, and so t∇u(x 0 ) ∈ G because G is convex and 0 ∈ int(G). From Corollary 3.12 we deduce that On the other hand, as µ ε (S ρ ) ≤ µ ε (S ρ ) for all 0 < ε < ε ρ , S ρ is compact and µ ε * µ (see (a)), we have lim sup ε→0 µ ε (S ρ ) ≤ µ(S ρ ). But µ(S ρ ) = µ a (S ρ ) since 

S ρ ⊂ Q ρ (x 0 ) ⊂ Ω \ supp(µ s ) (see Remark 4.1), hence, for every 0 < ρ < ρ, lim sup ε→0 1 ρ d µ ε (S ρ ) ≤ 1 ρ d Sρ f (x)dx = - Qρ(x0) f (x)dx -δ d - Q ρδ (x0) f ( 
} ε ⊂ W 1,p (Ω; R m ) such that u ε -u L p (Ω;R m ) → 0 and lim sup ε→0 I ε (u ε ) ≤ ZHI(u).
Without loss of generality we can assume that ZHI(u) < ∞, and so (4.18) ∇u(x) ∈ ZHW for a.a. x ∈ Ω, where ZHW denotes the effective domain of ZHW .

Step 1: characterization of ZHW . As W is periodically ru-usc, i.e., there exists a 1-periodic function a ∈ L 1 loc (R d ; ]0, ∞]) such that lim sup On the other hand, since W is of G-convex growth, i.e., there exist α, β > 0 and a convex function

G : M m×d → [0, ∞] such that αG(ξ) ≤ W (x, ξ) ≤ β(1 + G(ξ)) for all (x, ξ) ∈ R d × M m×d ,
also is ZHW and so dom(ZHW ) = G. As G is convex and 0 ∈ int(G) we have Step 3: approximation of ZHW . Fix any t ∈]0, 1[. From (4.20) we see that ZHW ⊂ G, and so t∇u(x) ∈ int(G) for a.a. x ∈ Ω because G is convex, 0 ∈ int(G) and (4.18) holds. Moreover, applying Lemma 3.9 with L = HW , we deduce that ZHW is continuous on int(G). From Proposition 3.16 it follows that there exists {u n,t } n ⊂ Aff(Ω; R m ) such that: Step 4: approximation of HW . Fix any k ≥ 1. As u k,n,t ∈ Aff(Ω; R m ) we can assert that there exists a finite family {V j } j∈J of open disjoint subsets of Ω such that |Ω \ ∪ j∈J V j | = 0 and, for each j ∈ J, |∂V j | = 0 and ∇u k,n,t (x) = ζ j in V j with ζ j ∈ M m×d . Thus As ZHI(u) < ∞, taking (4.23), (4.25), (4.30) and (4.31) into account, we can assert that HW (ζ j ) < ∞ for all j ∈ J. Moreover, it is clear that dom(HW ) = G because W is of G-convex growth, hence ζ j ∈ G for all j ∈ J. By Proposition 3.18, for each j ∈ J, there exists {ψ j,ε } ε ⊂ W 1,p 0 (V j ; R m ) such that: Step 5: passing to the limit. 

W

  (x, ξ + ∇φ(x))dx with Y :=]0, 1[ d .

  ξ) := lim inf t→1 HW (tξ); ZHW (ξ) := inf Y HW (ξ + ∇φ(y))dy : φ ∈ Aff 0 (Y ; R m ) ; ZHW (ξ) := lim inf t→1 ZHW (tξ) with Y :=]0, 1[ d and Aff 0 (Y ; R m ) := φ ∈ Aff(Y ; R m ) : φ = 0 on ∂Y where Aff(Y ; R m ) denotes the space of continuous piecewise affine functions from Y to R m . The main result of the paper is the following.

  a(x) > 0, and (3.4) follows from (3.5) by letting n → ∞.

  Roughly, Proposition 3.6 shows that ru-usc functions have a nice behavior with respect to relaxation.Proposition 3.6. If L is ru-usc then ZL is ru-usc.Proof. Fix any t ∈ [0, 1], any x ∈ U and any ξ ∈ ZL x , where ZL x denotes the effective domain of ZL(x, •). By definition, there exists {φ n } n ⊂ Aff 0 (Y ; R m ) such that:ZL(x, ξ) = limn→∞ Y L (x, ξ + ∇φ n (y)) dy; ξ + ∇φ n (y) ∈ L x for all n ≥ 1 and a.a. y ∈ Y . Moreover, for every n ≥ 1, ZL(x, tξ) ≤ Y L (x, t(ξ + ∇φ n (y))) dy since tφ n ∈ Aff 0 (Y ; R m ), and so

  theorem. Let O b (R d ) be the class of all bounded open subsets of R d . We begin with the following definition. Definition 3.10. Let S : O b (R d ) → [0, ∞] be a set function.(i) We say that S is subadditive ifS(A) ≤ S(B) + S(C) for all A, B, C ∈ O b (R d ) with B, C ⊂ A, B ∩ C = ∅ and |A \ B ∪ C| = 0. (ii) We say that S is Z d -invariant if S(A + z) = S(A) for all A ∈ O b (R d ) and all z ∈ Z d .Let Cub(R d ) be the class of all open cubes in R d and let Y :=]0, 1[ d . The following theorem is due to Akcoglu and Krengel (see[START_REF] Akcoglu | Ergodic theorems for superadditive processes[END_REF], see also[START_REF] Licht | Global-local subadditive ergodic theorems and application to homogenization in elasticity[END_REF] and [AM02, §B.1]). Theorem 3.11. Let S : O b (R d ) → [0, ∞] be a subadditive and Z d -invariant set function for which there exists c > 0 such that (3.10) S(A) ≤ c|A|

  n,k ) -Ψ(∇v k ) L ∞ (Ω) = 0. (3.21) Combining (3.16) and (3.17) with (3.20) and (3.21) we conclude that lim k→∞ lim n→∞ u n,k -u W 1,p (Ω;R m ) = 0 and lim k→∞ lim n→∞ Ψ(∇v n,k ) -Ψ(∇u) L 1 (Ω) = 0, and the lemma follows by diagonalization.

  lim n→∞ |∇u n,t (x) -t∇u(x)| = 0 for a.a. x ∈ Ω; (3.29) lim n→∞ G(∇u n,t ) -G(t∇u) L 1 (Ω) = 0; (3.30) ∇u n,t (x) ∈ int(G) for a.a. x ∈ Ω. (3.31) From (3.31) and the right inequality in (3.22) we see that E

  n,t (x))dx = Ω L(t∇u(x))dx by Vitali's theorem. As L is ru-usc, from (3.24) we deduce that (n,t (x))dx ≤ Ω L(∇u(x))dx.

  (3.33) lim t→1 lim n→∞ u n,t -u W 1,p (Ω;R m ) = 0 by (3.28), and the result follows from (3.32) and (3.33) by diagonalization. It is easily seen that, using similar arguments as in the proof of Proposition 3.15, we can prove the following proposition. Proposition 3.16. Let Ω ⊂ R d be a bounded open set with Lipschitz boundary which is strongly star-shaped and let u ∈ W 1,p (Ω; R m ) be such that Ω L(∇u(x))dx < ∞ and ∇u(x) ∈ int(G) for a.a. x ∈ Ω.

3. 4 .

 4 Approximation of the relaxation formula. Given a Borel measurable function L :M m×d → [0, ∞] we consider ZL : M m×d → [0, ∞] defined by ZL(ξ) := inf Y L(ξ + ∇φ(y))dy : φ ∈ Aff 0 (Y ; R m ) with Y :=]0, 1[ d and Aff 0 (Y ; R m ) := φ ∈ Aff(Y ; R m ) : φ = 0 on ∂Y where Aff(Y ; R m )is the space of continuous piecewise affine functions from Y to R m . The following proposition is adapted from [AHM08, Lemma 3.1] (see also[START_REF] Anza | Relaxation of variational problems in two-dimensional nonlinear elasticity[END_REF]).Proposition 3.17. Given ξ ∈ M m×d and a bounded open set A ⊂ R d there exists{φ k } k ⊂ Aff 0 (A; R m ) such that: lim k→∞ φ k L ∞ (A;R m ) + ∇φ k (x))dx = ZL(ξ).Proof. Given ξ ∈ M m×d there exists {φ n } n ⊂ Aff 0 (Y ; R m ) such that (3.34) lim n→∞ Y L(ξ + ∇φ n (y))dy = ZL(ξ).

AL

  (ξ + ∇φ n,k (x))dx = + ∇φ n (y))dy = |A| Y L(ξ + ∇φ n (y))dy for all n ≥ 1 and all k ≥ 1. Using (3.34) we deduce that (3.36) lim n→∞ lim k→∞ -A L(ξ + ∇φ n,k (x))dx = ZL(ξ), and the result follows from (3.35) and (3.36) by diagonalization.

Ω

  φdµ for all φ ∈ C c (Ω), or, equivalently, the following two equivalent conditions holds: U ) ≥ µ(U ) for all open sets U ⊂ Ω lim sup ε→0 µ ε (K) ≤ µ(K) for all compact sets K ⊂ Ω ; (b) lim ε→0 µ ε (B) = µ(B) for all bounded Borel sets B ⊂ Ω with µ(∂B) = 0.

  ε dx ≥ HW (t∇u(x 0 )) for all 0 < ρ < ρ.

  t→1 ∆ a W (t) ≤ 0, from Propositions 3.7 and 3.6 we see that ZHW is ru-usc: precisely, we have lim sup t→1 ∆ a ZHW (t) ≤ 0 with a := Y a(y)dy.

( 4

 4 .19) tG ⊂ int(G) for all t ∈]0, 1[. From Theorem 3.5(i) and (ii) we deduce that:ZHW is ru-usc, i.e., lim sup t→1 ∆ a ZHW (t) ≤ 0. (4.21)Step 2: approximation of ZHW . First of all, it is clear that(4.22) lim t→1 tu -u W 1,p (Ω;R m ) = 0.On the other hand, taking (4.18), (4.19) and (4.20) into account we can assert that Ω ZHW (t∇u(x))dx ≤ 1 + ∆

  lim n→∞ u n,t -tu W 1,p (Ω;R m ) = 0; (4.24) lim n→∞ Ω ZHW (∇u n,t (x))dx = Ω ZHW (t∇u(x))dx. (4.25)Fix any n ≥ 1. As u n,t ∈ Aff(Ω; R m ) we can assert that there exists a finite family{U i } i∈I of open disjoint subsets of Ω such that |Ω \ ∪ i∈I U i | = 0 and, for each i ∈ I, |∂U i | = 0 and ∇u n,t (x) = ξ i in U i with ξ i ∈ M m×d . Thus (4.26) Ω ZHW (∇u n,t (x))dx = i∈I |U i |ZHW (ξ i ).By Proposition 3.17, for each i ∈ I, there exists {φ i,k } k ⊂ Aff 0 (U i ; R m ) such that:lim k→∞ φ i,k L ∞ (Ui;R m ) = 0; (4.27) lim k→∞ -Ui HW (ξ i + ∇φ i,k (x))dx = ZHW (ξ i ). (4.28) For each k ≥ 1, define u k,n,t ∈ Aff(Ω; R m ) by u k,n,t (x) := u n,t (x) + φ i,k (x) if x ∈ U i . Then u k,n,t -u n,t L ∞ (Ω;R m ) = max i∈I φ i,k L ∞ (Ui;R m ) , n,t -u n,t L ∞ (Ω;R m ) =0 by (4.27). On the other hand, for each k ≥ 1, we have Ω HW (∇u k,n,t (x))dx = i∈I |U i |-Ui HW (ξ i + ∇φ i,k (x))dx, and consequently (4.30) lim k→∞ Ω HW (∇u k,n,t (x))dx = Ω ZHW (∇u n,t (x))dx by (4.28) and (4.26).

Ω

  HW (∇u k,n,t (x))dx = j∈J |V j |HW (ζ j ).

  lim ε→0 ψ j,ε L p (Vj ;R m ) j + ∇ψ j,ε (x) dx = HW (ζ j ). (4.33) For each ε > 0, define u ε,k,n,t ∈ W 1,p (Ω; R m ) by u ε,k,n,t (x) := u k,n,t (x) + ψ j,ε (x) if x ∈ V j . Then u ε,k,n,t -u k,n,t L p (Ω;R m ) = j∈J ψ j,ε L p (Vj ;R m ) ,and so (4.34) lim ε→0 u ε,k,n,t -u k,n,t L p (Ω;R m ) = 0 by (4.32). On the other hand, for each ε > 0, we haveΩ W x ε , ∇u ε,k,n,t (x) dx = j∈J |V j |-Vj W x ε , ζ j + ∇ψ j,ε (x) dx, ε,k,n,t(x) dx = Ω HW (∇u k,n,t (x))dx. by (4.33) and (4.31).

  Denote the effective domain of ZHW by ZHW. As domW (x, •) = G for all x ∈ R d it is easy to see that ZHW = G. On the other hand, as G is convex we have tG ⊂ int(G) for all t ∈]0, 1[, and so ZHW = W hom by Corollary 3.8.Remark 2.3. Under the assumptions of Corollary 2.2 we have W hom = HW with HW denoting the lsc envelope of HW . Indeed, as ZHI ≤ HI, from Theorem 2.1 we see that Γ(L p )-lim ε→0 I ε = HI, and consequently HI = I hom by Corollary 2.2. Thus W hom = HW . Denote the effective domain of HW by HW. As domW (x, •) =

G for all x ∈ R d we have HW = G where, because of G is convex, tG ⊂ int(G) for all t ∈]0, 1[. On the other hand, as W satisfies (2.5), from Proposition 3.7 we can assert that HW is ru-usc (see Definition 3.1) and so HW = HW by Theorem 3.5(iii).

To be complete, let us give the Dirichlet version of Corollary 2.2. For each ε > 0, let J

  , (4.37) and the result follows from (4.36) and (4.37) by diagonalization.

								Combining (4.34), (4.29), (4.24) with (4.22) and
	(4.35), (4.30), (4.25) with (4.23) we deduce that:
	(4.36)	lim t→1	lim n→∞	lim k→∞	lim ε→0	u ε,k,n,t -u L p (Ω;R m ) = 0;
		lim sup t→1	lim n→∞	lim k→∞	lim ε→0 Ω	W	x ε	, ∇u

ε,k,n,t (x) dx ≤ Ω ZHW (∇u(x))dx