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Abstract

Recent developments in shallow water ocean acoustic tomography propose the use of an original configuration

composed of two source-receiver vertical arrays and wideband sources. The recording space thus has three

dimensions, with two spatial dimensions and the frequency dimension. Using this recording space, it is possible to

build a three-dimensional (3D) estimation space that gives access to the three observables associated with the

acoustic arrivals: the direction of departure, the direction of arrivals, and the time of arrival. The main interest of this 3D

estimation space is its capability for the separation of acoustic arrivals that usually interfere in the recording space, due

to multipath propagation. A 3D estimator called double beamforming has already been developed, although it has

limited resolution. In this study, the new 3D high-resolution estimators of double Capon and double MUSICAL are

proposed to achieve this task. The ocean acoustic tomography configuration allows a single recording realization to

estimate the cross-spectral data matrix, which is necessary to build high-resolution estimators. 3D smoothing

techniques are thus proposed to increase the rank of the matrix. The estimators developed are validated on real data

recorded in an ultrasonic tank, and their detection performances are compared to existing 2D and 3D methods.

Introduction
Estimation of sound speed variations in the ocean that is

based on a linearized model and using acoustic waves is

known as oceanic acoustic tomography (OAT) [1]. This

tomography process is classically divided into three steps:

first, estimation of observables extracted from the sig-

nal, then the building of a forward model that links these

observables and the sound speed variations, and finally

the inversion of this problem using the extracted observ-

ables. In this study, we are interested in the first step, i.e.

the observable extraction and estimation.

We focus here on shallow water environments, as typ-

ically a coastal environment, that can be modeled as a

waveguide. These environments are a subject of major

interest in the ocean science community since they are

the place where many physical phenomena occur, such

as mixing layers, streams, tides, human influence and

pollution. However, unfortunately, they are also complex
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environments where the acoustic propagation is multi-

path, due to reflections from the waveguide boundaries.

These different paths lead to arrivals that interfere in the

traditional recording space, and also in the traditional esti-

mation spaces (e.g. the direction of arrival [DOA] space).

The arrival separation, and consequently the observable

estimation step, is thus difficult to achieve.

Several methods have been developed to improve

this difficult task, traditionally using vertical line arrays

(VLAs). These can be divided into two groups [2]: sep-

aration methods and high-resolution methods. This first

group, the separation methods (which include beamform-

ing [BF] techniques), were first proposed by [3], who

developed an matched filter to estimate the arrival times

and amplitudes in a noisy signal. Then improvements

were proposed based on the use of more adapted sig-

nals [4,5]. An excellent review of BF methods is presented

in [6]. In this separation group of methods, adaptive BF

(including Capon) has been extensively studied in signal

processing [6]. The other group of methods, the high-

resolution methods (or subspace-based methods), include

the classical MUSIC [7] or ESPRIT [8]. The asymptotical

© 2012 Le Touzé et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
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separation power of these methods is not limited by

the experimental conditions, such as by signal frequency,

array length or signal-to-noise ratio. These methods use

eigenvector decomposition of the cross-spectral density

matrix. They were first proposed to estimate the DOA

(see [9]) and arrival times [10], both separately and then

jointly [11]. However, these methods have limitations,

due to the proximity of arrivals in the estimation space,

which are one-dimensional (1D) or 2D, depending on the

experimental configuration.

To overcome this difficulty, we are interested in an

original experimental configuration that is composed of

two VLAs in the water column: a source array and a

receiver array [12]. The arrivals are thus characterized

by three observables: their direction of departure (DOD),

their DOA, and their time of arrival (TOA). A three-

dimensional (3D) estimator is required to transform the

3D recording space (receiver-frequency) into the 3D esti-

mation space (DOA-DOD-TOA). To date, this estimation

has been achieved with double BF (D-BF) [12,13] on the

source and receiver arrays. This method has resolution

limitations due to the limited size of the arrays and to the

source signal. This drawback is particularly problematic in

the separation of the first arrivals that correspond to the

shortest TOAs, which are close in the three dimensions of

the estimation space.

To be able to provide a better separation of the arrivals,

we propose here two methods for the improvement of the

resolution in the DOA-DOD-TOA space. These methods

are generalizations of the traditional Capon and MUSIC

methods to the 3D configuration.

This report is organized as follows: the context and

signal model that correspond to the experimental con-

figuration are first presented. Then, the conventional

estimations methods of BF, Capon and MUSIC are

briefly recalled. The double Capon (D-Capon) and double

MUSICAL (D-MUSICAL) methods are then considered.

The implementation issues of these methods are dis-

cussed, and 3D smoothing of the cross-spectral data

matrix is introduced. We show then that similar results

can be obtained using these twomethods. Finally, we illus-

trate the performance of these methods, compared to the

existing methods, on real data recorded in an ultrasonic

tank. This experimental environment reproduces oceanic

acoustic propagation at a small scale.

Context

Configuration

Consider a shallow water environment. The experimental

configuration is composed of two arrays: a VLA ofNe reg-

ularly spaced sources, and a VLA of Mr regularly spaced

receivers. For the sake of simplicity, the inter-sensor dis-

tance is � on both arrays. We consider that Ne and Mr

are odd, and that the reference source (respectively the

reference receiver) is located at the middle of the source

array: index mref = (Ne + 1)/2 (respectively at the mid-

dle of the receiver array: index mref = (Mr + 1)/2).

The source signal is broadband, and the propagated sig-

nals are recorded on F frequency bins that cover the

frequency band. In the experiment, the recording space

thus has three dimensions: source-receiver-frequency.

The recorded data contain the whole transfer matrices

between each source and each receiver in the frequency-

domain, and finally form the data cube X (Ne × Mr × F).

For a given signal emitted by the source array, the prop-

agation is multipath in the waveguide, and it will lead to

several plane wave arrivals on the receiver array. Note

that in our configuration, the horizontal distance between

the arrays is much larger than their lengths by at least a

factor of 10. The plane wave approximation is thus real-

istic. Each arrival p, corresponding to a given raypath, is

characterized by its three observables:

• the DOA θ rp, which is also known as the reception

angle: the angle between the raypath direction at the

receiver array and the normal to the receiver array;
• the DOD θ ep , which is also known as the emission

angle: the angle between the raypath direction at the

source array and the normal to the source array;
• the TOA Tp, which is the travel time between the

reference source and the reference receiver.

Note that in this article “source” designates the emitting

sensor. To avoid ambiguity, the elementary contribution

that we want to detect and estimate the parameters for,

and which corresponds to a raypath in the waveguide, is

designated by “arrival” (and not by “source” as it can be

classically designated in array processing).

Motivation of 3D detection

Detection and estimation of arrivals are classically

achieved in 1D and 2D configurations. In the 1D case,

narrowband signals recorded on a receiver array lead to

a DOA estimation space [7,14,15]. In the 2D case, two

configurations are studied: broadband signals recorded

on a receiver array and a DOA–TOA estimation space

[11], or narrowband signals emitted by a source array and

recorded on a receiver array and a DOA-DOD estima-

tion space [16]. The resolution is limited by the size of the

arrays and by the signal central frequency in DOA and

DOD, and by the signal bandwidth in TOA (cf. Section

“Conventional estimation methods”).

When combined with a receive array and broadband

signals, the source array adds a third dimension in the

recording space, and consequently a new dimension in

the estimation space: the DOD. For arrivals with differ-

ent DODs, the use of an estimator that includes the DOD

dimension can better detect and estimate these arrivals.
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Figure 1 Schematic representation of two raypaths propagating in the waveguide. The two raypaths have close DOAs (near = θ r0) and TOAs

(proportional to the raypath length for a homogeneous medium), but have DODs θ e1 and θ e2 that are significantly different.

This improvement will be particularly efficient for arrivals

close in the DOA and TOA dimensions, but far in the

DOD dimension.

We assume a configuration where two raypaths that

start from the source propagate with close DOAs and

close TOAs, but with two DODs that are significantly

different (see Figure 1). The two arrivals might not

be separated on the 2D DOA–TOA estimation space

(see Figure 2-left). On the contrary, when adding the

DOD dimension, the arrivals will be well separated (see

Figure 2-right). It appears clear that the use of a 3D esti-

mation space that includes the DOD dimension must

improve the arrival separation and observable estima-

tion, taking into account the propagating properties of the

arrivals. This principle has been used to develop the D-BF

in this experimental configuration [13]. Nevertheless, this

method suffers from the inner limitation of BF-like meth-

ods; i.e. the limited resolution due to the limited size of the

arrays, and to the signal central frequency and bandwidth.

Signal model

At the frequency ν, the Fourier transform of the signal that

is recorded on the receiverm coming from the source n is

the sum of the P arrivals:

xm,n,ν = sν

P
∑

p=1

ap exp[φp]+bm,n,ν (1)

with:

φp = −j2πν(Tp+(m−mref)τ (θ rp)+(n−nref)τ (θ ep)) (2)

where τ(θ ep) = � sin(θ ep)/v (respectively τ(θ rp) =

� sin(θ rp)/v) are the delays associated with the DOD

(respectively the DOA), assuming a constant sound speed

v at the arrays, ap is the amplitude of the pth arrival,

bm,n,ν is the noise contribution that is generally considered

uncorrelated in space and frequency, and sν is the source

spectrum, which will be assumed to be known. Note that

the number of arrivals, P, is typically around 10.

Experimental constraints

We want to achieve arrival separation and observable

estimation for a time evolving medium. It is thus a prob-

lem to record the different realizations at different times,

because the medium and its sound speed might change

between the two realizations. Consequently, we can only

consider a single realization to perform the observable

estimation. This constraint must be taken into account

for the estimation of the cross-spectral matrix (cf. Section

“Implementation”).

Conventional estimationmethods
We briefly recall the 1D conventional estimationmethods:

BF, Capon and MUSIC, in the general context of array

processing. The specific experimental constraints, and

3D estimation space

No detection

Theoretical arrivals

Detection

Detection

2D estimation space

T

r

T

e

r

Figure 2 The two arrivals that correspond to the raypaths of Figure 1 might not be detected in the 2D DOA-TOA space (left), but are

detected in the 3D DOA-DOD-TOA space (right).
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particularly the smoothing issues, are discussed in Section

“Implementation”.

We consider a single source n0 that emits a narrow-

band signal (at frequency ν0) recorded on a VLA of Mr

receivers. The recorded signal forms the vector x1D (size

Mr × 1), and we introduce the covariance data matrix

R1D = E{x1Dx
H
1D}. We also introduce the steering vector

d(θ r)ν0 , which represents the normalized contribution of

a perfect plane wave of direction θ r on the receiver array:

d(θ r)ν0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

e−j2πν0(1−mref.)τ (θ r)

e−j2πν0(2−mref)τ (θ r)

.

.

e−j2πν0(Mr−mref)τ (θ r)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3)

The conventional BF can be expressed by the squared

projection of the signal on the steering vectors:

PBF(θ r) = d(θ r)Hν0 R̂1Dd(θ r)ν0 (4)

where R̂1D is the estimated covariance data matrix. The

resolution of the BF is directly linked to the size l =

(Mr−1)� of the array: two sources with DOAs closer than

θ rmin ≈ λ/l with the wavelength λ at the central frequency,

will not be separated by BF.

Two types of techniques have been developed to over-

come those limitations:

• Adaptive estimators, like the Capon beamformer [15],
• High-resolution estimators, like MUSIC [7,14].

As for BF, the Capon estimator principle is to project

the signal on steering vectors [15]. Capon steering vec-

tors are calculated adaptively, so that they minimize the

power contributed by the noise and by any signals coming

from other directions than θ r , while maintaining a unitary

gain in the direction of interest θ r . The Capon algorithm

(which is also known as the minimum variance distor-

tionless response) has already been successfully applied in

underwater acoustics [17].

MUSIC is a subspace-based method [7,14]: the record-

ing space is divided into a signal subspace and a noise

subspace. This subspace division is achieved using eigen-

value decomposition (EVD) of R̂1D. The signal subspace

is spanned by the L eigenvectors corresponding to the L

maximum eigenvalues. The noise subspace is spanned by

the other Mr − L eigenvectors. Finally, the estimator is

the inverse of the projection of the signal on the noise

subspace. For uncorrelated arrival amplitudes with spa-

tially white noise, the MUSIC estimator is unbiased and

its resolution is not limited.

D-Capon and D-MUSIC
The 3D model and estimators are considered in this

section, in the general context of array processing. The

specific experimental constraints and particularly the

smoothing issues, are discussed in Ssection “Implementa-

tion”.

Data model

As shown in Section “Context”, the 3D recording signal

is the data cube X. We concatenate X into a long vector

of size NeMrF . The contribution of the source n at the

frequency ν on the Mr elements of the receiver array is

expressed by the vector:

xn,ν =

⎡

⎢

⎢

⎢

⎣

x1,n,ν

.

.

xMr ,n,ν

⎤

⎥

⎥

⎥

⎦

(5)

The whole contribution at the frequency ν on the source

and receiver arrays is expressed as the concatenation of all

of the source contributions xn,ν from n = 1 to n = Ne:

xν =

⎡

⎢

⎢

⎢

⎣

x1,ν

.

.

xNe,ν

⎤

⎥

⎥

⎥

⎦

(6)

The signal expressed on the long vector is finally the con-

catenation of all of the frequency contributions xν from

ν = ν1 to ν = νF :

x =

⎡

⎢

⎢

⎢

⎣

xν1

.

.

xνF

⎤

⎥

⎥

⎥

⎦

(7)

The noise long vector b is built in the same way, starting

from the noise contributions bn,m,ν .

Using Equation 1, x is composed of P arrivals and can be

written as a matrix product:

x =

P
∑

p=1

apd(θ rp, θ
e
p ,Tp) + b (8)

= D(θ r , θ e,T)a + b

where T =[T1, . . . ,Tp] is the vector of the TOA, θ e =

[ θ e1 , . . . , θ
e
P] and θ r =[ θ r1 , . . . , θ

r
P] are, respectively, the

vector of the emission angles and the vector of the recep-

tion angles. a =[ a1, . . . , aP]
H is the vector of the arrival

amplitudes. d(Tp, θ
r
p, θ

e
p) is the steering vector that corre-

sponds to the arrival p. It forms a long vector (NeMrF ×1)

and corresponds to the contributions of a plane wave of

parameters θ rp, θ
e
p ,Tp emitted by the source array with

spectrum {sν , ν = ν1, . . . , νF}, and recorded on the receive
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array. To build this, we first define the long steering vector

(NeMr × 1) corresponding to the single frequency νi for

the Ne sources and theMr receivers:

dνi(θ
r
p, θ

e
p,Tp)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sνie
−j2πνi(Tp+(1−nref)τ (θ ep))d(θ rp)νi

sνie
−j2πνi(Tp+(2−nref)τ (θ ep))d(θ rp)νi

.

.

sνie
−j2πνi(Tp+(Ne−nref)τ (θ ep))d(θ rp)νi

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

and finally, we concatenate these vectors for all of the

frequencies ν1 to νF :

d(θ rp, θ
e
p ,Tp) =

⎡

⎢

⎢

⎢

⎢

⎣

dν1(Tp, θ
r
p, θ

e
p)

.

.

dνF (Tp, θ
r
p, θ

e
p)

⎤

⎥

⎥

⎥

⎥

⎦

(10)

TheD(θ r , θ e,T) matrix (NeMrF ×P) contains the P steer-

ing vectors previously built:

D(θ r , θ e,T) (11)

=[d(θ r1 , θ
e
1 ,T1), . . . ,d(θ rP, θ

e
P,TP)]

We finally obtain the model of the 3D (NeMrF × NeMrF)

cross-spectral data matrix R. This is equivalent to the spa-

tial covariancematrix of the 1D case, and can be expressed

by:

R = E{xxH} (12)

= D(θ r , θ e,T)AD(θ r , θ e,T)H + B

where A = E{aaH} is the arrival amplitude covariance

matrix (P × P) and B = E{bbH} is the 3D cross-spectral

noise matrix (NeMrF × NeMrF).

Note on 3D steering vectors d(θ rp, θ
e
p,Tp):

• two distinct steering vectors are independent

(non-colinear), and the correspondence between a set

of parameters and a 3D steering vector is thus unique;
• two distinct steering vectors are never orthogonal;
• given N = NeMrF as the dimension of the recording

space, n ≤ N distinct steering vectors form a free

family. N steering vectors thus forming a base;
• assuming P ≤ N , the steering vectors linked to the

signal thus form a free family and spanning a space of

dimension P. The dimension of the signal subspace in

R is thus equal to the rank of A. Consequently, the

rank of R depends on the correlation degree between

the P arrival amplitudes.

D-Capon

Capon has already been extended to the 2D context [18].

The proposed D-Capon method consists of extending

the conventional Capon method to the 3D OAT context.

We create 3D Capon steering vectors g(θ r , θ e,T) which

minimize the power contributed by noise and any sig-

nal coming from other ‘directions’ than (θ r , θ e,T), while

maintaining a unitary gain in the direction of interest

(θ r , θ e,T).

Assuming R̂ is invertible, we obtain:

g(θ r , θ e,T)Cap =
R̂−1 d(θ r , θ e,T)

d(θ r , θ e,T)H R̂−1 d(θ r , θ e,T)
(13)

where R̂ is the estimated cross-spectral data matrix and

d the theoretical steering vectors built using Equations 9

and 10. The estimation of the cross-spectral matrix will be

discussed in Section “Implementation”.

The D-Capon estimator in the 3D DOA-DOD-TOA

estimation space is then:

PD-Capon(θ
r , θ e,T)

= g(θ r , θ e,T)Cap
H
R̂ g(θ r , θ e,T)Cap (14)

=
1

d(θ r , θ e,T)H R̂−1 d(θ r , θ e,T)

Finally, the following information is necessary to calculate

the D-Capon:

(1) the recorded data to build R̂;

(2) the source spectrum sν ;

(3) the environment information � and v, to calculate

τ(θ e) and τ(θ r), and thus the steering vectors

d(θ r , θ e,T).

D-MUSICAL

The MUSIC algorithm has already been extended to the

2D configuration by Gounon et al. in a large band context:

MUSICAL (MUSIC Active Large Band) estimates the 2D

(TOA-DOD) observables, starting from the 2D record-

ing space: receiver-frequency. Recently, a 2D MUSIC was

developed to estimate conjointly the DOD and DOA [16].

In the sameway, we develop a 3DMUSIC estimator, which

we call D-MUSICAL, to extend the conventional MUSIC

method.

The EVD decomposition of R̂ is expressed by:

R̂ = V�VH (15)

where V =[ v1, . . . , vNeMrF ] is a NeMrF × NeMrF matrix

that contains the eigenvectors vi, and � is a NeMrF ×

NeMrF diagonal matrix that contains theNeMrF eigenval-

ues λi.

As R̂ is a normal matrix (R̂R̂H=R̂H R̂), eigenvectors are

orthogonal (< vi.vj >= 0 ∀ {i, j} i �= j). Selecting the

L largest eigenvalues and their associated eigenvectors,
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we span a ‘signal’ subspace, the NeMrF − L others are

spanning the ‘noise’ subspace. These two subspaces are

orthogonal. The signal projector (respectively the noise

projector) is deduced from the L first (respectively the

NeMrF − L last) eigenvectors: �s =
∑L

i=1 viv
H
i (resp.

�n =
∑NeMrF

i=L+1 viv
H
i ).

The D-MUSICAL estimator, in the 3D DOA-DOD-

TOA estimation space, is then:

PD-MUSICAL(θ
r , θ e,T) =

1

d(θ r , θ e,T)H �̂n d(θ r , θ e,T)

(16)

Note that a 3D MUSIC method has already been devel-

oped for multicomponent seismic signals [19]. The third

multicomponent dimension does not correspond to the

same issue, and the DOD estimation cannot be achieved.

The D-MUSICAL implementation needs the same

information as the D-Capon (cf. Section “D-Capon”).

Assuming that A is the full rank, and that the noise is

white in the three dimensions and for variance σ 2
n , we

choose L = P and the signal is completely represented by

the signal subspace composed of the P first eigenvalues.

The noise subspace contains only noise contributions. In

this case, the D-MUSICAL estimation is unbiased.

In our practical case, arrival amplitudes are correlated,

which means that A is not full rank. The implementation

of D-Capon and D-MUSICAL thus needs preprocessing,

which is detailed in the following Sections “Smoothing

issue” and “Diagonal loading and estimation of L”.

Implementation
In this section, the implementation of the proposed D-

Capon and D-MUSICAL algorithms to our OAT context

is discussed.

Smoothing issue

The Capon and MUSIC detection methods need the

signal subspace to be correctly represented to be effi-

cient. This means the arrivals must be uncorrelated, or

at least not fully correlated, to generate a signal subspace

of dimension P. Equivalently, the amplitude covariance

matrixAmust be full rank. To achieve this, classical meth-

ods assume that the arrivals are statistically uncorrelated,

and estimate the R̂ cross-spectral datamatrix by averaging

a great number of realizations.

In our context, this type of estimation is not possible, for

the two following reasons:

• As explained in Section “Experimental constraints”,

only one realization can be considered to perform the

observable estimation. R̂must be determined using a

single data realization x.

• Moreover, even assuming a non-evolving medium,

the arrival amplitudes remain correlated. Indeed, the

arrivals are induced by different raypaths that result

from the acoustic propagation. The correlation

degree between the arrival amplitudes ap is thus

determined by the propagation and not by the emitted

source signals. The amplitude vector a is constant

between realizations up to a multiplying factor. The P
arrival amplitudes are thus fully correlated.

Considering those two issues, the rank of R̂ will be 1 if it is

estimated classically. Capon-like or MUSIC-like methods

are thus equivalent to the BF method.

To avoid this problem, a 3D smoothing method of the

matrix is developed. Smoothing methods are used to

increase the rank of R̂. They were developed in 1D con-

figurations [20,21] and then extended to 2D [22]. The

principle is to divide the array into K different subarrays

with the same characteristics (size, sampling). Each sub-

array induces a signal xk . The diversity in realization is

replaced by a diversity in subarray. The estimated matrix

R̂ is the mean of the matrices R̂k .

We extend this principle to the 3D context, forming sub-

arrays in the three dimensions of the recording space. The

source and receiver VLAs are divided into Ke, respectively

Kr , vertical line subarrays ofN
s
e = Ne−Ke+1, respectively

Ms
r = Mr−Kr+1, sensors. The inter-sensor distance is not

changed. In the same way, the frequency band is divided

into Kf subbands of F
s = F − Kf + 1 frequency bins. The

combinations of the subarrays in the three dimensions

lead us to consider K = KeKrKf different 3D subarrays,

and thusK different signals xk . Figure 3 illustrates the sub-

array and xk buildings starting from the data cube X. The

estimated cross-spectral data matrix R̂ is finally expressed

by:

R̂ =
1

KeKrKf

K
∑

k=1

xkx
H
k =

1

KeKrKf

K
∑

k=1

R̂k (17)

Note that the size of R̂ is now N s
eM

s
rF

s × N s
eM

s
rF

s. The

numbers of subarrays Ke, Kr and Kf depend on the con-

figuration and on the arrival number P. In each direction,

the choice of the subarray size depends on the size of the

original array and on the resolution we want to obtain

in the corresponding estimation dimension (DOD for the

source array, DOA for the receive array, and TOA for the

frequency). The aim of the smoothing is to increase the

number of significant eigenvalues of R̂, so that they rep-

resent accurately the signal subspace. This objective is

achieved when the eigen structure of the smoothedmatrix

(i.e. the repartition of its eigenvalues) is stable with K. We

empirically observe that K must be chosen so as to be a lot

larger than P. This number is a priori not precisely known,

but depending on the environment knowledge, we can
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Figure 3 Schematic representation of the subarray extraction for the smoothing.

approximately estimate it. We thus increase the number K

to achieve this objective.

The 3D smoothing is a pre-processing that is neces-

sary to achieve D-Capon or D-MUSICAL in our context.

However, it has two limitations:

• Assuming a perfectly plane wave in the 1D

configuration, two different signals corresponding to

two different subarrays are equal up to a multiplying

factor. The amplitude of this factor is 1, and its phase

depends on the delay between the subarrays and on

the considered plane wave. These can thus be seen as

two realizations of the same signal with different

amplitudes.

Considering now P plane waves, the 1D smoothing

leads to vectors of arrival amplitudes ak that are

different for each subarray k. Finally, the estimated

amplitude covariance matrix Â = 1/K
∑

aka
H
k

is non singular [21] if K ≥ P. The estimated R̂matrix

has thus a rank equal to P. In the 3D case, two

contributions of the same plane wave on two different

3D subarrays are not equal up to a multiplying factor.

This produces a bias in the estimation of R̂, which

prevents the 3D methods from having an unlimited

resolution. However, this bias is not important in

practical cases compared to the resolution

needed.
• As we smooth only one realization instead of

averaging several realizations, we cannot recover the

statistical characteristics of the additional noise.

Consequently, noise must be considered as a

deterministic element. The rank of R̂ cannot exceed

K and the K eigenvectors that correspond to the K
first eigenvalues span a subspace in which the whole

data are present, including the signal, and also the

noise part and the bias induced by the

smoothing.

Diagonal loading and estimation of L

D-Capon needs the inversion of the cross-spectral data

matrix R̂ to be achieved (Equation 14). Consequently, R̂

must be a full rank matrix. Usually, additional spatial and

spectral white noise is assumed and R̂ is estimated with a

great number of realizations, so that the statistical prop-

erties of the noise are satisfied. Consequently, the noise

contribution into R̂ is a diagonal matrix σ 2
n I where σ 2

n is

the noise variance and the matrix is thus invertible. Here,

due to the smoothing, the noise must be considered as a

deterministic element, and R̂ is no longer invertible. To

overcome this issue, a diagonal loading is realized; this

consists of adding a diagonal matrix to R̂, leading to a new

estimated cross-spectral data matrix R̂C = R̂ + σ 2I. As

R̂ and σ 2I are independent, R̂C is full rank and invertible.

The diagonal loading introduces the parameter σ . As the

diagonal loading can be seen as artificially adding white

noise, the action of σ on the D-Capon estimation can be

more reliably linked to an induced signal noise ratio:

SNRC = 10 log

∑

i R̂(i, i)

N s
eM

s
rF

sσ 2
(18)

where R̂(i, i) is the ith element of the diagonal of R̂. A

natural choice is to take σ as small as possible, so that

the condition ‘R̂C invertible’ is verified on the compu-

tational platform. As we will see, this choice does not

generally give the best result. Recent methods have esti-

mated the optimum diagonal loading [23,24], but they are

not adapted to our context.

D-MUSICAL requires the estimation of the signal sub-

space dimension L to be achieved. For an unbiased estima-

tion of R̂, L would be equal to P, the number of expected

arrivals. However the smoothing processing biases the

estimation of R̂. A classical L estimator based on the sta-

tistical properties of the noise [14,25] can thus not be

applied. Moreover, empirically, we observe that the bias
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introduced by the 3D smoothing leads to a difference

between P and the number L of significant eigenvectors

that actually spanned the signal subspace. This number

L is larger than P. The determination of L is thus made,

starting from the decreasing curve of eigenvalues calcu-

lated with the EVD. The eigenvectors that correspond to

all of the significant eigenvalues (chosen with a threshold

corresponding to 0.5% of the first eigenvalue) are selected

and span the signal subspace, whereas all the other ones

span the noise subspace. Note that L is thus lower than K

(in practice, a lot smaller) and larger than P.

Computational cost

One drawback of these developed methods compared to

D-BF is the processing cost. D-Capon is divided into three

computational steps:

1. R̂ estimation by smoothing;

2. R̂ inversion;

3. projection of steering vectors on R̂−1

(cf. Equation 14).

D-MUSICAL is divided in three computational steps:

1. R̂ estimation by smoothing;

2. EVD;

3. projection of steering vectors on �n

(cf. Equation 16).

The smoothing (point 1) is common for the two meth-

ods. A natural way to compute R̂ is to follow the equation

formulation: extract the k subarrays xk from the data,

compute the corresponding cross-spectral data matrix R̂k ,

loop this step on all of the subarrays k = 1, . . . ,K , and

finally mean the R̂k . An alternative way consists of build-

ing the matrix Xs =[ x1, . . . , xK ] and noting that R̂ =

XsXsH/K . This matrix product is less computationally

expensive than the loop of the natural computation.

Knowing that �n = I − �s, the projection step for D-

MUSICAL (point 3) can be considerably sped up, noting

that the size of the signal subspace L (which is of the same

order of magnitude as the number of arrivals P; typically

around 10) is much smaller than the size of the noise sub-

spaceN s
eM

s
rF

s−L (which depends on the size of the arrays

and the smoothing parameters, typically > 100).

As only the signal projector �s is needed, the EVD can

be realized by calculating only the firstM eigenvalues and

eigenvectors. M must be sufficiently great to allow the

estimation of the subspace size L following the procedure

given in section “Diagonal loading and estimation of L”.

The programming platform integrates a function that only

calculates the first M given elements of the EVD. More-

over, introducing the normal matrix T = XsHXs (K × K)

and realizing an EVD on T = V′�′V′H , it can be shown

[19] that the K eigenvalues of�′ are the same as the K first

Table 1 Optimization gain of the D-MUSICAL algorithm for

the experimental data (see values of parameters in Table 2)

Gain

Optimized smoothing vs. conventional smoothing ×12.5

M first eigenvalues vs. conventional EVD ×2.3

M first eigenvalues onT vs. Conventional EVD ×2.8

Optimized projection vs. conventional projection ×11.3

Optimized D-MUSICAL vs. D-MUSICAL ×11.2

eigenvalues of �, and that vi = Xsv′
i/λi. As the EVD on a

N × N matrix is O(N), the use of EVD on T will be pre-

ferred (with the condition: K < N s
eN

s
rF

s). Finally, step 2 of

D-MUSICAL is computed as follows:

1. Calculation of Xs (already calculated for smoothing

processing) and T.

2. Calculation of theM first λ′
i = λi and v′

i T.

3. Estimate L from the behavior of the decreasing

eigenvalues and then deducing the L first

eigenvectors vi of R.

On the contrary, steps (2) and (3) of D-Capon cannot be

optimized by algorithm optimization. The computational

gain obtained applying the optimized algorithm, as com-

pared to the conventional algorithms, depends on the size

of the array, on the smoothing parameters, and on the

choice of M and L (itself depending on P). Table 1 gives

an example of the computational gain on the experimen-

tal data, which are presented and analyzed in the next

section.

Result

Detection performances on real tank data

D-MUSICAL has previously been validated on simulated

data [26]. We apply D-MUSICAL and D-Capon to real

data recorded in an ultrasonic tank that reproduces the

oceanic acoustical propagation at a small scale.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.01

0.02

0.03

0.04

0.05

Ray’s  trajectory

x (m)

z
 (

m
)

Figure 4 Raypaths of the seven first arrivals in the waveguide.

Red horizontal lines represent the air-water interface and the

waveguide bottom. Green vertical lines represent the source and

receiver arrays. The raypaths are plotted between the centers of the

source and receiver arrays.



Le Touzé et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:187 Page 9 of 13

http://asp.eurasipjournals.com/content/2012/1/187

2D Beamforming

T
im

e
(s

)

R Angle(in degrees)

−5 0 5 10
7.7

7.71

7.72

7.73

7.74

7.75

7.76

7.77

7.78

7.79

7.8
x 10

−4

Figure 5 2D BF on the experimental data. Black crosses represent

the theoretical arrivals.

Two coplanar source and receiver arrays of 11 trans-

ducers face each other in a 1.1-m-long, 5.2-cm-deep

ultrasonic waveguide (Figure 4). The 11 transducers are

regularly spaced, with � = 0.75mm. The arrays are

centered in the water column. The central frequency of

the transducers is 1MHz (wavelength λ = 1.5mm),

with a 1MHz frequency bandwidth. A 1000 scale ratio

transforms this ultrasonic waveguide into a shallow-water

realistic waveguide classically encountered in ocean. Each

transducer size is 0.75mm × 12mm, which makes the

transducer arrays relatively omni-directional in the plane

defined by the source-receiver arrays, and very collimated

outside this plane, to prevent acoustic echoes from the

tank sidewalls. The waveguide bottom is made of steel,

for which the boundary conditions are nearly perfect at

the water-bottom interface (full reflection of the raypaths).

The acquisition sequence consists of recording the whole

transfer matrix between each source and each receiver in

the frequency domain. A fast way to perform this acquisi-

tion is to proceed through a round-robin sequence, during

which each source successively emits a broadband pulse at

the central frequency of the source transducers [27]. The

duration between the emitted pulse from each source is

such that the full waveguide transfer matrix is recorded

in less than 10ms. Consequently, at the ultrasonic scale,

the medium can be considered constant during the acqui-

sition and the data matrix X is formed by the acquisition

sequence. Note that OAT has already been performed on

these ultrasonic data using D-BF [28].

Figure 4 shows the first seven raypaths that correspond

to the first seven arrivals we want to detect. To illustrate

the results, 2D methods are first applied on data recorded

in the receiver-frequency domain (for a single source),

leading to a 2D DOA-TOA estimation space. The source

considered is the one located at the center of the source

array. The source is unique but the number of arrivals to

detect remains equal to P. Figures 5 and 6 show the 2D BF,

2D Capon and MUSICAL results. Black crosses represent

the theoretical arrivals calculated with a raypath model.

The smoothing parameters are Kr = 5 and Kf = 9. L = 10

and SNRC = 25 dB. 2D BF (Figure 5) does not man-

age to separate the three first arrivals (around 7.71 s), and

neither the 4th and 5th ones (around 7.75 s). 2D Capon

(Figure 6-left) and MUSICAL (Figure 6-right) are similar,

and although they do not manage to separate the three

first arrivals, they do manage to separate the 4th and 5th.
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Figure 6 2Dmethods (2D Capon andMUSICAL) on the experimental data. Black crosses represent the theoretical arrivals.
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Let us consider the 3D estimators D-BF, D-Capon and

D-MUSICAL. Figures 7, 8 and 9 represent, respectively

the D-BF, D-Capon and D-MUSICAL results. Table 2

presents all of the values of parameters used by the

D-Capon and D-MUSICAL estimators. The smoothing

parameters are Ke = Kr = 5 and Kf = 9. The esti-

mation of L is realized as described in section “Diagonal

loading and estimation of L” (selection of the most signif-

icant eigenvalues with a threshold corresponding to 0.5%

of the first eigenvalue) leading to L = 16. The smoothed

cross-spectral spectral matrix is singular (K < Ne
sM

r
sFs),

so a diagonal loading is necessary, and is performed with

SNRC = 30 dB. Figure 10 shows the decreasing eigen-

value curve. D-BF (Figure 7) manages to separate the

4th and 5th arrivals, but not the first three. D-Capon

(Figure 8) and D-MUSICAL (Figure 9) are similar, and

they manage to separate all the arrivals. Note that the 2D

BF and D-BF performances in term of arrival separation

conform to the resolution performances shown in Iturbe

et al. [13], which were calculated with theoretical values of

observables.

Two conclusions can be drawn from these results:

1. As expected, the 3D estimation methods (D-BF,

D-Capon and D-MUSICAL) have better

performances than the 2D ones (2D BF, 2D Capon

and MUSICAL), comparing for instance Figure 5

with Figure 7, or Figure 6 with Figures 8 and 9.

2. The adapted and high-resolution methods

(i.e. Capon-like and MUSIC-like methods) have

better performances than the conventional BF ones,

comparing for instance Figure 5 with Figure 6, or

Figure 7 with Figures 8 and 9.

A general conclusion is that D-MUSICAL and D-Capon

have better detection performances than all of the existing

2D and 3D methods.

D-Capon and D-MUSICAL comparison

For a given signal, the D-Capon and D-MUSICAL results

are determined by their two pre-processings: smoothing

and diagonal loading for D-Capon, smoothing and choice

of the signal and noise subspace sizes for D-MUSICAL.

As we want to compare the performances, it is natural

to take the same smoothing parameters Ke, Kr and Kf

for both of the methods. We first compare the results for

L = K (the maximum possible rank of R̂) and the largest

possible value of SNRC : 150 dB (up to this value, the

platform does notmanage to invert R̂). Under these condi-

tions, D-MUSICAL and D-Capon give very close results:

considering Dnorm
M and Dnorm

C the normalized versions of

D-MUSICAL and D-Capon, we have:

|Dnorm
M − Dnorm

C |

Dnorm
M

≃
|Dnorm

M − Dnorm
C |

Dnorm
C

≃ 0.3% (19)

Figure 7 Isosurface of D-BF. Green surfaces are located at max(D-Capon)/2.8. Black crosses represent the theoretical arrivals.
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Figure 8 Isosurface of D-Capon. Green surfaces are located at max(D-Capon)/3. Black crosses represent the theoretical arrivals.

This observation can been explained as follows. Under

these conditions, the noise projector �n is spanned by the

B = N s
eM

s
rF

s−K last null eigenvalues, and it can be shown

that R̂C−1 is dominated by the �n/σ 2 term [9]. D-Capon

thus converges on D-MUSICAL up to a multiplying factor

(1/σ ).

Figure 9 Isosurface of D-MUSICAL. Green surfaces are located at

max(D-MUSICAL)/3. Black crosses represent the theoretical arrivals.

To compare the performances for other values of L

and σ , we focus on the first arrivals, and particularly

on the two first arrivals, which are the hardest to detect

(Figure 7). We introduce the contrast C to compare the

performances. This is defined by the ratio between the

amplitude of the weakest peak and the amplitude of the

saddle point between the two arrivals. In the previous

configuration (L = K and SNRC = 150 dB), all of the

arrivals are detected, but the two first arrivals have weak

contrast (C = 1.16 for both D-MUSICAL and D-Capon).

The contrast between the two first arrivals increases for

D-MUSICAL, from L = K to L = 16 (C = 2.5), and then

decreases from L = 16 to L = 7, and the two first arrivals

are not detected any more for L < 7. The D-Capon results

are similar: the contrast between the two first arrivals on

D-Capon increases from SNRC = 150 to SNRC = 29 dB

(C = 2), then decreases from SNRC = 29 to SNRC =

23 dB, and the two first arrivals are not detected any more

for SNRC < 23 dB. However, D-MUSICAL and D-Capon

Table 2 Values of the parameters for D-MUSICAL in the

experimental data

P NeMrF K N s
eM

s
rF

s
M L ProjS

7 1815 225 343 30 16 7956780

ProjS is the numerical size of the projection space DOD-DOA-TOA after sampling.
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Figure 10 Eigenvalue decreasing curve of the 3D experimental

data.

are no longer quasi-equal for L < K and SNRC < 150 dB.

This empirical experiment leads thus to the following

conclusion: the detection performances for D-MUSICAL

when L decreases are similar to those for D-Capon when

σ increases.

To decide on the choice of the method, three remarks

must be made:

1. the choice of L for D-MUSICAL is achieved by

taking into account the eigenvalue decrease. On the

contrary, we have no indication for the choice of σ

in D-Capon;

2. the processing cost is lower for the inversion of R̂C

than for the EVD;

3. the projection step is faster for D-MUSICAL than

for D-Capon, and the cost difference is generally

large because L << N s
eM

s
rF

s.

Points 1 and 3 give priority to D-MUSICAL, while point

2 gives priority to D-Capon. As the projection step (point

3) represents the most important part of the processing

cost (depending on the projection domain), we gener-

ally choose D-MUSICAL to achieve the detection in real

applications.

Conclusion
In this study, the D-MUSICAL and D-Capon 3D detec-

tion and estimation methods have been proposed for

arrival separation in anOAT context. Starting from the 3D

recording space receiver-source-frequency, they estimate

observables in the 3D estimation space DOA-DOD-TOA.

D-MUSICAL and D-Capon extend the high-resolution

MUSIC method and adaptive Capon method to the 3D

configuration, respectively.

Smoothing issues linked to the OAT context and imple-

mentation issues have been discussed here. The methods

have been validated on real data recorded in an ultrasonic

tank. These methods have better detection performances

than the 2D methods (2D BF, 2D Capon and MUSICAL)

and than D-BF. We have also shown that D-Capon and

D-MUSICAL finally give similar performances.

Future work will concern the estimation performances

of these new methods and their use in OAT experiments.

As OAT has already been achieved using D-BF to estimate

the TOA [28], it will be particularly interesting to apply

the tomography process with D-Capon and D-MUSICAL

to estimate the TOA.
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9. S Marcos, Les méthodes à haute résolution. (Paris, France, HERMES, 1998)

10. M-A Pallas, Identification active d’un canal de propagation à trajets
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