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ON FRIEDRICHS CONSTANT AND
HORGAN-PAYNE ANGLE
FOR LBB CONDITION

Monique Dauge, Christine Bernardi, Martin Costabel,
and Vivette Girault

Abstract. In dimension 2, the Horgan-Payne angle serves to construct a lower bound
for the inf-sup constant of the divergence arising in the so-called LBB condition. This
lower bound is equivalent to an upper bound for the Friedrichs constant. Explicit upper
bounds for the latter constant can be found using a polar parametrization of the boundary.
Revisiting carefully the original paper which establishes this strategy, we found out that
some proofs need clarification, and some statements, replacement.

Keywords: LBB condition, inf-sup constant, Friedrichs constant, Horgan-Payne angle.
AMS classification: 30A10, 35Q35.

§1. The inf-sup constant and some general properties

Here we only consider bounded connected open sets Q in R?, the generic point in R? being
denoted by x = (x1,x;). For such a domain €, the inf-sup constant of the divergence as-
sociated with Dirichlet boundary conditions, also called LBB constant after LADYZHENSKAYA,
Basuska [3, 2] and Brezzi [4]], is defined as

Q= inf sy VDo (1)

2 1 2
ger2@ veny@p ol o llgll
Here

e L2(Q) stands for the space of square integrable scalar functions ¢ with zero mean value
in Q endowed with its natural norm ||-||g.o and natural scalar product (-, )q ,

) H(l)(Q)2 is the standard Sobolev space of vector functions v = (vy, v;) with square inte-
grable gradients and zero traces on the boundary, endowed with its natural semi-norm

2

2
2 1/2
= (DD el )

k=1 j=1

Since Q is bounded, by virtue of the Poincaré inequality, the above semi-norm on Hé(Q)2 is
equivalent to the usual norm in H'(Q)?.
We list some elementary properties of 5(€2):

(a) Q) =0,
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2 2 2
(b) B(Q) < 1, because of the identity |v| 0= [ curlvlloQ +| divv||0Q for any v € Hé(Q)2,

(c) B(€) is invariant by translations, dilations, symmetries and rotations by virtue of Piola
transform. Thus B(Q2) only depends on the shape of Q.

The constant S(€2) is positive for Lipschitz domains (see [8, Chap. 1, Section 2.2], which
relies on [12) Chap. 3, Lemme 7.1]), and also for domains with less regular boundary like
John domains [1]. In contrast, domains with an external cusp (also called thin peak) satisfy
B(Q) =0, see [15, Chap. 15].

Finding calculable lower bounds for S(Q2) is of great interest, since it is involved in any
analysis of the Stokes and Navier-Stokes equations with no-slip boundary conditions. More-
over, discrete inf-sup constants between finite dimensional subspaces of H(l) (Q)? and L2(Q)
are influenced by both the continuous inf-sup constant S(€2) and the type of chosen (mixed)
discrete spaces, see [13]] and also [6].

In reference [10], HorGaN & PaynE design an efficient strategy for calculating lower
bounds of B(€2) in domains 2 whose boundary can be described in polar coordinates (r, 6)
by arelation » = f(6) with a Lipschitz-continuous function f:

o First, state a relation between B(Q2) and the Friedrichs constant I'(Q2),
o Second, find bounds for I'(Q2) using f and its first derivative f’.

In the present paper, we revisit these two steps, with more emphasis on the second one.

§2. The Friedrichs constant

In dimension 2, the coordinates (xj, x,) are identified with the complex number x; + ix;.
Two real valued functions 4 and g are said to be harmonic conjugate if they are the real
and imaginary parts of a holomorphic function % + ig. The functions / and g are harmonic
conjugate if and only if they satisfy the relations

Ah=0, Ag=0, and gradh=curlg in Q.

Let &(€2) denote the space of complex valued L*(Q) holomorphic functions and let §.(€2)
be its subspace of functions with mean value 0.

Definition 1. The Friedrichs constant (named after [7]) denoted by I'(Q2), is the smallest
constant I' € R U {co} such that for all & + ig € F.(Q)

2

2
1A}, g < Tl 0

L2(Q) —
Theorem 1 ([10], [S]). Let Q be any bounded connected domain in R*>. The LBB constant
B(Q) is positive if and only if T'(Q) is finite and

1
rQ+1=———.
BEY?

This relation between () and ['(Q2) was proved in [[10] under additional regularity prop-
erties on the domain. A new proof is provided in [3], in which no regularity assumption is
needed.
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§3. An upper bound for the Friedrichs constant

Let Q be strictly star-shaped, which means that there is an open ball B ¢ Q such that any
segment with one end in B and the other in €, is contained in . Let O be the center of B and
(r,0) be polar coordinates centered at O. Let § — r = f(6) be the polar parametrization of
the boundary 0Q, defined on the torus T = R/27Z.

Lemma 2 ([11, Lemma 1.1.8]). Let Q be a bounded strictly star-shaped domain, and f be a
polar parametrization of its boundary as described above. Then f belongs to W (T).

Since I'(Q?) is invariant by dilation, we may assume without restriction that

max f(8) = 1 @

Following the approach in [10], we are prompted to introduce the following notation.
Notation 3. Under condition @, let P = P(a, 0) be the function defined on R, X T as

_ f(6)?
Fla.0r= afw)z(l " Fy - af(0)4)' @
Let M(Q2) and m(£2) be the following two positive numbers
M(Q) = inf { sup P(a, 9)} and m(Q) = sup{ inf  P(a, 0)}. )
ae©0,1) | geT 6eT \ ae(0, -

12

Remark 1. Let us choose 8 € T. Calculating the second derivative of the function Py : @ —
P(a, 0) defined on the interval (0, —1>), we find that Py is strictly convex. The function Py

tends to +oo as @ — 0, and if /() # 0, as @ — J# In any case, there exists a unique a(6)
in (0, 757 ] such that
P(a(9),0) = inf P(a,0).
So,
m(2) = sup P(a(6),0) . Q)]
6T

Since, in particular, for all @ € (0, 1) and 8 € T, P(a(6), ) < P(a,8), we find that
M(Q) > m(Q). ©6)

The quantity m(€) is the original bound introduced by Horgan-Payne in [10] and M(Q) is our
modified Horgan-Payne like bound.

Theorem 4 (Estimate (6.24) in [[10]). Let Q be a bounded strictly star-shaped domain. Its
Friedrichs constant satisfies the bound

Q) <M ). (7
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Proof. We assume for simplicity that the origin O of polar coordinates coincides with the
origin 0 of Cartesian coordinates. Let g € 2(Q) be an harmonic function and let h € 2(Q)
be its harmonic conjugate such that 2(0) = 0. If we bound the L*(Q) norm of %, we bound a
fortiori the L*>(Q) norm of & — ﬁ fQ h which is the harmonic conjugate of g in L2(Q), hence

with minimal L*(Q) norm. The extension of the estimate to all pairs of harmonic conjugate
functions in L?(Q) follows from a density argument.

Since A+ ig is holomorphic, its square is holomorphic too and we deduce that the function
H := h* — g* is harmonic conjugate of G := 2gh. Hence equation grad H = curl G leads to
the relation in polar coordinates

— 1 -
8,H = —0,G
P

where ﬁ(r, 6) = H(x) and E(r, 6) = G(x) for x = (rcos@,rsinf). Thus for any 8 € T and
r € (0, f(6)) we have

H(r,0) — H(0) = f r@,,ﬁ(p,@)dp= f r%agé“(p,e)dp.
0 0

We divide by f(6)? and integrate for 6 € T and r € (0, £(6)):

f(0) H(r ) — H(0) fffw) {fr _ }
rdrdf = —0¢G(p,0)dp ¢ rdrdd
LL T jer MV WO dprdr
1(6) _ 1(6)
\L;.[o‘ f(0)2 /—)(%G(p, 0){]; rdr} dpdf

L[ (10 -p, =
== ———5—0¢G(p, 0) pdpdd .
)0, o om

Since the function f(6)*> — p? is 0 on the boundary, integration by parts yields

1O H(r.6) - H(O) f R HOF
rdrdf = — G(p,0) pdpdd .
ff NG U

We set for any 6 € T
1'(6)
1)

1) =
Coming back to 4 and g we find:

h(x)? dy — f g(x)* = g(0)> dr — 2f HB)h(x)g(x)
o f(6)? o  f(O)? o fO)?

In order to take the best advantage of the previous identity we introduce a parameter

dx. ®)

a€0,1)
and write for any 6 € T (here we use condition (2) which ensures that 1 — af )?* > 0)

16)?

;@@ﬂﬁ

2|1 @hx)g)| < {1 - af@)fhx)* +
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and deduce from (8) that (note that the same « is used for all 6)

o [ Hrax < g 1O g,
o = Jof@7 " T=af@? for

Thus, for any @ € (0, 1)

2 1 t(9)2 2
fg e < sl (14 g ) fg g

Optimizing on @ € (0, 1) and coming back to the definition of 7 and P, we find

f h(x)’dx < inf {supp(a,e)} f g(x) dx,
Q Q

a€(0,1) \ 9eT
which is nothing else than ||h||% Q0 SMQ) ||g||(2) o> Whence the theorem. O

Remark 2. The proof above is due to Horgan and Payne in [10} § 6]. Unfortunately, instead
of simply concluding that M(Q) is an upper bound for I'(Q2), they try to show that M(Q)
coincides with m(Q) and this part of their argument is flawed. In the rest of our paper we
discuss cases where equality or non-equality holds between these two quantities.

§4. The Horgan-Payne angle

Stoyan in [14] propose an interesting geometrical interpretation of the lower bound on S(€2)
under the condition that m(€2) is an upper bound for I'(Q2).

Notation S. For 6 € T, let x be the point (f(0) cos 6, f(6) sin6) in 9L, let y(6) € [0, 7) denote
the (non-oriented) angle between the line [0, x] and the outward normal vector to JQ at x.
We set

V@) =spy(0) and (@)= g — Q). )

The angle w(QY) is referred as the Horgan-Payne angle in [[14]].

Lemma 6. We have the identities

_ 1 +siny(Q) 1 L w(Q)
m(Q) = T sin) Q) and NS = sin > (10)
Proof. Let us recall the formulas
f() . 1(6) 10
)= ——, )= ———, t 9) = .
o VIO + f(67 o) For e = T

Hence we have

P(a,0) = (1)

1 tan® y(6)
af () (1 T a0y )
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Let 6 be chosen. To determine the value «(6) which realizes the minimum of P(«a, 8) for
a € (0,1/£(6)?], cf. [B), we calculate

B 1 tan® y(6) 1 tan? v()f (6)?
Oub(e,6) = _a2f<9>2( I af<9>2) T afOr U—af@py
Setting £ = af(6)%, we see that 3, P(a, §) = 0 if and only if

22 =2(1 + tan® y(0)) + 1 + tan® y(6) = 0. (12)

We look for £ € (0, 1]. The convenient root of equation (12) is

a@)f©)% = ¢ =1+ tan® y(6) — tany(0) 4/ 1 + tan2 y(6)

1
" T+siny@®) )
Hence we find 1 + siny(@)
_ L +siny
P(a(0),6) = T=siny®)’ (14)

whose supremum is attained for the supremum y(Q) of y(), whence the first formula in (T0).

The second formula is obtained using sin %Q) = sin(f;f - %Q)) = %(cos %Q) — sin %Q)). O

As a straightforward consequence of Theorem[I]and Lemma[6] we obtain the following.

Corollary 7. For any domain such that I'(QQ) < m(Q), the inf-sup constant B(Q) satisfies

B(Q) > sin “’(ZQ) . (15)

Remark 3. The estimate (T3) is stated in [14] for any strictly star-shaped domain. The reality
is that (T9) is true if and only if T'(Q) < m(€). The latter estimate is true for some categories
of domains as we will see in the next section. We will also exhibit domains for which m(Q) is
distinct from M(€2). In [5] it is proved that, in fact, there exists strictly star-shaped domains
such that I'(Q2) > m(Q) (equivalently, B(Q2) < sin @).

§5. Examples

In this section, we consider some particular shapes of domains, namely ellipses, polygons,
and limacgons.

5.1. Disks and ellipses
The equation of an ellipse can always be written in suitable Cartesian coordinates as

)C2 y2

g_2+ﬁ:1
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with positive coeflicients a < b. The constant I'(2) is analytically known, cf. [7], namely
2
i (16)

b
F(Q) = ; and ﬁ(Q) = \/Z—TbZ .
a

In polar coordinates, the parametrization of the ellipse is
(17

-1/2
£(0) = ab (b cos? 0 + a’ sin? ) .

i) Let us calculate m(€2). We have
1 _ sin@ cos @ % - a?) _ tan@ b - %) )

tany(0) = = =
7 FO)  b2cos?O+asin?@  b? +a*tan? 6

The maximal value tan y(Q) of tany(6) is obtained for
b
tanf = — ,
a

2_ 2

hence
t Q) =
any(€2) ab

sin ’y(Q) = m .

from which we deduce
2_ 2

Formula (T0) then yields
b?

ii) Let us calculate M(€2). In order to comply with the condition maxger f(6) = 1, we set
@ =b/aand b = 1, and consider f given by with a, b replaced by @, b. We use formula

(1 +tan® ¥(9)) f(O)* —

(TT) for P to write:
1 - af(6)?

1
P(a,0) = —
a

From (T7) and (T8) we deduce
(1 +tan*y(0) fO > =a">.

~=2

Therefore
P(a.6) = 1 a°-a
O T afer

For each a € (0, 1), the supremum in 6 of P(a, ) is attained for f(6) minimum, i.e. in § = 0

for which f(6) = a. We deduce
la?2-a 1 1 »?

P(,0) = — =—==-—,
Seliq? (@) al-ai*? ad* aa®

1
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hence, taking the infimum over @ € (0, 1):

2
M) = b—z .
a
Comparing with (T6)), we finally obtain
b2
m(Q) = M(Q) = poi Q). 19)
In particular, if Q is a disk
mQ)=MEQ)=T(Q)=1. (20)

5.2. Star-shaped polygons

A polygon Q is characterized by the fact that its boundary is a finite union of segments. Let
us first investigate the behavior of the function P along a segment.

For ease of computation, we consider a segment / lying on a vertical line of equation
x1 = d with d > 0. Note that d is the distance of this line to the origin. Normals to [ are
horizontal. We find

d
fO) = — and () =0. 1)

Hence, under the global condition maxger f(6) = 1, the contribution to the function P of such
a segment is — here we use formula (TT)),

cos’d 1 -—ad®

ad? cos? 6§ — ad?
1 1= ad?

T ad® 1-af)?

For any « € (0, 1), the maximal value of P is attained for f(#) maximal, i.e., at an end of the
segment /, and this end is the most distant from the origin. That is why we introduce:
Notation 8. Forany side I, j = 1,...,J, of apolygon Q, we define its radius r; as the distance
between the origin and its most distant endpoint E;. Denoting by /; the line containing /;, we
define d; as the distance of /; to the origin.

The normalization (Z) here takes the form max;r; = 1. From the previous computation
(22) we find the formula

P(a,0) =

(22)

2
Jj 1 1-ad;

M(Q inf max — ——— 23
) ac(0,) j=1 a/d? I—a/rjz. 23)
2 7-2 2
1 rid;” —ars
inf max — L1 (24)

ae(0,1) j=1 - — .
=t ar; 1 ar;

In order to find a similar formula for the quantity m(2), we are going to use (5) and we go
back to expression (T4) which can be written in function of cos y(6) instead of siny(6):

2
1 [ 1
P(a(8),6) = [COS 5 \sorr@ 1 ] . (25)
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For the angles # corresponding to the segment /;, the supremum of P(a(6), ) is attained for
cos y(6) minimum, i.e. for cos y(6) = iﬂ Therefore formula (23)) yields

P
Q)= L2 -1]. 26
m(L2) max %+ & (26)
The maximum is attained when r;/d; is maximal.
Proposition 9. Let Q be a polygon, with d; and r; the distances in Notation We have
i) If all r;j are equal, then M(Q) = m(Q).
ii) If all d; are equal, then M(Q) = m(Q).
iii) If the largest value of r;/d; is attained for two different indices j and k and if r; # ry,
then M(Q) > m(Q).

Proof. i) If all r; are equal, the normalization max; r; = 1 yields that r; = 1. Formula
then gives that
1d2 —a
M@Q) = inf — 0 —
eccOha 1-a
where dpi, is the minimum value of the d;. The optimization with respect to « provides the
optimal value

1 1 1
“z Na, e, Y

for a, hence the infimum

2
1 1
M(Q) = + = -1
( ) [dmin dz. ]

which coincides with m(Q) given by (26)) since r;/d; is maximal for 1/dpy.

ii) If all d; are equal, Formula (23) gives that

1 1-ad?
M) = inf — ——

06(0 D ad? 1 -ark,,

where d is the common value of the d; and 7, the maximum value of the r;. Due to normal-
ization max; r; = 1, this formula becomes

MQ) = 1 —a/dz_ - 1d?%-a
_zye(Ol)a'dZ l1-«a _mE(Ol)a( l-a

As in the previous case we find

2
1 Vi-d&
M(Q):[3+ 7 ]
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which coincides with m(Q) given by (26) since r;/d; is maximal for 1/d.

iii) For ¢ € {j, k}, let 8, be the angle 6 corresponding to the end E,. We have

M(Q) > min max P(e,).
a€(0,1) 6{6;,6,}

And let @, be the value of @ € (0, 1] minimizing MaXge(o,.0,} P(a, 6). We have
M) > max{P(a, 0;), P(an, O} .

Now, still for € € {j,k}, let a, be the value of @ € (0, r;z) minimizing P(e, 6;). Since
rj/d; = ry/d, maximizes the quotients r;/d;, we have by ([26)

2 2 2 2
rj ' T Tk
A A S Ly |
oye] Vi

= P(a;,0)) = P(ax, 0) .

m(Q) =

By (13), a; and e satisfy

2 1

=, f = .,k.
e 1 + siny(6y) }

But siny(6;) = siny(6;) because cosy(6;) = r;/de. Hence, since r; # ry, we have a; # ax,
therefore «,, cannot coincide with «; and «; at the same time. So, since the functions a +—
P(a, 0) are strictly convex in the interval (0, £()~2), we deduce

M(Q) > max{P(am, 0;), P(am, Ok)} > P(a;,0;) = Play, O) = m(Q),
and conclude that M () > m(£2) as announced in the proposition. m|

Here are examples for the three situations i) — iii) investigated in Proposition 9]

Example 1. In each of the examples below, the center 0 of polar and Cartesian coordinates
is chosen at the barycenter of the domain.

i) If Qis a regular polygon or a rectangle, then all r; are equal, thus M(Q) = m(Q).
ii) If Qs a triangle or a rhombus, then all d; are equal, thus M(Q) = m(Q).

iii) See Figure For this hexagonal domain, the quotients r;/d; are all equal to V2, but
ri=1land r, = 1/ V2 (with §; = 0 and 6, = Z). Therefore m(Q) < M(CQ).

5.3. Limacons

Limacons of Pascal (named after Etienne Pascal, father of Blaise Pascal) are curves defined
in polar coordinates by a formula of the type

fe@) =a(l+¢ecosh), a>0,¢e>0. 27
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12

0.5} 1 10p

m(Q) = 5.83
M(Q) = 6.86 ¢ 6l

o

-0.5f 4 ol ——large radius | |
—— small radius

-1 -0.5 0 0.5 1 0 0.5 1 1.5 2

Figure 1: Example where M(Q) > m(€2). Domain Q with center of coordinates, left. Plot of
a  P(e,0)) for a € (0, ﬁ) j=1,2,right.

Such a curve is simple if ¢ is less than 1, and so defines the boundary of a domain .. In
[1O] the case of such limagons is considered. Here the constant I'(€2,) is analytically known,
[9,110]], which provides an explicit formula for S(€,) via Theoremﬂ]

2+& 2 - g2
[(Q,) = 2_— and ﬁ(Qe) = )

&2
This example can serve as a benchmark for bounds m and M. We have computed by a Matlab
program the two constants m(€2,) and M(€),). It happens that as soon as ¢ is not zero, i.e., {2,
is not a circle, these two constants are distinct, see the top two curves in Figure E} The other
curves are explained below.

Here comes the question of the choice of polar coordinates defining m(Q2) and M(L2). For
limagons, the first choice is to consider the polar coordinates in which the domain is defined
by 7). But, considering that Q. intersects the horizontal axis between the points —a + ae
and a + ae, choosing new polar coordinates (', 8’) centered at O’ = (ae, 0) appears more
judicious. A new equation

(28)

r/ — fg/(e/)
is associated with €, leading to new quantities
m'(Q;) and M'(Q,).

In fact these new quantities are very different from the old ones. We have observed that
m'(Q,) and M’(Q,) do coincide, and are much smaller than m(€,) and M(€2,), see Figure
Moreover, the asymptotic behavior of m’(€,) = M'(Q,) as € — 0 is very good. Indeed, using
formula (28)) allows us to compute the difference m’(€) — I'(Q.). We have found numerical
evidence, see Figure[3] for the asymptotic behavior

m'(Qe) = T(Q,) = M'(Q,) - T(Q) = O(”).
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Log10 m(Q¢)
o5l Log10 M(Q¢) |
' Log10 m’'(Q¢)

Log10 I'(L2¢)

Figure 2: Plot of € - log,, {m(Q,), M(Q.), m’'(Q) = M'(€), T'(Q,)} for £ = 0.1 to 0.9.

5.4. Decentered disks

We end this section by a curiosity which sheds some light on the discrepancy between m(€2)
and M(Q) and their dependency on the center of polar coordinates. Let Q be a disk. We have
seen in (20) that we have the optimal values m(Q) = M(Q) =T'(Q) = 1.

Now, we consider decentered disks, moving off the center of polar coordinates by a rel-
ative amount ¢ with respect to the radius of the disk. We can assume that the new center
lies on the horizontal axis. This defines new versions of the constants, denoted m[6](Q2) and
M[5](€2). It is not very hard to prove the following
(i) The maximal value of the angle y occurs for 6y = ’%, so siny = ¢. Hence, cf (]ED,

1+6
0lQ) = ——.
mlQ) = ;—
This value is the same for the limagon (7)) choosing & = 6, see [10] (6.34)].
(ii) For any @ € (0, 1), the max in 6 of P(a,6) is attained for # = x, then the inf in «
corresponds to P(1, ). Hence

1 _(1+6

ok 0) = mlslQ) > mlsk.

M[6]() =
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—0— Log2 { M(Q¢) -1}

-10 —0— Log2 {m(Q¢) — 1}
Log2 {m’(Q) -1}
-12 Log2{I'(Q -1}
—— Log2 { m’(Q¢) - T(Q) }
14 ‘ ; ‘
-4 -35 -3 -25 -2 -15 -1

Figure 3: Plot of log, € - log, {M(Q.)—1, m(Q.)—1, m'(Q:)—1, T(Q:)— 1, m’(Q:)-T(Q)}
for £ = 0.0625 to 0.5.
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