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Piezoelectric materials are widely used in the design of smart structures. It is thus of major technological 
interest to provide efficient modelings of such structures. In the case of thin piezoelectric plates, classical 
studies generally lead to two different models. These two models can be linked to the distinction between 
sensors and actuators. Here, we extend these results to the second order piezoelectricity, that is to say 
piezoelectricity with electric field gradient. We recently showed in [1] that three different models have to 
be taken into account, which broadens the scope of the sensors and actuators field. Second order 
piezoelectricity being compatible with isotropy (see the introduction below), we also propose a 
systematic study of the impact of crystalline symmetries on our models and show that a striking effect 
named ‘structural switch-off’ appears for some specific crystal classes. This paper aims at presenting 
these results in a simplified but accurate way. 
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1 Introduction 

In the 1960’s the study of unexplained aspects of 
piezoelectricity led Mindlin [2] to extend the classical 
Voigt’s theory [3] in Toupin’s formulation [4] by 
assuming that the stored energy function not only 
depends on the strain tensor and polarization vector but 
also on the polarization gradient tensor. What motivated 
Mindlin to study the effects of the polarization gradient 
was the capacitance of very thin dielectric films. 
Experiments showed that the capacitance of this kind of 
film is systematically smaller than the classical 
prediction. Moreover, performing experimental tests, 
Mead [5] showed that piezoelectric effect can also 
appear in centrosymmetric crystals, which is in 
contradiction with classical Voigt’s theory. And, indeed, 
the Mindlin’s theory of elastic dielectrics with 
polarization gradient as introduced in [2] accommodates 
the observed and experimentally measured phenomena, 
such as electromechanical interactions in 
centrosymmetric materials, capacitance of thin dielectric 
films, surface energy of polarization, deformation and 
optical activity in quartz (see for example [6], [7] and 
references quoted therein). In this paper we choose to 
adopt an alternative to the Mindlin’s formulation by 
introducing the electric field gradient, as in [8] for 
example. Because such gradient theories can describe 
size effects that are important in small-scale problems, it 
seems unavoidable to use them to deepen our 

understanding of smart structures, the wide majority of 
them being thin. Here we present our results of the 
mathematical modeling of second order piezoelectric 
plates. The ground of our method is to view the 
thickness of the plate as a small parameter denoted by !. 
Then, we study the behavior of the solution of the 
genuine electromechanical problem (7) as ! tends to 0. 
We have shown in [1] that depending on the type of 
electrical loading, three different models (indexed by 
p=1, 2 or 3) appear at the limit. This result extends our 
previous study in [9] and tends to enlighten that gradient 
theory broadens the understanding of sensors and 
actuators. For two of the obtained models 
(corresponding to p=2 and p=3) we are able to express 
the constitutive law of the plate as a Schur complement 
of the second order piezoelectric tensor (see (2) and 
(11)). It is important to emphasize that the expression of 
the constitutive laws in (11) is valid for any symmetry 
class, which means that we do not make any simplifying 
assumption dealing with the crystal symmetry of the 
material constituting the plate. Concerning the 
remaining model (corresponding to p=1), we are not 
able to explicitly derive the constitutive law in the limit 
equations. Therefore, as in the case of the first order 
piezoelectric rods treated in [10], it seems very likely to 
us that non-local terms appear in this delicate situation. 
Finally, we study the influence of the crystal 
symmetries on the constitutive laws of our two 



reducible models (corresponding to p=2 and p=3) and 
show that even for the second order piezoelectricity, an 
electromechanical switch-off may appear in the 
structure if the plate is designed with specific materials. 

2  Setting the problem 

We will denote displacement fields by the letters u, 
v and w while the electric potentials will be denoted by 
!, " and #. Classically, the tensor of small strains is 
written   

! 

e(u) " S3  where   

! 

SN  indicates the set of all 
  

! 

N " N  real and symmetric matrices. Used as indexes, 
letters i and j take their values in {1, 2, 3} while $ and %  
take their values in {1, 2}. We recall that 

  

! 

2eij(u) = "iu j + "jui  where the symbol   

! 

"i  refers to the 
partial derivative with respect to the i-th coordinate. The 
gradient of an electric potential # will be denoted by 
  

! 

"# $ R3  and its bigradient by   

! 

"2# $ S3  where 

  

! 

"ij
2# = $ij

2# = $i$j# . Given an electromechanical state 
  

! 

(u,")  we therefore have   

! 

(e(u),"#,"2#) $ H , with 
 

  

! 

H = S3 " R3 "S3 . (1) 
 
An element of   

! 

H  will therefore be represented by a 
triplet, and for the sake of simplicity, the classical 
symbol ‘ 

! 

"  ’ will stand for the scalar product in   

! 

H ,   

! 

S3 
and   

! 

R3. The set of all linear mappings from a space   

! 

V  
into a space   

! 

W is denoted by   

! 

L(V, W)  and, if   

! 

V = W, 
we simply write   

! 

L(V) . In the sequel, for all domain   

! 

D  
of   

! 

RN ,   

! 

H"
1 (D)  refers to the subset of the Sobolev space 

  

! 

H1(D)  whose elements vanish on 

! 

" , included in the 
boundary   

! 

"D of   

! 

D . 
The reference configuration of a linearly 

piezoelectric thin plate is the closure in   

! 

R3 of the set 
  

! 

"# = $% (&#,#)  whose outward unit normal is   

! 

n" . Here, 

! 

" is a small positive number and 

! 

"  a bounded domain 
of   

! 

R2 with a Lipschitz boundary 

! 

"#. Let   

! 

("mD
# ,"mN

# ) , 

  

! 

("eD,#
$ ,"eN,#

$ )#=1,2  be three suitable partitions of 

! 

"#$  
with   

! 

"mD
#  and   

! 

"eD,#
$  of strictly positive surface 

measures. The plate is, on one hand, clamped along 
  

! 

"mD
#  and the electric potential 

! 

"#  satisfies   

! 

"# = "0
#  on 

  

! 

"eD,1
#  and   

! 

"n#
$ = "n#0

$  on   

! 

"eD,2
# , where the symbol   

! 

"n  
refers to the normal derivative along the boundary of 

! 

"#  and   

! 

"0
#  is a smooth enough given field defined in 

! 

"# . On the other hand, the plate is subjected to body 
forces   

! 

f "  and electric loading   

! 

q"  in 

! 

"# . Actually,   

! 

q"  
vanishes, the material being an insulator, anyway our 
results are also valid for   

! 

q"  different from   

! 

0. Moreover, 
the plate is subjected to surface forces   

! 

F"  and electric 
loading   

! 

qs
"  on   

! 

"mN
#  and   

! 

"eN,1
# , respectively. It is also 

necessary to define ‘body’ and ‘surface’ electric dipoles 
densities, respectively denoted by   

! 

d" ,   

! 

ds
"  and defined in 

! 

"#  and on   

! 

"eN,2
# . Finally, we assume that 

  

! 

"mD
# = $0 % (&#,#) , with   

! 

"0 # $%. 
We now define the operator 

  

! 

M" =

a " #b" #$"

b"
T

c" %"

$"
T

%"
T

&"

' 

( 

) 
) 
) 

* 

+ 

, 
, 
, 
 (2) 

which describes the electromechanical coupling with 
electric field gradient effect, or second order 
piezoelectric coupling. More precisely,   

! 

a " ,   

! 

b"  and   

! 

c"  
are respectively the elastic, piezoelectric and dielectric 
tensors while 

! 

"# , 

! 

"#  and 

! 

"#  describe the second order 
couplings (recall that   

! 

"T denotes the transpose of any 
tensor 

! 

" ). We have (  

! 

a " ,   

! 

b" ,   

! 

c" , 

! 

"# , 

! 

"# , 

! 

"# ) 

! 

"    

! 

L(S3)  

! 

"   

! 

L(R3,S3)   

! 

"    

! 

L(R3)  

! 

"    

! 

L(S3)  

! 

"    

! 

L(S3, R3)  

! 

"    

! 

L(S3) , 
so that   

! 

M" # L(H) . 
We are looking for the electromechanical state 

  

! 

(u" ,#" )  living in the second order piezoelectric plate at 
equilibrium, where   

! 

u"  denotes the displacement field. 
For this purpose, we make the following regularity 
hypothesis on the exterior loading: 

 

  

! 

i)  (f " ,q" ,d" , F" ,qs
" ,ds

" ) # L2($" )3 % L2($" )  
    

! 

"L2(#$ )3 " L2(%mN
$ )3 " L2(%eN,1

$ ) " L2(%eN,2
$ ), 

  

! 

ii)  "0 # H2($% )  

(3) 

 
and define 
 

  

! 

H
"eD
#

2 ($# ) = %& H2($# ) : %= 0 on "eD,1
# ,{  

                                    
  

! 

"n#= 0 on $eD,2
% }. 

(4) 

 
Now, on the space of electromechanical states 
  

! 

V"

! 

=
  

! 

H
"mD
#

1 ($# )3

! 

"
  

! 

H
"eD
#

2 ($# )3  we define a bilinear form 
  

! 

m" : 
 

  

! 

m" (r, t) = m" ((v,#), (w,$))  

  

! 

= M" (e(v),#$,#2$) % (e(w),#&,#2&)dx"

'"

(  (5) 

 

and a linear form   

! 

L" : 

  

! 

L" (r) = L" ((v,#))  

  

! 

= (f " #v + q"$+ d" # %$)dx"

&"

'  

     
  

! 

+ F" #vds"

$mN
"

% + qs
"&ds" +

$eN,1
"

% ds
"'n&ds"

$eN, 2
"

% . 

(6) 

 

The genuine electromechanical problem then takes the 
form 

  

! 

P("# ) :  Find s# = (u# ,$# ) % V#  such that
m# (s# , r) = L# (r),  &r % V# .

' 
( 
) * 

 (7) 

 



Thus, with the additional and realistic assumptions of 
boundedness of   

! 

a " ,   

! 

b" ,   

! 

c" ,

! 

"# ,

! 

"# ,

! 

"#  and of uniform 
ellipticity of   

! 

a " ,  

! 

c"  and 

! 

"# : 

  

! 

M" # L$(%" , L(H)),  &'" > 0 :  
    

  

! 

M" (x" )h # h $ %" h
H

,&h' H,  a.e. x" ' ("  
(8) 

 

the Stampacchia’s theorem (cf. [11]) implies the 

THEOREM 1: Under assumptions (3) and (8), the 
genuine electromechanical problem   

! 

P("# )  has a 
unique solution. 

To derive simplified accurate models, the very 
question is to study the behavior of   

! 

s"  when 

! 

" , 
regarded as a parameter, tends to zero. 

3  The three different models  

It is not possible to present here the details of the 
asymptotic procedure that leads to our modeling. We 
refer the reader to [1] for full description and rigorous 
proofs. Let us just say that three different limit 
behaviors of   

! 

s"  appear according to both the type of 
electric boundary conditions and the magnitude of 
electric external loading. These three different behaviors 
can be indexed by p=1, 2 or 3. 

The sketch of the method is classical (see [12]). 
The first step is to find a way to avoid working on 
variable Sobolev spaces. Indeed, until now, all the 
functional spaces that have been introduced are defined 
on 

! 

"# . As 

! 

" is regarded as a small parameter whose 
aim is to tend to zero, these functional spaces are 
variable and this fact implies very heavy technical 
difficulties. We therefore first come down to a fixed 
open set   

! 

" = #$ (%1,1)  through the mapping 

! 

"# : 
 

    

! 

x = (x1, x2, x3) " # a $%x = (x1, x2,%x3) " #
%
 (9) 

 
This is the so-called zoom technique. 

To get physically meaningful results, we also have 
to make various kinds of assumptions. They deal with 
the electromechanical coefficients and loading but also 
with the boundedness of the work of the exterior 
loading (see [1] but also [9]). 

Finally, with the true physical electromechanical 
state   

! 

s" = (u" ,#" )  defined on 

! 

"# , we associate a scaled 
electromechanical state   

! 

sp(") = (up("),# p(")) defined on 

! 

"  by: 
 

  

! 

u"
# (x# ) = #(up(#))" (x),  u3

# (x# ) = (up(#))3(x),  

           

! 

"# (x# ) = #p" p(#)(x),  $x# % &#x% '
#
.  

(10) 

 

This scaled electromechanical state   

! 

sp(")  is then the 
unique solution of a so-called ‘scaled problem’ indexed 
by p, say   

! 

P(",#)p . The asymptotic analysis of this 
problem shows that   

! 

sp(")  strongly converges in a 
suitable topology to an electromechanical state   

! 

s
_

p . It is 
possible to show that   

! 

s
_

p  is the unique solution of a limit 
problem denoted   

! 

P
_

(")p  . These three problems, once 
written on 

! 

"# , represent our three models! 
For p=2 or p=3, the problem   

! 

P
_

(")p  is governed by 
a limit constitutive law   

! 

M
_

p , in the same way that 
  

! 

P("# )  is governed by   

! 

M"  (see (7), (5) and (2)). 

4  Some properties of   

! 

M
_

p  

It is interesting to give some properties of the 

operators   

! 

M
_

p  which supply the constitutive relations of 
the electromechanical plate with electric field gradient. 
We recall that these operators are defined for p=2 and 
p=3.  In the case p=2, the limit model involves a 
coupling between the displacement field, the electric 
field and the electric field gradient while in the case 
p=3, the coupling involves the displacement field and 
the electric field gradient only. Because of the explicit 

expression of   

! 

M
_

p  as a Schur complement (see [1] and 
[9]), it is possible to show that 

 

  

! 

M
_

2 =

a
_

2 " b
_

2 "#
_

2

b2
T

_

c
_

2 $
_

2

#2
T

_

$2
T

_

%
_

2

& 

' 

( 
( 
( 
( 
( 
( 

) 

* 

+ 
+ 
+ 
+ 
+ 
+ 

,  M
_

3 =
a
_

3 "#
_

3

#2
T

_

%
_

3

& 

' 

( 
( 
( 

) 

* 

+ 
+ 
+ 
 (11) 

 

Where   

! 

(a
_

2, b
_

2,c
_

2,"
_

2,#
_

2, $
_

2) % L(S2) & L(R,S2) & L(R)  

  

! 

"L(R2,S2) " L(R2, R) " L(R2) and   

! 

(a
_

3,"
_

3, #
_

3) $ L(S2) %

  

! 

L(R,S2) " L(R) . Considering the influence of 
crystallographic classes, it can be shown that in the case 
of a polarization normal to the plate we have the 
following properties: 

-    

! 

a
_

3 involves mechanical terms only, 

-   

! 

"
_

3 never vanishes, 

-   

! 

b
_

2 vanishes for the crystalline classes m, 32, 422,   

! 

6, 
622 and   

! 

6m2 , 

-   

! 

"
_

2 always vanishes except for the classes 3, 32 and 
3m, 

-   

! 

"
_

2 always vanishes except for the class m, 
- when p=2, there is a complete decoupling 

(  

! 

b
_

2=  

! 

"
_

2=  

! 

"
_

2= 0) for the classes 422,   

! 

6, 622 and   

! 

6m2 , 



nevertheless the operators   

! 

a
_

2 ,   

! 

c
_

2  and   

! 

"
_

2  involve a 
mixture of elastic, dielectric and second gradient 

coupling coefficients. In these cases,   

! 

M
_

2 is symmetric 
which involves a quadratic convex energy. For plates 
made of these piezoelectric monocrystals, the first and 
second order coupling effects disappear at the 
structural level! This phenomenon is described as a 
‘structural switch-off’. 
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