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Abstract

To fix bugs or to enhance a software system without service dis-
ruption, one has to update it dynamically during execution. Most
prior dynamic software updating techniques require that the code
to be changed is not running at the time of the update. However,
this restriction precludes any change to the outermost loops of
servers, OS scheduling loops and recursive functions. Permitting
a dynamic update to more generally manipulate the program’s ex-
ecution state, including the runtime stack, alleviates this restriction
but increases the likelihood of type errors. In this paper we present
ReCaml, a language for writing dynamic updates to running pro-
grams that views execution state as a delimited continuation. Re-
Caml includes a novel feature for introspecting continuations called
match_cont which is sufficiently powerful to implement a variety
of updating policies. We have formalized the core of ReCaml and
proved it sound (using the Coq proof assistant), thus ensuring that
state-manipulating updates preserve type-safe execution of the up-
dated program. We have implemented ReCaml as an extension to
the Caml bytecode interpreter and used it for several examples.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; D.3.3 [Programming Languages]: Language Constructs
and Features—Control structures; D.3.4 [Programming Languages]:
Processors—Compilers; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages

General Terms Languages

Keywords dynamic software updating, continuation, functional
language, execution state introspection, static typing, Caml

1. Introduction

Stopping a critical and long-running system may not be possible or
more simply not acceptable as it would incur an excessive financial
or human cost. Dynamic software updating technology addresses
this challenge by enabling updates to running software, including
bugfixes, feature additions, or even temporary instrumentation for
diagnosis or performance tuning [3, 28]. One of the main issues
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when updating a running software is to ensure safety. After an up-
date, the modified software must remain consistent and continue
to achieve its goals. Final results must not be compromised even
if intermediate results are reused in a different context. The Gmail
outage in February 2009 [11] has shown possible consequences of
unsafe updates: an update of the data placement service inconsis-
tent with the redundancy strategy has caused a global denial of ser-
vice.

Much prior work on dynamic software updating has observed
that forms of safety (such as type safety) can be ensured by re-
stricting updates to active system components [1, 9, 19, 22, 36].
For example, if an update attempts to fix a bug in function foo,
then the update may be rejected if foo happens to be on the call
stack. Baumann et al. [7] and Arnold and Kaashoek [4] report that
for an OS kernel, up to 80% to 90% of the security fixes are sup-
ported by this approach. However, it happens that a function that
never becomes passive, potentially in critical parts of the software
system, needs to be updated. Not being able to update actively run-
ning functions prevents for instance updating the outermost loop of
a server. Extracting loop bodies into separate functions [28] makes
the code briefly inactive between each iteration. However, this tech-
nique does not solve any of the following additional cases. The pri-
mary Linux scheduler function is never passive as it is on the stack
of all threads [4]. Baumann et al. [7] also mention exception han-
dlers in a kernel which may need update at runtime [26]. The use of
some compilers that squash software structure makes the situation
even worse. For example, synchronous languages, used to program
embedded systems, rely on compilers [2] that interleave instruc-
tions coming from many components and depending on the same
input data into a single block of code. The compiled software struc-
ture thus causes what were once independent source-code units to
be considered active when any one of them is.

In order to support more updates, Hofmeister and Purtilo [20]
have proposed to focus on the execution state rather than the pro-
gram structure. Upon update, the runtime stack is captured, ad-
justed then restored. Because the stack is appropriately handled,
it does not matter if some of the updated functions are actively run-
ning. However, this approach has currently no formal semantics
and provides no guarantee that update developers will not produce
type-incorrect states.

This paper places the execution state approach [10, 20, 25] on
safer ground by defining ReCaml, a functional language designed
for manipulating execution states in a safe manner. We have defined
ReCaml formally and proved it sound. Viewing the execution state
as a delimited continuation [15], updating a computation consists
in capturing, modifying and reinstating a continuation. To support
the modification of a continuation, we define a new “match_cont”
pattern-matching operator. It matches a continuation with call sites



to decompose it in stack frames peforming specific update actions
on each of them. Depending on the execution state, the update
programmer specifies the action to apply, e.g., discarding a frame,
modifying a frame or keeping it unmodified. Combining such ac-
tions, the approach is flexible enough to support many policies,
such as completing the computation at the old version, combining
old results with subsequent new computation, or discarding old re-
sults for recomputing entirely at the new version. Attaching types
to call sites allows us to check that the “match_cont” operator is
well typed, and therefore that stack introspection is correct. The
main contributions of our work are:

o Explicit execution state management. Updates are expressed as
manipulations of the execution states. The work of update de-
velopers focuses mainly on this aspect, which we call compen-
sation. In doing so, a developer can implement resulting deter-
ministic behaviors by explicitly controlling the operations exe-
cuted by the update depending on its timing.

Optimistic update. As a consequence of the previous point, up-
dates can occur at any time. A compensation ensures consis-
tency afterwards, according to the execution state at the time of
the update. Therefore, no preventive action (such as waiting for
elements of the software to become inactive) is required. In ad-
dition, even if updates might not be effective immediately, they
are executed with no delay.

e DSU as manipulation of delimited continuations. While contin-
uations are common when studying languages and modelling
exceptions and coroutines, they have not before been used for
dynamic software updating. Relying on continuations, ReCaml
does not require any source code transformation or any specific
compilation scheme. DSU as manipulation of continuations fits
nicely within a functional framework.

® Formal semantics and static type system. ReCaml comes with
operators for capturing, modifying and reinstating continua-
tions. It is equipped with a formal operational semantics. Al-
though it is aimed at manipulating execution states, which are
dynamic structures, ReCaml, and especially the continuation
manipulation, is statically typed. The type system is proved to
be sound using the Coq theorem prover.

Working prototype. We have developed a prototype of ReCaml,
which we have used to implement a few examples.

In Section 2 we first present concrete strategies based on our
approach. Section 3 outlines our approach. Section 4 describes
in details ReCaml, the formal language underlying our approach.
Section 5 discusses implementation issues.

2. Update Complexity vs Application Simplicity

In this section, our aim is to convince the reader that updates can
be so complex that the search for sophisticated solutions is justified.
‘We are aware that supporting tools will be required in order to ease
the proposed solution. We leave this problem to subsequent work,
beyond the scope of this paper.

Our argumentation relies on a program computing a Fibonacci
number. This very simple toy example is just aimed as a proof of
concept to illustrate the difficulties when updating a program which
is repeatedly active at the time of the update. If updates are already
complex for such a simple program, then it should be worse for real
applications. The initial version of our example is:

let rec fib n =

if n < 2 then n

else (fib (n—1)) + (fib (n-—2))
in fib 12345

2.1 Initial Remarks and Overall Approach

There is no point in splitting this code in finer structural elements'.
This program is built around a single recursive function, whose out-
ermost execution completes only when the whole program termi-
nates. Hence trying to passivate the £ib function makes no sense.
If old and new versions can be mixed, dynamic rebinding [12, 14]
obviously solves the problem: active calls complete with the old
version while new calls can be directed to the new version. Usu-
ally, this assumption implies that the type of the rebound function
does not change. If the type of the £ib function is changed, then
rebinding it breaks consistency.

An update has therefore to deal with the current execution state.
It corresponds to the stack of calls already started with their argu-
ments. Such ongoing calls are called activations in the rest of the
paper. Updating a function requires to specify the action to handle
each activation. Such specifications are called compensations®. For
example, updating a function f of type 71 — 72 while changing its
type to 71 — T4 may require to convert its argument to its new type
(71) or its result to be used by code expecting values of the old type
(72). More generally, a compensation can:

e yield to the activation, hence executing the old version until
the completion of the activation. The result may need to be
converted to conform to the new type of its calling activation
if it has changed. Note that this is the semantics of Erlang [14],
Java HotSwap [12] and more generally of dynamic rebinding,
where result conversion is the identity function.

cancel the activation, hence starting over the call with the new
version. Call parameters shall be converted according to the
new version. The result shall also be converted according to
how the compensation handles its calling activation.

extract intermediate results from the activation in order to feed
some custom code. Depending on how the calling activation is
compensated, this custom code computes the new result in place
of the canceled activation.

The relative worth of each strategy depends on the time at which
the update occurs. For example, if the considered activation is close
to its completion, then it may be worthwhile to let it complete its
execution. If the activation has started recently, then it may be better
to abort and start over. If the update occurs in the middle of the
execution period, then the third option could be more appropriate.

In the third option, the amount of reusable intermediate results
varies depending on the old and new versions. The extreme case
where no intermediate result can be reused matches the second
option, i.e., aborting the activation and starting over the call. The
quantity of reusable results gives an additional hint in order to
choose the most advantageous option.

2.2 Replacing the Type of Integers

We first emphasize problems arising when modifying a type. As
the computed Fibonacci number becomes high, using fixed-size
integers will result in an overflow. Instead, it is safer to use arbitrary
precision integers. The new version of the program is>:

I Except possibly abstracting arithmetic operations in the integer data type.
Here, the abstract data type is implicit as Haskell’s Num type class.

2 Makris and Bazzi [25] use the name stack/continuation transformer and
Gupta et al. [18] use state mapping. Being functional, ReCaml does not
allow in place modification of a continuation but favors the construction of
a new future. Hence, we prefer a new name to avoid misunderstanding.

31n Caml libraries, num_of_int is the function that converts an integer to
arbitrary precision; +/ is the addition over arbitrary precision integers.



let rec fib n =
if n < 2 then num_of_int n
else (fib (n—1)) +/ (fib (n—2))

Obviously, using dynamic rebinding forbids this update as the
type of £ib is changed and there is at least one active call. Assum-
ing that the integer data type has been well abstracted, one possible
strategy could consist in updating this data type, like Gilmore et al.
[16] and Neamtiu et al. [28] do. This approach has two major draw-
backs. First, it updates all the uses of integers, while we want that
only the result of the £ib function has the overhead of arbitrary
precision integers. Second, at the time of the update, some of the
executions of the £ib function might have already produced over-
flowed integers. A systematic update of all integers has no chance
to distinguish the overflowed values that must be recomputed.

One possible update is as follows. Given an activation, if none
of the recursive calls has been evaluated, then the activation can
start over with the new version of the function. Otherwise, the com-
pensation checks intermediate results in order to detect whether an
overflow has occurred. Only non-overflowed results are converted
to the new type. Overflowed or missing results are computed using
the new version. Last, the compensation uses the arbitrary preci-
sion operator in order to perform the addition. The compensation
handles caller activations in a similar way, taking into account the
fact that the type of the call result has already been converted. The
code of this update is outlined in Section 3 and detailed in Section 6
to illustrate ReCaml.

2.3 Introducing Memoization

Second, we emphasize difficulties that occur when changing the
algorithmic structure. In our example, there is a well-known algo-
rithm with linear time complexity, while the initial one has expo-
nential time complexity. The new version of the program is*:

let rec fib’ n i fi fil =

if i=n then fi

else fib’ n (i+1) (fi +/ fi1) fi
in let fib n =

if n < 2 then num_of_int n

else fib’> n 2 1/ 1/

We can safely mix new and old versions and rebind dynamically
the name fib as the type of the function is not changed. However,
in this case, the effective behavior still has polynomial time com-
plexity. Indeed, in the worst case, there is a stack of n activations
of the old function, each of which subsequently performs up to one
call to the new version. The effective behavior is worse than abort-
ing and starting over the program, which is not satisfactory.

A better way to perform this update is to look out for two
consecutive Fibonacci numbers in intermediate results. The new
version is evaluated from the greatest pair, passed as parameters to
the £ib’ function. If there is no such pair, it is not worth reusing
any intermediate result and the program would rather start over.

2.4 Discussion

Using these two simple examples, we aim at showing that updating
a software at runtime and in the right way is a difficult task. There
is no general scheme that applies well to all of the cases. In the
first case (Section 2.2), each activation is converted independently
of the others to the new version. In the second case (Section 2.3), as
the algorithm changes radically, all of the activations are cancelled
and there is a lookup for specific intermediate results. These update
schemes are complex despite the simplicity of the application.

4To keep the program simple, we extend Caml with 1/ to denote the arbi-
trary precision literal 1 similarly to the +/ notation for arbitrary precision
addition.

In addition, our examples show that even for a single applica-
tion, the right scheme depends on the update itself. This is the rea-
son why we argue in favor of a mechanism that allows developers to
design specific schemes for each update. This approach would not
prevent proposing some update schemes “off-the-shelf”, e.g., rely-
ing on some tools such as code generators, thus avoiding burdening
developers when possible. Makris and Bazzi [25] for instance have
already proposed such automatic generation strategies.

3. Overview of the Approach

In the above examples, the key mechanism is the ability to intro-
spect activations when updating. Updates of Section 2 require in-
termediate results from activations. They also need to identify what
has been done and what has still to be evaluated in each activation.
For the implementer, this means that we need a mechanism to reify
the state of the execution, including the call stack. To achieve this,
we use continuations to model activations and we propose a new
pattern matching operator match_cont, abbreviated as mc. Given a
continuation, it matches the return address of the top stack frame as
an indication of what remains to be done in the activation. It pops
this stack frame and picks values from it in order to retrieve inter-
mediate results. To do this, we extend the semantics with low-level
details of the dynamics of the runtime stack.

In the following, we give an overview of how this operator helps
in the £ib example (Section 2.2). Here we give only part of it to
make it easier to comment and understand. Section 6 gives more
details and the full source code is in Figure 7.

The version below of the £ib function is annotated for the pur-
pose of update. Call sites’ labels may be given by the update devel-
oper or generated by some assisting tool. The labelling strategy is
not discussed here because it is beyond the scope of this paper.

let rec fib n =
if n < 2 then
else (let fni <L1> fib (n—1) in
let fn2 = <L2> fib (n—2) in
fnl1+fn2)
in <Lroot> fib 12345

B

Using these labels, the update developer can write a function that
chooses the most appropriate strategy for each activation of fib
depending on the point it has reached.

The main function compensating the effect of the update
from int to num is given below. At each step, this function
match_fib_callers_ proceeds by finding what is the state of
the activation at the top of the current continuation (k) using
match_cont. The second parameter (r) is the result value that
would have been used to return to the top stack frame.

let rec match fib callers_ k r =

match_cont k with
\ <Lli:n> :: k> — (* (1) complete with new version x)
| <L2:n fnl> :: k’ — (x (2) convert fnl )

let nfnl = if (n—1)>44 then fib (n—1)

else num of_int nfnl in
let r’ = (fn1’ +/ r) in
match_fib_callers_ k’ r’

\ <Lroot> :: _ — (* (3) resume normal execution *)

Notice that when filtering a case the update developer can spec-
ify values that he wants to extract from the current activation. For
example, in case (1), he may use the rank of the Fibonacci number
being calculated (here it is bound to n) and in case (2), he may also
access the intermediate result of £ib (n-1) named here fn1.

As described in Section 2.2, when the top stack frame matches
L2, the compensation has first to check whether £ib (n—1) has



overflowed. Assuming that integers are coded by, e.g., 31-bits
signed integers, we statically know that the biggest correct (smaller
than 23° — 1) Fibonacci number has rank 44. So the compensation
compares the rank n—1 (where n is picked from the stack frame on
top of the continuation k) to 44 in order to decide wether fn1 can
be reused. We assume here that r has already been handled appro-
priately by the compensation, hence its type is num. See Section 6
for details on how it switches from int to num. Then the com-
pensation completes the popped activation in r’. Last, we have to
compensate the tail k’ of the continuation. Because the next stack
frame is also suspended at a call of £ib (L2 originates from fib),
we have to check once again for the callers of £ib. Hence the tail
k’ is compensated by a recursive call of match fib_callers_.

4. The ReCaml Language

Building on the A-calculus, ReCaml adds a model of stack frames,
which are generated by the compiler. On top of this model and of a
continuation framework, it implements the mc operator. In doing
so, developers programming updates in ReCaml can manipulate
runtime states using the same language. Embedding the operator
in the language allows us to extend the type system in order to
eliminate statically unsound update programs.

Triggering and executing an update is the responsibility of the
execution platform. It is done by some kind of interrupt that can
preempt execution at any time. However, updates must deal on their
own with their timing with respect to the application execution. The
execution platform captures the execution state and passes it as an
argument to the update. In return, updates have to guess when the
execution has been preempted to select appropriate actions. To mit-
igate the issue in bootstraping the compensation and to align con-
tinuation extremities on stack frame boundaries, as a first imple-
mentation, we check for the trigger only when the execution con-
trol returns to a caller. This restriction is equivalent to explicit up-
date points. The application developer can cause additional points
thanks to dummy calls, each of which incurs a return.

4.1 Syntax

We first describe the syntactical constructs and notations (Figure 1)
then we discuss the choices in the design of the grammar.

4.1.1 Description of the grammar

Because we use an environment-based semantics, we need explicit
closures and environment management. While Az.e is the usual
abstraction construct, (Az.e,£) denotes a closure such that the
captured environment £ is used to evaluate the body of the function
upon application. The syntax of the application operator (<I> e e)
is extended with a label <[> that names the call site. The (enve €)
operator evaluates its subterm e in the environment £ instead of the
current evaluation environment. Recursive functions are defined as
usual (letrec z = Az.eine).

Our continuation framework defines first-class instantiable
prompts and first-class delimited continuations. Intuitively, prompts
are delimiters that bound the outermost context that shall be cap-
tured within a continuation. Hence a delimited continuation rep-
resents only part of the remainder of execution. The newprompt
operator instantiates a fresh prompt. The (setprompt,,, e ) oper-
ator inserts a delimiter in the evaluation context. Given a prompt,
the (capture,,uptoe with €) operator captures and replaces the
current continuation up to the innermost delimiter. The continua-
tion is wrapped by the cont (k) constructor. The (reinstate«; € e)
operator reinstates and evaluates a continuation. We shall explain
later in Section 4.1.2 the (cap,;, cuptop with v) operator, which
is an explicit intermediate step in the capture of a continuation.

In order to model the state structure, we introduce an operator
(frameq)’& o e), which annotates activation boundaries. The opera-

In the following, v is a value; e denotes a term; x is a variable; k is
a continuation, i.e., an evaluation context; p denotes a prompt; <>
names a call site; and £ is an environment.

v = (Az.e,&) | p | cont(k)

e x=wv | x| Are | letrecx =Azx.eine | <I>ee
| framegs, g ,re | enve e | mcewith (<I>,z,2,%,¢e) ee
| capture uptoe withe | cap, cuptop with v
| reinstateqs e e | setprompt,, e e | newprompt

k O | <>kv | <I>ek | frameys gk | enve k

me k with (<I>,z,z,T,e) ee
capture ,upto k with v | capture ,,uptoe with k
reinstateq;> kv | reinstateq> e k | setprompt, ke

pu=p| L E =1 | (@—v):&

Additional constraint:

e A continuation cont (k) is either empty (k is O) or its innermost
operator is frame (k ends with frame; ¢, [).

Figure 1. Grammar of terms and continuations

tor denotes that e is evaluated in a new stack frame that results from
the call/return site </>. At the boundary, a prompt is possibly set if
the third annotation p’ is not L (i.e., it is the name of a prompt). £
recalls the evaluation environment of the enclosing context of the
operator thus keeping track of the values accessible in this frame.

The last operator (mc e with (<I>,z1,x2,T3,€e1) ez e3) de-
constructs a continuation relying on its stack frame structure. It
compares </> and the return address on top of the continuation.
If the labels match, the continuation is split at the second inner-
most frame operator in a head (the inner subcontinuation) bound
to x1 and a tail (the outer subcontinuation) bound to x2. Further-
more, the variables T3 are bound to the values of the topmost stack
frame. Then e; is executed in the so extended evaluation environ-
ment. There are two other cases: either the return address does not
match (e2 is executed) or the continuation is empty (e3 is executed).

The language has 3 kinds of values: closures, prompts and
continuations.

4.1.2 Discussion

Having explicit closures and the env operator is the usual ap-
proach for the implementation of lexical scoping in small-step
environment-based semantics. As a side-effect, the env operator
also ensures that continuations are independent of any evaluation
environment, i.e., any continuation brings its required environment
in an env construct. To some extent, this is similar to the destruct-
time A-calculus [8, 33], which delays substitutions until values are
consumed. That way, bindings can be marshalled and move be-
tween scopes.

Delimited continuations are a natural choice in our context. In-
deed, when the mc operator splits a continuation into smaller ones,
it instantiates continuations that represent only parts of execution
contexts. This is what delimited continuations are designed for. Our
framework is similar to the ones of Gunter et al. [17] and Dybvig
et al. [13]. The following table approximates how our operators
match with existing frameworks. Readers can refer to Shan [34],
Kiselyov [21] and Dybvig et al. [13] for more complete compar-
isons.

ReCaml Dybvigetal. [13] Gunter et al. [17]
newprompt newPrompt new_prompt
setprompt pushPrompt set

capture withSubCont cupto
reinstate pushSubCont fun. application




In addition, we adapt the framework:

We align the delimiters of continuations with the delimiters of
stack frames. To do so, we annotate the frame operator with
an optional prompt in order to delimit where prompts are set.
Furthermore, the continuation operators must have a call site
label <I> in order to insert frame constructs.

We have to introduce a dummy cap operator to align a stack
frame delimiter with the inner delimiter of the continuation. To
do so, a frame operator (which needs the evaluation environ-
ment) is inserted at the innermost position of the continuation,
in place of the capture operator. The cap operator saves the
needed evaluation environment (the one at the position of the
capture operator) before the continuation is actually captured.

Like Dybvig et al. [13], we encode continuations in a specific
cont form rather than a closure [17]. That way, the linear
structure of continuations (a stack in the implementation; the
nesting of evaluation contexts in the language) is maintained
and can be used by the mc operator. Furthermore, encoding a
continuation as a closure would introduce a variable, which
would infringe the type preservation lemma due to the typing
of call site labels, as we will see later (Section 4.4). Last,
making the distinction between continuations and closures, the
mc operator does not have to handle regular closures.

Intuitively, a frame operator is inserted when a call is done and
disappears when the callee terminates. Thus, when a continuation is
captured, all its activations are delimited by frame operators. The
mc operator uses them to split continuations into smaller ones. One
can note that the environment of a frame is redundant. This envi-
ronment indeed comes from the enclosing env construct. While our
choice imposes a dummy cap operator in the continuation frame-
work, it makes mc simpler. Indeed, it does not need to look for env
constructs to collect environments when a continuation is split.

4.2 Semantics

The small step operational semantics of Figure 2 formalizes the
above description of ReCaml. We adopt an environment-based ap-
proach with lexical scoping of variables. The judgment £ - e — ¢’
asserts that the term e reduces to ¢’ in the evaluation environment
£. Rules SUBST, CLOSE and LETREC are the classical ones for
substituting a variable, building a closure and recursive definitions,
respectively. As usual with environment-based semantics, the env
operator installs a local environment in order to evaluate the nested
term (rule ENV). Because the frame operator bounds activations,
the local environment used to evaluate the nested term is empty
(rule FRAME). Here, it is the role of the inner env operator to give
the actual execution environment. Figure 2 gives only primitive re-
duction rules. Except frame and env, which need special treatment
of the environment, the CONTEXT rule generically reduces contexts
according to the grammar of k. Because it is constrained with val-
ues, it fixes a strict right-to-left call-by-value evaluation order.

The management of the frame operator is one originality of
the semantics. It implements the life cycle of activations. This
operator is instantiated when a closure is applied (rule APPLY),
when a prompt is set (rule SETPROMPT) and when a continuation is
reinstated (rule REINSTATE). It collapses when a callee activation
returns a value (rule FRAMEVAL). Paired with the frame operator,
the env operator provides the local evaluation environment for the
instantiated activation. For instance, applying a closure, e.g., the
identity function, proceeds as follows:

APPLY

ER<D> (Mv.w, &) v ——— frameas g, 1 (enV(zy0)ie, T)
FRAME,ENV,SUBST
————— frame«s g, 1 (env(gww)::g2 v)
FRAME,ENVVAL
——— frame«s.g, 1 v

FRAMEVAL
v

Capturing a continuation is done in two steps. First, the evalu-
ation environment at the capture operator is saved, mutating the
operator into cap (rule CAP1). The second step is the standard con-
tinuation capturing. A cap operator using prompt p is only reduced
within a frame tagged by p. If such a frame exists, the context k
between this frame and cap is reified as a continuation cont (k).
A frame is inserted in place of cap consistently with the constraint
of our language (see at the bottom of Fig. 1). The closure argument
of cap is applied to the resulting continuation (rule CAP2). In rule
CAP2, the enclosing prompt p is consumed. The system proceeds
as follows:
&1 b frameq, > ¢, p (enve, (capture<l2>up top with (Az.e,&s)))

FRAME,ENV,CAPL
—_—

framea, > &, p (enve, (capy,, ¢, uptop with(Az.e, £3)))

CAP2
—"— frame<;>,e,, L (€NV(zrscont(k))::5 €)

with k& = enve, (framec,s,¢,,1 0)

We proceed in two steps in order to handle easily any context in
place of envg, . If no frame tagged by p encloses cap p (terms
structured like k [capd?’ g, uptop with v} where k does not con-
tain any frame<. _ ), a runtime error occurs.

The mc operator splits a continuation at the second innermost
frame, which delimits the top stack frame (rule MCMATCH). The
rule MCMATCH’ handles the case where the continuation contains
a single stack frame. The tail subcontinuation is therefore the empty
continuation. The rules for mc assume that the continuation is
either empty (rule MCEMPTY) or the innermost operator within
the continuation is frame (rules MCNOMATCH, MCMATCH and
MCMATCH’). As shown in Fig. 1, this is enforced as a structural
constraint on the language. It is trivial to show that the semantics
produces only continuations that conform to this constraint.

4.3 Type System

The type system adheres to the usual design of the simply-typed
A-calculus. Types may be type variables’, usual functional types,
prompt types or continuation types. The type of a prompt is pa-
rameterized by the type of the values that flow through delimiters
tagged by that prompt. The type of a continuation is parameterized
by the type of the parameter and the type of the result of the con-
tinuation. The grammar for types is:

T ou= a | TS

T—7 | 7prompt |

Fig. 3 gives the type system for the term language. The judge-
ment I, P, L, 7 - e : 7. asserts that given the typing environ-
ments F, P and L, in an enclosing function whose return type is 7,
the term e has type 7.. E' (resp. P) maps variables (resp. prompts)
to types. L maps call site labels to label types, which are triplets
{Tpar, Tres, V} where Tpar and Tres are types; and V is an en-
vironment that maps variables to types. The inference algorithm
computes 7. and L.

The L environment is intended for splitting continuations at ac-
tivation boundaries. Figure 4 gives an intuition of its interpretation,
based on the semantics of the mc operator. A 71 £y 7., continuation

5 We use type variables for convenience to solve the type inference problem.
As ReCaml is simply typed, type variables are never generalized as type
parameters. Instead, they are unknown types that shall later be instantiated
by unification. This is similar to Caml’s weak type variables such as ’ _a in
the type ’_a list ref of ref [].



sust: EF T — & () crose: £ F Ax.e = (Az.€,E)

LetRec: € - letrec £1 = AZ2.€1 iN €2 — €NV (4, s (Aao.letrec 21 =Aza.eq ine1,£)):E €2

EnvvaL: €1 Fenve, v = v

ArpLy: E1 F <> (/\a:.e, 82) v — frameqs g, 1 (t?I'lV(Qm_w):;g2 e)

FRAMEVAL: 51 [ frame<l>’52 p'U — v

MCEwpry: € F me cont (O) with (<I>,x1,x2,T3,€1) €2 e3 — e3

MCNoM b7l
ICNOMATCH: - —
&1 F me cont (k [frameq, > g, p,00]) with (<l2>, 21, 22,%3,€1) €2 e3 — €2
k1 does not contain any frame &1 (w3) = vs
MCMATCH:

£ F mc cont (k2 [frame<12>,g27p2 (kl [frame<ll>,gl,pl D])D with (<l1>, x1,x2,T3, 61) es e3

— env(

k1 does not contain any frame

acp—)conl(kl [framC<Ll>’gl p1 D]))::(wg»—»cont(kg [framc<12>vgzyp2 DD)::(:C;;HU;;)::S €1

51 ({E3) = V3

MCMATCH’: T — .
& F mc cont (k; [frameq, > g, p, O]) with (<l1>, 21, 22,73,€1) €2 €3 p is fresh
— env . el NEWPROMPT:
(zl »—)conl(lcl [tramedl))glyplD]))::(:cg»—»cont(lj))::(a;g»—)vg)::é‘ E+ newprompt — p
Carl: € = capture g, up towvy with vy — cap;, cupto vy with vg
k does not contain any frame< _,
CAP2:

&1+ frameq, s, g, pk [cap<12>’53up top with (Az.e,&4)] — frameq > g,,1 (env(wwm(k[ﬁamcdy&YLD]))::g4 e)

sererompr: € - setprompt,,, p e — frameqs g, (enve e)
Context rules:

[Fe—¢

Extbe—é

Renstate: € b reinstateqs cont (k) v — frameqs g, 1 k [v]

Ere—é

FRAME: 7 ENV
1 - frameys g, e — framegs ¢, €

: 7
&1 envg, e = envg, €

if no other rule matches, CONTEXT:

Etkle] = k[€]

k [a] substitutes a for [J in k, where a is either a term, hence resulting in a term, or a continuation, hence resulting in a continuation.

Figure 2. Operational semantics

k is split into knead (11 — 72) and kiqi (T2 —> 75,). Composing
the two subcontinuations results obviously in the original continu-
ation. 72 is the return type of the function that encloses ;. This is
the reason why the type judgment has 7 (the type of the enclosing
function) in its left-hand side. 71 is the return type of the call ;. In
order to type values that mc retrieves from the popped activation,
e.g., the value of x1, the type of 1 contains the type environment
at the call /;. Consequently, the type of [; is:

® Tpar,, = T1 is the type of the value that flows at the boundary;
® Tres;, = T2 is the return type of the enclosing function;

® Vi, = [z1 — T4, | binds types to the activation variables.

In the example (Section 3), the types of labels are:
Li—{Tpar = int; Tres = int;
V = [fib — int — int;n — int]}
L2—{Tpar = int; Tres = int;
V = [fib — int — int;n — int;fnl > int|}
Lroot—{7par = int, Tres = unit, V = [fib + int — int]}

As usual, when typing an application (APPLY), the two subex-
pressions are typed using the same hypotheses. The first subexpres-
sion must be a function accepting values of the type of the second
subexpression. The originality of our rule concerning application is
the calculus of the type of the label. This type captures the type of
the enclosing function 71, the current environment £ and the type
T3 that flows at the label, i.e., the type of the result.

Some constructs introduce frames and therefore modify the type
of the enclosing function of a subexpression. For example, the type
of the enclosing function of ez in setprompt,;, e1 ez is T2 because

the setprompt operator encloses ez in a frame whose prompt is of
type 72 (see SETPROMPT in Figures 2 and 3).

Typing a continuation expression (CONT) requires a specific
type system. It is mutually recursive with the type system for terms.
The judgment £, P, L, 7 . k : 71 £y 75 is similar to the one for
terms. Most of the rules derive from the type system for terms. For
instance, the following rule is immediate from rule APPLY (Fig. 3):

E,PLmt.k:m (13 — 74)
E,PLmtFuv:Ts
L (1) ={7par = Ta,Tres =71,V = E}

E P LTbE.<>kv:m Ly

APPLYL:

We therefore omit the rules, except the following additional one for
empty continuations:

Hote: B, P L1 b O: 10 5 1

4.4 Soundness

We consider soundness as the conjunction of type preservation and
progress, stated as follows.

LEMMA 1 (Type preservation). Given a term ey and an evaluation
environment € such that T (), P, L, 71 b e1 : T2. If e1 reduces to
ez in &, then there exists an extension P’ of P (VYp and 7, P (p) =
Tp = P’ (p) = 7p) such that in P’, ex has the same type as e,
i.e., T(g) ,Pl, L,Tl I €2 . T2.



(x—1)aT(E),PLiske:Ts
E,P,Lymi F (A\z.e,&): 12 — T3

CLOSURE:

var: E, P, L7+ x : E (x)

(x1+— 73 = T4) =

prover: B, Py L, 7+ p: P (p) prompt

(x2—>73) = E,P,L,Tabe1:74

H,PvaTS Fe kT2 i>7'3
E,P,L, 7 Fcont(k): 72 = 73

CONT:

(x> 1) E,PL,Tste:T3
E, P, L, Ax.e:T0— T3

ABS:

(r1— 73> 7)) s E,P, L1 Fex:m

LETREC:

E, P, L, 7 Fletrecx1 = Axz.e;ines : T2

E PL,mmtei:T— T3

E,P,L,miFe2:Ts

L (l) = {Tpar = T3,Tres = TI,V = E}

APPLY:

E, P LmkE<l>eiez:Ts

[],P,L,P(p)l—e:P(p)

L(l) = {Tpar = P(p)77'res :T,V = E}

E=T(€)

FRAME:

E,P,L,7 F frameqs ¢ pe : P (p)

. TE),P,L,mbe:
v E,PL,mFenvee:m

,P,LymoFe:m2 L(l)={mpar =72,Tres =71,V =E} E=T(E)

FRAME’:
E,P, L, F frameqs e, 1€ : T2

E1P7L7Tl}*el 17'3i>7'5

(:m T3 T4) : (mz Ty 7'5) sz E(x3)) = E,P, Ly, Fes:m

MC:

Newpromer: B P, L, T F newprompt : 7o prompt

L) ={mpar = T3, Tres =11,V =&}

E, P L,mFes:T E P LmTikFes:T

E,P,L,7 F mc ey with (<[>, 21,22,T3,€2) e3 €4 : T2

E P L,7 F ey : 73 prompt

E7P,L,T1 Fes: (7’2 i>7'3) — T3

L (1) = {7Tpar = T2,Tres =71,V = E}

CAPTURE:
R E,P,L, 7 - capture upto e; with ez : 72
T(E),P,Lmikuv: (7’2 LN P(p)) S P(p) L) ={rpar =72, Tres =7,V =E} E=T(E)
CAP:
! E,P,L,m | cap,, cuptop withv : 7
E,P,L,mite1:m3 = m E,PLmtex:Ts L (1) ={mpar = T2,Tres =71,V = E}
REINSTATE:
B E, P, L, I reinstateqs e1 ez : T2
E,P,L, 7 e : 72 prompt E,PLmkes:m L () ={mpar = T2,Tres =11,V = E}
SETPROMPT:

E,P, L, - setprompt,;, €1 €2 : T2

Where T' (£) = [z — 72| [], P, L, 7+ &€ (x) : 7], i.e., function T computes a type environment from an evaluation environment.

Figure 3. Type system for terms

The existential quantification of P’ is the technique of Gunter
et al. [17]° in order to handle the newprompt case. Assume
T(E),P,L,7 + newprompt : 72 prompt. newprompt reduces
to a fresh prompt p in £. p is not in the domain of P. Hence choos-
ing P’ = (p+ 72) :: P trivially ensures type preservation. In the
other cases, we systematically choose P’ = P.

Unlike usual proofs, we do not use a lemma showing that ex-
tending the environment would preserve typing. Instead, we use a
context invariance approach. While Pierce [30], Pierce et al. [31]
do so for pedagogical reasons, we have to because the standard
weakening lemma is false due to the typing of call sites. Indeed, in
L, the V field of the type associated with the label stores the typ-
ing environment (rules APPLY, FRAME, FRAME’, CAPTURE, CAP,
REINSTATE and SETPROMPT). Hence adding new variables to the

©Gunter et al. [17] note e;/P; C ea/Pa, where P; and Py are sets of
prompts. The C relation denotes that given a typing environment over P,
there exists an extension over P> such that e; and eg have the same type
in their respective prompt environments. Using our P and P’ as typing
environments (respectively over P; and P»), the C relation is (part of) what
our type preservation lemma states.

environment, even if they do not occur free, may change label types
in L. Intuitively, it would change the structure and content of stack
frames, hence their types. Nevertheless, we must prove that the type
of a value is independent of the context.

LEMMA 2 (Typing values). Given a value v, the type of v is inde-
pendent of any context: E, P, L, v : T, implies E', P, L, 7'
v : Ty forany E' and 7'

This lemma is trivial following the CLOSURE, PROMPT and
CONT typing rules. Type preservation for the SUBST reduction
rule is therefore immediate. Restricting evaluation environments to
values is a pragmatic solution to avoid any variable capture issue
upon substitution.

In order to prove each of the other cases, we proceed in two
stages. We first show that in order to type subterms, the rules build
exactly the same environment before and after reduction. Hence
reduction preserves the type of subterms. Then we use these results
as premises of the typing rules for the reduced term.

Let’s sketch for instance the case of the APPLY reduction rule.
Before reduction, assuming the parameter v has type 7, the body
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Figure 4. Intuition for typing activation boundary annotations.

e of the closure is typed in the (z +— 7,) :: T (€) environment
and the return type of the enclosing function is 7. the type of e
(CLOSURE typing rule). After reduction, it is typed in the environ-
ment 7' ((z — v) :: £) according to the FRAME’ and ENV typing
rules. From the definition of 7", and invoking the lemma on typ-
ing values, the two environments are equal. Hence the type of sub-
term e is preserved. Using the ENV and FRAME’ typing rules, we
conclude that the type is the same before and after reduction. Last
we check that the APPLY typing rule (before reduction) and the
FRAME’ typing rule (after reduction) compute the same label type
for [. Hence the APPLY reduction rule preserves types.

Traversing the evaluation context to the redex, evaluation rules
CONTEXT, FRAME and ENV compute at each step a new evaluation
environment for each subcontext. Typing rules do the same with
typing environments. Along the path to the redex, we observe
that the rules recursivelly ensure that the evaluation and typing
environments are equal up to 7'. This completes the proof.

LEMMA 3 (Progress). Given ey such that [|,P,L,7 -+ e : 7.
Then e; is either a value; or e is a runtime error (redex position is
cap., uptop with v but it is not enclosed by any frame<.>,_p); or
e1 reduces to some term e in the empty evaluation environment.

In order to prove progress, we inductively analyze the typing
rules. This proof is classical.

The proofs have been mechanized using the Coq theorem prover
and the library of Aydemir et al. [6], which together help to do
machine-verified formal proofs on language semantics and type
systems. For commodity reason, our Coq scripts differ in the fol-
lowing from the system of this paper. We explode the MCMATCH,
MCMATCH’, CAP1/CAP2 and REINSTATE reduction rules into de-
tailed small steps. For example, we instantiate the CAP2 for each
operator in the language k of evaluation contexts. For this purpose,
we introduce additional dummy operators for in-progress mc and
reinstate. In addition, the implementation of the mc operator
has to look for the innermost (frame) operator of the continuation
operand. Instead, it is much more convenient to reverse the nesting
of operators in the continuation. At the cost of yet another dummy
operator and of additional rules, we therefore represent continua-
tions inside out. We use the technique of Gunter et al. [17] to im-
plement the freshness of instantiated prompts. Last, we move from
the grammar to the type system the constraint on the form of con-
tinuations (bottom of Fig. 1).

4.5 Alternatives

One of the constraints that guides our work is to leave unchanged
the application compiler. The rationale behind this constraint is that
it makes it easier to integrate the ReCaml approach into existing

compilers. To fulfill this constraint, we need to accommodate the
choices done in legacy compilers. We identify several alternatives
that shall impact dynamic updates. In the following, we present
how these points integrate our formal system. We focus on the
specificities of our language. Hence we do not discuss variations,
e.g., of the continuation framework, which have already been stud-
ied by Dybvig et al. [13].

Usually, the implementation of execution states is not of great
interest in the design of a language. This issue regards the compiler.
But because ReCaml focuses on modelling state manipulations, we
have to take into consideration the implementation. For instance,
label types depend on the context, and therefore on captured envi-
ronments when building closures.

Regarding variables, we implement the following rules in the
semantics and type system:

e When a closure is built, it captures all the variables in the scope
of which the A operator lies, regardless these variables occur
free in the body of the function.

e The parameter of a function is systematically added to the
evaluation environment, regardless it occurs free in the body
of the function. We do the same for let rec.

This is a coarse behavior. Indeed, many compilers optimize
closures in order to capture only the variables that occur free. In
order to model this behavior in ReCaml, we can replace the CLOSE
reduction rule with the following one:

RESTRICT-CLOSE: € F Az.e — (/\I.e,TestTiCte (5))

where restrict computes the restriction of the environment, e.g.,
[z +— & (x) |z € fv(e)] to capture only the variables that occur
free in the body. We have to change the type system accordingly,
replacing ABS with:

(x — 72) : restricte (E),P,L, 73 e : T3
E, P, L, Ax.e:T0— T3

RESTRICT-ABS:

Type soundness obviously still holds.

This implementation does the restriction when the closure
is built. This is what happens in many compilers. Instead, we
could have delayed the restriction until application, hence insert-
ing restrict in the APPLY reduction rule and in the CLOSURE
and ABS typing rules. As of ReCaml, both implementations have
the same behavior. We can also restrict parameters and let rec-
bound variables using the same technique.

Accurate modelling of the variables is important as it impacts
type labels and the amount of values the mc operator is able to
retrieve from continuations. Other aspects, such as tail-call opti-
mization and function inlining, impact when new stack frames are
created. Consequently, they (indirectly) impact the outcome of the
mc operator as well.

Tail-call optimization consists in destroying the calling activa-
tion at the time of a call when it occurs at the return position. We
can implement this optimization thanks to additional rules, e.g., du-
plicating the APPLY reduction rule for the specific case, such that
it does not insert any new frame operator. Possibly, there are also
several env constructs that must collapse with the stack frame.

k contains only (0 or more) env
&k frameq, s g, pr (k[<l2> (Az.e,&2) v])
— frame, g, 1 (enV(zis vy, €)

TAIL-APPLY:

Notice that the frame in the right-hand side is the exact copy of
the left-hand side one. Indeed, the properties of the enclosing stack
frame (return address, local environment) are unaffected.

In order to handle inlined calls, the idea is coarsely the same,
without any constraint on the context of the call. Nevertheless, there
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Figure 5. Structure of the stack in the virtual machine.
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Figure 6. Splitting a continuation.

are additional difficulties: call sites within the inlined function are
replicated; the environment of the caller and callee environments
shall merge. We do not run into deeper details in this paper, leaving
the issues to further contributions.

5. Compiler Implementation

As a proof of concept, we have developed a prototype compiler of
ReCaml, which targets a modified ZAM?2 [23] virtual machine. The
machine has a single stack for locals, function arguments, register
backup and return addresses. In addition to the stack pointer, the
machine has 4 registers:

e the program counter points at the next instruction to execute;
e the environment points at the values stored in the closure;

e the argument counter tells how many pending arguments have
been pushed, as the machine implements the push / enter uncur-
rying technique [27];

e the accumulator holds an intermediate result.

As shown in Figure 5, stack frames are delimited by blocks that
save the return program counter, the environment and the argu-
ment counter registers. Pending arguments, if any (possibly 0), are
pushed immediately above this block. The virtual machine provides
a specific instruction for tail calls. Like our TAIL- APPLY rule (Sec-
tion 4.5), this instruction pops the local environment; it pushes a
new one; and it branches to the body of the callee. The push / en-
ter uncurrying technique lets the caller of a function push all the
available arguments onto the stack. The callee is responsible of
popping only those it can immediately handle (or to build a partial-
application closure if there are not enough parameters on the stack).
While there are some pending arguments on the stack, the return
instruction assumes that the return value is a closure, and makes a
call. When all the pending arguments are consumed, the instruction
returns back to the caller.

We extend the virtual machine to support continuations. A con-
tinuation is implemented as a slice of the machine stack with a copy
of the argument counter register. Other registers (program counters,
closure environment and accumulator) are saved within the slice of
the stack by the generated code as required by the ZAM?2. A prompt
is a pointer to a position in the stack. The capture operator copies
to the heap the slice between the prompt and the top of the stack;
it saves the argument counter; and it makes a call to the body func-
tion. The reinstate operator copies from the heap back to the

stack; it restores the argument counter; and it performs a return
instruction with the argument. In addition to retrieving the stack
pointer, setting a prompt makes a call such that the lower bound
of a continuation is always aligned with a stack frame boundary,
consistently with our semantics.

Based on this implementation of continuations, the mc operator
first checks whether the continuation is empty. If not, it uses the
recorded number of pending arguments in order to skip data down
to the first return address. The retrieved address is compared with
the operand of the mc operator. Static knowledge gives the structure
and size of the matching stack frame at the top of the continuation.
This information allows to split the continuation at the stack frame
boundary and retrieve values from the popped stack frame.

Tail call optimization does not need any special treatment. In-
deed, activation annotations of tail calls simply never match as
there is no corresponding location in the code.

In order to handle currying, the generated code uses the recorded
number of pending arguments in order to find the location of the
return address. Pending arguments are simply skipped, as if the
callee was n-expanded according to the call. Following the same
principle, arguments between the two subcontinuations belong to
the tail. Therefore, the number of pending arguments has to be
adjusted in subcontinuations like in Figure 6. In the head subcon-
tinuation, the number of pending arguments in the stack frame is
set to 0, as there is no pending argument below the stack frame. In
the tail subcontinuation, the number of pending arguments on top
of the stack comes from the popped stack frame (1 in the example).

As Marlow and Peyton-Jones [27] have previously noticed,
the push / enter uncurrying technique is not the most favorable
setup in order to walk the stack, which is what our mc operator
achieves. More precisely, we remark that problems arise only when
push / enter is combined with tail call optimization.

Assume the following code:

let f2 = Aa. (capture,, ,uptop with v) in
let f1 = Aa.Ab. (<l4> (<l3> fo m3) m4) in
letx = <lp> (<I1> f1 21) x2ine

As uncurrying is done, [1 and [z (resp. I3 and [4) refer to the same
code location. They differ in the number of pending arguments
above the return address, respectively 0 and 1. Due to tail call opti-
mization, /1 and I3 (resp. l2 and l4) cannot be distinguished. Given
the above description of the compiler, the captured continuation is
split like in Figure 6. If the tail subcontinuation is subsequently
compared to /1, it matches as there is 1 pending argument. Our for-
mal system assumes that the type of the produced head subcontin-
uation is (7, — 7.) — 7. However, its effective (runtime) type is
(Tw, — T2) = 7. The problem arises because, due to tail call opti-
mization, there is no means at this point to know where the pending
parameter comes from, i.e., to distinguish between /; and [s.

Since our formal system does not implement uncurrying or tail-
call optimization, it does not raises the problem, consistently with
our type soundness result. Indeed, our formal system produces the
following continuation, which is different from Figure 6:

let z = frame«,>,rp (<l4> (framecys rp0) z4) ine

Notice that this continuation is actually the same as the one an
eval / apply compiler would produce: as the arity of the fo closure
is 1, l4 is not applied and I3 is not a tail call. In order to solve
this problem in our prototype, we simply prevent uncurrying tail
calls. Alternatively, we could have implemented the push / enter
technique in our formal system, for instance extending our frame
operator with pending arguments. We have identified the following
options the mc operator can handle pending arguments:

e Pending arguments can go to the tail subcontination, as depicted
in Figure 6 and described earlier in this section. Adding tail



prompt p —
(*******************Tk*****>1f>0f>k>k>k*7k?1<**********)
(x Initial wversion *)
let rec fib n =
if n<2 then n
else (let fnl = <L1>fib (n—1) in
let fn2 = <L2>fib (n—2) in
fn1+fn2) in
(k% sk ok sk sk ok sk ok ok sk ok ok sk okook sk okook sk ook sk okook sk okok sk ok ok ok ook ok okok sk ok ok ok k)
(* New wversion *)
let rec fib_num n =
if n<2 then num_of_int n
else (let fnl = fib_num (n—1) in
let fn2 = fib_num (n—2) in
fni+/fn2) in

EEETETETE TS K ok sk ok sk ok ok ok st sk ok sk ok ok ok ok K ok ok R ok k)
(x update from fized—size to arbitrary *)
(x precision integer *)
(x if n is after 44, v has overflowed so *)
(x return fib_new n else r is correct *)

let ifnotover n r =
if n>44 then fib_num n else num_of_int r in

(x call graph: *)
(x fib ;L1 — fib *)
(x fib L2 — fib *)
(x [root]: Lroot — fib *)
(x - : Lupdt — update *)
(x to the fib mnode in the call graph: *)

let rec match_fib_callers. r k =
match_cont k with

(x — L1: r 4is fib (n—1) *)
<Ll:n> :: tl —
let fn2 = fib_num (n—2) in
(x back to the caller: fib *)

match_fib_callers. (r+/fn2) tl
(+ — L2: 7 4s fib (n—2) & fn1 4is fib (n—1) *)

| <L2:n fnl1> :: tl —
(*+ check whether fnl has overflowed %)
let nfnl = ifnotover (n—1) fnl in

(x back to the caller: fibd *)
match_fib_callers. (nfnl+/r) tl
(x — Lroot: r 4is the result of the program x)
| <Lroot> :: tl — reinstate tl r

| - — (x error ) (0/—/1/) in
let match_fib_callers r k =
match_cont k with
(x — L1: r 45 fib (n—1) *)
<Ll:n> :: tl —
(% check whether T has overflowed *)
let fnl = ifnotover (n—1) r in
let fn2 = fib_num (n—2) in
(* back to the caller: fib *)
match_fib_callers. (fni1+/fn2) tl
(x — L2: r 4s fib (n—2) & fnl <s fib (n—1) x)
| <L2:n fni1> :: tl —
(x check whether fnl has overflowed x)
let nfnl = ifnotover (n—1) fnl in
(x check whether r has overflowed *)
let nfn2 = ifnotover (n—2) r in
(x back to the caller: fibd *)
match_fib_callers. (nfnl+/nfn2) tl
(x — Lroot: r 4is the result of the program x)
| <Lroot> :: tl —
reinstate tl (ifnotover 12345 r)
| - — (+ error %) (0/—/1/) in
(x compensation fib — fib_num *)
let compensate r k = match_cont k with
(x we "know" that we are in fib *)
<Lupdt> :: tl — match_fib_callers r tl
| - — (+ error %) (0/—/2/) in
(o 3% sk sk ok ok ok ok ok ok oo R R SRR ROk Ok ok Kk sk sk ok sk ok sk sk ok sk sk ok ok ok ok ok ok k)
(x matin program *)
(x register the compensation *)
let _ = set_update_routine
(fun r — capture<Lupdt> upto p as k in
compensate r k) in
(x+ initial call *)
num_of_int (<Lroot>fib 12345)

Figure 7. Real ReCaml code: from fixed-size to arbitrary precision integers.

call optimization breaks type preservation for call site labels
because each tail call can push new pending parameters with
types different than those previously popped from the stack; and
the types of pending arguments appear in label types. Hence we
confirm what Marlow and Peyton-Jones [27] say with a stronger
argument: push / enter with tail-call optimization and mc-like
stack-walking is not type-sound.

Pending arguments can go to the head subcontinuation. In this
case, the type of the subcontinuations depends on how many
arguments are pending on the stack. In the example, we would
have to discriminate between [5 / no pending argument, 5 / 1
pending argument, and so on.

Pending arguments can be dropped. In this case, part of the
calculation captured by the original continuation is lost.

Nevertheless, notice that the updated program actually walks the
stack. We feel that one of the weaknesses of our current approach
is that our mc operator handles one stack frame independently of
any context. We leave the issue for future works.

6.

Detailed Example

Figure 7 contains the full source code that updates fib from int
to num. The set_update_routine primitive (line 78) registers the

L1
rootof _ Lroot /... N o ______ » compensate
execution Lupdt
L2

Figure 8. Static call graph of the program Figure 7.

function that is called when the virtual machine receives an update
signal. In addition we use the following syntactic sugar:

line 1 prompt p — e
< let p = newprompt in (setprompt, , p €)
line 79 capture<Lupdt> upto p as k ine
< capture, 4., up top with Ak.e

The captured continuation corresponds to a path in the static
call graph of the program (Figure 8) going from the root of ex-
ecution to the compensation. The compensation is implemented
by the compensate function (line 70). As represented by the
dashed Lupdt edge in the call graph, the top stack frame is an
activation of the anonymous function (line 79) registered by the
set_update_routine primitive. It comes from the update infras-
tructure. Hence line 70, match_cont pops this useless stack frame



before entering the effective compensation. In a more realistic ap-
plication, we would have to find out which function the update is
called from. In the example, as it can only be the £ib function the
compensation calls the match_fib_callers function (lines 47—
67) to handle the calls to £ib according to the strategy described in
Section 2.2:

L1 The compensation function receives the result of £ib (n—1).
Using ifnotover, we ensure that it is correct (line 52). Notice
that if the result has overflowed, the function ifnotover re-
computes the Fibonacci number using the new version (line 23).
To complete the £ib function, we compute £ib (n—2) with
the new version (line 53) then we sum the two results (line 55).
Last, we recursively compensate the tail of the continuation
(line 55) as if the popped stack had returned the newly com-
puted value.

L2 The compensation function receives the result of £ib (n—2).
Futhermore, the match_cont gets the value of fib (n—1)
from the call stack frame naming it fn1. Using the ifnotover
function, we ensure that those intermediate results are correct
(lines 58-61). Last we complete the £ib function and we recur-
sively compensate the tail of the continuation (line 63).

Lroot At this point, r is £ib 12345 and the compensation has
completed. We use ifnotover to ensure r is correct before
reinstating the tail subcontinuation (line 66).

The match_fib_callers_ function (lines 31-46) is almost a clone
of match_fib_callers, except that it assumes the compensation
has already dealt correctly with the received result (parameter r).
So recursive calls in match_fib_callers do in fact switch to
match_fib_callers._.

In these functions, we assume that (1) the evaluation order is
known, i.e., that £ib (n-1) is evaluated before fib (n-2); and
(2) intermediate results have names. To make this explicit, we use
let. Instead, intermediate results could have had system-generated
or a posteriori names. The evaluation order shall be inferred by the
compensation.

Because we have not integrated any exception handling in our
prototype, a negative number is returned (lines 46, 67 and 73) to
notify errors. Runtime errors can occur if the continuation does not
match, when the update developer forgets to handle some call sites.

7. Discussions and Conclusions

In this paper, we have presented two dynamic software updates
(Sec. 2 — though only one example is detailed in Sec. 6 and Fig. 7)
that many current systems are unable to implement. Even if we con-
sider a toy example, we have argumented that the technique is still
relevant in realistic applications. Despite the apparent simplicity of
our use case, the two updates show high complexity both in design
and in implementation. These examples contrast with the usual sim-
ple updates of complex applications in related works. In our work,
we accept that updates might be difficult to design and implement.
We have first focused in this paper on being able to achieve these
updates. Still, we acknowledge that our current proposal is not very
handy yet. In the context of a similar approach, Makris and Bazzi
[25] have for instance proposed automatic generators for some of
the updates, which could be used as building blocks for a higher
level update language.

The ReCaml language is the cornerstone of our work. It pro-
vides an operator (match_cont or mc) in order to introspect
and walk continuations. Our examples have indeed emphasized
how this operation helps in updating. We have formalized its
environment-based semantics and defined a type system whose
soundness is proved mechanicaly. Even if we have not discussed
it in this paper, we have also developed a sound substitution-

based semantics. Our prototype compiler of ReCaml is able to
execute all the updates of Section 2. The two examples of this
article, the compiler and proofs (the coq scripts) can be found at
http://perso.telecom-bretagne.eu/fabiendagnat/recaml.

In this paper, we have built ReCaml on top of a simply typed A-
calculus for simplicity reasons. It is well known that polymorphism
with continuations needs restrictions in order to ensure sound-
ness [5, 24, 35, 37]. As the mc operator splits continuations at ac-
tivation boundaries, any type variable involved in an application
might cause problems if it is generalized. One of the future chal-
lenges is therefore to reconcile ReCaml with polymorphism and to
infer more precise types.

We have adopted a strict functional language and the ZAM2
virtual machine [23]. The ZAM?2 machine has allowed us quick
and easy prototyping. Strict evaluation has made it easier to un-
derstand and therefore to manipulate the execution state. Unlike
similar approaches [20, 25], ReCaml does not require any specific
code generation. Instead, relying on low level details of the under-
lying machine, it is adapted to the form of the code generated by the
legacy Caml compiler. Using continuations is not a necessity. Yet
it provides sound formal foundations for our work. As works that
provide production level JVM and CLR with continuations [29, 32]
use specific code generation, targeting such machines might not be
in the scope of ReCaml. On the contrary, call site types are actually
close to usual debug information. Therefore the debugging infras-
tructures of JVM and CLR could be used to implement ReCaml
for these platforms. While these infrastructures provides mecha-
nisms to manipulate states, ReCaml brings static typing. We there-
fore plan experiences to ensure that our approach also fits these
platforms. To do so, we will have to enhance ReCaml to support
imperative features, especially shared data. We will also have to
consider multithreading, reusing previous work such as [25].
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