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Stability of Quasi-Static Crack Evolution
through Dimensional Reduction

Jean-François Babadjian

Abstract This paper deals with quasi-static crack growth in thin films. We show
that, when the thickness of the film tends to zero, any three-dimensional quasi-static
crack evolution converges to a two-dimensional one, in a sense related to the !-
convergence of the associated total energy. We extend the prior analysis of [2] by
adding conservative body and surface forces which allow us to remove the bound-
edness assumption on the deformation field.

1 Introduction

In this paper, we study the evolution of cracks in thin structures in a quasi-static
setting. Our approach of fracture mechanics is based on a variational model pro-
posed in [10] (see also the monograph [4]) where the (quasi-static) evolution results
from the competition – at each time – between a bulk and a surface energy, under
a growth constraint on the crack. Many existence results have been obtained (see
e.g. [8, 9, 11] and references therein).

Sometimes a small parameter is involved in the model, and it is an interest-
ing question to study the asymptotic behavior of the model when the parameter
tends to zero (see e.g. [14] for the homogenization and [2] for the dimension re-
duction of quasi-static crack evolution). When dealing static problems, the notion
of !-convergence (see [7]) has proven to be a powerful tool to capture the asymp-
totic behavior of minimizers, or even minimizing sequences. It turns out that even
in the quasi-static case, one can define a notion of convergence related to the !-
convergence of the associated total energy (see [16] for an abstract theory in the
more general framework of rate independent processes).
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We present here an extension of the result in [2] on the convergence of a quasi-
static crack evolution in thin films, as the thickness tends to zero. In [2], an empirical
L∞ bound was done on the deformation field (as in [9]) in order to gain compact-
ness in the space SBV p of special functions of bounded variation. It is sometimes
possible to justify this assumption as in the antiplanar case (see [11] when N = 2)
where it follows from a consequence of the maximum principle. Unfortunately, in
the full three-dimensional elasticity, the maximum principle does not hold anymore.
We propose here to remove this hypothesis adding suitable conservative bulk and
surface forces as in [8]. The price to pay is that the deformation field in not anymore
compact in SBV p but in a larger subspace GSBV

p
q of generalized special functions

of bounded variation. The arguments we use in the present paper are very close to
those of [2], and for this reason we will only mention the main differences without
giving the precise proofs of the results.

The paper is organized as follows: in Section 2, we will describe the model in
the physical configuration and state the existence result of [8]. Then, in Section 3,
we will reformulate the problem on a rescaled configuration in order to work on
a fixed domain. In Section 4, we will perform an asymptotic analysis of the total
energy of the system in a static setting, thanks to a !-convergence method. Finally,
we will address the asymptotic of the quasi-static problem in Section 5, proving that
it converges to a quasi-static evolution associated to the !-limit model.

2 Description of the Model

We consider a homogeneous thin film occupying in its reference configuration the
cylinder "ε := ω × (−ε, ε), where ε > 0 and ω is a bounded open subset of R2

with Lipschitz boundary. The Dirichlet part of the boundary where the deformation
is prescribed is the lateral boundary ∂D"ε := ∂ω × (−ε, ε), while the Neumann
part ∂N"ε = ω × {−ε, ε} is made of the lower and upper sections.

On the lateral boundary ∂D"
ε, we impose a time dependent boundary deforma-

tion φε(t) on a finite time interval [0, T ], where

t $→ φε(t) ∈ W 1,1([0, T ]; W 1,p("ε; R3) ∩ Lq("ε; R3)),

for some p > 1 and q ≥ 1.
On the remaining part of the boundary ∂N"ε, we impose a time dependent sur-

face conservative force which will be described in Section 2.3.2.

2.1 Admissible Cracks

We fix an open subset "ε
B of "ε of the form "ε

B := ω× (−ε+εη, ε−εη) for some
η ∈ (0, 1), to that the set "ε

B represents the brittle part of the body. The set of all



Stability of Quasi-Static Crack Evolution through Dimensional Reduction 3

admissible cracks is given by

R("ε
B) := {K : K is rectifiable,K ⊂̃ "ε

B and H2(K) < +∞}.

Note that any admissible crack must lie far enough from the upper and lower sec-
tions. The safety region"ε\"ε

B can be interpreted as a layer of unbreakable material
(see [8, remark 3.8]).

We denote by HN−1 the (N − 1)-dimensional Hausdorff measure in RN (we
shall only consider the cases N = 2 or 3), and by ⊂̃ (resp. ∼=) inclusion (resp.
equality) up to a set of zero HN−1-measure.

We assume that the energy spent to produce a crack K is of Griffith type, i.e.,

K(ε)(K) := H2(K). (1)

2.2 Admissible Deformations

We refer to [1] for the usual definitions and results on geometric measure theory,
BV , SBV and GSBV spaces. Precise definitions of the jump set Su and of the
approximate gradient ∇u of a function u ∈ GSBV (U ; Rd), where U is an open
subset of RN , can be found in that reference. Following Dal Maso et al. [8], we
further define for p > 1

GSBV p(U ; Rd) : =
{
u ∈ GSBV (U ; Rd) : ∇u ∈ Lp(U ; Rd×N)

and HN−1(Su) < +∞}
,

and if q ≥ 1, GSBV
p
q (U ; Rd) := GSBV p(U ; Rd) ∩ Lq(U ; Rd). Moreover, we

say that a sequence un ⇀ u in GSBV
p
q (U ; Rd) if un → u a.e. in U , un ⇀ u in

Lq(U ; Rd), ∇un ⇀ ∇u in Lp(U ; Rd×N) and HN−1(Sun) is uniformly bounded.
For a given admissible crack K ∈ R("ε

B) and a boundary deformation φ ∈
W 1,p("ε; R3) ∩ Lq("ε; R3), we define the set of admissible deformations with
finite energy relative to (K,φ) by

ADε(φ,K) := {u ∈ GSBV
p
q ("ε; R3) : Su ⊂̃ K, u = φ H2-a.e. on ∂D"

ε \ K}.

The associate bulk energy is defined by

W(ε)(∇u) :=
∫

"ε
W(∇u(x)) dx, (2)

where W : R3×3 → [0,+∞), the stored energy density, is a quasiconvex function
of class C1 satisfying standard p-growth and p-coercivity conditions (p > 1): there
exist 0 < β ′ < β < +∞ such that

β ′|ξ |p ≤ W(ξ) ≤ β(1 + |ξ |p) for every ξ ∈ R3×3. (3)
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In particular, the functional W(ε) : Lp("ε; R3×3) → [0,+∞) defined by

W(ε)(+) :=
∫

"ε
W(+(x)) dx

is differentiable on Lp("ε; R3×3), and its differential DW(ε) : Lp("ε; R3×3) →
Lp′

("ε; R3×3), with p′ = p/(p − 1), is given by

〈DW(ε)(+),,〉 =
∫

"ε
DW(+(x)) : ,(x) dx for every +, , ∈ Lp("ε; R3×3).

On the left-hand side of the previous equality, we have denoted by 〈·, ·〉 the duality
pairing between Lp("ε; R3×3) and Lp′

("ε; R3×3).

2.3 The Forces

We assume that the body is subjected to the action of conservative body and surface
forces with potentials F and Gε = εG respectively. Note that the order of magnitude
of the applied forces are exactly those inducing a limiting membrane model (see
[12, 13]).

2.3.1 The Body Forces

Let q ≥ 1, the density of the applied body forces per unit volume at time t ∈ [0, T ]
is given by DzF(t, u(x)), where F : [0, T ] × R3 → R and the map z $→ F(t, z)
belongs to C1(R3) for every t ∈ [0, T ]. We suppose that for every t ∈ [0, T ], the
functional

F (ε)(t)(u) :=
∫

"ε
F(t, u(x)) dx (4)

is of class C1 on the space Lq("ε; R3), and its differential DF (ε)(t) : Lq("ε; R3)
→ Lq ′

("ε; R3), with q ′ := q/(q − 1), is given by

〈DF (ε)(t)(u), v〉 =
∫

"ε
DzF(t, u(x)) · v(x) dx for every u, v ∈ Lq("ε; R3).

We have denoted by 〈·, ·〉 the duality pairing between Lq("ε; R3) and Lq ′
("ε; R3).

Concerning the regularity in time, we assume that there exist an exponent q̇ < q
and, for a.e. t ∈ [0, T ], a functional Ḟ (ε)(t) : Lq̇("ε; R3) → R of class C1,
with differential DḞ (ε)(t) : Lq̇("ε; R3) → Lq̇ ′

("ε; R3), where q̇ ′ = q̇/(q̇ − 1),
such that for every u, v ∈ Lq("ε; R3), the functions t $→ Ḟ (ε)(t)(u) and t $→
〈DḞ (ε)(t)(u), v〉 are integrable on [0, T ], and



Stability of Quasi-Static Crack Evolution through Dimensional Reduction 5

F (ε)(t)(u) = F (ε)(0)(u) +
∫ t

0
Ḟ (ε)(s)(u) ds, (5)

〈DF (ε)(t)(u), v〉 = 〈DF (ε)(0)(u), v〉 +
∫ t

0
〈DḞ (ε)(s)(u), v〉 ds (6)

for every t ∈ [0, T ]. We further assume that F (ε)(t) is upper semicontinuous in
Lq("ε; R3) with respect to the pointwise almost everywhere convergence.

Finally, we suppose that F (ε)(t), DF (ε)(t), Ḟ (ε)(t) and DḞ (ε)(t) satisfy suit-
able q-growth conditions: there exist constants a0 > 0, a1 > 0, a2 > 0, b0 ≥ 0,
b1 ≥ 0, b2 ≥ 0, and nonnegative integrable functions on [0, T ], a3, a4, b3 and b4
(uniform in ε) such that






a0‖u‖q

Lq("ε;R3)
− b0 ≤ −F (ε)(t)(u) ≤ a1‖u‖q

Lq("ε;R3)
+ b1,

|〈DF (ε)(t)(u), v〉| ≤ (a2‖u‖q−1
Lq("ε;R3)

+ b2)‖v‖Lq("ε;R3),

|Ḟ (ε)(t)(u)| ≤ a3(t)‖u‖q̇

Lq̇ ("ε;R3)
+ b3(t),

|〈DḞ (ε)(t)(u), v〉| ≤ (a4(t)‖u‖q̇−1
Lq̇ ("ε;R3)

+ b4(t))‖v‖Lq̇ ("ε;R3).

(7)

2.3.2 The Surface Forces

The density of the surface forces on ∂N"ε at time t ∈ [0, T ], under the deformation
u is given by εDzG(t, u(x)), where G : [0, T ] × R3 → R is such that z $→ G(t, z)

is of class C1(R3) for every t ∈ [0, T ].
We fix an exponent r , related to the trace theorem in Sobolev spaces, such that

r ∈ [p,p/(3 − p)] if p < 3, while r ≥ p if p ≥ 3. We assume that for every
t ∈ [0, T ], the functional

G(ε)(t)(u) := ε

∫

∂N"ε
G(t, u(x)) dH2(x) (8)

is of class C1 on Lr(∂N"ε; R3), with differential DG(ε)(t) : Lr(∂N"ε; R3) →
Lr ′

(∂N"ε; R3), where r ′ = r/(r − 1), given by

〈G(ε)(t)(u), v〉 = ε

∫

∂N"ε
DzG(t, u(x)) · v(x) dH2(x)

for all u, v ∈ Lr(∂N"
ε; R3),

where 〈·, ·〉 denotes the duality pairing between Lr(∂N"ε; R3) and Lr ′
(∂N"ε; R3).

As for the regularity in time, we suppose that for a.e. t ∈ [0, T ], there exists a
functional Ġ(ε)(t) : Lr(∂N"ε; R3) → R of class C1, with differential DĠ(ε)(t) :
Lr(∂N"ε; R3) → Lr ′

(∂N"ε; R3), such that for every u, v ∈ Lr(∂N"ε; R3), the
mappings t $→ Ġ(ε)(t)(u) and t $→ 〈DĠ(ε)(t)(u), v〉 are integrable on [0, T ], and
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G(ε)(t)(u) = G(ε)(0)(u) +
∫ t

0
Ġ(ε)(s)(u) ds, (9)

〈DG(ε)(t)(u), v〉 = 〈DG(ε)(0)(u), v〉 +
∫ t

0
〈DĠ(ε)(s)(u), v〉 ds (10)

for every t ∈ [0, T ].
Finally, we suppose that G(ε)(t), DG(ε)(t), Ġ(ε)(t) and DĠ(ε)(t) satisfy suitable

r-growth conditions: there exist nonnegative constants α0, α1, α2, β0, β1, β2, and
nonnegative integrable functions on [0, T ], α3, α4, β3 and β4 such that






−α0ε‖u‖r
Lr (∂N"ε;R3)

− β0ε ≤ −G(ε)(t)(u) ≤ α1ε‖u‖q

Lr (∂N"ε;R3)
+ β1ε,

|〈DG(ε)(t)(u), v〉| ≤ (α2ε‖u‖r−1
Lr (∂N"ε;R3)

+ β2ε)‖v‖Lr (∂N"ε;R3),

|Ġ(ε)(t)(u)| ≤ α3(t)ε‖u‖r
Lr (∂N"ε;R3)

+ β3(t)ε,

|〈DĠ(ε)(t)(u), v〉| ≤ (α4(t)ε‖u‖r−1
Lr (∂N"ε;R3)

+ β4(t)ε)‖v‖Lr (∂N"ε;R3).

(11)

The reason why all the previous coercivity and growth constants/functions are of
order ε is due to the fact that the surface force density Gε = εG of scales like ε.

2.4 Quasi-Static Evolution

For a given admissible crack K ∈ R("ε
B) and a given boundary deformation φ ∈

W 1,p("ε; R3) ∩ Lq("ε; R3), the total energy of the configuration (K, u), with u ∈
ADε(φ,K), at time t ∈ [0, T ] is given by

E(ε)(t)(u,K) := W(ε)(∇u) − F (ε)(t)(u) − G(ε)(t)(u) + K(ε)(K).

We define a quasi-static evolution with boundary condition t $→ φε(t) as a map
t $→ (vε(t),Kε(t)) from [0, T ] to GSBV

p
q ("ε; R3) × R("ε

B) with the following
properties:

(i) Global stability: for all t ∈ [0, T ], we have vε(t) ∈ ADε(φε(t),Kε(t)) and

E(ε)(t)(vε(t),Kε(t)) = min{E(ε)(v′,K ′) : K ′ ∈ R("ε
B), Kε(t) ⊂̃ K ′

and v′ ∈ ADε(φε(t),K ′)}.

(ii) Irreversibility: Kε(s) ⊂̃ Kε(t) whenever s ≤ t .
(iii) Energy balance: the mapping t $→ E(ε)(t) := E(ε)(t)(vε(t),Kε(t)) is ab-

solutely continuous on [0, T ] and

Ė(ε)(t) = 〈DW(ε)(∇vε(t)),∇φ̇ε(t)〉
−〈DF (ε)(t)(vε(t)), φ̇ε(t)〉 − Ḟ (ε)(t)(vε(t))
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−〈DG(ε)(t)(vε(t)), φ̇ε(t)〉 − Ġ(ε)(t)(vε(t)).

The following existence result has been proven in [8].

Theorem 1. Let Kε
0 ∈ R("ε

B) and vε0 ∈ ADε(φε(0),Kε
0 ) such that

E(ε)(0)(vε0,K
ε
0 ) ≤ E(ε)(0)(v′,K ′)

for every K ′ ∈ R("ε
B) with Kε

0 ⊂̃ K ′, and every v′ ∈ ADε(φε(0),K ′). Then there
exists a quasi-static evolution t $→ (vε(t),Kε(t)) with boundary deformation φε(t)
such that (vε(0),Kε(0)) = (vε0,Kε

0 ).

3 The Rescaled Configuration

Our goal is to perform an asymptotic analysis of the quasi-static evolution as the
thickness of the film ε → 0. As usual in dimension reduction problems (see e.g.
[6, 15]) we rescale the problem into an equivalent one with the advantage of being
stated over a fixed domain.

Before doing this we shall make some assumptions on the initial crack. We
assume that it is compatible with the geometry of the problem, i.e., that Kε

0 =
γ0 × (−ε + εη, ε − εη), for some countably H1-rectifiable set γ0 ⊂ ω.

We now define " := "1, "B := "1
B , ∂D" := ∂D"

1 and ∂N" := ∂N"1. For
x ∈ ", we denote by xα := (x1, x2) ∈ ω the in-plane variable. We set

ψε(t, xα, x3) := φε(t, xα, εx3),

uε0(xα, x3) := vε0(xα, εx3),

uε(t)(xα, x3) := vε(t)(xα, εx3),

!ε(t) := {(xα, x3) ∈ "B : (xα, εx3) ∈ Kε(t)}.

Changing variables in (1), (2), (4) and (8) leads to

W(ε)(∇vε(t)) = ε

∫

"
W

(
∇αuε(t)

∣∣∣
1
ε
∇3u

ε(t)

)
dx =: εW ε(∇uε(t)),

K(ε)(Kε(t)) = ε

∫

!ε(t)

∣∣∣∣

((
ν!ε(t)

)
α

∣∣∣
1
ε

(
ν!ε(t)

)
3

)∣∣∣∣ dH2 =: εKε(!ε(t)),

F (ε)(t)(vε(t)) = ε

∫

"
F(t, uε(t)) dx =: εF (t)(uε(t)),

G(ε)(t)(vε(t)) = ε

∫

∂N"
G(t, uε(t)) dH2(x) =: εG(t)(uε(t)),
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where ∇α (resp. ∇3) denotes the approximate gradient with respect to xα (resp. x3),
and ν!ε(t) = ((ν!ε(t))α, (ν!ε(t))3) is the normal to !ε(t).

As in Section 2.3, we define the functionals Ḟ (t) and Ġ(t) so that there hold the
analogue of (5), (6), (9) and (10) with F , Ḟ , G and Ġ instead of F (ε), Ḟ (ε), G(ε)

and Ġ(ε). Note that G, Ġ, DG, DĠ, F , Ḟ , DF and DḞ satisfy analogue growth
and coercivity conditions as (7)–(11) with the same exponents, and with coercivity
and growth constants/functions independent of ε.

We write E ε(t) for the rescaled total energy at time t . Then, we deduce that the
mapping t $→ (uε(t),!ε(t)) from [0, T ] to GSBV

p
q ("; R3) × R("B) satisfies the

following properties:

(i) Global stability: for all t ∈ [0, T ], we have uε(t) ∈ AD1(ψε(t),!ε(t)) and

E ε(t)(uε(t),!ε(t)) = min{E ε(u′,!′) : !′ ∈ R("B), !ε(t) ⊂̃ !′

and u′ ∈ AD1(ψε(t),!′)}.

(ii) Irreversibility: !ε(s) ⊂̃ !ε(t) whenever s ≤ t .
(iii) Energy balance: the mapping t $→ Eε(t) := E ε(t)(uε(t),!ε(t)) is absolutely

continuous on [0, T ] and

Ėε(t) = 〈DW ε(∇uε(t)),∇ψ̇ε(t)〉
−〈DF (t)(uε(t)), ψ̇ε(t)〉 − Ḟ (t)(uε(t))

−〈DG(t)(uε(t)), ψ̇ε(t)〉 − Ġ(t)(uε(t)).

4 Analysis of Static Problem by !-Convergence

Before going to the study of the quasi-static problem, we will discuss the asymptotic
behavior of the total energy as ε → 0 thanks to a !-convergence method. Since the
work of external forces F + G corresponds to a continuous perturbation of the sum
of the bulk and surface energies, we will not take it into account. We will actually
study a weak formulation of the problem replacing the crack by the jump set of the
deformation field. Indeed, Let us define Iε : L1("; R3) → [0,+∞] by

Iε(u) :=
∫

"
W

(
∇αu

∣∣∣
1
ε
∇3u

)
dx +

∫

Su

∣∣∣∣

(
(νu)α

∣∣∣
1
ε

(νu)3

)∣∣∣∣ dH2

if u ∈ GSBV p("; R3), and +∞ if u ∈ L1("; R3) \ GSBV p("; R3). Then, the
following !-convergence result holds:

Theorem 2. Let ω be a bounded open subset of R2 and W : R3×3 → R be a
continuous function satisfying (3). Then the functional Iε !-converges for the strong
L1("; R3)-topology to I : L1("; R3) → [0,+∞] defined by
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I(u) :=





2

∫

ω
QW0(∇αu) dxα + 2H1(Su) if u ∈ GSBV p(ω; R3),

+∞ otherwise,

where W0(ξ) := inf{W(ξ |z) : z ∈ R3} for every ξ ∈ R3×2, and QW0 is the
quasiconvexification of W0.

This result has been proven in [2] (see also [3]) in a SBV p framework, and one can
notice that much easier arguments lead to the analogue in GSBV p as stated in The-
orem 2. Indeed, in GSBV p, there is no lack of compactness and it is not necessary
to appeal to a truncation argument as in [2, lemma 3.3]. It follows immediately from
the GSBV -compactness theorem [1, theorem 4.36] that any minimizing sequence
(uε) ⊂ GSBV p("; R3) with uniformly bounded energy is relatively compact in
GSBV p("; R3), and that any accumulation point is independent of x3 (we iden-
tify those functions to GSBV p(ω; R3)). The proof of the lower bound is exactly
the same than [2, lemma 3.9] using the lower semicontinuity result in GSBV p (see
e.g. [8, theorem 2.8]). The construction of a recovery (ūε) can be performed as
in [15]: it suffices to take ūε(xα, x3) := u(xα) + εx3bε(xα) for some suitable func-
tion bε ∈ C∞

c (ω; R3), and then we appeal to a classical relaxation result in GSBV p.
We also refer to [5] for an alternative proof using a singular perturbation argument.

5 Analysis of the Quasi-Static Problem

In view of Theorem 2, one can guess that the 3D quasi-static evolution – whose
existence is ensured by Theorem 1 – will converge in a certain sense to a 2D quasi-
static evolution associated to the !-limit model.

We assume that ψε → ψ in W 1,1([0, T ]; W 1,p("; R3) ∩ Lq("; R3)) and that
the sequence ((1/ε)∇3ψ

ε) is strongly converging in W 1,1([0, T ]; Lp("; R3)). In
particular, the limit function ψ ∈ W 1,1([0, T ]; W 1,p(ω; R3) ∩ Lq(ω; R3)) is inde-
pendent of x3.

We first derive some compactness of (uε(t),!ε(t)). Indeed taking (ψε(t),!ε(t))

as competitor in the minimality, and using the growth an coercivity properties sat-
isfied by the functionals Wε , F and G implies that the sequence of approximate
scaled gradients (∇αuε(t)|(1/ε)∇3u

ε(t)) is bounded in Lp("; R3×3), and the se-
quence (uε(t)) is bounded in Lq̇("; R3) ∩ Lq("; R3). Moreover, since uε(t) ∈
W 1,p(" \ "B; R3), the trace theorem and the choice of the exponent r ensures that
(uε(t)) is compact in Lr(∂N"; R3). Then we use the energy balance together with
the growth and coercivity conditions satisfied by DF (t), DG(t), Ḟ (t) and Ġ(t) to
ensure that

sup
ε>0

∫

!ε(t)

∣∣∣∣

(
(ν!ε(t))α

∣∣∣
1
ε
(ν!ε(t))3

)∣∣∣∣ dH2 < +∞.

At this step, we are in position to use a mean convergence for rectifiable sets intro-
duced in [2], very close to the σp-convergence in [8, 9]:
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Definition 1. Let εn ↘ 0+, !n ⊂ " be a sequence of countably H2-rectifiable sets,
and γ ⊂ ω be a countably H1-rectifiable set. We say that !n converges to γ in " if

∫

!n

∣∣∣∣

(
(ν!n)α

∣∣∣
1
εn

(ν!n)3

)∣∣∣∣ dH2 ≤ C,

and the following properties hold:

(a) if uk ⇀ u in SBV p("), Suk ⊂̃ !nk and
∫
"

∣∣(∇αuk|(1/εnk)∇3uk

)∣∣pdx ≤ C,
for some subsequence (εnk ) ⊂ (εn), then u ∈ SBV p(ω) and Su ⊂̃ γ ;

(b) there exist a function u ∈ SBV p(ω) and a sequence (un) ⊂ SBV p(") such
that un ⇀ u in SBV p("), Sun ⊂̃ !n,

∫
"

∣∣(∇αun|(1/εn)∇3un

)∣∣pdx ≤ C, and
Su =̃ γ .

Then, using [2, proposition 4.3], one can extract a subsequence (εn) (independently
of t) and find a countably H1-rectifiable set γ (t) increasing with respect to t such
that !εn (t) converges to γ (t) in sense of Definition 1. Note that it is possible to
prove that γ (0) = γ0. Moreover the estimates we have on the sequence (uεn(t))

allow us to apply the GSBV -Compactness Theorem (see [1, theorem 4.36]) which
ensures, for each t ∈ [0, T ], the existence of a t-dependent subsequence (εnt ) ⊂
(εn) such that uεnt (t) ⇀ u(t) in GSBV

p
q ("; R3). Moreover the limit deformation

u ∈ GSBV
p
q (ω; R3), i.e., it is independent of x3.

We claim that the pair (u(t), γ (t)) is a quasi-static evolution associated to the !-
limit model. We already proved the irreversibility condition. To show the minimality
property we use the following jump transfer theorem whose proof can be obtained
exactly as in [2, theorem 4.4], using [8, theorem 5.3] instead of [11, theorem 2.1].
Let ω′ ⊂ R2 a bounded open set containing ω, and define "′ := ω′ × (−1, 1).

Theorem 3. Let !n ∈ R("B) be a sequence of countably H2-rectifiable sets con-
verging to γ in the sense of Definition 1. Then, for every v ∈ GSBV

p
q (ω′; R3), there

exists a sequence (vn) ⊂ GSBV
p
q ("′; R3) such that vn = v a.e. on "′ \ ",

• vn → v in Lq("′; R3),

•
(

∇αvn

∣∣∣
1
εn

∇3vn

)
→ (∇αv|0) in Lp("′; R3×3),

• lim sup
n→+∞

∫

Svn\!n

∣∣∣∣

(
(νvn)α

∣∣∣
1
εn

(νvn)3

)∣∣∣∣ dH2 ≤ 2H1(Sv \ γ ).

Arguing exactly as in the proof of [2, lemma 5.5] and using the upper semicontinuity
property of F (t) together with the continuity of G(t) (which comes from the trace
theorem in W 1,p and the choice of the exponent r), one can show that for every
t ∈ [0, T ], u(t) minimizes

v $→ 2
∫

ω
QW0(∇αv) dxα + 2H1(Sv \ γ (t)) − 2F (t)(v) − 2G(t)(v),

among {v ∈ GSBV
p
q (ω; R3) : v = ψ(t) H1-a.e. on ∂ω}. Moreover one has con-

vergence of the bulk energy (for the sequence εn)
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∫

"
W

(
∇αuεn(t)

∣∣∣
1
εn

∇3u
εn(t)

)
dx → 2

∫

ω
QW0(∇αu(t)) dxα,

as well as weak convergence of the stress (for the subsequence εnt )

DW

(
∇αuεnt (t)

∣∣∣
1
εnt

∇3u
εnt (t)

)
⇀

(
D(QW0)(∇αu(t)|0)

)
in Lp′

("; R3×3)

(12)
at every time. Remark that by [2, proposition 4.7], the function QW0 is of class
C1. For every v ∈ GSBV

p
q (ω; R3) such that v = ψ(t) H1-a.e. on ∂ω, and every

countably H1-rectifiable set γ ⊂ ω, we define

E(t)(v, γ ) = 2
∫

ω
QW0(∇αv) dxα + 2H1(γ ) − 2F (t)(v) − 2G(t)(v).

The minimality property proven above exactly says that

E(t)(u(t), γ (t)) = min{E(t)(v, γ ) : γ countably H1−rectifiable set in ω,

v ∈ GSBV
p
q (ω; R3) such that v = ψ(t) H1−a.e. on ∂ω}

(see e.g. [2, remark 5.4]). Moreover, since we have reduced dimension, the func-
tional G(t) becomes a bulk force as well as F (t).

It remains to prove the energy balance. Arguing word for word as in [8], approx-
imating Bochner integrals by suitable Riemann sums, one can show that

E(t)(u(t), γ (t)) ≥ E(0)(u(0), γ (0)) + 2
∫ t

0

(
〈DW0(∇αu(s)),∇αψ̇(s))〉

−〈DF (t)(u(s)), ψ̇(s)〉 − Ḟ (s)(u(s))

−〈DG(s)(u(s)), ψ̇ (s)〉 − Ġ(s)(u(s))
)

ds,

where W0 : Lp(ω; R3×2) → [0,+∞) is defined by W0(+) :=∫
ω QW0(+(x)) dxα. By [2, Proposition 4.7], we deduce that W0 is of class C1 with

differential DW0 : Lp(ω; R3×2) → Lp′
(ω; R3×2) given by

〈DW0(+),,〉 =
∫

ω
D(QW0)(+(x)) : ,(x) dxα.

We prove the other inequality exactly as in [2, lemma 5.8], using the upper semi-
continuity property of the functional F (t) and the weak convergence of the stresses
(12) already mentioned above. We also deduce the convergence of the surface en-
ergy (for the sequence εn):

∫

!εn(t)

∣∣∣∣

(
(ν!εn(t))α

∣∣∣
1
εn

(ν!εn(t))3

)∣∣∣∣ dH2 → 2H1(γ (t)).
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In conclusion, we have proven the following result which states that any 3D quasi-
static crack evolution converges to a 2D quasi-static evolution associated to the !-
limit model:

Theorem 4. There exist a two-dimensional quasi-static evolution t $→ (u(t), γ (t))

relative to the boundary data ψ(t) for the !-limit model, and a sequence εn ↘ 0+

such that for any t ∈ [0, T ],
• !εn (t) converges to γ (t) in sense of Definition 1;
• uεnt (t) ⇀ u(t) in GSBV

p
q ("; R3) for some t-dependent subsequence (εnt ) ⊂

(εn);
• the total energy E εn(t) converges to E(t), and more precisely

∫

"
W

(
∇αuεn(t)

∣∣∣
1
εn

∇3u
εn(t)

)
dx → 2

∫

ω
QW0(∇αu(t)) dxα,

∫

!εn(t)

∣∣∣∣

(
(ν!εn(t))α

∣∣∣
1
εn

(ν!εn(t))3

)∣∣∣∣ dH2 → 2H1(γ (t)).
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