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Stability of Quasi-Static Crack Evolution through Dimensional Reduction

This paper deals with quasi-static crack growth in thin films. We show that, when the thickness of the film tends to zero, any three-dimensional quasi-static crack evolution converges to a two-dimensional one, in a sense related to theconvergence of the associated total energy. We extend the prior analysis of [2] by adding conservative body and surface forces which allow us to remove the boundedness assumption on the deformation field.

Introduction

In this paper, we study the evolution of cracks in thin structures in a quasi-static setting. Our approach of fracture mechanics is based on a variational model proposed in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] (see also the monograph [START_REF] Bourdin | The Variational Approach to Fracture[END_REF]) where the (quasi-static) evolution results from the competition -at each time -between a bulk and a surface energy, under a growth constraint on the crack. Many existence results have been obtained (see e.g. [START_REF] Maso | Quasi-static crack growth in nonlinear elasticity[END_REF][START_REF] Maso | Quasi-static evolution in brittle fracture: The case of bounded solutions, Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi[END_REF][START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF] and references therein).

Sometimes a small parameter is involved in the model, and it is an interesting question to study the asymptotic behavior of the model when the parameter tends to zero (see e.g. [START_REF] Giacomini | A -convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF] for the homogenization and [START_REF] Babadjian | Quasistatic evolution of a brittle thin film[END_REF] for the dimension reduction of quasi-static crack evolution). When dealing static problems, the notion of -convergence (see [START_REF] Maso | An Introduction to -Convergence[END_REF]) has proven to be a powerful tool to capture the asymptotic behavior of minimizers, or even minimizing sequences. It turns out that even in the quasi-static case, one can define a notion of convergence related to theconvergence of the associated total energy (see [START_REF] Mielke | -limits and relaxations for rate-independent evolutionary problems[END_REF] for an abstract theory in the more general framework of rate independent processes).

We present here an extension of the result in [START_REF] Babadjian | Quasistatic evolution of a brittle thin film[END_REF] on the convergence of a quasistatic crack evolution in thin films, as the thickness tends to zero. In [START_REF] Babadjian | Quasistatic evolution of a brittle thin film[END_REF], an empirical L ∞ bound was done on the deformation field (as in [START_REF] Maso | Quasi-static evolution in brittle fracture: The case of bounded solutions, Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi[END_REF]) in order to gain compactness in the space SBV p of special functions of bounded variation. It is sometimes possible to justify this assumption as in the antiplanar case (see [START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF] when N = 2) where it follows from a consequence of the maximum principle. Unfortunately, in the full three-dimensional elasticity, the maximum principle does not hold anymore. We propose here to remove this hypothesis adding suitable conservative bulk and surface forces as in [START_REF] Maso | Quasi-static crack growth in nonlinear elasticity[END_REF]. The price to pay is that the deformation field in not anymore compact in SBV p but in a larger subspace GSBV p q of generalized special functions of bounded variation. The arguments we use in the present paper are very close to those of [START_REF] Babadjian | Quasistatic evolution of a brittle thin film[END_REF], and for this reason we will only mention the main differences without giving the precise proofs of the results.

The paper is organized as follows: in Section 2, we will describe the model in the physical configuration and state the existence result of [START_REF] Maso | Quasi-static crack growth in nonlinear elasticity[END_REF]. Then, in Section 3, we will reformulate the problem on a rescaled configuration in order to work on a fixed domain. In Section 4, we will perform an asymptotic analysis of the total energy of the system in a static setting, thanks to a -convergence method. Finally, we will address the asymptotic of the quasi-static problem in Section 5, proving that it converges to a quasi-static evolution associated to the -limit model.

Description of the Model

We consider a homogeneous thin film occupying in its reference configuration the cylinder 

ε := ω × (-ε, ε),
t → φ ε (t) ∈ W 1,1 ([0, T ]; W 1,p ( ε ; R 3 ) ∩ L q ( ε ; R 3 )),
for some p > 1 and q ≥ 1.

On the remaining part of the boundary ∂ N ε , we impose a time dependent surface conservative force which will be described in Section 2.3.2.

Admissible Cracks

We fix an open subset ε B of ε of the form ε B := ω × (-ε + εη, εεη) for some η ∈ (0, 1), to that the set ε B represents the brittle part of the body. The set of all admissible cracks is given by

R( ε B ) := {K : K is rectifiable, K ⊂ ε B and H 2 (K) < +∞}.
Note that any admissible crack must lie far enough from the upper and lower sections. The safety region ε \ ε B can be interpreted as a layer of unbreakable material (see [8, remark 3.8]).

We denote by H N-1 the (N -1)-dimensional Hausdorff measure in R N (we shall only consider the cases N = 2 or 3), and by ⊂ (resp. ∼ =) inclusion (resp. equality) up to a set of zero H N-1 -measure.

We assume that the energy spent to produce a crack K is of Griffith type, i.e.,

K(ε)(K) := H 2 (K). (1) 

Admissible Deformations

We refer to [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] for the usual definitions and results on geometric measure theory, BV , SBV and GSBV spaces. Precise definitions of the jump set S u and of the approximate gradient ∇u of a function u ∈ GSBV (U ; R d ), where U is an open subset of R N , can be found in that reference. Following Dal Maso et al. [START_REF] Maso | Quasi-static crack growth in nonlinear elasticity[END_REF], we further define for p > 1

GSBV p (U ; R d ) : = u ∈ GSBV (U ; R d ) : ∇u ∈ L p (U ; R d×N )
and H N-1 (S u ) < +∞ ,

and if q ≥ 1, GSBV p q (U ; R d ) := GSBV p (U ; R d ) ∩ L q (U ; R d ).
Moreover, we say that a sequence u n u in GSBV p q (U ; R d ) if u n → u a.e. in U , u n u in L q (U ; R d ), ∇u n ∇u in L p (U ; R d×N ) and H N-1 (S u n ) is uniformly bounded. For a given admissible crack K ∈ R( ε B ) and a boundary deformation φ ∈ W 1,p ( ε ; R 3 ) ∩ L q ( ε ; R 3 ), we define the set of admissible deformations with finite energy relative to (K, φ) by

AD ε (φ, K) := {u ∈ GSBV p q ( ε ; R 3 ) : S u ⊂ K, u = φ H 2 -a.e. on ∂ D ε \ K}.
The associate bulk energy is defined by

W (ε)(∇u) := ε W (∇u(x)) dx, (2) 
where W : R 3×3 → [0, +∞), the stored energy density, is a quasiconvex function of class C 1 satisfying standard p-growth and p-coercivity conditions (p > 1): there exist 0 < β < β < +∞ such that

β |ξ | p ≤ W (ξ ) ≤ β(1 + |ξ | p ) for every ξ ∈ R 3×3 . (3) 
In particular, the functional W (ε) :

L p ( ε ; R 3×3 ) → [0, +∞) defined by W (ε)( ) := ε W ( (x)) dx is differentiable on L p ( ε ; R 3×3 ), and its differential DW (ε) : L p ( ε ; R 3×3 ) → L p ( ε ; R 3×3 ), with p = p/(p -1)
, is given by

DW (ε)( ), = ε DW ( (x)) : (x) dx for every , ∈ L p ( ε ; R 3×3 ).
On the left-hand side of the previous equality, we have denoted by •, • the duality pairing between L p ( ε ; R 3×3 ) and L p ( ε ; R 3×3 ).

The Forces

We assume that the body is subjected to the action of conservative body and surface forces with potentials F and G ε = εG respectively. Note that the order of magnitude of the applied forces are exactly those inducing a limiting membrane model (see [START_REF] Friesecke | A hierarchy of plate models derived from nonlinear elasticity by -convergence[END_REF][START_REF] Fox | A justification of nonlinear properly invariant plate theories[END_REF]).

The Body Forces

Let q ≥ 1, the density of the applied body forces per unit volume at time t ∈ [0, T ] is given by D z F (t, u(x)), where

F : [0, T ] × R 3 → R and the map z → F (t, z) belongs to C 1 (R 3 ) for every t ∈ [0, T ].
We suppose that for every t ∈ [0, T ], the functional

F (ε)(t)(u) := ε F (t, u(x)) dx (4) 
is of class C 1 on the space L q ( ε ; R 3 ), and its differential DF (ε)(t) : L q ( ε ; R 3 ) → L q ( ε ; R 3 ), with q := q/(q -1), is given by

DF (ε)(t)(u), v = ε D z F (t, u(x)) • v(x) dx for every u, v ∈ L q ( ε ; R 3 ).
We have denoted by •, • the duality pairing between L q ( ε ; R 3 ) and L q ( ε ; R 3 ).

Concerning the regularity in time, we assume that there exist an exponent q < q and, for a.e.

t ∈ [0, T ], a functional Ḟ (ε)(t) : L q ( ε ; R 3 ) → R of class C 1 , with differential D Ḟ (ε)(t) : L q ( ε ; R 3 ) → L q ( ε ; R 3 ), where q = q/( q -1), such that for every u, v ∈ L q ( ε ; R 3 ), the functions t → Ḟ (ε)(t)(u) and t → D Ḟ (ε)(t)(u), v are integrable on [0, T ], and 
F (ε)(t)(u) = F (ε)(0)(u) + t 0 Ḟ (ε)(s)(u) ds, (5) 
DF (ε)(t)(u), v = DF (ε)(0)(u), v + t 0 D Ḟ (ε)(s)(u), v ds (6) 
for every t ∈ [0, T ]. We further assume that F (ε)(t) is upper semicontinuous in L q ( ε ; R 3 ) with respect to the pointwise almost everywhere convergence. Finally, we suppose that F (ε)(t), DF (ε)(t), Ḟ (ε)(t) and D Ḟ (ε)(t) satisfy suitable q-growth conditions: there exist constants a 0 > 0,

a 1 > 0, a 2 > 0, b 0 ≥ 0, b 1 ≥ 0, b 2 ≥ 0, and nonnegative integrable functions on [0, T ], a 3 , a 4 , b 3 and b 4 (uniform in ε) such that              a 0 u q L q ( ε ;R 3 ) -b 0 ≤ -F (ε)(t)(u) ≤ a 1 u q L q ( ε ;R 3 ) + b 1 , | DF (ε)(t)(u), v | ≤ (a 2 u q-1 L q ( ε ;R 3 ) + b 2 ) v L q ( ε ;R 3 ) , | Ḟ (ε)(t)(u)| ≤ a 3 (t) u q L q ( ε ;R 3 ) + b 3 (t), | D Ḟ (ε)(t)(u), v | ≤ (a 4 (t) u q-1 L q ( ε ;R 3 ) + b 4 (t)) v L q ( ε ;R 3 ) . (7)

The Surface Forces

The density of the surface forces on ∂ N ε at time t ∈ [0, T ], under the deformation u is given by εD z G(t, u(x)), where G :

[0, T ] × R 3 → R is such that z → G(t, z) is of class C 1 (R 3 ) for every t ∈ [0, T ].
We fix an exponent r, related to the trace theorem in Sobolev spaces, such that r ∈ [p, p/(3p)] if p < 3, while r ≥ p if p ≥ 3. We assume that for every t ∈ [0, T ], the functional

G(ε)(t)(u) := ε ∂ N ε G(t, u(x)) dH 2 (x) (8) 
is of class

C 1 on L r (∂ N ε ; R 3 ), with differential DG(ε)(t) : L r (∂ N ε ; R 3 ) → L r (∂ N ε ; R 3 )
, where r = r/(r -1), given by

G(ε)(t)(u), v = ε ∂ N ε D z G(t, u(x)) • v(x) dH 2 (x) for all u, v ∈ L r (∂ N ε ; R 3 ),
where •, • denotes the duality pairing between L r (∂ N ε ; R 3 ) and L r (∂ N ε ; R 3 ). As for the regularity in time, we suppose that for a.e. t ∈ [0, T ], there exists a functional Ġ(ε

)(t) : L r (∂ N ε ; R 3 ) → R of class C 1 , with differential D Ġ(ε)(t) : L r (∂ N ε ; R 3 ) → L r (∂ N ε ; R 3 ), such that for every u, v ∈ L r (∂ N ε ; R 3 ), the mappings t → Ġ(ε)(t)(u) and t → D Ġ(ε)(t)(u), v are integrable on [0, T ], and 
G(ε)(t)(u) = G(ε)(0)(u) + t 0 Ġ(ε)(s)(u) ds, (9) 
DG(ε)(t)(u), v = DG(ε)(0)(u), v + t 0 D Ġ(ε)(s)(u), v ds (10) 
for every t ∈ [0, T ].

Finally, we suppose that G(ε)(t), DG(ε)(t), Ġ(ε)(t) and D Ġ(ε)(t) satisfy suitable r-growth conditions: there exist nonnegative constants α 0 , α 1 , α 2 , β 0 , β 1 , β 2 , and nonnegative integrable functions on [0, T ], α 3 , α 4 , β 3 and β 4 such that

           -α 0 ε u r L r (∂ N ε ;R 3 ) -β 0 ε ≤ -G(ε)(t)(u) ≤ α 1 ε u q L r (∂ N ε ;R 3 ) + β 1 ε, | DG(ε)(t)(u), v | ≤ (α 2 ε u r-1 L r (∂ N ε ;R 3 ) + β 2 ε) v L r (∂ N ε ;R 3 ) , | Ġ(ε)(t)(u)| ≤ α 3 (t)ε u r L r (∂ N ε ;R 3 ) + β 3 (t)ε, | D Ġ(ε)(t)(u), v | ≤ (α 4 (t)ε u r-1 L r (∂ N ε ;R 3 ) + β 4 (t)ε) v L r (∂ N ε ;R 3 ) . (11) 
The reason why all the previous coercivity and growth constants/functions are of order ε is due to the fact that the surface force density G ε = εG of scales like ε.

Quasi-Static Evolution

For a given admissible crack K ∈ R( ε B ) and a given boundary deformation φ ∈ W 1,p ( ε ; R 3 ) ∩ L q ( ε ; R 3 ), the total energy of the configuration (K, u), with u ∈ AD ε (φ, K), at time t ∈ [0, T ] is given by

E (ε)(t)(u, K) := W (ε)(∇u) -F (ε)(t)(u) -G(ε)(t)(u) + K(ε)(K).
We define a quasi-static evolution with boundary condition t → φ ε (t) as a map t → (v ε (t), K ε (t)) from [0, T ] to GSBV p q ( ε ; R 3 ) × R( ε B ) with the following properties:

(i) Global stability: for all t ∈ [0, T ], we have v ε (t) ∈ AD ε (φ ε (t), K ε (t)) and

E (ε)(t)(v ε (t), K ε (t)) = min{E (ε)(v , K ) : K ∈ R( ε B ), K ε (t) ⊂ K and v ∈ AD ε (φ ε (t), K )}. (ii) Irreversibility: K ε (s) ⊂ K ε (t) whenever s ≤ t. (iii) Energy balance: the mapping t → E(ε)(t) := E (ε)(t)(v ε (t), K ε (t)) is ab- solutely continuous on [0, T ] and Ė(ε)(t) = DW (ε)(∇v ε (t)), ∇ φε (t) -DF (ε)(t)(v ε (t)), φε (t) -Ḟ (ε)(t)(v ε (t)) -DG(ε)(t)(v ε (t)), φε (t) -Ġ(ε)(t)(v ε (t)).
The following existence result has been proven in [START_REF] Maso | Quasi-static crack growth in nonlinear elasticity[END_REF].

Theorem 1. Let K ε 0 ∈ R( ε B ) and v ε 0 ∈ AD ε (φ ε (0), K ε 0 ) such that E (ε)(0)(v ε 0 , K ε 0 ) ≤ E (ε)(0)(v , K )
for every K ∈ R( ε B ) with K ε 0 ⊂ K , and every v ∈ AD ε (φ ε (0), K ). Then there exists a quasi-static evolution t → (v ε (t), K ε (t)) with boundary deformation φ ε (t) such that (v ε (0), K ε (0)) = (v ε 0 , K ε 0 ).

The Rescaled Configuration

Our goal is to perform an asymptotic analysis of the quasi-static evolution as the thickness of the film ε → 0. As usual in dimension reduction problems (see e.g. [START_REF] Braides | 3D-2D Asymptotic analysis for inhomogeneous thin films[END_REF][START_REF] Dret | The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity[END_REF]) we rescale the problem into an equivalent one with the advantage of being stated over a fixed domain.

Before doing this we shall make some assumptions on the initial crack. We assume that it is compatible with the geometry of the problem, i.e., that K ε 0 = γ 0 × (-ε + εη, εεη), for some countably H 1 -rectifiable set γ 0 ⊂ ω.

We now define

:= 1 , B := 1 B , ∂ D := ∂ D 1 and ∂ N := ∂ N 1 .
For

x ∈ , we denote by x α := (x 1 , x 2 ) ∈ ω the in-plane variable. We set

ψ ε (t, x α , x 3 ) := φ ε (t, x α , εx 3 ), u ε 0 (x α , x 3 ) := v ε 0 (x α , εx 3 ), u ε (t)(x α , x 3 ) := v ε (t)(x α , εx 3 ), ε (t) := {(x α , x 3 ) ∈ B : (x α , εx 3 ) ∈ K ε (t)}.
Changing variables in (1), ( 2), ( 4) and ( 8) leads to

W (ε)(∇v ε (t)) = ε W ∇ α u ε (t) 1 ε ∇ 3 u ε (t) dx =: εW ε (∇u ε (t)), K(ε)(K ε (t)) = ε ε (t ) ν ε (t ) α 1 ε ν ε (t ) 3 dH 2 =: εK ε ( ε (t)), F (ε)(t)(v ε (t)) = ε F (t, u ε (t)) dx =: εF (t)(u ε (t)), G(ε)(t)(v ε (t)) = ε ∂ N G(t, u ε (t)) dH 2 (x) =: εG(t)(u ε (t)),
where ∇ α (resp. ∇ 3 ) denotes the approximate gradient with respect to x α (resp. x 3 ), and ν ε (t ) = ((ν ε (t ) ) α , (ν ε (t ) ) 3 ) is the normal to ε (t).

As in Section 2.3, we define the functionals Ḟ (t) and Ġ(t) so that there hold the analogue of ( 5), ( 6), ( 9) and ( 10) with F , Ḟ , G and Ġ instead of F (ε), Ḟ (ε), G(ε) and Ġ(ε). Note that G, Ġ, DG, D Ġ, F , Ḟ , DF and D Ḟ satisfy analogue growth and coercivity conditions as ( 7)- [START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF] with the same exponents, and with coercivity and growth constants/functions independent of ε.

We write E ε (t) for the rescaled total energy at time t. Then, we deduce that the mapping t → (u ε (t), ε (t)) from [0, T ] to GSBV p q ( ; R 3 ) × R( B ) satisfies the following properties:

(i) Global stability: for all t ∈ [0, T ], we have u ε (t) ∈ AD 1 (ψ ε (t), ε (t)) and

E ε (t)(u ε (t), ε (t)) = min{E ε (u , ) : ∈ R( B ), ε (t) ⊂ and u ∈ AD 1 (ψ ε (t), )}. (ii) Irreversibility: ε (s) ⊂ ε (t) whenever s ≤ t. (iii) Energy balance: the mapping t → E ε (t) := E ε (t)(u ε (t), ε (t)) is absolutely continuous on [0, T ] and 
Ėε (t) = DW ε (∇u ε (t)), ∇ ψε (t) -DF (t)(u ε (t)), ψε (t) -Ḟ (t)(u ε (t)) -DG(t)(u ε (t)), ψε (t) -Ġ(t)(u ε (t)).

Analysis of Static Problem by -Convergence

Before going to the study of the quasi-static problem, we will discuss the asymptotic behavior of the total energy as ε → 0 thanks to a -convergence method. Since the work of external forces F + G corresponds to a continuous perturbation of the sum of the bulk and surface energies, we will not take it into account. We will actually study a weak formulation of the problem replacing the crack by the jump set of the deformation field. Indeed, Let us define

I ε : L 1 ( ; R 3 ) → [0, +∞] by I ε (u) := W ∇ α u 1 ε ∇ 3 u dx + S u (ν u ) α 1 ε (ν u ) 3 dH 2 if u ∈ GSBV p ( ; R 3 ), and +∞ if u ∈ L 1 ( ; R 3 ) \ GSBV p ( ; R 3 ).
Then, the following -convergence result holds:

Theorem 2.
Let ω be a bounded open subset of R 2 and W : R 3×3 → R be a continuous function satisfying [START_REF] Babadjian | Lower semicontinuity of quasiconvex bulk energies in SBV and integral representation in dimension reduction[END_REF]. Then the functional I ε -converges for the strong

L 1 ( ; R 3 )-topology to I : L 1 ( ; R 3 ) → [0, +∞] defined by I(u) :=    2 ω QW 0 (∇ α u) dx α + 2H 1 (S u ) if u ∈ GSBV p (ω; R 3 ), +∞ otherwise,
where W 0 (ξ) := inf{W (ξ |z) : z ∈ R 3 } for every ξ ∈ R 3×2 , and QW 0 is the quasiconvexification of W 0 .

This result has been proven in [START_REF] Babadjian | Quasistatic evolution of a brittle thin film[END_REF] (see also [START_REF] Babadjian | Lower semicontinuity of quasiconvex bulk energies in SBV and integral representation in dimension reduction[END_REF]) in a SBV p framework, and one can notice that much easier arguments lead to the analogue in GSBV p as stated in Theorem 2. Indeed, in GSBV p , there is no lack of compactness and it is not necessary to appeal to a truncation argument as in [2, lemma 3.3]. It follows immediately from the GSBV -compactness theorem [1, theorem 4.36] that any minimizing sequence (u ε ) ⊂ GSBV p ( ; R 3 ) with uniformly bounded energy is relatively compact in GSBV p ( ; R 3 ), and that any accumulation point is independent of x 3 (we identify those functions to GSBV p (ω; R 3 )). The proof of the lower bound is exactly the same than [2, lemma 3.9] using the lower semicontinuity result in GSBV p (see e.g. [8, theorem 2.8]). The construction of a recovery ( ūε ) can be performed as in [START_REF] Dret | The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity[END_REF]: it suffices to take ūε (x α , x 3 ) := u(x α ) + εx 3 b ε (x α ) for some suitable function b ε ∈ C ∞ c (ω; R 3 ), and then we appeal to a classical relaxation result in GSBV p . We also refer to [START_REF] Braides | Brittle thin films[END_REF] for an alternative proof using a singular perturbation argument.

Analysis of the Quasi-Static Problem

In view of Theorem 2, one can guess that the 3D quasi-static evolution -whose existence is ensured by Theorem 1 -will converge in a certain sense to a 2D quasistatic evolution associated to the -limit model.

We assume that ψ ε → ψ in W 1,1 ([0, T ]; W 1,p ( ; R 3 ) ∩ L q ( ; R 3 )) and that the sequence ((1/ε)∇ 3 ψ ε ) is strongly converging in W 1,1 ([0, T ]; L p ( ; R 3 )). In particular, the limit function ψ ∈ W 1,1 ([0, T ]; W 1,p (ω; R 3 ) ∩ L q (ω; R 3 )) is independent of x 3 .

We first derive some compactness of (u ε (t), ε (t)). Indeed taking (ψ ε (t), ε (t)) as competitor in the minimality, and using the growth an coercivity properties satisfied by the functionals W ε , F and G implies that the sequence of approximate scaled gradients (∇ α u ε (t)|(1/ε)∇ 3 u ε (t)) is bounded in L p ( ; R 3×3 ), and the sequence (u ε (t)) is bounded in L q ( ; R 3 ) ∩ L q ( ; R 3 ). Moreover, since u ε (t) ∈ W 1,p ( \ B ; R 3 ), the trace theorem and the choice of the exponent r ensures that (u ε (t)) is compact in L r (∂ N ; R 3 ). Then we use the energy balance together with the growth and coercivity conditions satisfied by DF (t), DG(t), Ḟ (t) and Ġ(t) to ensure that sup

ε>0 ε (t ) (ν ε (t ) ) α 1 ε (ν ε (t ) ) 3 dH 2 < +∞.
At this step, we are in position to use a mean convergence for rectifiable sets introduced in [START_REF] Babadjian | Quasistatic evolution of a brittle thin film[END_REF], very close to the σ p -convergence in [START_REF] Maso | Quasi-static crack growth in nonlinear elasticity[END_REF][START_REF] Maso | Quasi-static evolution in brittle fracture: The case of bounded solutions, Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi[END_REF]:

W ∇ α u ε n (t) 1 ε n ∇ 3 u ε n (t) dx → 2 ω QW 0 (∇ α u(t)) dx α ,
as well as weak convergence of the stress (for the subsequence ε n t )

DW ∇ α u ε n t (t) 1 
ε n t ∇ 3 u ε n t (t) D(QW 0 )(∇ α u(t)|0) in L p ( ; R 3×3 ) (12 
) at every time. Remark that by [2, proposition 4.7], the function QW 0 is of class C 1 . For every v ∈ GSBV p q (ω; R 3 ) such that v = ψ(t) H 1 -a.e. on ∂ω, and every countably H 1 -rectifiable set γ ⊂ ω, we define

E (t)(v, γ ) = 2 ω QW 0 (∇ α v) dx α + 2H 1 (γ ) -2F (t)(v) -2G(t)(v).
The minimality property proven above exactly says that

E (t)(u(t), γ (t)) = min{E (t)(v, γ ) : γ countably H 1 -rectifiable set in ω, v ∈ GSBV p q (ω; R 3 ) such that v = ψ(t) H 1 -a.e. on ∂ω}
(see e.g. [2, remark 5.4]). Moreover, since we have reduced dimension, the functional G(t) becomes a bulk force as well as F (t).

It remains to prove the energy balance. Arguing word for word as in [START_REF] Maso | Quasi-static crack growth in nonlinear elasticity[END_REF], approximating Bochner integrals by suitable Riemann sums, one can show that E (t)(u(t), γ (t)) ≥ E (0)(u(0), γ (0)) + 2 We prove the other inequality exactly as in [2, lemma 5.8], using the upper semicontinuity property of the functional F (t) and the weak convergence of the stresses (12) already mentioned above. We also deduce the convergence of the surface energy (for the sequence ε n ):

εn (t )
(ν εn (t ) ) α 1

ε n (ν εn (t ) ) 3 dH 2 → 2H 1 (γ (t)).

In conclusion, we have proven the following result which states that any 3D quasistatic crack evolution converges to a 2D quasi-static evolution associated to thelimit model: Theorem 4. There exist a two-dimensional quasi-static evolution t → (u(t), γ (t)) relative to the boundary data ψ(t) for the -limit model, and a sequence ε n 0 + such that for any t ∈ [0, T ],

•

ε n (t) converges to γ (t) in sense of Definition 1; • u ε n t (t) u(t) in GSBV p q ( ; R 3 ) for some t-dependent subsequence (ε n t ) ⊂ (ε n );

• the total energy E ε n (t) converges to E (t), and more precisely

W ∇ α u ε n (t) 1 
ε n ∇ 3 u ε n (t) dx → 2 ω QW 0 (∇ α u(t)) dx α , εn (t ) 
(ν εn (t ) ) α 1

ε n (ν εn (t ) ) 3 dH 2 → 2H 1 (γ (t)).

  where ε > 0 and ω is a bounded open subset of R 2 with Lipschitz boundary. The Dirichlet part of the boundary where the deformation is prescribed is the lateral boundary ∂ D ε := ∂ω × (-ε, ε), while the Neumann part ∂ N ε = ω × {-ε, ε} is made of the lower and upper sections. On the lateral boundary ∂ D ε , we impose a time dependent boundary deformation φ ε (t) on a finite time interval [0, T ], where

t 0 DW 0

 00 (∇ α u(s)), ∇ α ψ(s)) -DF (t)(u(s)), ψ (s) -Ḟ (s)(u(s)) -DG(s)(u(s)), ψ (s) -Ġ(s)(u(s)) ds,where W 0 : L p (ω; R 3×2 ) → [0, +∞) is defined by W 0 ( ) := ω QW 0 ( (x)) dx α . By [2, Proposition 4.7], we deduce that W 0 is of class C 1 with differential DW 0 : L p (ω; R 3×2 ) → L p (ω; R 3×2 ) given by DW 0 ( ), = ω D(QW 0 )( (x)) : (x) dx α .
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Definition 1. Let ε n 0 + , n ⊂ be a sequence of countably H 2 -rectifiable sets, and γ ⊂ ω be a countably H 1 -rectifiable set. We say that n converges to γ in if

and the following properties hold:

Then, using [2, proposition 4.3], one can extract a subsequence (ε n ) (independently of t) and find a countably H 1 -rectifiable set γ (t) increasing with respect to t such that ε n (t) converges to γ (t) in sense of Definition 1. Note that it is possible to prove that γ (0) = γ 0 . Moreover the estimates we have on the sequence (u ε n (t)) allow us to apply the GSBV -Compactness Theorem (see [1, theorem 4.36]) which ensures, for each t ∈ [0, T ], the existence of a t-dependent subsequence (ε n t ) ⊂ (ε n ) such that u ε n t (t) u(t) in GSBV p q ( ; R 3 ). Moreover the limit deformation u ∈ GSBV p q (ω; R 3 ), i.e., it is independent of x 3 . We claim that the pair (u(t), γ (t)) is a quasi-static evolution associated to thelimit model. We already proved the irreversibility condition. To show the minimality property we use the following jump transfer theorem whose proof can be obtained exactly as in [2, Theorem 3. Let n ∈ R( B ) be a sequence of countably H 2 -rectifiable sets converging to γ in the sense of Definition 1. Then, for every v ∈ GSBV p q (ω ; R 3 ), there exists a sequence

• lim sup

Arguing exactly as in the proof of [2, lemma 5.5] and using the upper semicontinuity property of F (t) together with the continuity of G(t) (which comes from the trace theorem in W 1,p and the choice of the exponent r), one can show that for every

among {v ∈ GSBV p q (ω; R 3 ) : v = ψ(t) H 1 -a.e. on ∂ω}. Moreover one has convergence of the bulk energy (for the sequence ε n )