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We give an overview of relaxation and 3d-2d passage theorems in hyperelasticity in the framework of the multidimensional calculus of variations. We give several improvements of the proofs and we introduce the concept of p-ample integrand in showing its interest with respect to determinant type constraints. Some open questions are addressed.

Introduction

These notes are concerned with the problems of relaxation and 3d-2d passage under determinant type constraints naturally related to hyperelasticity in the framework of the multidimensional calculus of variations. Our goal is, on the one hand, to give an overview of our works (see [START_REF] Anza | The nonlinear membrane energy: variational derivation under the constraint "det∇u = 0[END_REF][START_REF] Anza | Relaxation of variational problems in two-dimensional nonlinear elasticity[END_REF][START_REF] Anza | Relaxation theorems in nonlinear elasticity[END_REF][START_REF] Anza | The nonlinear membrane energy: variational derivation under the constraint "det∇u > 0[END_REF]) concerning these two problems, and, on the other hand, to highlight the fact that the Dacorogna relaxation theorem (proved in 1982, see Theorem 2.3) and the Le Dret-Raoul 3d-2d passage theorem (proved in 1993, see Theorem 3.4) can be extented to theorems (see Theorems 2.6 and 3.8) which are consistent (almost consistent for the relaxation problem) with the setting of hyperelasticity, whose the two basic conditions are:

(i) the noninterpenetration of the matter and (ii) the necessity of an infinite amount of energy to compress a finite volume of matter into zero volume.

Despite the restriction on the polynomial growth of the energy density which is not compatible with (i) and (ii), the Dacorogna theorem provides the model of nonlinear relaxation theorems related to hyperelasticity. In Section 2, we show that this model theorem can be improved by introducing the class of ample energy densities, i.e., "energy densities having a quasiconvexification which is of polynomial growth", see Definition 2.9 and Theorems 2.6 and 2.10, and we make clear the fact that the ample energy densities are consistent with (ii) (see §2.6). Similarly, in spite of the polynomial growth hypothesis on the energy density, the Le Dret-Raoult theorem provides the model of nonlinear dimension reduction theorems in hyperelasticity. In Section 3, we show that this theorem can be extended to the setting of ample energy densities (see Theorem 3.5) as well as to the setting of hyperelasticity, i.e., to the case of energy densities which are compatible with (i) and (ii) (see Theorem 3.8). This latter theorem gives an answer to the 3d-2d passage problem in hyperelasticity in the same spirit as the works of Ball (see [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF]), Acerbi-Buttazzo-Percivale (see [START_REF] Acerbi | A variational definition of the strain energy for an elastic string[END_REF]) and Friesecke-James-Müller (see [START_REF] Friesecke | A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity[END_REF]). It is the result of several works: mainly, the attempt of Percivale in 1991 (see [START_REF] Percivale | The variational method for tensile structures[END_REF]), the papers of Le Dret and Raoult (see [START_REF] Hervé | Le modèle de membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle[END_REF][START_REF] Hervé | The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity[END_REF]) and the thesis of Ben Belgacem (see [START_REF] Ben | Modélisation de structures minces en élasticité non linéaire[END_REF], see also [START_REF] Ben | Une méthode de Γ-convergence pour un modèle de membrane non linéaire[END_REF][START_REF] Ben | Relaxation of singular functionals defined on Sobolev spaces[END_REF]). At the begining of the eighties, in [START_REF] Dacorogna | Quasiconvexity and relaxation of nonconvex problems in the calculus of variations[END_REF] Dacorogna answered to Problem 2.1 in the case where W is "finite and without singularities" (see §2.2). Recently, in [START_REF] Anza | Relaxation of variational problems in two-dimensional nonlinear elasticity[END_REF][START_REF] Anza | The nonlinear membrane energy: variational derivation under the constraint "det∇u > 0[END_REF] we extended the Dacorogna theorem as Theorem 2.4 and Theorem 2.6 (see §2.3 and §2.4) and we showed that these theorems can be used to deal with Problem 2.1 under the "weak-Determinant Constraint", i.e., when m = N and W : M N ×N → [0, +∞] is compatible with the following two conditions:

(1) W (F ) = +∞ ⇐⇒ -δ ≤ detF ≤ 0 with δ ≥ 0 (possibly very large) W (F ) → +∞ as detF → 0 + (see §2.6). However, an answer to Problem 2.1 under the "strong-Determinant Constraint", i.e., when m = N and W : M N ×N → [0, +∞] is compatible with the two basic conditions of hyperelasticity:

(2) Theorem 2.2 (Representation of QW [START_REF] Dacorogna | Quasiconvexity and relaxation of nonconvex problems in the calculus of variations[END_REF]). If W is continuous and finite then

       W (F ) =
QW = ZW = Z ∞ W. Theorem 2.3 (Integral representation of I [Dac82]). If W is continuous and ∃c > 0 ∀F ∈ M m×N W (F ) ≤ c(1 + |F | p ) then ∀φ ∈ W 1,p (Ω; R m ) I(φ) = Ω QW (∇φ(x))dx.
2.3. Representation of QW : non-finite case. Theorem 2.2 can be extended as follows.

Theorem 2.4 ([AHM07, AHM08b]). (i) If Z ∞ W is finite then QW = Z ∞ W . (ii) If ZW is finite then QW = ZW = Z ∞ W .
Proof. We need (the two last assertions, the first one being used at the end of §2.4, of) the following result. Lemma 2.5

([Fon88]). (a) If Z ∞ W (resp. ZW ) is finite then Z ∞ W (resp. ZW ) is rank-one convex. (b) If Z ∞ W (resp. ZW ) is finite then Z ∞ W (resp. ZW ) is continuous. (c) Z ∞ W ≤ ZZ ∞ W and ZZW = ZW . One always has W ≥ ZW ≥ Z ∞ W ≥ QW . Hence: (j) QZ ∞ W = QW ≤ Z ∞ W ; (jj) QZW = QZ ∞ W = QW . (i) If Z ∞ W is finite then Z ∞ W is continuous by Lemma 2.5(b). From Theorem 2.2 it follows that QZ ∞ W = ZZ ∞ W . But Z ∞ W ≤ ZZ ∞ W
by Lemma 2.5(c), and so

QW = Z ∞ W by using (j). (ii) If ZW is finite then also is Z ∞ W . Hence QW = Z ∞ W
by the previous reasoning. On the other hand, ZW is continuous by Lemma 2.5(b). From Theorem 2.2 it follows that QZW = ZZW . But ZZW = ZW by Lemma 2.5(c), and so QW = ZW by using (jj).

Question 2.1. Prove (or disprove) that if Z ∞ W is finite, also is ZW .

2.4.

Representation of I: non-finite case. Theorem 2.3 can be extended as follows.

Theorem 2.6 ([AHM07, AHM08b]). (i) If ∃c > 0 ∀F ∈ M m×N Z ∞ W (F ) ≤ c(1 + |F | p ) then ∀φ ∈ W 1,p (Ω; R m ) I(φ) = Ω QW (∇φ(x))dx. (ii) If ∃c > 0 ∀F ∈ M m×N ZW (F ) ≤ c(1 + |F | p ) then ∀φ ∈ W 1,p (Ω; R m ) I(φ) = I aff (φ) = Ω QW (∇φ(x))dx with I aff : W 1,p (Ω; R m ) → [0, +∞] defined by I aff (φ) := inf lim inf n→+∞ I(φ n ) : Aff(Ω; R m ) φ n L p → φ . Proof. (i) Let Z ∞ I, Z ∞ I, Z ∞ I aff : W 1,p (Ω; R m ) → [0,
+∞] be respectively defined by:

Z ∞ I(φ) := Ω Z ∞ W (∇φ(x))dx; Z ∞ I(φ) := inf lim inf n→+∞ Z ∞ I(φ n ) : φ n L p → φ ; Z ∞ I aff (φ) := inf lim inf n→+∞ Z ∞ I(φ n ) : Aff(Ω; R m ) φ n L p → φ . Since Z ∞ W is of p-polynomial growth, i.e., ∃c > 0 ∀F ∈ M m×N Z ∞ W (F ) ≤ c(1 + |F | p )
, it follows that Z ∞ W is (finite and so) continuous by Lemma 2.5(b). By Theorem 2.3 we deduce that

∀φ ∈ W 1,p (Ω; R m ) Z ∞ I(φ) = Ω QZ ∞ W (∇φ(x))dx.
But one always has

QZ ∞ W = QW , hence ∀φ ∈ W 1,p (Ω; R m ) Z ∞ I(φ) = Ω QW (∇φ(x))dx.
Thus, it suffices to prove that I ≤ Z ∞ I (the reverse inequality being trivially true).

The key point of the proof is that we can establish (by using the Vitali covering theorem and without assuming that Z ∞ W is of p-polynomial growth) the following lemma (whose proof is given in §2.8.1).

Lemma 2.7. I ≤ Z ∞ I aff .

On the other hand, as Z ∞ W is of p-polynomial growth and Aff(Ω; R m ) is strongly dense in W 1,p (Ω; R m ), it is easy to see that Z ∞ I aff = Z ∞ I, and the result follows.

(ii) Let ZI, Z ∞ I, Z ∞ I aff : W 1,p (Ω; R m ) → [0, +∞] be respectively defined by:

ZI(φ) := Ω ZW (∇φ(x))dx; ZI(φ) := inf lim inf n→+∞ ZI(φ n ) : φ n L p → φ ; ZI aff (φ) := inf lim inf n→+∞ ZI(φ n ) : Aff(Ω; R m ) φ n L p → φ .
As ZW is of p-polynomial growth and (so) continuous (by Lemma 2.5(b)), from Theorem 2.3 (and since QZW = QW is always true) we deduce that

∀φ ∈ W 1,p (Ω; R m ) ZI(φ) = Ω QW (∇φ(x))dx.
It is then sufficient to prove that I aff ≤ ZI (the inequalities I ≤ I aff and ZI ≤ I being trivially true). As above, the key point of the proof is that we can establish (by using the Vitali covering theorem and without assuming that ZW is of ppolynomial growth) the following lemma (whose proof is given in §2.8.1).

Lemma 2.8. I aff ≤ ZI aff .

On the other hand, as ZW is of p-polynomial growth and Aff(Ω; R m ) is strongly dense in W 1,p (Ω; R m ), it is clear that ZI aff = ZI, and the result follows.

We see here that the integrands W for which Z ∞ W or ZW is of p-polynomial have a "nice" behavior with respect to Problem 2.1. So, it could be interesting to introduce a new class of integrands (that we will call the class of p-ample integrands) as follows.

Definition 2.9. We say that W is p-ample if and only if

Z ∞ W is of p-polynomial growth, i.e., ∃c > 0 ∀F ∈ M m×N Z ∞ W (F ) ≤ c(1 + |F | p ).
We use the term "p-ample" because of some analogies with the concept (developed in differential geometry by Gromov) of amplitude of a differential relation (see [START_REF] Gromov | Partial differential relations[END_REF] for more details). Thus, Theorems 2.4 and 2.6 can be summarized as follows.

Theorem 2.10.

If W is p-ample then ∀φ ∈ W 1,p (Ω; R m ) I(φ) = Ω QW (∇φ(x))dx and QW = Z ∞ W .
Question 2.2. Prove (or disprove) that W is p-ample if and only if QW is of p-polynomial growth.

An analogue result of Theorem 2.6 was proved by Ben Belgacem (who is in fact the first that obtained an integral representation for I in the non-finite case). Let {R i W } i∈N be defined by R 0 W := W and for each i ∈ N * and each

F ∈ M m×N , R i+1 W (F ) := inf a∈R N b∈R m t∈[0,1] (1 -t)R i W (F -ta ⊗ b) + tR i W (F + (1 -t)a ⊗ b) .
By Kohn and Strang (see [START_REF] Kohn | Optimal design and relaxation of variational problems[END_REF]) we have R i+1 W ≤ R i W for all i ∈ N and

RW = inf i≥0 R i W ,
where RW denotes the rank-one convex envelope of W . The Ben Belgacem theorem can be stated as follows.

Theorem 2.11 ([BB96, BB00]). Assume that:

(BB 1 ) O W := int F ∈ M m×N : ∀i ∈ N ZR i W (F ) ≤ R i+1 W (F ) is dense in M m×N ; (BB 2 ) ∀i ∈ N * ∀F ∈ M m×N ∀{F n } n ⊂ O W F n → F ⇒ R i W (F ) ≥ lim sup n→+∞ R i W (F n ); ∃c > 0 ∀F ∈ M m×N RW (F ) ≤ c(1 + |F | p ). Then ∀φ ∈ W 1,p (Ω; R m ) I(φ) = Ω QRW (∇φ(x))dx.
Generally speaking, as rank-one convexity and quasiconvexity do not coincide, Theorem 2.6 and Theorem 2.11 are not identical. However, we have Lemma 2.12. If either Z ∞ W or ZW is finite then QRW = QW .

Proof. If Z ∞ W (resp. ZW ) is finite then Z ∞ W (resp. ZW ) is rank-one convex by Lemma 2.5(a). Consequently Z ∞ W ≤ RW (resp. ZW ≤ RW ) (and Theorem 2.13 below follows by applying Theorem 2.6). Thus, we have

Z ∞ W ≤ RW ≤ W (resp. Z ∞ W ≤ RW ≤ W ), hence QZ ∞ W ≤ QRW ≤ QW (resp. QZW ≤ QRW ≤ QW ) and so QRW = QW since one always has QZ ∞ W = QW (resp. QZW = QW ). Theorem 2.13. Assume that ∃c > 0 ∀F ∈ M m×N RW (F ) ≤ c(1 + |F | p ). Then: (i) if Z ∞ W is finite then ∀φ ∈ W 1,p (Ω; R m ) I(φ) = Ω QW (∇φ(x))dx; (ii) if ZW is finite then ∀φ ∈ W 1,p (Ω; R m ) I(φ) = I aff (φ) = Ω QW (∇φ(x))dx.
Question 2.3. Prove (or disprove) that if (BB 1 ) and (BB 2 ) hold then ZW is finite.

2.5. Application 1: "non-zero-Cross Product Constraint". Consider W 0 : M 3×2 → [0, +∞] Borel measurable and p-coercive and the following condition

(3) ∃α, β > 0 ∀ξ = (ξ 1 | ξ 2 ) ∈ M 3×2 |ξ 1 ∧ ξ 2 | ≥ α ⇒ W 0 (ξ) ≤ β(1 + |ξ| p )
with ξ 1 ∧ ξ 2 denoting the cross product of vectors ξ 1 , ξ 2 ∈ R 3 . When W 0 satisfies (3) it is compatible with the "non-zero-Cross Product Constraint", i.e., with the following two conditions:

(4)

W 0 (ξ 1 | ξ 2 ) = +∞ ⇐⇒ |ξ 1 ∧ ξ 2 | = 0 W 0 (ξ 1 | ξ 2 ) → +∞ as |ξ 2 ∧ ξ 2 | → 0.
The interest of considering (4) comes from the 3d-2d problem (see §3): if W is compatible with the "strong-Determinant Constraint", i.e., (2), then W 0 given by W 0 (ξ) := inf ζ∈R 3 W (ξ | ζ) is compatible with (4). One can establish the following lemma (whose proof is given in §2.8.2) which roughly means that the "non-zero Cross Product Constraint" is p-ample.

Lemma 2.14 ([AHM07, AHM08a]). If W 0 satisfies (3) then ZW 0 is of p-polynomial growth, i.e., ∃c > 0 ∀ξ ∈ M 3×2 ZW 0 (ξ) ≤ c(1 + |ξ| p ).
Applying Theorem 2.6(ii) we obtain Corollary 2.15.

If W 0 satisfies (3) then ∀ψ ∈ W 1,p (Ω; R 3 ) I(ψ) = I aff (ψ) = Ω QW 0 (∇ψ(x))dx.
2.6. Application 2: "weak-Determinant Constraint". The following condition on W is compatible with "weak-Determinant Constraint", i.e., (1).

(5) ∃α,

β > 0 ∀F ∈ M N ×N |detF | ≥ α ⇒ W (F ) ≤ β(1 + |F | p )
. One can prove the following lemma which roughly means that the "weak-Determinant Constraint" is p-ample (see also Lemma 2.16-bis below).

Lemma 2.16 ([AHM08a]

). If W satisfies (5) then ZW is of p-polynomial growth, i.e., ∃c > 0 ∀F ∈ M N ×N ZW (F ) ≤ c(1

+ |F | p ).
Applying Theorem 2.6(ii) we obtain Corollary 2.17. If W satisfies (5) then

∀φ ∈ W 1,p (Ω; R N ) I(φ) = I aff (φ) = Ω QW (∇φ(x))dx.
Proof (of a part of Corollary 2.17). Taking Theorem 2.13(i) into account, it suffices to verify the following two points:

(5

) ⇒ ∃c > 0 ∀F ∈ M N ×N RW (F ) ≤ c(1 + |F | p );
(5) ⇒ Z ∞ W < +∞, which will give us the desired integral representation for I. The first point is essentially due to a lemma by Ben Belgacem: it is a direct consequence of Theorem 3.18 (see Remark 3.19) whose proof is given in §3.6.4. For the second point, it is obvious that Z ∞ W (F ) < +∞ for all F ∈ M N ×N with |detF | ≥ α. On the other hand, we have Lemma 2.18 ([DR04], see also [START_REF] Celada | Functions with prescribed singular values of the gradient[END_REF]). For all

F ∈ M N ×N , if |detF | < α then there exists ϕ ∈ W 1,∞ 0 (Y ; R N ) such that |det(F + ∇ϕ(x))| = α a.e. in Y . Hence, if F ∈ M N ×N is such that |detF | < α then Z ∞ W (F ) ≤ Y W (F +∇ϕ(x))dx with some ϕ ∈ W 1,∞ 0 (Y ; R N )
given by Lemma 2.18, and so

Z ∞ W (F ) ≤ 2 p β(1 + |F | p + ∇ϕ p L p ) < +∞.
Remark 2.19. From the previous proof, we can isolate the following result.

Lemma 2.16-bis. If W satisfies (5) then Z ∞ W is of p-polynomial growth, i.e.,

∃c > 0 ∀F ∈ M N ×N Z ∞ W (F ) ≤ c(1 + |F | p ).
2.7. From p-ample to non-p-ample case. Because of the following theorem, none of the theorems of this section can be directly used for dealing with Problem 2.1 under the "stong-Determinant Constraint", i.e., (2).

Theorem 2.20 ( [START_REF] Fonseca | The lower quasiconvex envelope of the stored energy function for an elastic crystal[END_REF]). If W satisfies (2) then:

(F 1 ) QW is rank-one convex; (F 2 ) QW (F ) = +∞ if and only if detF ≤ 0 and QW (F ) → +∞ as detF → 0 + .
The assertion (F 2 ) roughly says that the "strong-Determinant Constraint" is not pample, i.e., Z ∞ W cannot be of p-polynomial growth, and so neither Theorem 2.4 nor Theorem 2.6 is consistent with (2). From the assertion (F 1 ) we see that QW ≤ RW which shows that RW cannot be of p-polynomial growth when combined with (F 2 ). Hence, the theorem of Ben Belgacem is not compatible with (2).

Question 2.4. Develop strategies for passing from p-ample to non-p-ample case.

2.8. Complementary proofs.

2.8.1. Proof of Lemmas 2.7 and 2.8. It is sufficient to prove that if φ ∈ Aff(Ω; R m ) then

I(φ) ≤ Ω Z ∞ W (∇φ(x))dx (resp. I aff (φ) ≤ Ω ZW (∇φ(x))dx). (6)
By definition, there exists a finite family

(V i ) i∈I of open disjoint subsets of Ω such that |Ω \ ∪ i∈I V i | = 0 and for every i ∈ I, |∂V i | = 0 and ∇φ(x) = F i in V i with F i ∈ M m×N . Given δ > 0 and i ∈ I, we consider ϕ i ∈ W 1,∞ 0 (Y ; R m ) (resp. ϕ i ∈ Aff 0 (Y ; R m )) such that Y W (F i + ∇ϕ i (y))dy ≤ Z ∞ W (F i ) + δ |Ω| (7) (resp. Y W (F i + ∇ϕ i (y))dy ≤ ZW (F i ) + δ |Ω| ).
Fix any integer n ≥ 1. By the Vitali covering theorem, there exists a finite or countable family (a i,j

+ α i,j Y ) j∈Ji of disjoint subsets of V i , where a i,j ∈ R N et 0 < α i,j < 1 n , such that V i \ ∪ j∈Ji (a i,j + α i,j Y ) = 0 (and so j∈Ji α N i,j = |V i |). Define φ n ∈ W 1,∞ 0 (Ω; R m ) (resp. φ n ∈ Aff 0 (Ω; R m )) by φ n (x) := α i,j ϕ i x -a i,j α i,j si x ∈ a i,j + α i,j Y.
Clearly, we have

φ n L ∞ (Ω;R m ) ≤ 1 n max i∈I ϕ i L ∞ (Y ;R m ) and ∇φ n L ∞ (Ω;M m×N ) ≤ max i∈I ∇ϕ i L ∞ (Y ;M m×N )
, and so, up to a subsequence,

φ n * 0 in W 1,∞ (Ω; R m ), where " * " denotes the weak* convergence in W 1,∞ (Ω; R m ). Hence φ n 0 in W 1,p (Ω; R m ). Consequently, up to a subsequence, φ n → 0 in L p (Ω; R m ). More- over, we have Ω W (∇φ(x) + ∇φ n (x)) dx = i∈I Vi W (F i + ∇φ n (x)) dx = i∈I j∈Ji α N i,j Y W (F i + ∇ϕ i (y)) dy = i∈I |V i | Y W (F i + ∇ϕ i (y)) dy. Since φ + φ n ∈ W 1,∞ (Ω; R m ) (resp. φ + φ n ∈ Aff(Ω; R m )) and φ + φ n → φ in L p (Ω; R m ), using (7) we deduce that I(φ) ≤ lim inf n→+∞ Ω W (∇φ(x) + ∇φ n (x)) dx ≤ i∈I |V i |ZW (F i ) + δ = Ω Z ∞ W (∇φ(x))dx + δ (resp. I aff (φ) ≤ Ω ZW (∇φ(x))dx + δ),
and (6) follows by letting δ → 0.

2.8.2. Proof of Lemma 2.14. We begin by proving that ZW 0 satisfies the following condition.

(8) ∃γ > 0 ∀ξ ∈ M 3×2 min{|ξ 1 + ξ 2 |, |ξ 1 -ξ 2 |} ≥ α ⇒ W 0 (F ) ≤ γ(1 + |F | p ) . Let ξ = (ξ 1 | ξ 2 ) ∈ M 3×2 be such that min{|ξ 1 + ξ 2 |, |ξ 1 -ξ 2 |} ≥ α.
Then, one of the three possibilities holds:

|ξ 1 ∧ ξ 2 | = 0; (9) |ξ 1 ∧ ξ 2 | = 0 avec ξ 1 = 0; (10) |ξ 1 ∧ ξ 2 | = 0 avec ξ 2 = 0. (11) Set D := {(x 1 , x 2 ) ∈ R 2 : x 1 -1 < x 2 < x 1 + 1 et -x 1 -1 < x 2 < 1 -x 1 } and define ψ ∈ Aff 0 (D; R) by ψ(x 1 , x 2 ) :=        -x 1 + (x 2 + 1) si (x 1 , x 2 ) ∈ ∆ 1 (1 -x 1 ) -x 2 si (x 1 , x 2 ) ∈ ∆ 2 x 1 + (1 -x 2 ) si (x 1 , x 2 ) ∈ ∆ 3 (x 1 + 1) + x 2 si (x 1 , x 2 ) ∈ ∆ 4 with: ∆ 1 := {(x 1 , x 2 ) ∈ D : x 1 ≥ 0 et x 2 ≤ 0}; ∆ 2 := {(x 1 , x 2 ) ∈ D : x 1 ≥ 0 et x 2 ≥ 0}; ∆ 3 := {(x 1 , x 2 ) ∈ D : x 1 ≤ 0 et x 2 ≥ 0}; ∆ 4 := {(x 1 , x 2 ) ∈ D : x 1 ≤ 0 et x 2 ≤ 0}. Consider ϕ ∈ Aff 0 (D; R 3 ) given by ϕ(x) := ψ(x)ν avec    ν = ξ1∧ξ2 |ξ1∧ξ2| si on a (9) |ν| = 1 et ξ 1 , ν = 0 si on a (10) |ν| = 1 et ξ 2 , ν = 0 si on a (11),
where •, • denotes the scalar product in R 3 . Then

ξ + ∇ϕ(x) =        (ξ 1 -ν | ξ 2 + ν) si x ∈ int(∆ 1 ) (ξ 1 -ν | ξ 2 -ν) si x ∈ int(∆ 2 ) (ξ 1 + ν | ξ 2 -ν) si x ∈ int(∆ 3 ) (ξ 1 + ν | ξ 2 + ν) si x ∈ int(∆ 4 )
with int(E) denoting the interior of E. We need the following result.

Lemma 2.21 ([Fon88]). For every bounded open set

D ⊂ R 2 with |∂D| = 0 and every ξ ∈ M 3×2 , ZW 0 (ξ) = inf 1 |D| D W 0 (ξ + ∇ϕ(x))dx : ϕ ∈ Aff 0 (D; R 3 ) .
Using Lemma 2.21 we deduce that

ZW 0 (ξ) ≤ 1 4 (W 0 (ξ 1 -ν | ξ 2 + ν) + W 0 (ξ 1 -ν | ξ 2 -ν) (12) + W 0 (ξ 1 + ν | ξ 2 -ν) + W 0 (ξ 1 + ν | ξ 2 + ν)) . But |(ξ 1 -ν) ∧ (ξ 2 + ν)| 2 = |ξ 1 ∧ ξ 2 + (ξ 1 + ξ 2 ) ∧ ν| 2 = |ξ 1 ∧ ξ 2 | 2 + |(ξ 1 + ξ 2 ) ∧ ν| 2 ≥ |(ξ 1 + ξ 2 ) ∧ ν| 2 , hence |(ξ 1 + ν) ∧ (ξ 2 -ν)| ≥ |(ξ 1 + ξ 2 ) ∧ ν| = |ξ 1 + ξ 2 |.
Similarly, we obtain:

|(ξ 1 -ν) ∧ (ξ 2 -ν)| ≥ |ξ 1 -ξ 2 |; |(ξ 1 + ν) ∧ (ξ 2 -ν)| ≥ |ξ 1 + ξ 2 |; |(ξ 1 + ν) ∧ (ξ 2 + ν)| ≥ |ξ 1 -ξ 2 |. Thus |(ξ 1 -ν) ∧ (ξ 2 + ν)| ≥ α, |(ξ 1 -ν) ∧ (ξ 2 -ν)| ≥ α, |(ξ 1 + ν) ∧ (ξ 2 -ν)| ≥ α et |(ξ 1 + ν) ∧ (ξ 2 + ν)| ≥ α because min{|ξ 1 + ξ 2 |, |ξ 1 -ξ 2 |} ≥ α. Using (3) it follows that W 0 (ξ 1 -ν | ξ 2 + ν) ≤ β(1 + |(ξ 1 -ν | ξ 2 + ν)| p ) ≤ β2 p (1 + |(ξ 1 | ξ 2 )| p + |(-ν | ν)| p ) ≤ β2 2p+1 (1 + |ξ| p ).
In the same manner, we have:

W 0 (ξ 1 -ν | ξ 2 -ν) ≤ β2 2p+1 (1 + |ξ| p ); W 0 (ξ 1 + ν | ξ 2 -ν) ≤ β2 2p+1 (1 + |ξ| p ); W 0 (ξ 1 + ν | ξ 2 + ν) ≤ β2 2p+1 (1 + |ξ| p ),
and from (12) we conclude that ZW 0 (ξ) ≤ β2 2p+1 (1 + |ξ| p ), which proves (8).

We now prove that ZW 0 is of p-polynomial growth, i.e., (13)

∃c > 0 ∀F ∈ M 3×2 ZW 0 (ξ) ≤ c(1 + |ξ| p ). Let ξ = (ξ 1 | ξ 2 ) ∈ M 3×2 .
Then, one of the four possibilities holds:

|ξ 1 ∧ ξ 2 | = 0; (14) |ξ 1 ∧ ξ 2 | = 0 avec ξ 1 = ξ 2 = 0; (15) |ξ 1 ∧ ξ 2 | = 0 avec ξ 1 = 0; (16) |ξ 1 ∧ ξ 2 | = 0 avec ξ 2 = 0. (17) Define ψ ∈ Aff 0 (Y ; R) by ψ(x 1 , x 2 ) :=        x 2 si (x 1 , x 2 ) ∈ ∆ 1 (1 -x 1 ) si (x 1 , x 2 ) ∈ ∆ 2 (1 -x 2 ) si (x 1 , x 2 ) ∈ ∆ 3 x 1 si (x 1 , x 2 ) ∈ ∆ 4
with:

∆ 1 := {(x 1 , x 2 ) ∈ Y : x 2 ≤ x 1 ≤ -x 2 + 1}; ∆ 2 := {(x 1 , x 2 ) ∈ Y : -x 1 + 1 ≤ x 2 ≤ x 1 }; ∆ 3 := {(x 1 , x 2 ) ∈ Y : -x 2 + 1 ≤ x 1 ≤ x 2 }; ∆ 4 := {(x 1 , x 2 ) ∈ Y : x 1 ≤ x 2 ≤ -x 1 + 1}. Consider ϕ ∈ Aff 0 (Y ; R 3 ) given by ϕ(x) := ψ(x)ν avec        ν = α(ξ1∧ξ2) |ξ1∧ξ2|
si on a ( 14)

|ν| = α si on a (15) |ν| = α et ξ 1 , ν = 0 si on a (16) |ν| = α et ξ 2 , ν = 0 si on a (17). Then ξ + ∇ϕ(x) =        (ξ 1 | ξ 2 + ν) si x ∈ int(∆ 1 ) (ξ 1 -ν | ξ 2 ) si x ∈ int(∆ 2 ) (ξ 1 | ξ 2 -ν) si x ∈ int(∆ 3 ) (ξ 1 + ν | ξ 2 ) si x ∈ int(∆ 4 ).
Using Lemma 2.5(c) together with Lemma 2.21 we deduce that

ZW 0 (ξ) ≤ 1 4 (ZW 0 (ξ 1 | ξ 2 + ν) + ZW 0 (ξ 1 -ν | ξ 2 ) (18) + ZW 0 (ξ 1 | ξ 2 -ν) + ZW 0 (ξ 1 + ν | ξ 2 )) . But |ξ 1 + (ξ 2 + ν)| 2 = |(ξ 1 + ξ 2 ) + ν| 2 = |ξ 1 + ξ 2 | 2 + |ν| 2 = |ξ 1 + ξ 2 | 2 + α 2 ≥ α 2 , hence |ξ 1 + (ξ 2 + ν)| ≥ α. Similarly, we obtain |ξ 1 -(ξ 2 + ν)| ≥ α, and so min{|ξ 1 + (ξ 2 + ν)|, |ξ 1 -(ξ 2 + ν)|} ≥ α.
In the same manner, we have:

min{|(ξ 1 -ν) + ξ 2 |, |(ξ 1 -ν) -ξ 2 |} ≥ α; min{|ξ 1 + (ξ 2 -ν)|, |ξ 1 -(ξ 2 -ν)|} ≥ α; min{|(ξ 1 + ν) + ξ 2 |, |(ξ 1 + ν) -ξ 2 |} ≥ α.
As ZW 0 satisfies (8) it follows that

ZW 0 (ξ 1 | ξ 2 + ν) ≤ γ(1 + |(ξ 1 | ξ 2 + ν)| p ) ≤ γ2 p (1 + |(ξ 1 | ξ 2 )| p + |(0 | ν)| p ) ≤ max{1, α p }γ2 p+1 (1 + |ξ| p ).
In the same manner, we obtain:

ZW 0 (ξ 1 -ν | ξ 2 ) ≤ max{1, α p }γ2 p+1 (1 + |ξ| p ); ZW 0 (ξ 1 | ξ 2 -ν) ≤ max{1, α p }γ2 p+1 (1 + |ξ| p ); ZW 0 (ξ 1 + ν | ξ 2 ) ≤ max{1, α p }γ2 p+1 (1 + |ξ| p ),
and from (18) we conclude that ZW 0 (ξ) ≤ max{1, α p }γ2 p+1 (1 + |ξ| p ), which proves (13).

3. 3d-2d passage theorems with determinant type constraints 3.1. Statement of the problem. Let W : M 3×3 → [0, +∞] be Borel measurable and p-coercive (with p > 1) and, for each ε > 0, let I ε : W 1,p (Σ ε ; R 3 ) → [0, +∞] be defined by

I ε (φ) := 1 ε Σε W (∇φ(x, x 3 ))dxdx 3 , where Σ ε := Σ×] -ε 2 , ε 2 [⊂ R 3 with Σ ⊂ R 2
Lipschitz, open and bounded, and a point of Σ ε is denoted by (x, x 3 ) with x ∈ Σ and

x 3 ∈] -ε 2 , ε 2 [. The problem of 3d-2d passage is the following. Problem 3.1. Prove (or disprove) that ∀ψ ∈ W 1,p (Σ; R 3 ) Γ(π)-lim ε→0 I ε (ψ) = Σ W mem (∇ψ(x))dx,
where the symbol "Γ(π)-lim ε→0 " stands for the Γ(π)-limit as ε → 0 (see Definition 3.1), and find a representation formula for W mem :

M 3×2 → [0, +∞].
At the begining of the nineties, in [LDR93, LDR95] Le Dret and Raoult answered to Problem 3.1 in the case where W is "finite and without singularities" (see §3.3).

Recently, in [START_REF] Anza | The nonlinear membrane energy: variational derivation under the constraint "det∇u = 0[END_REF][START_REF] Anza | The nonlinear membrane energy: variational derivation under the constraint "det∇u > 0[END_REF] we extended the Le Dret-Raoult theorem to the case where W is compatible with the "weak-Determinant constraint", i.e., (1), and the "strong-Determinant Constraint", i.e., (2), as Theorem 3.5 and Theorem 3.8 (see §3.4 and §3.5).

3.2.

The Γ(π)-convergence. The concept of Γ(π)-convergence was introduced Anzellotti, Baldo and Percivale in order to deal with dimension reduction problems in mechanics. Let π = {π ε } ε be the family of L p -continuous maps π ε :

W 1,p (Σ ε ; R 3 ) → W 1,p (Σ; R 3 ) defined by π ε (φ) := 1 ε ε 2 -ε 2 φ(•, x 3 )dx 3 . Definition 3.1 ([ABP94]
). We say that {I ε } ε Γ(π)-converge to I mem as ε goes to zero, and we write

I mem = Γ(π)-lim ε→0 I ε , if and only if ∀ψ ∈ W 1,p (Σ; R 3 ) Γ(π)-lim inf ε→0 I ε (ψ) = Γ(π)-lim sup ε→0 I ε (ψ) = I mem (ψ) with Γ(π)-lim inf ε→0 I ε , Γ(π)-lim sup ε→0 I ε : W 1,p (Σ; R 3 ) → [0, +∞] respectively given by: Γ(π)-lim inf ε→0 I ε (ψ) := inf lim inf ε→0 I ε (φ ε ) : π ε (φ ε ) L p → ψ ; Γ(π)-lim sup ε→0 I ε (ψ) := inf lim sup ε→0 I ε (φ ε ) : π ε (φ ε ) L p → ψ .
Anzellotti, Baldo and Percivale proved that their concept of Γ(π)-convergence is not far from that of Γ-convergence introduced by De Giorgi and Franzoni. For each ε > 0, consider I ε : W 1,p (Σ; R 3 ) → [0, +∞] defined by ]). We say that {I ε } ε Γ-converge to I mem as ε goes to zero, and we write

I ε (ψ) := inf I ε (φ) : π ε (φ) = ψ . Definition 3.2 ([DGF75, DG75 
I mem = Γ-lim ε→0 I ε , if and only if ∀ψ ∈ W 1,p (Σ; R 3 ) Γ-lim inf ε→0 I ε (ψ) = Γ-lim sup ε→0 I ε (ψ) = I mem (ψ) with Γ-lim inf ε→0 I ε , Γ-lim sup ε→0 I ε : W 1,p (Σ; R 3 ) → [0, +∞]
respectively given by:

Γ-lim inf ε→0 I ε (ψ) := inf lim inf ε→0 I ε (ψ ε ) : ψ ε L p → ψ ; Γ-lim sup ε→0 I ε (ψ) := inf lim sup ε→0 I ε (ψ ε ) : ψ ε L p → ψ .
The link between Γ(π)-convergence and Γ-convergence is given by the following lemma.

Lemma 3.3 ([ABP94]

).

I mem = Γ(π)-lim ε→0 I ε if and only if I mem = Γ-lim ε→0 I ε . 3.3. Γ(π)-convergence of I ε : finite case. Let W 0 : M 3×2 → [0, +∞] be defined by W 0 (ξ) := inf ζ∈R 3 W (ξ | ζ). Theorem 3.4 ([LDR93, LDR95]). If W is continuous and ∃c > 0 ∀F ∈ M 3×3 W (F ) ≤ c(1 + |F | p ) then ∀ψ ∈ W 1,p (Σ; R 3 ) Γ(π)-lim ε→0 I ε (ψ) = Σ QW 0 (∇ψ(x))dx.
Although the Le Dret-Raoult theorem is compatible neither with the "weak-Determinant Constraint", i.e., (1) nor with the "strong Determinant Constraint", i.e., (2), it established a suitable variational framework to deal with dimensional reduction problems: it is the point of departure of many works on the subject.

3.4. Γ(π)-convergence of I ε : "weak-Determinant Constraint". By using the Le Dret-Raoult theorem, i.e., Theorem 3.4, we can prove the following result.

Theorem 3.5 ([AHM06]). If W satisfies (5), i.e., ∃α, β > 0 ∀F ∈ M 3×3 |detF | ≥ α ⇒ W (F ) ≤ β(1 + |F | p ) , then ∀ψ ∈ W 1,p (Σ; R 3 ) Γ(π)-lim ε→0 I ε (ψ) = Σ QW 0 (∇ψ(x))dx.
Proof. As the Γ(π)-limit is stable by substituting I ε by its relaxed functional I ε , i.e., I ε : W 1,p (Σ ε ; R 3 ) → [0, +∞] given by

I ε (φ) := inf lim inf n→+∞ I ε (φ n ) : φ n L p → φ = 1 ε inf lim inf n→+∞ Σε W (∇φ n )dxdx 3 : φ n L p → φ , it suffices to prove that (19) ∀ψ ∈ W 1,p (Σ; R 3 ) Γ(π)-lim ε→0 I ε (ψ) = Σ QW 0 (∇ψ(x))dx.
As W satisfies (5) it is p-ample (see Definition 2.9), and so by Theorem 2.10 we have

(20) ∀ε > 0 ∀φ ∈ W 1,p (Σ ε ; R 3 ) I ε (φ) = 1 ε Σε QW (∇φ(x, x 3 ))dxdx 3
with QW = Z ∞ W (which is of p-polynomial growth and so continuous by Lemma 2.5(b)). Applying the Le Dret-Raoult theorem, i.e., Theorem 3.4, we deduce that

∀ψ ∈ W 1,p (Σ; R 3 ) Γ(π)-lim ε→0 I ε (ψ) = Σ Q[QW ] 0 (∇ψ(x))dx with [QW ] 0 : M 3×2 → [0, +∞] given by [QW ] 0 (ξ) := inf ζ∈R 3 QW (ξ | ζ).
On the other hand, one can establish the following lemma (whose proof is given in §3.6.1).

Lemma 3.6.

Q[QW ] 0 = QW 0 .
Which gives (19) when combined with (20), and the proof is complete.

Theorem 3.5 highlights the fact that the concept of p-amplitude has a "nice" behavior with respect to the Γ(π)-convergence. More generally, let {π ε } ε be a family of

L p -continuous maps π ε from W 1,p (Σ ε ; R m ) to W 1,p (Σ; R m ), where Σ ε ⊂ R N (resp. Σ ⊂ R k with k ∈ N * )
is a bounded open set, let {W ε } ε be an uniformly p-coercive family of measurable integrands W ε : M m×N → [0, +∞] and, for each ε > 0, let

I ε , QI ε : W 1,p (Σ ε ; R m ) → [0,
+∞] be respectively defined by

I ε (φ) := Σε W ε (∇φ(x))dx; QI ε (φ) := Σε QW ε (∇φ(x))dx.
The following theorem says that the Γ(π)-limit is stable by substituting I ε by QI ε whenever every W ε is p-ample.

Theorem 3.7. Assume that:

∀ε > 0 W ε is p-ample; ∃I 0 : W 1,p (Σ; R m ) → [0, +∞] Γ(π)-lim ε→0 QI ε = I 0 .
Then Γ(π)-lim ε→0

I ε = I 0 .
Proof. As every W ε is p-ample, from Theorem 2.10 we deduce that I ε = QI ε for all ε > 0. On the other hand, as every π ε is L p -continuous, it is easy to see that Γ(π)lim inf ε→0 I ε = Γ(π)-lim inf ε→0 I ε and Γ(π)-lim sup ε→0 I ε = Γ(π)-lim sup ε→0 I ε , and the theorem follows.

3.5. Γ(π)-convergence of I ε : "strong-Determinant Constraint". The following theorem gives an answer to Problem 3.1 in the framework of hyperelasticity (it is consistent with the "strong-Determinant Constraint", i.e., (2)) in the same spirit as the works of Ball (see [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF]), Acerbi-Buttazzo-Percivale (see [START_REF] Acerbi | A variational definition of the strain energy for an elastic string[END_REF]) and Friesecke-James-Müller (see [START_REF] Friesecke | A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity[END_REF]). It is the result of several works on the subject: mainly, the attempt of Percivale in 1991 (see [START_REF] Percivale | The variational method for tensile structures[END_REF]), the rigorous answer to Problem 3.1 by Le Dret and Raoult in the p-polynomial growth case (see [START_REF] Hervé | Le modèle de membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle[END_REF][START_REF] Hervé | The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity[END_REF]) and especially the substantial contributions of Ben Belgacem (see [BB96, BB97, BB00]).

Theorem 3.8 ([AHM08b]

). Assume that:

W is continuous; (21) W (F ) = +∞ ⇐⇒ detF ≤ 0; (22) ∀δ > 0 ∃c δ > 0 ∀F ∈ M 3×3 detF ≥ δ ⇒ W (F ) ≤ c δ (1 + |F | p ) . ( 23 
) Then ∀ψ ∈ W 1,p (Σ; R 3 ) Γ(π)-lim ε→0 I ε (ψ) = Σ QW 0 (∇ψ(x))dx.
Proof. It is easy to see that if W satisfies (21), ( 22) and (23) then:

W 0 is continuous; (24) W 0 (ξ) = W (ξ | ξ 2 ) = +∞ ⇐⇒ |ξ 1 ∧ ξ 2 | = 0; (25) ∀α > 0 ∃β α > 0 ∀ξ ∈ M 3×2 |ξ 1 ∧ ξ 2 | ≥ α ⇒ W 0 (ξ) ≤ β α (1 + |ξ| p ) . (26) 
In particular, W 0 satisfies (3), i.e., ∃α,

β > 0 ∀ξ = (ξ 1 | ξ 2 ) ∈ M 3×2 |ξ 1 ∧ ξ 2 | ≥ α ⇒ W 0 (ξ) ≤ β(1 + |ξ| p ) ,
since clearly (26) implies (3). Let I, I, I diff * : W 1,p (Σ; R 3 ) → [0, +∞] be respectively defined by:

I(ψ) := Σ W 0 (∇ψ(x))dx; I(ψ) := inf lim inf n→+∞ I(ψ n ) : ψ n L p → ψ ; I diff * (ψ) := inf lim inf n→+∞ I(ψ n ) : C 1 * (Σ; R 3 ) ψ n L p → ψ , where C 1 * (Σ; R 3 ) is the set of C 1 -immersions from Σ to R 3 , i.e., C 1 * (Σ; R 3 ) := ψ ∈ C 1 (Σ; R 3 ) : ∀x ∈ Σ ∂ 1 ψ(x) ∧ ∂ 2 ψ(x) = 0 .
As W 0 satisfies (3), by Corollary 2.15 we have

∀ψ ∈ W 1,p (Σ; R 3 ) I(ψ) = Σ QW 0 (∇ψ(x))dx.
On the other hand, we can establish the following two lemmas (whose the proofs are given in §3.6.2 and §3.6.3). 

Lemma 3.9 ([AHM08b]). I ≤ Γ-lim inf

I aff reg li (ψ) := inf lim inf n→+∞ I(ψ n ) : Aff reg li (Σ; R 3 ) ψ n L p → ψ ; RI(ψ) := Σ RW 0 (∇ψ(x))dx; RI(ψ) := inf lim inf n→+∞ RI(ψ n ) : ψ n L p → ψ ; RI aff reg li (ψ) := inf lim inf n→+∞ RI(ψ n ) : Aff reg li (Σ; R 3 ) ψ n L p → ψ ,
where Aff reg li (Σ; R 3 ) is a space of "nice" locally injective continuous piecewise affine functions from Σ to R 3 defined as follows.

Definition 3.11. By a regular mesh in R 2 we mean a finite family {V i } i∈I of open disjoint triangles of R 2 such that for every i, j ∈ I with i = j, the intersection of V i and V j is either empty, an edge of each or a vertices of each. Given an open set V ⊂ R 2 , we say that ψ : V → R 3 is affine if it is the restriction to V of an affine function from R 2 to R 3 . The space of all continuous functions ψ : R 2 → R 3 for which there exists a regular mesh {V i } i∈I in R 2 such that for every i ∈ I, ψ Vi is affine and ψ = 0 in R 2 \ ∪ i∈I V i is denoted by Aff reg c (R 2 ; R 3 ). We set: Aff reg (Σ; R 3 ) := ψ Σ : ψ ∈ Aff reg c (R 2 ; R 3 ) ;

Aff reg 0 (Σ; R 3 ) := ψ ∈ Aff reg (Σ; R 3 ) : ψ = 0 on ∂Σ .

We say that ψ : R 2 → R 3 is locally injective in x ∈ R 2 if there exists ρ > 0 such that ψ Bρ(x) is injective, where B ρ (x) denotes the ball centered at x with radius ρ. Given E ⊂ R 2 , when ψ is locally injective in x for all x ∈ E, we say that ψ is locally injective on E. We set Aff reg li (Σ; R 3 ) := ψ Σ : Aff reg c (R 2 ; R 3 ) ψ is locally injective on Σ .

As RI ≤ I, a way for proving (27) is to establish the following three inequalities:

I diff * ≤ I aff reg li ; (28) I aff reg li ≤ RI aff reg li ; (29) RI aff reg li ≤ RI. ( 30 
)
The inequality (28) follows by using the fact that W 0 satisfies (24) and (26) together with the following theorem due to Ben Belgacem and Bennequin (for a proof, see [BB96, Lemme 8 p. 114]; see also [AHM09a, §4.2 p. 52] for a "more analytic" proof).

Theorem 3.12 ([BB96]

). For all ψ ∈ Aff reg li (Σ; R 3 ) there exists {ψ n } n≥1 ⊂ C 1 * (Σ; R 3 ) such that:

ψ n W 1,p → ψ; (31) ∃δ > 0 ∀x ∈ Σ ∀n ≥ 1 |∂ 1 ψ n (x) ∧ ∂ 2 ψ n (x)| ≥ δ. ( 32 
)
The inequality (29) is obtained by exploiting the Kohn-Strang representation of RW 0 . (Note that for establishing this inequality we need the assertion (25).) Finally, we establish the inequality (30) by combining the following two results: the first one is essentially due to Ben Belgacem (a proof is given in §3.6.4) and the second one to Gromov and Èliašberg (for a proof, see [G È71, Theorem 1.3.4B]; see also [AHM09a, §4.1 p. 44]). Lemma 3.13. If W 0 satisfies (26) then:

∃c > 0 ∀ξ ∈ M 3×2 RW 0 (ξ) ≤ c(1 + |ξ| p ); RW 0 is continuous. Theorem 3.14 ([G È71]). Aff reg li (Σ; R 3
) is strongly dense in W 1,p (Σ; R 3 ). Question 3.1. Try to simplify the proof of Theorem 3.8 as follows: first, approximate W satisfying (21), ( 22) and (23) or maybe weaker conditions compatible with the "strong-Determinant Constraint", i.e., (2), by a supremum of p-ample integrands W δ satisfying (5) with α, β > 0 which can depend on δ, then, apply Theorem 3.5 to each W δ , and finally, pass to the limit as δ goes to zero.

Complementary proofs.

3.6.1. Proof of Lemma 3.6. It suffices to prove that

(33) Z ∞ [Z ∞ W ] 0 = Z ∞ W 0 .
Indeed, from Lemma 2.14 we deduce that ZW 0 is of p-polynomial growth, i.e., ∃c > 0 ∀ξ ∈ M 3×2 ZW 0 (ξ) ≤ c(1+|ξ| p ), and so

Z ∞ W 0 is finite since Z ∞ W 0 ≤ ZW 0 .
Hence, QW 0 = Z ∞ W 0 by Theorem 2.4(i). On the other hand, Z ∞ W is of ppolynomial growth (see Lemma 2.16-bis), and so QW = Z ∞ W by Theorem 2.4(i). It follows that [QW ] 0 = [Z ∞ W ] 0 is finite and continuous, and so

Q[QW ] 0 = Q[Z ∞ W ] 0 = Z ∞ [Z ∞ W ] 0 by Theorem 2.2.
Let us now prove (33). For any

ξ ∈ M 3×2 , Z ∞ [Z ∞ W ] 0 (ξ) ≤ [Z ∞ W ] 0 (ξ) ≤ Z ∞ W (ξ | ζ) ≤ W (ξ | ζ) for all ζ ∈ R 3 , and so Z ∞ [Z ∞ W ] 0 (ξ) ≤ W 0 (ξ) for all ξ ∈ M 3×2 , i.e., Z ∞ [Z ∞ W ] 0 ≤ Z ∞ W 0 . It follows that Z ∞ [Z ∞ W ] 0 ≤ Z ∞ W 0 . It then remains to prove that (34) Z ∞ [Z ∞ W ] 0 ≥ Z ∞ W 0 . Given δ > 0 et ξ ∈ M 3×2 , there exist ζ ∈ R 3 and ϕ ∈ W 1,∞ 0 (Y ; R 3 ) (with Y := ]0, 1[ 3 ) such that [Z ∞ W ] 0 (ξ) + δ ≥ Y W ξ + ∇ϕ x3 (x) | ζ + ∂ 3 ϕ(x, x 3 ) dxdx 3 with ϕ x3 ∈ Aff 0 (]0, 1[ 2 ; R 3 ) defined by ϕ x3 (x) := ϕ(x, x 3 ). But Y W ξ + ∇ϕ x3 (x) | ζ + ∂ 3 ϕ(x, x 3 ) dxdx 3 ≥ 1 0 ]0,1[ 2 W 0 (ξ + ∇ϕ x3 (x))dxdx 3 ≥ 1 0 Z ∞ W 0 (ξ)dx 3 = Z ∞ W 0 (ξ), hence [Z ∞ W ] 0 (ξ) + δ ≥ Z ∞ W 0 (ξ), and consequently [Z ∞ W ] 0 (ξ) ≥ Z ∞ W 0 (ξ) by letting δ → 0. Thus [Z ∞ W ] 0 ≥ Z ∞ W 0 ,
and (34) follows.

3.6.2. Proof of Lemma 3.9. Let ψ ∈ W 1,p (Σ; R 3 ) and let {ψ ε } ε ⊂ W 1,p (Σ; R 3 ) be such that ψ ε → ψ in L p (Σ; R 3 ). We have to prove that

(35) lim inf ε→0 I ε (ψ ε ) ≥ I(v).
Without loss of generality we can assume that sup ε>0 I ε (ψ ε ) < +∞. To every ε > 0 there corresponds

φ ε ∈ π -1 ε (ψ ε ) such that (36) I ε (ψ ε ) ≥ I ε (φ ε ) -ε. Defining φε : Σ 1 → R 3 by φε (x, x 3 ) := φ ε (x, εx 3 ) (with Σ 1 = Σ×] -1 2 , 1 2 [) we have (37) I ε (φ ε ) = Σ1 W ∂ 1 φε (x, x 3 ) | ∂ 2 φε (x, x 3 ) | 1 ε ∂ 3 φε (x, x 3 ) dxdx 3 .
Using the coercivity of W , we deduce that ∂ 3 φε L p (Σ1;R 3 ) ≤ cε p for all ε > 0 and some c > 0, and so φεψ ε L p (Σ1;R 3 ) ≤ c ε p by the Poincaré-Wirtinger inequality, where c > 0 is a constant which does not depend on ε. 36) and (37) into account and using the Fatou lemma, we obtain

It follows that φε → ψ in L p (Σ 1 ; R 3 ). For x 3 ∈] -1 2 , 1 2 [, let ϕ x3 ε ∈ W 1,p (Σ; R 3 ) be defined by ϕ x3 ε (x) := φε (x, x 3 ). Then (up to a subsequence) ϕ x3 ε → ψ in L p (Σ; R 3 ) for a.e. x 3 ∈] -1 2 , 1 2 [. Taking (
lim inf ε→0 I ε (ψ ε ) ≥ 1 2 -1 2 lim inf ε→0 Σ W 0 ∇ϕ x3 ε (x) dx dx 3 ,
and (35) follows.

3.6.3. Proof of Lemma 3.10. Given ψ ∈ C 1 * (Σ; R 3 ) and j ≥ 1, define Λ j ψ : Σ -→ -→R 3 by :

Λ j ψ (x) := ζ ∈ R 3 : det(∇ψ(x) | ζ) ≥ 1 j .
It is easy to see that:

Λ j ψ is a nonempty convex closed-valued semicontinuous 1 multifunction; (38) Λ 1 ψ (x) ⊂ Λ 2 ψ (x) ⊂ Λ 3 ψ (x) ⊂ • • • ⊂ ∪ j≥1 Λ j ψ (x) = ζ ∈ R 3 : det(∇ψ(x) | ζ) > 0 . ( 39 
)
In the sequel, given Λ : Σ -→ -→R

3 we set C(Σ; Λ) := φ ∈ C Σ; R 3 : φ(x) ∈ Λ(x) for all x ∈ Σ ,
where C(Σ; R 3 ) denotes the space of all continuous functions from Σ to R 3 .

Lemma 3.15. Let ψ ∈ C 1 * (Σ; R 3 ) and j ≥ 1. If W is continuous and satisfies (23) then inf ϕ∈C(Σ;Λ j ψ ) Σ W (∇ψ(x) | ϕ(x))dx = Σ inf ζ∈Λ j ψ (x) W (∇ψ(x) | ζ)dx.
To prove Lemma 3.15 we need the following interchange theorem of infimum and integral (for a proof, see [AHM03, Corollary 5.4]; see also [AHM09a, §5.2 p. 60]).

Theorem 3.16 ([AHM03]

). Let Λ : Σ -→ -→R

3 and let f : Σ × R 3 → [0, +∞]. Assume that:

2 A multifunction Λ : Σ → R 3 is said to be lower semicontinuous if for every closed subset X of R 3 , every x ∈ Σ and every {xn} n≥1 ⊂ Σ such that |xn -x| → 0 as n → +∞ and Λ(xn) ⊂ X for all n ≥ 1, we have Λ(x) ⊂ X (see [START_REF] Aubin | Set-valued analysis, volume 2 of Systems & Control: Foundations & Applications[END_REF] for more details).

(H 1 ) f is a Carathéodory integrand; (H 2 ) Λ is a nonempty convex closed-valued lower semicontinuous multifunction;

(H 3 ) Σ max α∈[0,1] f x, αϕ(x) + (1 -α) φ(x) dx < +∞. for all ϕ, φ ∈ C(Σ; Λ). Then, inf ϕ∈C(Σ;Λ) Σ f x, ϕ(x) dx = Σ inf ζ∈Λ(x) f (x, ζ)dx. Proof of Lemma 3.15. Since W is continuous, (H 1 ) is satisfied with f (x, ζ) = W (∇ψ(x) | ζ).
Furthermore, taking (38) into account, we see that (H 2 ) holds with Λ = Λ j ψ . On the other hand, given ϕ, φ ∈ C(Σ;

Λ j ψ ), it is clear that det(∇ψ(x) | αϕ(x) + (1 -α) φ(x)) ≥ 1
j for all α ∈ [0, 1] and all x ∈ Σ. Using (23) we can assert that there exists c > 0 (depending only on j, ψ, ϕ and φ) such that W (∇ψ(x)

| αϕ(x) + (1 -α) φ(x)) ≤ c for all α ∈ [0, 1] and all x ∈ Σ. Thus (H 3 ) is satisfied with f (x, ζ) = W (∇ψ(x) | ζ) and Λ = Λ j
ψ , and Lemma 3.15 follows from Theorem 3.16.

The following lemma gives a "non-integral" representation for I on C 1 * (Σ; R 3 ). Lemma 3.17. If W satisfies (21) and (23) and if ψ ∈ C 1 * R 3 ) then

I(ψ) = inf j≥1 inf ϕ∈C(Σ; Λj ψ ) Σ W (∇ψ(x) | ϕ(x))dx.
Proof of Lemma 3.17. It suffices to prove that

I(ψ) ≥ inf j≥1 inf ϕ∈C(Σ; Λj ψ ) Σ W (∇ψ(x) | ϕ(x))dx. (40) 
Using Lemma 3.15, we obtain (41) inf

j≥1 inf ϕ∈C(Σ; Λj ψ ) Σ W (∇ψ(x) | ϕ(x))dx ≤ inf j≥1 Σ inf ζ∈Λ j ψ (x) W ∇ψ(x) | ζ dx.
Consider the continuous function Φ : Σ → R 3 defined by

(42) Φ(x) := ∂ 1 ψ(x) ∧ ∂ 2 ψ(x) |∂ 1 ψ(x) ∧ ∂ 2 ψ(x)| 2 .
Then, det(∇ψ(x) | Φ(x)) = 1 for all x ∈ Σ. Using (23) we deduce that there exists c > 0 depending only on p such that 38) and (39), we see that

Σ inf ζ∈Λ 1 ψ (x) W (∇ψ(x) | ζ)dx ≤ c |Σ| + ∇ψ p L p (Σ;M 3×2 ) + Φ p L p (Σ;R 3 ) . It follows that inf ζ∈Λ 1 ψ (•) W (∇ψ(•) | ζ) ∈ L 1 (Σ). From (
{inf ζ∈Λ j ψ (•) W (∇ψ(•) | ζ)} j≥1 is non-increasing and (43) inf j≥1 inf ζ∈Λ j ψ (x) W ∇ψ(x) | ζ = W 0 ∇ψ(x)
for all x ∈ Σ, and (40) follows from (41) and (43) by using the Lebesgue monotone convergence theorem.

We can now prove Lemma 3.10. As Γ-lim sup ε→0 I ε is lower semicontinuous with respect to the strong topology of L p (Σ; R 3 ), it is sufficient to prove that (44) lim sup

ε→0 I ε (ψ) ≤ I(ψ)
for all ψ ∈ C 1 * (Σ; R 3 ). Given ψ ∈ C 1 * (Σ; R 3 ), fix any j ≥ 1 and any n ≥ 1. Using Lemma 3.17 we obtain the existence of ϕ ∈ C(Σ; Γj ψ ) such that (45

) Σ W (∇ψ(x) | ϕ(x))dx ≤ I(ψ) + 1 n . Let {ϕ k } k≥1 ⊂ C ∞ (Σ; R 3 ) be such that (46) ϕ k → ϕ uniformly as k → +∞. We claim that: det(∇ψ(x) | ϕ k (x)) ≥ 1 2j for all x ∈ Σ, all k ≥ k ψ and some k ψ ≥ 1; (47) lim k→+∞ Σ W (∇ψ(x) | ϕ k (x))dx = Σ W (∇ψ(x) | ϕ(x))dx. (48) Indeed, setting µ ψ := sup x∈V |∂ 1 ψ(x) ∧ ∂ 2 ψ(x)| = max i∈I |ξ i,1 ∧ ξ i,2 | (µ ψ > 0)
and using (46), we deduce that there exists k ψ ≥ 1 such that (49) sup 

x∈Σ |ϕ k (x) -ϕ(x)| < 1 2jµ ψ for all k ≥ k ψ . Let x ∈ Σ and let k ≥ k ψ . As ϕ ∈ C(Σ; Γj ψ ) we have (50) det(∇ψ(x) | ϕ k (x)) ≥ 1 j -det(∇ψ(x) | ϕ k (x) -ϕ(x)). Noticing that det(∇ψ(x) | ϕ k (x) -ϕ(x)) ≤ |∂ 1 ψ(x) ∧ ∂ 2 ψ(x)||ϕ k (x) -ϕ(x)|, from (49) 
:] -1 2 , 1 2 [→ R by θ(x 3 ) := inf x∈Σ det(∇ψ(x) + x 3 ∇ϕ k (x) | ϕ k (x))
. By (47) we have θ(0) ≥ 1 2j and so there exists

η ψ ∈]0, 1 2 [ such that θ(x 3 ) ≥ 1 4j for all x 3 ∈] -η ψ , η ψ [. Let φ k : Σ 1 → R be given by φ k (x, x 3 ) := ψ(x) + x 3 ϕ k (x). From the above it follows that det(∇φ k (x, εx 3 )) ≥ 1 4j for all ε ∈]0, η ψ [ and all (x, x 3 ) ∈ Σ×] - 1 2 , 1 2 [. (51) 
As in the proof of (48), combining (51) et (23) and using the continuity of W , we obtain

(52) lim ε→0 I ε (φ k ) = lim ε→0 Σ1 W (∇φ k (x, εx 3 ))dxdx 3 = Σ W (∇ψ(x) | ϕ k (x))dx. Since π ε (φ k ) = ψ, I ε (ψ) ≤ I ε (φ k
) for all ε > 0 and all k ≥ k ψ . Using (52), ( 48) and (45), we deduce that lim sup ε→0 I ε (ψ) ≤ I(ψ) + 1 n , and (44) follows by letting n → +∞. 

F ∈ M m×N , 0 ≤ v 1 (F ) ≤ • • • ≤ v N (F ) denote the singular values of F . Set v(F ) := N i=1 v i (F ). F σ j = P JQ T diag(v 1 (F ), • • • , σ(1)α, • • • , σ(j)α, • • • , v N (F )); if σ(j) = σ (j) and σ(l) = σ (l) for all l ∈ {1, • • • , j -1} then rank(F σ j - F σ j ) = 1; if σ(1) = σ (1) then F = (1 -t 1 )F σ 1 + t 1 F σ 1 ; if σ (j + 1) = σ (j + 1) and σ (l) = σ (l) = σ(l) for all l ∈ {1, • • • , j}, then F σ j = (1 -t j+1 )F σ j+1 + t j+1 F σ j+1 . It follows that: if σ(1) = σ (1) then RW (F ) ≤ RW (F σ 1 ) + RW (F σ 1 ); if σ (j + 1) = σ (j + 1) and σ (l) = σ (l) = σ(l) for all l ∈ {1, • • • , j}, then RW (F σ j ) ≤ RW (F σ j+1 ) + RW (F σ j+1 ). Hence RW (F ) ≤ σ∈S k RW (F σ k ).
Moreover, we have

v(F σ k ) = det(diag(v 1 (F ), • • • , σ(1)α, • • • , σ(k)α, • • • , v N (F ))) = α k i ∈{i1,•••i k } v i (F ),
and so v(F σ k ) ≥ α N ≥ α for all σ ∈ S k . Using (53) we deduce that

RW (F ) ≤ σ∈S k β(1 + |F σ k | p ). But |F σ k | 2 = diag(v 1 (F ), • • • , σ(1)α, • • • , σ(k)α, • • • , v N (F )) 2 = kα 2 + i ∈{i1,••• ,i k } v 2 i (F ) ≤ Nα 2 + |F | 2 , hence RW (F ) ≤ σ∈S k β 1 + 2 p 2 (N p 2 α p + |F | p ) ≤ c(1 + |F | p ) with c = 2 N β(1 + 2 p 2 N p 2 α p )
, which is the desired conclusion.

Remark 3.19. When m = N , it is easy to check that v(F ) = |detF | for all

F ∈ M N ×N . Consequently, if W satisifies (5), i.e., ∃α, β > 0 ∀F ∈ M N ×N |detF | ≥ α ⇒ W (F ) ≤ β(1 + |F | p ) ,
then RW is of p-polynomial growth, i.e., ∃c > 0 ∀F ∈ M N ×N ZW (F ) ≤ c(1+|F | p ). Proof of (56). Let ψ ∈ W 1,p (Σ; R 3 ). By Theorem 3.14 there exists {ψ n } n≥1 ⊂ Aff reg li (Σ; R 3 ) such that ∇ψ n → ∇ψ in L p (Σ; R 3 ) and ∇ψ n (x) → ∇ψ(x) a.e. in Σ. Taking Lemma 3.13 into account, from the Vitali theorem, we deduce that lim n→+∞ Σ RW 0 (∇ψ n (x))dx = Σ RW 0 (∇ψ(x))dx, and (56) follows.

Proof of (55). We begin with some preliminaries: mainly, we state five lemmas. The proof of the first lemma (which is due to Kohn and Strang) will be omitted while the four others lemma will be proved below. Define the sequence {R i W 0 } i≥0 by R 0 W 0 = W 0 and for every i ≥ 1 and every ξ ∈ M 3×2 ,

R i+1 W 0 (ξ) := inf a∈R N b∈R m t∈[0,1] (1 -t)R i W 0 (ξ -ta ⊗ b) + tR i W 0 (ξ + (1 -t)a ⊗ b) . Lemma 3.20 ([KS86]). R i+1 W 0 ≤ R i W 0 for all i ≥ 0 and RW 0 = inf i≥0 R i W 0 .
Fix any i ≥ 0 and any ψ ∈ Aff reg li (Σ; R 3 ). Then, there exists a finite family {V j } j∈J of open disjoint subsets of Σ such that |Σ \ ∪ j∈J V j | = 0 for all j ∈ J and for every j ∈ J, |∂V j | = 0 and ∇ψ(x) = ξ j in V j with ξ j ∈ M 3×2 . As ψ is locally injective we have rang(ξ j ) = 2 for all j ∈ J. Fix any j ∈ J.

Lemma 3.21. R i W 0 is continuous. Lemma 3.22. There exist a ∈ R 2 , b ∈ R 3 and t ∈ [0, 1] such that R i+1 W 0 (ξ j ) = (1 -t)R i W 0 (ξ j -ta ⊗ b) + tR i W 0 (ξ j + (1 -t)a ⊗ b) with a ⊗ b ∈ R 2 ⊗ R 3 ⊂ M 3×2
given by (a ⊗ b)x := a, xb for all x ∈ R 2 , where •, • denotes the scalar product in R 2 .

Without loss of generality we can assume that a = (1, 0). For every n ≥ 1 and for every k

∈ {0, • • • , n -1}, consider A - k,n , A + k,n , B k,n , B - k,n , B + k,n , C k,n , C - k,n , C +
k,n ⊂ Y given by:

A - k,n := (x 1 , x 2 ) ∈ Y : k n ≤ x 1 ≤ k n + 1-t n and 1 n ≤ x 2 ≤ 1 -1 n ; A + k,n := (x 1 , x 2 ) ∈ Y : k n + 1-t n ≤ x 1 ≤ k+1 n and 1 n ≤ x 2 ≤ 1 -1 n ; B k,n := (x 1 , x 2 ) ∈ Y : k n ≤ x 1 ≤ k+1 n and 0 ≤ x 2 ≤ -x 1 + k+1 n ; B - k,n := (x 1 , x 2 ) ∈ Y : -x 2 + k+1 n ≤ x 1 ≤ -tx 2 + k+1 n and 0 ≤ x 2 ≤ 1 n ; B + k,n := (x 1 , x 2 ) ∈ Y : -tx 2 + k+1 n ≤ x 1 ≤ k+1 n and 0 ≤ x 2 ≤ 1 n ; C k,n := (x 1 , x 2 ) ∈ Y : k n ≤ x 1 ≤ k+1 n and x 1 + 1 -k+1 n ≤ x 2 ≤ 1 ; C - k,n := (x 1 , x 2 ) ∈ Y : x 2 -1 + k+1 n ≤ x 1 ≤ t(x 2 -1) + k+1 n and n-1 n ≤ x 2 ≤ 1 ; C + k,n := (x 1 , x 2 ) ∈ Y : t(x 2 -1) + k+1 n ≤ x 1 ≤ k+1 n and n-1 n ≤ x 2 ≤ 1 ,
and define {σ n } n≥1 ⊂ Aff reg 0 (Y ; R) by

σ n (x 1 , x 2 ) :=            -t(x 1 -k n ) i f( x 1 , x 2 ) ∈ A - k,n (1 -t)(x 1 -k+1 n ) i f( x 1 , x 2 ) ∈ A + k,n ∪ B + k,n ∪ C + k,n -t(x 1 + x 2 -k+1 n ) if(x 1 , x 2 ) ∈ B - k,n -t(x 1 -x 2 + 1 -k+1 n ) if (x 1 , x 2 ) ∈ C - k,n 0 i f ( x 1 , x 2 ) ∈ B k,n ∪ C k,n . Set b l := b if b ∈ Imξ j b + 1 l ν if b ∈ Imξ j (with Imξ j := {ξ j • x : x ∈ R 2 } ⊂ R 3 ) where l ≥ 1 and ν ∈ R 3 is a normal vector to Imξ j . Lemma 3.23. Define {θ n,l } n,l≥1 ⊂ Aff reg 0 (Y ; R 3 ) by θ n,l (x) := σ n (x)b l . Then (57) lim l→+∞ lim n→+∞ Y R i W 0 (ξ j + ∇θ n,l (x))dx = R i+1 W 0 (ξ j ).
Consider V j q ⊂ V j given by V j q := {x ∈ V j : dist(x, ∂V j ) > 1 q } with q ≥ 1 large enough. Then, there exists a finite family {r m + ρ m Y } m∈M of disjoint subsets of

V j q with r m ∈ R 2 and ρ m ∈]0, 1[, such that |V j q \ ∪ m∈M (r m + ρ m Y )| ≤ 1 q . Let {φ n,l,q } n,l,q≥1 ⊂ Aff reg 0 (V j ; R 3 ) be given by φ n,l,q (x) :=    ρ m θ n,l x -r m ρ m si x ∈ r m + ρ m Y ⊂ V j q 0 s i x ∈ V j \ V j q .
Lemma 3.24. Define {Φ j n,l,q } n,l,q ⊂ Aff reg (V j ; R 3 ) by (58) Φ j n,l,q (x) := ψ(x) + φ n,l,q (x). Then:

(i) for every n, l, q ≥ 1, Φ j n,l,q is locally injective; (ii) for every l, q ≥ 1, Φ j n,l,q → ψ in L p (V j ; R 3 ); (iii) lim q→+∞ lim l→+∞ lim n→+∞ Vj R i W 0 (∇Φ j n,l,q (x))dx = |V j |R i+1 W 0 (ξ j ). We can now prove (55). According to Lemma 3.20, it is sufficient to show that

(P i ) I Aff reg li (ψ) ≤ Σ R i W 0 (∇ψ(x))dx for all ψ ∈ Aff reg li (Σ; R 3 )
for all i ≥ 0. The proof is by induction on i. As R 0 W 0 = W 0 it is clear that (P 0 ) is true. Assume that (P i ) is true, and prove that (P i+1 ) is true. Let ψ ∈ Aff reg li (Σ; R 3 ). Then, there exists a finite family {V j } j∈J of open disjoint subsets of Σ such that |Σ \ ∪ j∈J V j | = 0 for all j ∈ J and for every j ∈ J, |∂V j | = 0 and ∇ψ(x) = ξ j in V j with ξ j ∈ M 3×2 . Define {Ψ n,l,q } n,l,q≥1 ⊂ Aff reg (Σ; R 3 ) by Ψ n,l,q (x) := Φ j n,l,q (x) if x ∈ V j with Φ j n,l,q given by (58). Taking Lemma 3.24(i) into account (and recalling that rappelant ψ is locally injective) it is easy to see that Ψ n,l,q is locally injective. Using (P i ) we can assert that

I Aff reg li (Ψ n,l,q ) ≤ Σ R i W 0 (∇Ψ n,l,q (x))dx
for all n, l, q ≥ 1. By Lemma 3.24(ii) it is clear that for every l, q ≥ 1, Ψ n,l,q → ψ in L p (Σ; R 3 ). It follows that

I Aff reg li (ψ) ≤ lim n→+∞ I Aff reg li (Ψ n,l,q ) ≤ lim n→+∞ Σ R i W 0 (∇Ψ n,l,q (x))dx
for all l, q ≥ 1. Moreover, from Lemma 3.24(iii) we see that

lim q→+∞ lim l→+∞ lim n→+∞ Σ R i W 0 (∇Ψ n,l,q (x))dx = Σ R i+1 W 0 (∇ψ(x))dx.
Hence

I Aff reg li (ψ) ≤ Σ R i+1 W 0 (∇ψ(x))dx,
and (P i+1 ) follows. This completes the proof of the assertion (55).

In what follows, we give the proof of Lemmas 3.23, 3.24, 3.21 and 3.22.

Proof of Lemma 3.23. Recalling that a = (1, 0) we see that

ξ j + ∇θ n,l (x) :=            ξ j -ta ⊗ b l if x ∈ int(A - k,n ) ξ j + (1 -t)a ⊗ b l if x ∈ int(A + k,n ∪ B + k,n ∪ C + k,n ) ξ j -t(a + a ⊥ ) ⊗ b l if x ∈ int(B - k,n ) ξ j -t(a -a ⊥ ) ⊗ b l if x ∈ int(C - k,n ) ξ j if x ∈ int(B k,n ) ∪ int(C k,n )
with a ⊥ = (0, 1) (and int(E) denotes the interior of the set E). Moreover, we have:

∪ n-1 k=0 A - k,n R i W 0 (ξ j -ta ⊗ b l )dx = (1 -t)(1 -2 n )R i W 0 (ξ j -ta ⊗ b l ); ∪ n-1 k=0 A + k,n R i W 0 (ξ j + (1 -t)a ⊗ b l )dx = t(1 -2 n )R i W 0 (ξ j + (1 -t)a ⊗ b l ); ∪ n-1 k=0 (B + k,n ∪C + k,n ) R i W 0 (ξ j + (1 -t)a ⊗ b l )dx = t n R i W 0 (ξ j + (1 -t)a ⊗ b l ); ∪ n-1 k=0 B - k,n R i W 0 (ξ j -t(a + a ⊥ ) ⊗ b l )dx = 1-t 2n R i W 0 (ξ j -t(a + a ⊥ ) ⊗ b l ); ∪ n-1 k=0 C - k,n R i W 0 (ξ j -t(a -a ⊥ ) ⊗ b l )dx = 1-t 2n R i W 0 (ξ j -t(a -a ⊥ ) ⊗ b l ); ∪ n-1 k=0 (B k,n ∪C k,n ) R i W 0 (ξ j )dx = 1 n R i W 0 (ξ j ). Hence Y R i W 0 (ξ j + ∇θ n,l (x))dx = 1 - 2 n (1 -t)R i W 0 (ξ j -ta ⊗ b l ) + tR i W 0 (ξ j + (1 -t)a ⊗ b l ) + 1 n tR i W 0 (ξ j + (1 -t)a ⊗ b l ) + 1 -t 2 R i W 0 (ξ j -t(a + a ⊥ ) ⊗ b l ) + R i W 0 (ξ j - t(a -a ⊥ ) ⊗ b l ) + R i W 0 (ξ j ) for all n, l ≥ 1. It follows that lim n→+∞ Y R i W 0 (ξ j + ∇θ n,l (x))dx = (1 -t)R i W 0 (ξ j -ta ⊗ b l ) + tR i W 0 (ξ j + (1 -t)a ⊗ b l )
for all l ≥ 1. Taking Lemma 3.21 into account and noticing that b l → b, we deduce that

lim l→+∞ lim n→+∞ Y R i W 0 (ξ j + ∇θ n,l (x))dx = (1 -t)R i W 0 (ξ j -ta ⊗ b) + tR i W 0 (ξ j + (1 -t)a ⊗ b),
and (57) follows by using Lemma 3.22.

Proof of Lemma 3.24. (i) Let x ∈ V j and let W ⊂ V j be the connected component of V j such that x ∈ W (As V j is open, so is W ). Since ∇ψ = ξ j in W , there exists c ∈ R 3 such that ψ(x ) = ξ j • x + c for all x ∈ W . We claim that Φ j n,l,q W is injective. Indeed, let x ∈ W be such that Φ j n,l,q (x) = Φ j n,l,q (x ). Then, one of the three possibilities holds:

   Φ j n,l,q (x) = ξ j • x + c + ρ m σ n x-rm ρm b l Φ j n,l,q (x ) = ξ j • x + c + ρ m σ n x -r m ρ m b l ; (59) Φ j n,l,q (x) = ξ j • x + c + ρ m σ n x-rm ρm b l Φ j n,l,q (x ) = ξ j • x + c; (60) Φ j n,l,q (x) = ξ j • x + c Φ j n,l,q (x ) = ξ j • x + c. (61) 
Setting α := ρ m σ n ( x-rm ρm )ρ m σ n ( x -r m ρ m ) and β := ρ m σ n ( x-rm ρm ) we have: Case where either t = 0 or t = 1. Assume that t = 0 (the case t = 1 can be treated in the same way). Then 1t n ≥ α > 0 for all n ≥ 1. As p > 1 and t n → 0, using (62) we deduce that there exists F ∈ M 3×2 such that F n → F and t n G n → 0. As (1t n )F n + t n G n = ξ for all n ≥ 1, it follows that F = ξ. Hence Case where either t = 0 or t = 1. Assume that t = 1 (the case t = 0 can be treated in the same way). Then t n ≥ β > 0 for all n ≥ 1. As p > 1 and t n → 1, by (62) we have G n → G with G ∈ M 3×2 and (1t n )F n → 0. As (1t n )F n + t n G n = ξ n for all n ≥ 1. Hence

lim n→+∞ (1 -t n )h(F n ) = h(ξ) since h is continuous. But t n h(G n ) = H(ξ, t n , a n ⊗ b n ) -(1 -t n )h(F n ) for all n ≥
G = lim n→+∞ (1 -t n )F n + t n G n = lim n→+∞ ξ n = ξ,
and consequently We prove now that H is coercive. By the coercivity of h we have

lim n→+∞ t n h(G n ) = h(ξ) since h is continuous. But (1 -t n )h(F n ) = H(ξ n , t n , a n ⊗ b n ) -t n h(G n ) for all n ≥ 1, hence lim n→+∞ (1 -t n )h(F n ) = lim
H(ξ) ≥ C inf{(1 -t)|ξ -ta ⊗ b| p + t|ξ + (1 -t)a ⊗ b| p : (t, a ⊗ b) ∈ [0, 1] × R 2 ⊗ R 3 }
for all ξ ∈ M 3×2 and some C > 0. But We can now prove Lemmas 3.21 and 3.22. As W is continuous and coercive, it is easy to see that W 0 = R 0 W 0 is also continuous and coercive. Moreover, using Lemma 3.27 with h = R q W 0 , we see that if R q W 0 is continuous and coercive, so is R q+1 W 0 . Hence, R q W 0 is continuous and coercive for all q ≥ 0, which proves Lemma 3.21. As rank(ξ j ) = 2, by (25) we have W 0 (ξ j ) < +∞. Hence, R i+1 W 0 (ξ j ) < +∞ since R i+1 W 0 ≤ W 0 , and Lemma 3.22 follows by using Lemma 3.26 with h = R i W 0 .

2..

  Relaxation theorems with determinant type constraints 2.1. Statement of the problem. Let m, N ∈ N (with min{m, N } > 1), let p > 1 and let W : M m×N → [0, +∞] be Borel measurable and p-coercive, i.e., ∃C > 0 ∀F ∈ M m×N W (F ) ≥ C|F | p , where M m×N denotes the space of real m × N matrices. Define the functional I : W 1,p (Ω; R m ) → [0, +∞] by I(φ) := Ω W (∇φ(x))dx, where Ω ⊂ R N is a bounded open set, and consider I : W 1,p (Ω; R m ) → [0, +∞] (the relaxed functional of I) given by I(φ) := inf lim inf n→+∞ I(φ n ) : φ n L p → φ Denote the quasiconvex envelope of W by QW : M m×N → [0, +∞]. The problem of the relaxation is the following. Problem 2.1. Prove (or disprove) that ∀φ ∈ W 1,p (Ω; R m ) I(φ) = Ω QW (∇φ(x))dx and find a representation formula for QW .

  +∞ ⇐⇒ detF ≤ 0 (non-interpenetration of matter) W (F ) → +∞ as detF → 0 +   necessity of an infinite amount of energy to compress a finite volume into zero volume   , is still unknown (see §2.7).2.2. Representation of QW and I: finite case. Let Z ∞ W, ZW : M m×N → [0, +∞] be respectively defined by:Z ∞ W (F ) := inf Y W (F + ∇ϕ(y))dy : ϕ ∈ W 1,∞ 0 (Y ; R m ) ; ZW (F ) := inf Y W (F + ∇ϕ(y))dy : ϕ ∈ Aff 0 (Y ; R m ) ,whereY :=]0, 1[ N , W 1,∞ 0 (Y ; R m ) := {ϕ ∈ W 1,∞ (Y ; R m ) : ϕ =0 on ∂Y } and Aff 0 (Y ; R m ) := {ϕ ∈ Aff(Y ; R m ) : ϕ = 0 on ∂Y } with Aff(Y ; R m ) denoting the space of continuous piecewise affine functions from Y to R m . Remark 2.1. One always has W ≥ ZW ≥ Z ∞ W ≥ QW .

ε→0 I ε .

 ε Lemma 3.10 ([AHM08b]). If (21), (22) and (23) hold then Γ-lim sup ε→0 I ε ≤ I diff * . Hence, taking Lemma 3.3 into account, it suffices to prove that (27) I diff * ≤ I. Let us outline the proof of (27) (a more detailled proof is given in §3.6.5). Consider I aff reg li , RI, RI, RI aff reg li : W 1,p (Σ; R 3 ) → [0, +∞] respectively defined by:

  and (50) we deduce that det(∇ψ(x) | ϕ k (x)) ≥ 1 2j and (47) is proved. Combining (47) and (23) we see that sup k≥k ψ W (∇ψ(•) | ϕ k (•)) ∈ L 1 (Σ). As W is continuous we have lim k→+∞ W (∇ψ(x) | ϕ k (x)) = W (∇ψ(x) | ϕ(x)) for all x ∈ Σ, and (48) follows by the Lebesgue dominated convergence theorem. Fix any k ≥ k ψ et define the continuous function θ

3.6. 4 .

 4 Proof of Lemma 3.13. In what follows N ≤ m and given

  Proof of Lemma 3.26.Let {(t n , a n ⊗ b n )} n≥1 ⊂ [0, 1] × R 2 ⊗ R 3 be a minimizing sequence for H(ξ) such that t n → t ∈ [0, 1]. Set F n := ξt n a n ⊗ b n et G n := ξ + (1t n )a n ⊗ b n . Then (1t n )F n + t n G n = ξ et G n -F n = a n ⊗ b n for all n ≥ 1.By the coercivity of h we have(1t n )|F n | p + t n |G n | p≤ c for all n ≥ 1 and some c > 0. (62) One of the two possibilities holds:t ∈]0, 1[; either t = 0 or t = 1. Case where t ∈]0, 1[. It is clear that 1t n ≥ α 1 > 0 et t n ≥ α 2 > 0 for all n ≥ 1. Using (62) we deduce that there exists F, G ∈ M 3×2 such that (up to a subsequence)F n → F and G n → G. Consequently, G n -F n = a n ⊗ b n → G -F . But, from Lemma 3.25, R 2 ⊗ R 3 is closed in M 3×2 , and so G -F ∈ R 2 ⊗ R 3 , i.e., G -F = a ⊗ b with a ∈ R 2 et b ∈ R 3 . As H(ξ, •, •) is continuous, it follows that H(ξ) = limn→+∞ H(ξ, t n , a n ⊗ b n ) = H(ξ, t, a ⊗ b).

  1 and H(ξ) ≤ h(ξ), hencelim n→+∞ t n h(G n ) = H(ξ)h(ξ) ≤ 0.On the other hand, using the coercivity of h, we see thatt n h(G n ) ≥ Ct n |G n | p for all n ≥ 1 and some C > 0. Then lim n→+∞ t n h(G n ) ≥ C lim n→+∞ t n |G n | p = 0,and consequently limn→+∞ t n h(G n ) = 0. Thus H(ξ) = h(ξ) = H(ξ, 0, a ⊗ b), where a ⊗ b is any element of R 2 ⊗ R 3 .Lemma 3.27. H is continuous and coercive.

F

  n := ξ nt n a n ⊗ b n and G n := ξ n + (1t n )a n ⊗ b n .As in the proof of Lemma 3.26, we consider two cases. Case where t ∈]0, 1[. Using the same arguments as in the proof of Lemma 3.26, we obtainG n -F n = a n ⊗ b n → a ⊗ b with a ∈ R 2 and b ∈ R 3 . Hence lim n→+∞ H(ξ n ) = lim n→+∞ H(ξ n , t n , a n ⊗ b n ) = H(ξ, t, a ⊗ b) ≥ H(ξ)since H is continuous.

n→+∞H

  (ξ n )h(ξ) ≤ 0 because lim n→+∞ H(ξ n ) ≤ h(ξ) since H(ξ n ) ≤ h(ξ n ) pour tout n ≥ 1.On the other hand, using the coercivity of h, we see that (1t n )h(F n ) ≥ C(1t n )|F n | p for all n ≥ 1 with C > 0. Hence lim n→+∞ (1t n )h(F n ) ≥ C lim n→+∞ (1t n )|F n | p = 0. Thus lim n→+∞ (1t n )h(F n ) = 0,and consequently lim n→+∞ H(ξ n ) = h(ξ) ≥ H(ξ).

( 1

 1 -t)|ξ -ta⊗b| p +t|ξ +(1-t)a⊗b| p ≥ |(1-t)(ξ -ta⊗b)+t(ξ +(1-t)a⊗b)| p = |ξ| p ,and so H(ξ) ≥ C|ξ| p for all ξ ∈ M 3×2 .

  Proof of (54). Let ψ ∈ Aff reg li (Σ; R 3 ). By Theorem 3.12 there exists {ψ n } n≥1 ⊂ C 1 * (Σ; R 3 ) such that (31) and (32) holds and ∇ψ n (x) → ∇ψ(x) a.e. in Σ. As W 0 satisfies (25), i.e., W 0 is continuous, we have But ∇ψ n → ∇ψ in L p (Σ; M 3×2 ) by (31), hence {W 0 (∇ψ n (•))} n≥1 is absolutely uniformly integrable. Using the Vitali theorem, we obtain

		if										
	(55)		I Aff reg li (ψ) ≤		Σ	RW 0 (∇ψ(x))dx for all ψ ∈ Aff reg li (Σ; R 3 )
		then (22) holds;								
		if										
	(56)		RI Aff reg li (ψ) ≤		Σ	RW 0 (∇ψ(x))dx for all ψ ∈ W 1,p (Σ; R 3 )
		then (23) holds.								
	Hence, we only need to show (54), (55) and (56).
			lim n→+∞	W 0	∇ψ n (x)	= W 0	∇ψ(x)	a.e. in Σ.
	Using (26) together with (32) we deduce that there exists c > 0 such that for every
	n ≥ 1 and every measurable set A ⊂ Σ,
	A	W 0	∇ψ n (x)	dx ≤ c		|A| +	A	|∇ψ n (x) -∇ψ(x)| p	dx +	A	|∇ψ(x)| p	dx	.
			lim n→+∞	Σ	W 0 (∇ψ n (x))dx =	Σ	W 0 (∇ψ(x))dx,
	and (54) follows.									
	3.6.5. Proof of the inequality (27). It suffices to prove the inequalities (28), (29)
	and (30). On the other hand, it clear that:
		if										
	(54)		I diff * (ψ) ≤	Σ	W 0 (∇ψ(x))dx for all ψ ∈ Aff reg li (Σ; R 3 )
		then (21) holds;								

  Proof of Lemma 3.27. We first prove thatH is continuous. Since H(•, t, a⊗ b) is continuous for all (t, a ⊗ b) ∈ [0, 1] × R 2 ⊗ R 3 ,H is upper semicontinuous. Thus, we are reduced to show that H is lower semicontinuous. To do this, consider ξ ∈ M 3×2 and {ξ n } n≥1 ⊂ M 3×2 such that: ξ n → ξ; sup n≥1 H(ξ n ) < +∞; lim n→+∞ H(ξ n ) = lim inf n→+∞ H(ξ n ), and prove that H(ξ) ≤ lim Lemma 3.26, for every n ≥ 1, there exists (t n , a n⊗ b n ) ∈ [0, 1] × R 2 ⊗ R 3 such that H(ξ n ) = H(ξ n , t n , a n ⊗ b n ).Without loss of generality we can assume that t n → t ∈ [0, 1]. From the coercivity of h, we deduce that (62) holds with

	By

n→+∞ H(ξ n ).

When N = 2 and m = 3, it easy to check that v(F ) = |F 1 ∧ F 2 | for all F = (F 1 | F 2 ) ∈ M 3×2 . Recalling that any finite rank-one convex function is continuous, we see that Lemma 3.13 is a direct consequence of the following theorem.

Theorem 3.18. Assume that

Then RW is of p-polynomial growth, i.e.,

Proof of theorem 3.18. Without loss of generality we can assume that α ≥ 1.

and so F = (1t 1 )F - 1 + t 1 F + 1 with:

with:

In the same manner, we obtain

with:

We continue in this fashion obtaining a finite sequence {F σ j } σ∈Sj j∈{1,••• ,k} ⊂ M m×N , where S j denotes the set of all maps σ : {1, • • • , j} → {-, +}, with the following properties:

when (60) is satisfied;

Using Lemma 3.23 we deduce that

for all q ≥ 1, and (iii) follows since

q | → 0). Proof of Lemmas 3.21 and 3.22. We begin by proving three lemmas.

where S 1 is the unit sphere in R 2 . As S 1 is compact, there exists u ∈ S 1 such that (up to a subsequence) u n → u. Let u 0 ∈ R 2 be such that u, u 0 = 0. Then, u n , u 0 = 0 for all n ≥ n 0 with n 0 ≥ 1 large enough. For every