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ON A HOMOGENIZATION TECHNIQUE FOR SINGULAR
INTEGRALS

OMAR ANZA HAFSA, MOHAMED LAMINE LEGHMIZI,
AND JEAN-PHILIPPE MANDALLENA

Abstract. We study homogenization by Γ-convergence of functionals of type
Z

Ω
W

“ x

ε
,∇φ(x)

”
dx,

where Ω ⊂ RN is a bounded open set, φ ∈ W 1,p(Ω; Rm) and p > 1, when
the 1-periodic integrand W : RN ×Mm×N → [0, +∞] is not of p-polynomial
growth. Our homogenization technique can be applied when m = N and W
has a singular behavior of type W (x, ξ) → +∞ as detξ → 0. However, our
technique is not consistent with the constraint W (x, ξ) = +∞ if and only if
detξ ≤ 0.

1. Introduction

Consider the family of integral functionals {Iε}ε>0 given by

(1.1) Iε(φ) :=
�

Ω
W

�
x

ε
,∇φ(x)

�
dx,

where ε > 0 is a (small) parameter, Ω ⊂ RN a bounded open set with |∂Ω| = 0
(where | · | denotes the Lebesgue measure in RN ), φ ∈ W

1,p(Ω; Rm) with p > 1
and W : RN ×Mm×N → [0,+∞] assumed to be Borel measurable, where Mm×N

denotes the space of real m×N matrices, is p-coercive, i.e.,

(1.2) W (x, ξ) ≥ C|ξ|p for all (x, ξ) ∈ RN ×Mm×N and some C > 0,

1-periodic, i.e.,

(1.3) W (x + ei, ξ) = W (x, ξ) for all (x, ξ) ∈ RN ×Mm×N and i = 1, · · · , N,

where (e1, · · · , eN ) is the standard basis of RN , and of p-polynomial growth, i.e.,

(1.4) W (x, ξ) ≤ c(1 + |ξ|p) for all (x, ξ) ∈ RN ×Mm×N and some c > 0.

In [Bra85] (see also [BD98, Theorem 14.5 p. 111]) Braides proved that Iε Γ-converge
with respect to the L

p(Ω; Rm)-convergence as ε → 0 (see Definition 3.1) to the
functional Ihom defined on W

1,p(Ω; Rm) by

(1.5) Ihom(φ) :=
�

Ω
Whom(∇φ(x))dx

with Whom : Mm×N → [0,+∞] given by

(1.6) Whom(ξ) := inf
k≥1

1
kN

inf
��

kY
W (x, ξ +∇ϕ(x))dx : ϕ ∈ W

1,p
0 (kY ; Rm)

�

with Y :=]0, 1[N and W
1,p
0 (kY ; Rm) := {ϕ ∈ W

1,p(kY ; Rm) : ϕ = 0 on ∂(kY )}.
This result established a suitable variational framework to deal with homogeniza-
tion problems in the vectorial case: it is the point of departure of many works on
the subject related to hyperelasticity (in the scalar case and for some problems

Key words and phrases. Homogenization, Γ-convergence, singular integrand, determinant con-
straints type, hyperelasticity.
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related to hyperelasticity, see [CCDAG02, CCDAG04]). However, because of the
p-polynomial growth assumption (1.4), Braides’s homogenization theorem is not
compatible with the following two important physical properties: the noninterpen-
etration of the matter, i.e., W (x, ξ) = +∞ if and only if detξ ≤ 0, and the necessity
of an infinite amount of energy to compress a finite volume into zero volume, i.e.,
W (x, ξ) → +∞ as detξ → 0, where detξ denotes the determinant of the N × N

matrix ξ.
In this paper we show that by using Braides’s homogenization theorem (see The-
orem 3.2) and a slight generalization of a relaxation theorem (see Theorem 2.7),
that we obtained in [AHM07, AHM08], it is possible to establish a homogenization
theorem (see Theorem 3.4) which applies to functionals of type (1.1) when the inte-
grand is singular (see Corollary 4.2). A typical example of a such singular integrand
is given by W : RN ×MN×N → [0,+∞] of the form

(1.7) W (x, ξ) = |ξ|p + a(x)h(detξ)

where 0 < η ≤ a ∈ L
∞(RN ) ∩ C(RN ) is a 1-periodic function and h : R → [0,+∞]

is a measurable function for which there exist γ, δ > 0 such that h(t) ≤ δ for all
|t| ≥ γ. For example, given s > 0 and T ≥ 0 (possibly very large), this latter
condition is satisfied with γ = 2T and δ = max{ 1

(2T )s , T} when h is of type

(1.8) h(t) =






T if t < −T

+∞ if t ∈ [−T, 0]
1
ts

if t > 0.

Note that W as in (1.7) with h given by (1.8) is compatible with the singular
behavior W (x, ξ) → +∞ as detξ → 0 (however, such a W is not consistent with
the noninterpenetration of the matter).
An outline of the paper is as follows. Our homogenization theorem (see Theorem
3.4) is stated and proved in §3. Its proof uses a relaxation theorem (see Theorem
2.7), whose statement and proof are given in §2, and Braides’s homogenization
theorem (see Theorem 3.2). Homogenization of functionals of type (1.1) when W

is of the form (1.7)-(1.8) is treated in §4 as an application of Theorem 3.4 (see
Corollary 4.2).

2. Relaxation theorem

Let m, N ≥ 1 be two integers. Given any bounded open set D ⊂ RN with |∂D| = 0,
we denote the space of continuous piecewise affine functions from D to Rm by
Aff(D; Rm), i.e., ϕ ∈ Aff(D; Rm) if and only if ϕ is continuous and there exists a
finite family {Di}i∈I of open disjoint subsets of D such that |∂Di| = 0 for all i ∈ I,
|D \ ∪i∈IDi| = 0 and for every i ∈ I, ∇ϕ ≡ ξi in Di with ξi ∈ Mm×N , and we
set Aff0(D; Rm) := {ϕ ∈ Aff(D; Rm) : ϕ = 0 on ∂D} and W

1,∞
0 (D; Rm) := {ϕ ∈

W
1,∞(D; Rm) : ϕ = 0 on ∂D}. Given a normal integrand f : RN × Mm×N →

[0,+∞], where Mm×N denotes the space of real m ×N matrices, we consider the
normal integrand Zf : RN ×Mm×N → [0,+∞] defined by

Zf(x, ξ) := inf
��

Y
f(x, ξ +∇ϕ(y))dy : ϕ ∈ W

1,∞
0 (Y ; Rm)

�

with Y :=]0, 1[N . The following result is due to Fonseca (see [Fon88, lemma 2.16,
Theorem 2.17 and Proposition 2.3]).

Proposition 2.1. The function Zf satisfies the following properties.
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(a) For every bounded open set D ⊂ RN with |∂D| = 0 and every (x, ξ) ∈
RN ×Mm×N ,

Zf(x, ξ) = inf
�

1
|D|

�

D
f(x, ξ +∇ϕ(y))dy : ϕ ∈ W

1,∞
0 (D; Rm)

�
.

(b) For every x ∈ RN , if Zf(x, ·) is finite then Zf(x, ·) is rank-one convex,
i.e., for every ξ, ξ

� ∈ Mm×N with rank(ξ − ξ
�) ≤ 1,

Zf(x,λξ + (1− λ)ξ�) ≤ λZf(x, ξ) + (1− λ)Zf(x, ξ
�).

(c) For every x ∈ RN , if Zf(x, ·) is finite then Zf(x, ·) is continuous, i.e., Zf

is a Carathéodory integrand1 whenever Zf is finite.
(d) For every bounded open set D ⊂ RN with |∂D| = 0, every (x, ξ) ∈ RN ×

Mm×N and every ϕ ∈ Aff0(D; Rm),

Zf(x, ξ) ≤ 1
|D|

�

D
Zf(x, ξ +∇ϕ(y))dy.

Remark 2.2. Proposition 2.1 is also valid with “Ẑf” instead of “Zf” (see [AHM09,
Proposition 2.3]) where Ẑf : RN ×Mm×N → [0,+∞] is given by

Ẑf(x, ξ) := inf
��

Y
f(x, ξ +∇ϕ(y))dy : ϕ ∈ Aff0(Y ; Rm)

�
.

In particular, Proposition 2.1(d) can be rewritten as Ẑ[Zf ] = Zf .

Given x ∈ RN we say that f(x, ·) is quasiconvex (in the sense of Morrey [Mor52])
if for every ξ ∈ Mm×N , every bounded open set D ⊂ RN with |∂D| = 0 and every
ϕ ∈ W

1,∞
0 (D; Rm),

f(x, ξ) ≤ 1
|D|

�

D
f(x, ξ +∇ϕ(y))dy.

By the quasiconvex envelope of f(x, ·), that we denote by Qf(x, ·), we mean the
greatest quasiconvex function which less than or equal to f(x, ·). (clearly, f(x, ·) is
quasiconvex if and only if Qf(x, ·) = f(x, ·).) The concept of quasiconvex envelope
was introduced by Dacorogna (see [Dac82]) who proved the following theorem (see
[Dac08, Theorem 6.9 p. 271]).

Theorem 2.3. If f is finite then Qf = Ẑf = Zf .

The following result is a slight generalization of Theorem 2.3.

Theorem 2.3-bis. If Zf is finite then Qf = Zf . In particular, Zf(x, ·) is quasi-
convex for all x ∈ RN .

Proof. As Zf is finite we have Q[Zf ] = Ẑ[Zf ] by Theorem 2.3. But Ẑ[Zf ] = Zf

from Remark 2.2 and so Q[Zf ] = Zf , i.e., Zf(x, ·) is quasiconvex for all x ∈ RN .
As Zf ≥ Qf it follows that Qf = Zf . �
Remark 2.4. Theorem 2.3 can be also generalized as follows: if Ẑf is finite then
Qf = Ẑf = Zf (see [AHM09, Corollaire 2.17]).

From now on we fix p > 1. Given U ⊂ RN be a bounded open set with |∂U | = 0
we define F : W

1,p(U ; Rm) → [0,+∞] by

F (φ) :=
�

U
f(x,∇φ(x))dx

and we consider the relaxed functionals F , F 0 : W
1,p(U ; Rm) → [0,+∞] given by:

1A function f : RN × Mm×N → [0, +∞] is called a Carathéodory integrand if f(x, ξ) is
measurable in x and continuous in ξ.
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� F (φ) := inf
�

lim inf
n→+∞

F (φn) : φn → φ in L
p(U ; Rm)

�
;

� F 0(φ) := inf
�

lim inf
n→+∞

F (φn) : W
1,p
0 (U ; Rm) � φn → φ in L

p(U ; Rm)
�

with W
1,p
0 (U ; Rm) := {φ ∈ W

1,p(U ; Rm) : φ = 0 on ∂U}. As F and F 0 are not
given by explicit formulas, it is of interest to know under which conditions on f we
have:

F (φ) =
�

U
f(x,∇φ(x))dx for all φ ∈ W

1,p(U ; Rm);(2.1)

F 0(φ) =
�

F (φ) if φ ∈ W
1,p
0 (U ; Rm)

+∞ otherwise(2.2)

with f : RN ×Mm×N → [0,+∞] (whose we wish to give a representation formula).
In the p-polynomial growth case, such integral representation problems was studied
by Dacorogna (see [Dac82, Theorem 5], see also [Dac08, Theorem 9.1 p. 416]) and
Acerbi and Fusco (see [AF84, Statement III.7]) who proved the following theorem.

Theorem 2.5. Let f : RN × Mm×N → [0,+∞] be a p-coercive Carathéodory
integrand. If f is of p-polynomial growth, i.e.,

(2.3) f(x, ξ) ≤ c(1 + |ξ|p) for all (x, ξ) ∈ RN ×Mm×N and some c > 0,

then (2.1) and (2.2) hold with f = Zf = Qf . If moreover f(x, .) is quasiconvex
for all x ∈ RN then f = f .

Because of the assumption (2.3) Acerbi-Dacorogna-Fusco’s relaxation theorem can-
not handle integrands having a singular behavior of type f(x, ξ) → +∞ as detξ → 0
(when m = N). However, by using Theorem 2.5 and a key lemma (see Lemma 2.8)
we can go beyond the p-polynomial growth case (see Theorem 2.7 and Corollary
4.4).
Let Ap be the class of p-coercive normal integrands f : RN × Mm×N → [0,+∞]
satisfying the following two conditions:

(C1) there exists a function ω : [0,+∞[→ [0,+∞[ continuous at the origin with
ω(0) = 0 such that for every x1, x2 ∈ RN and every ξ ∈ Mm×N ,

f(x1, ξ) ≤ ω(|x1 − x2|)(1 + f(x2, ξ)) + f(x2, ξ);

(C2) the function Zf is of p-polynomial growth, i.e., Zf(x, ξ) ≤ c(1 + |ξ|p) for
all (x, ξ) ∈ RN ×Mm×N and some c > 0.

Remark 2.6. (i) Condition (C1) is a condition of Serrin type (see [Ser61] or
[Mor66, p. 96-97], see also [Mar86]).

(ii) If f satisfies (C1) then domf(x1, ·) = domf(x2, ·) for all x1, x2 ∈ RN , where,
for x ∈ RN , domf(x, ·) := {ξ ∈ Mm×N : f(x, ξ) < +∞}.

(iii) If f satisfies (C1) then f(·, ξ) is continuous for all ξ ∈ Mm×N .
(iv) If f satisfies (C1) then for every x1, x2 ∈ RN and every ξ ∈ Mm×N ,

Zf(x1, ξ) ≤ ω(|x1 − x2|)(1 + Zf(x2, ξ)) + Zf(x2, ξ).

In particular, we have Zf(·, ξ) ∈ C(V ) for all ξ ∈ Mm×N whenever f

satisfies (C1), Zf is finite (for example when (C2) holds) and V ⊂ RN is a
bounded open set. (This fact will be used in the proof of Lemma 2.8.)

The following theorem is a slight generalization of [AHM07, Theorem 2] (see also
[AHM08, Theorem 1.4] and [AHM09, Théorème 2.1]).
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Theorem 2.7. If f ∈ Ap then (2.1) and (2.2) hold with f = Zf = Qf . As a
consequence, we have

inf
φ∈W 1,p

0 (U ;Rm)

�

U
f(x,∇φ(x))dx = inf

φ∈W 1,p
0 (U ;Rm)

�

U
Zf(x,∇φ(x))dx.

Proof. Let ZF : W
1,p(U ; Rm) → [0,+∞] be defined by

ZF (φ) :=
�

U
Zf(x,∇φ(x))dx

and let ZF ,ZF 0 : W
1,p(U ; Rm) → [0,+∞] be given by:

� ZF (φ) := inf
�

lim inf
n→+∞

ZF (φn) : φn → φ in L
p(U ; Rm)

�
;

� ZF 0(φ) := inf
�

lim inf
n→+∞

ZF (φn) : W
1,p
0 (U ; Rm) � φn → φ in L

p(U ; Rm)
�

.

We need the following lemma whose proof is given below.

Lemma 2.8. Under (C1) and (C2) if φ ∈ Aff(U ; Rm) (resp. φ ∈ Aff0(U ; Rm))
then

(2.4) F (φ) ≤
�

U
Zf (x,∇φ(x)) dx (resp. F 0(φ) ≤

�

U
Zf (x,∇φ(x)) dx).

As Zf is of p-polynomial growth and Aff(U ; Rm) (resp. Aff0(U ; Rm)) is strongly
dense in W

1,p(U ; Rm) (resp. W
1,p
0 (U ; Rm)), from Lemma 2.8 we deduce that (2.4)

holds for all φ ∈ W
1,p(U ; Rm) (resp. φ ∈ W

1,p
0 (U ; Rm)). Thus F ≤ ZF (resp.

F 0 ≤ ZF 0). Moreover, ZF ≤ F (resp. ZF 0 ≤ F 0), hence

(2.5) F = ZF (resp. F 0 = ZF 0).

As f is p-coercive, also is Zf . Moreover, since Zf is finite (because (C2) holds),
on the one hand, Zf is a Carathéodory integrand by Proposition 2.1(c) and, on
the other hand, Zf(x, ·) is quasiconvex for all x ∈ RN by Theorem 2.3-bis. From
Acerbi-Dacorogna-Fusco’s relaxation theorem (see Theorem 2.5) it follows that

ZF = ZF (resp. ZF 0 =
�

ZF on W
1,p
0 (U ; Rm)

+∞ elsewhere )

which gives the theorem when combined with (2.5). �
Proof of Lemma 2.8. By definition, there exists a finite family {Ui}i∈I of open dis-
joint subsets of U such that |∂Ui| = 0 for all i ∈ I, |U \ ∪i∈IUi| = 0 and, for every
i ∈ I, ∇φ ≡ ξi in Ui with ξi ∈ Mm×N . Thus

�

U
Zf(x,∇φ(x))dx =

�

i∈I

�

Ui

Zf(x, ξi)dx.

From Remark 2.6(iv) we see that Zf(·, ξi) ∈ C(U i) for all i ∈ I. Hence, for each
i ∈ I, there exists a finite family {Uk

i,j}j∈Jk
i

of disjoint subsets of Ui with |∂U
k
i,j | = 0

for all j ∈ J
k
i and |Ui \ ∪j∈Jk

i
U

k
i,j | = 0 such that:

diam(Uk
i,j) <

1
k

for all j ∈ J
k
i ;(2.6)

lim
k→+∞

�

j∈Jk
i

|Uk
i,j |Zf(xk

i,j , ξi) =
�

Ui

Zf(x, ξi)dx,(2.7)

where, for X ⊂ RN , diam(X) := sup{|x1−x2| : x1, x2 ∈ X}. Fix any δ > 0. Then,
there exists η > 0 such that

(2.8) ω(t) < δ for all |t| < η,
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where the function ω : [0,+∞[→ [0,+∞[ (continuous at the origin with ω(0) = 0)
are given by (C1). Fix any k ≥ 1 such that 1

k < η. Given any i ∈ I and any j ∈ J
k
i

we consider ϕi,j ∈ W
1,∞
0 (Y ; Rm) such that

(2.9)
�

Y
f(xk

i,j , ξi +∇ϕi,j(y))dy ≤ Zf(xk
i,j , ξi) +

δ

|U | .

By Vitali’s covering theorem, there exists a finite or countable family {ai,j,� +
αi,j,�Y }�∈Li,j of disjoint subsets of U

k
i,j , where ai,j,� ∈ RN and 0 < αi,j,� <

1
n ,

such that |Uk
i,j \∪�∈Li,j (ai,j,� + αi,j,�Y )| = 0 (and so

�
�∈Li,j

α
N
i,j,� = |Uk

i,j |). Define
φn ∈ W

1,p
0 (U ; Rm) by

φn(x) := αi,j,�ϕi,j

�
x− ai,j,�

αi,j,�

�
if x ∈ ai,j,� + αi,j,�Y.

Then:
� �φn�L∞(U ;Rm) ≤ 1

n maxi∈I,j∈Jk
i
�ϕi,j�L∞(Y ;Rm) for all n ≥ 1;

� �∇φn�L∞(U ;Rm) ≤ maxi∈I,j∈Jk
i
�∇ϕi,j�L∞(Y ;Rm) for all n ≥ 1,

hence (up to a subsequence) φn
∗
� 0 in W

1,∞(U ; Rm), where “ ∗�” denotes the
weak∗ convergence in W

1,∞(U ; Rm). Consequently φn � 0 in W
1,p(U ; Rm) and so

(up to a subsequence) φn → 0 in L
p(U ; Rm). Using (2.9) and (C2) we see that

�

i∈I

�

j∈Jk
i

�

Uk
i,j

f(xk
i,j , ξi +∇φn(x))dx ≤ c

C
(|U |+ �∇φ�p

Lp(U ;Rm)) +
δ

C
for all n ≥ 1

with c, C > 0. Taking (C1), (2.6) and (2.8) into account it follows that for every
n ≥ 1,

�

U
f (x,∇φ(x) +∇φn(x)) dx ≤ K(δ) +

�

i∈I

�

j∈Jk
i

�

Uk
i,j

f(xk
i,j , ξi +∇φn(x))dx

with δ(|U |+ c
C (|U |+ �∇φ�p

Lp(U ;Rm)) + δ
C ) =: K(δ) → 0 as δ → 0. Moreover, from

(2.9) we have
�

i∈I

�

j∈Jk
i

�

Uk
i,j

f(xk
i,j , ξi +∇φn(x))dx =

�

i∈I

�

j∈Jk
i

|Uk
i,j |

�

Y
f(xk

i,j , ξi +∇ϕi,j(x))dx

≤
�

i∈I

�

j∈Jk
i

|Uk
i,j |Zf(xk

i,j , ξi) + δ,

hence, for every n ≥ 1,
�

U
f (x,∇φ(x) +∇φn(x)) dx ≤

�

i∈I

�

j∈Jk
i

|Uk
i,j |Zf(xk

i,j , ξi) + K(δ) + δ.

As φ+φn ∈ W
1,p(U ; Rm) (resp. φ+φn ∈ W

1,p
0 (U ; Rm)) for all n ≥ 1 and φ+φn → φ

in L
p(U ; Rm) it follows that

F (φ) ≤
�

i∈I

�

j∈Jk
i

|Uk
i,j |Zf(xk

i,j , ξi) + K(δ) + δ

(resp. F 0(φ) ≤
�

i∈I

�

j∈Jk
i

|Uk
i,j |Zf(xk

i,j , ξi) + K(δ) + δ).

Letting k → +∞ and using (2.7) we deduce that

F (φ) ≤
�

U
Zf(x,∇φ(x))dx + K(δ) + δ
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(resp. F 0(φ) ≤
�

U
Zf(x,∇φ(x))dx + K(δ) + δ)

and (2.4) follows by letting δ → 0. �

3. Homogenization theorem

Let Ω ⊂ RN be a bounded open set with |∂Ω| = 0, let W : RN ×Mm×N → [0,+∞]
be a normal integrand and, for each ε > 0, let Iε : W

1,p(Ω; Rm) → [0,+∞] (with
p > 1) be defined by (1.1). To accomplish our asymptotic analysis as ε → 0, we
will use De Giorgi’s Γ-convergence which can be defined as follows (for more details
see [DM93, BD98, Bra06]).

Definition 3.1. We say that Iε Γ-converges to Ihom : W
1,p(Ω; Rm) → [0,+∞] with

respect to the L
p(Ω; Rm)-convergence as ε → 0, and we write Ihom = Γ- limε→0 Iε,

if �
Γ- lim inf

ε→0
Iε

�
(φ) =

�
Γ- lim sup

ε→0
Iε

�
(φ) = Ihom(φ)

for all φ ∈ W
1,p(Ω; Rm) with:

�
Γ- lim inf

ε→0
Iε

�
(φ) := inf

�
lim inf

ε→0
Iε(φε) : φε → φ in L

p(Ω; Rm)
�

;
�

Γ- lim sup
ε→0

Iε

�
(φ) := inf

�
lim sup

ε→0
Iε(φε) : φε → φ in L

p(Ω; Rm)
�

.

Braides proved, in the p-polynomial growth case, the following theorem (see [Bra85,
BD98], see also [Mül87]).

Theorem 3.2. If W satisfies (1.2), (1.3) and (1.4) then Ihom = Γ- limε→0 Iε with
Ihom defined by (1.5) and Whom : Mm×N → [0,+∞] given by (1.6).

To prove our homogenization theorem (see Theorem 3.4) we will need Theorems
2.7 and 3.2 and the following classical property of the Γ-convergence (see [Bra06,
Proposition 2.5]).

Proposition 3.3. The Γ-limit is stable by substituting Iε by its relaxed functional
Iε, i.e.,

Γ- lim inf
ε→0

Iε = Γ- lim inf
ε→0

Iε and Γ- lim sup
ε→0

Iε = Γ- lim sup
ε→0

Iε,

where, for each ε > 0, Iε : W
1,p(Ω; Rm) → [0,+∞] is given by

Iε(φ) := inf
�

lim inf
n→+∞

Iε(φn) : φn → φ in L
p(Ω; Rm)

�
.

Set Ap
per := {f ∈ Ap : f is 1-periodic}. The main result of the paper is the

following. (When m = N , it can handle integrands having a singular behavior of
type W (x, ξ) → +∞ as detξ → 0, see Corollary 4.2).

Theorem 3.4. If W ∈ Ap
per then Ihom = Γ- limε→0 Iε with Ihom defined by (1.5)

and Whom : Mm×N → [0,+∞] given by (1.6).

Proof. By Proposition 3.3 it suffices to prove Theorem 3.4 with “Iε” instead of
“Iε”. Fix any ε > 0 and consider fε : RN ×Mm×N → [0,+∞] given by fε(x, ξ) :=
W (x

ε , ξ). As W ∈ Ap
per and Zfε(x, ξ) = ZW (x

ε , ξ) for all (x, ξ) ∈ RN ×Mm×N it
is easy to see that fε ∈ Ap. Applying Theorem 2.7 (with f = fε) we deduce that
for every ε > 0,

Iε(φ) =
�

Ω
ZW

�
x

ε
,∇φ(x)

�
dx,
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where ZW is clearly p-coercive, 1-periodic and of p-polynomial growth. From Brai-
des’s homogenization theorem (see Theorem 3.2) it follows that Ihom = Γ- limε→0 Iε

with Ihom defined by (1.5) and Whom : Mm×N → [0,+∞] given by

Whom(ξ) = inf
k≥1

1
kN

inf
��

kY
ZW (x, ξ +∇ϕ(x))dx : ϕ ∈ W

1,p
0 (kY ; Rm)

�
.

Fix any k ≥ 1, any ξ ∈ Mm×N and consider fξ : RN × Mm×N → [0,+∞] given
by fξ(x, ζ) := W (x, ξ + ζ). As W ∈ Ap

per and Zfξ(x, ζ) = ZW (x, ξ + ζ) for all
(x, ζ) ∈ RN ×Mm×N it is easy to see that fξ ∈ Ap. Applying Theorem 2.7 (with
U = kY and f = fξ) we deduce that for every k ≥ 1 and every ξ ∈ Mm×N ,

inf
ϕ∈W 1,p

0 (kY ;Rm)

�

kY
W (x, ξ +∇ϕ(x))dx = inf

ϕ∈W 1,p
0 (kY ;Rm)

�

kY
ZW (x, ξ +∇ϕ(x))dx

and the theorem follows. �

4. Application

The following condition on the normal integrand f : RN × MN×N → [0,+∞] is
compatible with a singular behavior of type f(x, ξ) → +∞ as detξ → 0.

(Ĉ2) There exist α,β > 0 such that for every (x, ξ) ∈ RN ×MN×N ,

if |detξ| ≥ α then f(x, ξ) ≤ β(1 + |ξ|p).

Typically, the function H : RN ×MN×N → [0,+∞] defined by

H(x, ξ) := |ξ|p + a(x)h(detξ),

where 0 ≤ a ∈ L
∞(RN ) and h : R → [0,+∞[ is a measurable function for which

there exist γ, δ > 0 such that h(t) ≤ δ for all |t| ≥ γ, satisfies (Ĉ2) with α = γ and
β = max{1, δ�a�L∞(RN )}. The singular behavior H(x, ξ) → +∞ as detξ → 0 is
possible (for example when h is given by (1.8)).
Denote the class of p-coercive normal integrands f : RN × MN×N → [0,+∞]
satisfying (C1) and (Ĉ2) by Sp and set Sp

per := {f ∈ Sp : f is 1-periodic}. When
0 < η ≤ a ∈ L

∞(RN ) ∩ C(RN ) we have H ∈ Sp since H satisfies (C1) with
ω(t) := 1

η sup{|a(x1) − a(x2)| : |x1 − x2| ≤ t}. If moreover a is 1-periodic then
H ∈ Sp

per.
The following theorem, whose proof is given below, is a slight improvement of
[AHM08, Proposition 1.8] (see also [AHM09, théorème 2.20]).

Theorem 4.1. Let f : RN×MN×N → [0,+∞] be a normal integrand. If f satisfies
(Ĉ2) then Zf is of p-polynomial growth, i.e.,

Zf(x, ξ) ≤ c(1 + |ξ|p) for all (x, ξ) ∈ RN ×MN×N and some c > 0.

By Theorem 4.1 we have Sp ⊂ Ap and so Sp
per ⊂ Ap

per. Hence, as a direct conse-
quence of Theorems 4.1 and 3.4 we have

Corollary 4.2. If W ∈ Sp
per then Ihom = Γ- limε→0 Iε with Ihom defined by (1.5)

and Whom : MN×N → [0,+∞] given by (1.6).

Remark 4.3. From Theorems 4.1 and 2.7 we obtain

Corollary 4.4. If f ∈ Sp then (2.1) and (2.2) hold with f = Zf = Qf .

Corollary 4.4 slightly improves [AHM09, Corollaire 2.22] (see also [AHM08, Theo-
rem 1.3]).
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To prove Theorem 4.1 we need the following two lemmas. The first is a special
case of a theorem due to Dacorogna and Ribeiro (see [DR04, Theorem 1.3], see also
[Dac08, Theorem 10.29 p. 462]) and the second is a special case of a theorem due
to Ben Belgacem (see [BB96], see also [AHM09, Théorème 3.25] for a proof).

Lemma 4.5. Given t1 < t2 and ξ ∈ MN×N with t1 < detξ < t2 there exists
ϕ ∈ W

1,∞
0 (Y ; RN ) such that det(ξ +∇ϕ(y)) ∈ {t1, t2} for a.e. y ∈ Y .

Lemma 4.6. Let f : RN ×MN×N → [0,+∞] be a normal integrand. If f satisfies
(Ĉ2) then Rf is of p-polynomial growth, where for every x ∈ RN , Rf(x, ·) denotes
the rank-one convex envelope of f(x, ·), i.e., the greatest rank-one convex function
which less than or equal to f(x, ·).

Proof of Theorem 4.1. Fix any x ∈ RN and any ξ ∈ MN×N . Clearly, if |detξ| ≥ α

then Zf(x, ξ) < +∞. On the other hand, if |detξ| < α then, by Lemma 4.5, there
exists ϕ ∈ W

1,∞
0 (Y ; RN ) such that |det(ξ +∇ϕ(y)| = α for a.e. y ∈ Y , and using

(Ĉ2) we see that

Zf(x, ξ) ≤
�

Y
f(x, ξ +∇ϕ(y))dy ≤ 2p

β

�
1 + |ξ|p + �∇ϕ�p

Lp(Y ;RN )

�
< +∞.

Thus Zf(x, ξ) < +∞ for all ξ ∈ MN×N , i.e., Zf(x, ·) is finite. From Proposition
2.1(b) we deduce that Zf(x, ·) is rank-one convex. Hence Zf(x, ·) ≤ Rf(x, ·) for
all x ∈ RN , i.e., Zf ≤ Rf , and the theorem follows from Lemma 4.6. �
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