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MATHEMATICAL MODELING OF LINEARLY PIEZOELECTRIC SLENDER RODS

The piezoelectric thin plate modeling already derived by the authors is extended to rod-like structures. Two models corresponding to sensor or actuator behavior are obtained. The conditions of existence of non local terms in the limit models are discussed.

Introduction

The mathematical modeling of elastic thin plates or slender rods through asymptotic analysis has become classical : the thickness or the diameter is assigned to a role of parameter whose aim is to tend to zero ([1]- [START_REF] Murat | Effets non locaux dans le passage 3d-1d en élasticité linéarisée anisotrope hétérogène[END_REF]). We have extended this method to linear piezoelectric and electromagneto-elastic plates ( [START_REF] Weller | Analyse asymptotique de plaques minces linéairement piézoélectriques[END_REF], [START_REF] Weller | Modeling of linearly electromagneto-elastic thin plates[END_REF]). But, because beam modeling requires to condense on a line the properties of slender 3D objects having one dimension prevailing on the others, it is more challenging than plate modeling. Depending on the boundary conditions, two limit models, corresponding to sensors or actuators, appear. They involve a greater number of state variables than the couple (displacement/electrical potential) of the genuine 3D physical problem. We therefore exhibit reduced formulations where the number of variables drops to one or two, one reduced problem being purely mechanical ! We discuss the conditions for which the elimination of additional variables leads to non standard equations involving non local terms.

Setting the problem

The reference configuration of a linearly piezoelectric slender rod is the closure in R 3 of the set Ω ε := εω × (0, L) where ω is a bounded domain of R 2 with Lipschitz boundary ∂ω, L is the length of the rod and ε a small positive number. The Euclidean physical space whose orthonormal basis is assumed to be the principal frame of inertia of the rod is identified with R 3 . Let S N the set of N × N symmetric matrices and H := S 3 × R 3 . Greek coordinate indexes will run in {1, 2} and Latin ones in {1, 2, 3} ; for all ξ = (ξ

1 , ξ 2 , ξ 3 ) of R 3 , ξ, ξ R stand for (ξ 1 , ξ 2 ) and (-ξ 2 , ξ 1 ). Let Γ ε lat := ε∂ω × (0, L), Γ ε 0 := εω × {0}, Γ ε L := εω × {L}, Γ 0,L := Γ 0 ∪ Γ L , and two partitions of ∂Ω ε : (Γ ε mD , Γ ε mN ), (Γ ε eD , Γ ε eN ) with Γ ε mD , Γ ε
eD of strictly positive surface measures. The rod is clamped along Γ ε mD and at an electrical potential ϕ ε 0 on Γ ε eD . It is subjected to body forces f ε in Ω ε , surface forces g ε on Γ ε mN , electrical loading w ε on Γ ε eN . We denote the outward unit normal to ∂Ω ε by n ε . The piezoelectric state s ε := (u ε , ϕ ε ) at equilibrium satisfies :

P(Ω ε ) div σ ε + f ε = 0 in Ω ε , div D ε = 0 in Ω ε , σ ε n ε = g ε on Γ ε mN , u ε = 0 on Γ ε mD , D ε • n ε = w ε on Γ ε eN , ϕ ε = ϕ ε 0 on Γ ε eD , (σ ε , D ε ) = M ε (x)(e(u ε ), ∇ϕ ε ) in Ω ε
, where u ε , ϕ ε , σ ε , e(u ε ) and D ε are respectively the displacement, the electric potential field, the stress tensor, the tensor of small strains and the electrical displacement. The operator M ε stands for the classical piezoelectric constitutive equations, i.e.

σ ε = M ε mm e(u ε ) -M ε me ∇ϕ ε , D ε = M ε T me e(u ε ) + M ε ee ∇ϕ ε
, where M ε mm , M ε me and M ε ee are respectively the elastic, piezoelectric and dielectric tensors while the superscript T denotes the transposition. Of course, M ε is not symmetric but under realistic assumption of boundedness of M ε and of uniform ellipticity of M ε mm , M ε ee , the physical problem P(Ω ε ) has a unique weak solution. Our piezoelectric rod models will be obtained by studying the limit behavior of s ε when ε → 0.

Our asymptotic models

As in [START_REF] Weller | Analyse asymptotique de plaques minces linéairement piézoélectriques[END_REF], we will show that two different limit behaviors, indexed by p = 1 or 2, appear according to the type of electric boundary conditions and to the magnitude of the electrical external loading. In the sequel, for all G ⊂ R N , H 1 g (G) denotes the subset of the Sobolev space H 1 (G) whose elements vanish on g ⊂ ∂G, except H 1 m (ω) which is the set of the elements of H 1 (ω) with zero average on ω. The process is as follows : first we come down to a fixed open set Ω := ω × (0, L)

through the bijection x = (x 1 , x 2 , x 3 ) ∈ Ω → x ε = π ε (x) = (εx 1 , εx 2 , x 3 ) ∈ Ω ε .
We drop the index ε for the images by (π ε ) -1 of the geometric sets defined supra. We also assume that the electro-elastic coefficients and the loading satisfy :

         M ε (π ε x) =: M (x), M ∈ L ∞ (Ω, Lin(H)), ∃ κ > 0 : M (x) h • h ≥ κ | h | 2 H , ∀ h ∈ H, a.e. x ∈ Ω, f ε (π ε x) = ε 2 f (x), f ε 3 (π ε x) = ε f 3 (x), ∀ x ∈ Ω, ĝε (π ε x) = ε 2 ĝ(x), g ε 3 (π ε x) = ε g 3 (x), ∀ x ∈ Γ mN ∩ Γ 0,L , ĝε (π ε x) = ε 3 ĝ(x), g ε 3 (π ε x) = ε 2 g 3 (x), ∀ x ∈ Γ mN ∩ Γ lat , ϕ ε 0 (π ε x) = ε p ϕ 0 (x), ∀ x ∈ Γ eD , w ε (π ε x) = ε 2-p d(x), ∀ x ∈ Γ eN ∩ Γ 0,L , w ε (π ε x) = ε 3-p d(x), ∀ x ∈ Γ eN ∩ Γ lat ,
where (f, g, w) is an element (independent of ε) of L 2 (Ω) 3 × L 2 (Γ mN ) 3 × L 2 (Γ eN ). We also suppose that ϕ 0 has an H 1 (Ω) extension into Ω still denoted by ϕ 0 and :

    
if p = 1 : the extension of ϕ 0 into Ω does not depend on x and Γ eD ⊂ Γ 0,L . if p = 2 : ∃ γ eD ⊂ γ with positive length such that (γ \ γ eD ) × (0, L) ⊂ Γ eN and either Γ eN ∩ Γ 0,L = ∅ or w = 0 on Γ eN ∩ Γ 0,L .

Next, with the true physical state s ε = (u ε , ϕ ε ) defined on Ω ε , we associate a scaled piezoelectric state s p (ε) := (u p (ε), ϕ p (ε)) defined by ûε (

x ε ) = (û p (ε))(x), u ε 3 (x ε ) = ε(u p (ε)) 3 (x), ϕ ε (x ε ) = ε p ϕ p (ε)(x), ∀ x = π ε (x)
∈ Ω, so that s p (ε) is the unique solution of the following mathematical problem, equivalent to the genuine physical one :

P(ε, Ω) p : s p (ε) ∈ (0, ϕ 0 ) + V; m p (ε)(s p (ε), r) = L(r), ∀ r ∈ V := {r = (v, ψ) ∈ H 1 ΓmD (Ω) 3 × H 1 ΓeD (Ω)}, with          m p (ε)(s, r) := Ω M (x) k p (ε, s) • k p (ε, r) dx, k p (ε, r) := k p (ε, (v, ψ)) = (e(ε, v), ∇ p (ε, ψ)), e(ε, v) αβ := ε -2 e(v) αβ , e(ε, v) α3 := ε -1 e(v) α3 , e(ε, v) 33 := e(v) 33 , 2e ij := ∂ i v j + ∂ j v i , ∇ p (ε, φ) α := ε p-2 ∂ α ϕ, ∇ p (ε, ϕ) 3 := ε p-1 ∂ 3 ϕ, L(r) := L(v, ψ) = Ω f • v dx + ΓmN g • v dx + ΓeN wψ dx.
Finding the limit problems is a little bit more difficult than in the case of plates because the limit problems involve a greater number of state variables : s 1 = (v, w, ψ) and s 2 = (v, w) are added to the initial state variable s = (u, φ) and we let s p = (s, s p ) ; they belong to the following spaces, some of them being classical in rod theory ( [START_REF] Murat | Comportement asymptotique des solutions du système de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces[END_REF]) :

                   D m := {x 3 ∈ {0, L}; ω × {x 3 } ⊃ Γ mD ∩ Γ 0,L }, D e := {x 3 ∈ {0, L}; ω × {x 3 } ⊃ Γ eD ∩ Γ 0,L }, V BN (Ω) := {u ∈ H 1 ΓmD (Ω) 3 ; e αβ (u) = e α3 (u) = 0} R(Ω) = {v : ∃c ∈ H 1 Dm (0, L), v(x) = c(x 3 )x R , v 3 ∈ L 2 (0, L; H 1 m (ω))}, RD ⊥ 2 (Ω) := {w : w ∈ L 2 (0, L; H 1 m (ω)), w 3 (x) = 0 and ω x R • w(x) d x = 0, a.e. x 3 ∈ (0, L)}, Φ 1 = {φ; ∃ ϕ ∈ H 1 De (0, L) : φ(x) = ϕ(x 3 )}, Φ 2 = L 2 (0, L; H 1 γe (ω)), Ψ 1 = L 2 (0, L; H 1 m (ω)), V 1 := V BN (Ω) × Φ 1 × R(Ω) × RD ⊥ 2 (Ω) × Ψ 1 , V 2 := V BN (Ω) × Φ 2 × R(Ω) × RD ⊥ 2 (Ω)
. If s 10 := (0, ϕ 0 , 0, 0, 0), s 20 := (0, ϕ 0 , 0, 0) the limit problems read as

P(Ω) p : s p ∈ s p0 + V p ; Ω M (x) k p (s p ) • k p (s ′ p ) dx = L(s ′ p ), ∀ s ′ p ∈ V p , k 1 (s 1 ), k 2 (s 2 ) ∈ L 2
(Ω; H) being represented by (e αβ (w), e α3 (v), e 33 (u), ∇ψ, dφ dx3 ), (e αβ (w), e α3 (v), e 33 (u), ∇φ, 0). We have the following convergence result : When ε → 0, the familly (s p (ε)) ε>0 of the unique solutions of P(ε, Ω) p is such that (s p (ε), k(ε, s p (ε)) converges strongly in V BN (Ω) × Φ p × L 2 (Ω; H) to (s p , k p (s p )), where s p = (s p , s p ) is the unique solution of P(Ω) p .

Due to the V p -ellipticity of the bilinear forms involved in P(Ω) p the state variables (v 1 , w 1 , ψ 1 ) and (φ 2 , v 2 , w 2 ) can be eliminated so that s 1 and u 2 solve monodimensional variational problems P(Ω) p involving non local terms. They appear only under the conjunction of the three conditions : the crystalline class of the material is either 1 or (if p = 1) m, its heterogeneity in the x 3 direction and the clamping condition on the two bases of the rod. Furthermore, when the crystalline class is neither 1 nor m and with a transversaly homogeneous material if the cardinal of D m equals 1 or a homogeneous material if the cardinal of D m equals 2, the local reduced constitutive equations involve a matrix M p ∈ S 3-p whose entries depend only on those of M . When p = 1, there is a piezoelectric decoupling for the classes 222, 32, 4, 422, 42m, 6, 622, 6m2 and 23. Moreover, M 111 is a purely mechanical entry, whereas M 122 is purely dielectric for classes 32, 422, 6, 622 and 6m2. For all crystalline classes, M 111 = M 2 . As usual ( [START_REF] Weller | Analyse asymptotique de plaques minces linéairement piézoélectriques[END_REF], [START_REF] Weller | Modeling of linearly electromagneto-elastic thin plates[END_REF]), we get piezoelectric slender rods models with cross section εω by a descaling of P(Ω) p and P(Ω) p .