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MATHEMATICAL MODELING OF LINEARLY PIEZOELECTRIC SLENDER RODS

Thibaut Weller Christian Licht

Laboratoire de Mécanique et Génie Civil, UMR 5508 CNRS - UMHiversité Montpellier Il, c.c. 48,
Place Eugéne Bataillon, 34095 Montpellier cedex 5, France

Summary
The piezoelectric thin plate modeling already derived byabthors is extended to rod-like structures. Two models corresponding to
sensor or actuator behavior are obtained. The conditions of existence of non local terms in the limit models are discussed.

Introduction

The mathematical modeling of elastic thin plates or slender rods through asymptotic analysis has become classical : the
thickness or the diameter is assigned to a role of parameter whose aim is to tend to zero ([1]-[3]). We have extended
this method to linear piezoelectric and electromagneto-elastic plates ([4], [5]). But, because beam modeling requires
to condense on a line the properties of slender 3D objects having one dimension prevailing on the others, it is more
challenging than plate modeling. Depending on the boundary conditions, two limit models, corresporsgingai@or

actuators appear. They involve a greater number of state variables than the couple (displacement/electrical potential) of
the genuine 3D physical problem. We therefore exhibit reduced formulations where the number of variables drops to one
or two, one reduced problem being purely mechanical! We discuss the conditions for which the elimination of additional
variables leads to non standard equations involving non local terms.

Setting the problem

The reference configuration of a linearly piezoelectric slender rod is the closBredfithe set?° := cw x (0, L) where

w is a bounded domain @2 with Lipschitz boundaryw, L is the length of the rod anda small positive number. The
Euclidean physical space whose orthonormal basis is assumed to be the principal frame of inertia of the rod is identified
with R3. Let SV the set of N x N symmetric matrices ant{ := S* x R®. Greek coordinate indexes will run i1, 2}

and Latin onesi{1,2,3}; forall ¢ = (&1, &2, &3) of R3, é ¢f stand for(¢y, &) and(—&s, &1). LetTg, := 0w x (0, L),

I'§ :=ew x {0},I'] :=ew x {L},To,1 := Ty Uz, and two partitions 0bQ° : (T'5, 5,5, x), (TEp, ey ) With T 1,

I, of strictly positive surface measures. The rod is clamped algpg and at an electrical potentiaf onI'¢,,. It is
subjected to body forcef in ¢, surface forceg® onI¢ ., electrical loadingv® onT'¢,,. We denote the outward unit
normal tod® by n°. The piezoelectric stat€ := (u®, ¢°) at equilibrium satisfies :

P(Y) dive® + f¢=0inQ°, div D =0in Q°, 0°n® = g onI§ y, u* =0o0onT% p,
D* -n® =w® onT¢y, ¢° = ¢jonle,, (0f,D%) = M*(z)(e(u®), V©) in QF,

whereu®, ¢, 0¢, e(u®) and D¢ are respectively the displacement, the electric potential field, the stress tensor, the tensor
of small strains and the electrical displacement. The opefdtostands for the classical piezoelectric constitutive equa-
tions,i.e. 0¢ = ME,, e(u®) — Mg, Ve, D° = M;Tee(us) + M: Vs, whereM:, ., M:,, andM¢, are respectively

the elastic, piezoelectric and dielectric tensors while the super&Crifgnotes the transposition. Of courdé? is not
symmetric but under realistic assumption of boundednedd ©and of uniform ellipticity of M¢,,,,, M., the physical
problemP(£2¢) has a unique weak solution.

Our piezoelectric rod models will be obtained by studying the limit behavief @fhens — 0.

m?

Our asymptotic models

As in [4], we will show that two different limit behaviors, indexed py= 1 or 2, appear according to the type of electric
boundary conditions and to the magnitude of the electrical external loading. In the sequel;far &, H; (@) denotes

the subset of the Sobolev spa@é(G) whose elements vanish gnC 9G, exceptH |, (w) which is the set of the elements
of H'(w) with zero average ow. The process is as follows : first we come down to a fixed opefeset w x (0, L)
through the bijection: = (1, 29, x3) € Q — 2° = 7°(2) = (ex1, ex2, 23) € €1 . We drop the index for the images by
(7%)~! of the geometric sets definsdpra We also assume that the electro-elastic coefficients and the loading satisfy :

Me(néx) =: M(z), M € L>®(Q,Lin(H)), 3x >0 : M(z)h-h>r|h|3,VhEH, ae. x €Q,

fe(mex) = &2 f(x), f5(n°x) =€ fa(x), Vo € Q, §°(n°z) = &2 §(x), g5(n°x) = e g3(x), V& € Dy NTo 1,
G°(r°x) = &3 g(z), g5(r°z) = €2 g3(x), Vo € Dy NTiat, 0§ (12) = €P o (), Vo € Tep,

wé(rz) =27 Pd(z), Vo € Teny NTo L, we(nz) =3P d(z), Vo € Ten N Dy,

where(f, g, w) is an element (independent of of L?(Q2)? x L?(T,,n)? x L*(Ten). We also suppose that, has an
H(Q) extension intd? still denoted byp, and :



if p = 1: the extension ofy into §2 does not depend anandl'.p C 'y 1.
if p=2:3~.p C v with positive length such thdty \ v.p) x (0,L) C T'ey and eitheT'.y Ny =0
orw=0onT'.xyNTq .

Next, with the true physical stat& = (u®,¢°) defined onQ2¢, we associate acaledpiezoelectric state,(¢) :=
(up(€), pp(c)) defined byis(z%) = (i,(c))(x), u5(z®) = e(up(e))s(x), ¥°(z%) = P pp(e)(z), Vo = 7°(x) € Q,
so thats, (<) is the unique solution of the following mathematical problem, equivalent to the genuine physical one :

Pe,Q)p = sple) € (0,00) + Vimyp(e)(sp(e),r) = L(r),Vr e V:={r = (v,¢) € H%mD Q)% x H%CD ()},
with

mp(e)(s, T) = fQ M(SC) kp(aa S) : kp(aa T) dIa kp(€7 T) = kp(€7 (Uv ’l/))) = (6(63 1)), Vp(€, w))a
e(g,0)ap = 2e(V)ag, €(g,0)as = te(v)as, €(g,v)33 := e(v)3s,
2eij = 005 + a i Ui, vp(‘ga ¢) = Ep_anstv Vp(57(,0)3 = Ep_la3(pa
L(r):=L(v fo ’de—|—fF g-vda:—kfFCNwi/Jda:.
Finding the limit problems is a little bit more difficult than in the case of plates because the limit problems involve a

greater number of state variables := (v, w, ) ands; = (v, w) are added to the initial state variable= (u, ¢) and we
lets, = (s,5,); they belong to the following spaces, some of them being classical in rod theory ([2]) :

Dy, :i={x3 € {0, L};w x{x3} DTmpNTor}, De:={x3 € {0,L};w x {z3} DTep NTo.1},
Ven(Q) :={ue H%mD ()35 eap(u) = eaz(u) =0}

R(Q)={v:3ce H};m (0,L), v(x) = c(x3)xf, vz € L2(0, L; H}, (w))},

RD3#(Q) :={w: @ € L*(0,L; H},(w)), w3(x) = 0 and [ =7 - @(x) dZ = 0,a.e.25 € (0, L)},
Py = {$p:3p € Hp (0,L) : ¢(z) = p(23)}, ®2 = L*(0, L; H} (w)), U1 = L*(0, L; Hy, (w)),
Vi = Ven () x @1 x R(Q) x RDF(Q) x ¥y, Vs 1= VBN(Q) x ®y X R() x RDF ().

If s1, := (0, 0,0,0,0), sz, := (0, ¢, 0,0) the limit problems read as

P(Q), 15, € sp + Vp;/ M(2) ky(Sp) - kp(s)) da = L(s)), Vs € Vp,
Q

ki(s1),ka(s2) € L2(Q;H) being represented bias(w), eas(v), ess(w), Vi, 22), (eap(w), eas(v), e33(u), Vo, 0).
We have the following convergence result :

Where — 0, the familly(s, ())0 of the unique solutions &% (s, §2),, is such that s, (¢), k(e, s, (¢)) converges strongly
in Van (Q) x @, x L2(Q;H) to (5,, k,(5,)), wheres, = (5,,3,) is the unique solution d¥(Q )

Due to theV,-ellipticity of the bilinear forms involved ifP(9), the state variableg,w1,;) and (¢,, Vs, W2) can

be eliminated so that; and u, solve monodimensionalariational problemsP((2),, involving non localterms. They
appear only under the conjunction of the three conditions : the crystalline class of the material i$ eitifigrp = 1)

m, its heterogeneity in the; direction and the clamping condition on the two bases of the rod. Furthermore, when the
crystalline class is neithdrnorm and with a transversaly homogeneous material if the cardinBl,pfequals 1 or a ho-
mogeneous material if the cardinal bf,, equals 2, the local reduced constitutive equations involve a mﬂt,gi)g S§3-p
whose entries depend only on thoseléf Whenp = 1, there is a piezoelectric decoupling for the clasx¥s 32, 4, 422,

42m, 6, 622, 6m2 and 23. Moreover,Ml11 isa purely mechanical entry, Wherefmi;22 is purely dielectric for classe®,

422, 6, 622 and6m2. For all crystalline cIasseMl11 = M2

As usual ([4], [5]), we get piezoelectric slender rods models with cross sectitly a descaling oP(2),, andP(),,.
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