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We extend to the linearly piezoelectric case the mathematical derivation [1] of the linearly elastic behavior of a plate as the limit behavior of a three-dimensional solid whose thickness tends to zero.

The reference configuration of the linearly piezoelectric thin plate is the closure in R 3 of the set ε = ω× ]-ε, ε[ , where ω is a bounded domain of R 2 with a Lipschitz boundary and ε a small positive parameter. Let ( ε mD , ε mN ), ( ε eD , ε eN ) two suitable partitions of the boundary of ε ; the plate is, on one hand, clamped along ε mD and at an electric potential ϕ ε 0 on ε eD and, on the other hand, subjected to body forces and electric loadings in ε and to surface forces and electric loadings on ε mN and ε eN . Thus the electromechanical state at equilibrium s ε = (u ε , ϕ ε ) satisfies Eqs. (1), [START_REF] Bisegna | A consistent theory of thin piezoelectric plates[END_REF], u ε and ϕ ε being the displacement and electric potential fields. Due to assumptions [START_REF] Sene | Modélisation asymptotique de plaques : Contrôlabilité exacte frontière, piézoélectricité[END_REF] on the exterior loadings, a suitable scaling is defined by [START_REF] Maugin | An asymptotic theory of thin piezoelectric plates[END_REF] and (6) to study the limit behavior as ε → 0. Note that the asumptions on the forces are those which provide Kirchhoff-Love limit plate theory while those on the electrical loading involve an index p running over {1, 2} that will imply two kinds of limit models. We show that the scaled states s p (ε) converge in a suitable topology to the unique solution of P(0, ) p , p = 1, 2, according to the nature and the magnitude of the data. These limit problems are connected with the physical situations where the thin plate acts as an actuator or a sensor. The first model was obtained in [START_REF] Maugin | An asymptotic theory of thin piezoelectric plates[END_REF] by formal asymptotic expansions, while the second one was rigorously derived in [START_REF] Sene | Modélisation asymptotique de plaques : Contrôlabilité exacte frontière, piézoélectricité[END_REF] but in the particular case of homogeneous isotropic elasticity coefficients.

The properties of the constitutive equations of these two limit plate modelings are discussed with respect to the crysalline symetries and orientations of polarization of the genuine three dimensional body.

Position du problème

Une configuration de référence de la « plaque piézoélectrique » est la fermeture dans R 3 de l'ouvert ε = ω× ]-ε, ε [, où ω est un domaine de R 2 de frontière lipschitzienne et ε un petit paramètre positif. On note 

x ε = (x ε 1 , x ε 2 , x ε 3 ) un point courant de ε et on pose ∂ ε i = ∂/
div ε σ ε + f ε = 0 dans ε , σ ε n ε = g ε sur ε mN , u ε = 0 sur ε mD , div ε D ε + F ε = 0 dans ε , D ε • n ε = w ε sur ε eN , ϕ ε = ϕ ε 0 sur ε eD , (σ ε , D ε ) = M ε (x ε )(e ε (u ε ), ∇ ε ϕ ε ) dans ε , (1)
où σ ε , e ε (u ε ) et D ε désignent respectivement le tenseur des contraintes, le tenseur linéarisé des déformations et le déplacement électrique. Si on note L(V , W ) l'ensemble des applications linéaires d'un espace V dans un espace W et H = S 3 × R 3 , avec S 3 l'ensemble des matrices réelles 3 × 3 symétriques, M ε (x ε ) est un élément de L(H, H ) du type : 

σ ε = a ε e ε (u ε ) -b ε ∇ ε ϕ ε , D ε = b ε T e ε (u ε ) + c ε ∇ ε ϕ ε , (2) où (a ε , b ε , c ε ) ∈ L(S 3 , S 3 ) × L(R 3 , S 3 ) × L(R 3 , R 3 ), b ε T est la transposée de b ε , a ε et c ε sont

Les deux types de comportements limites

Nous allons établir que, selon le type de conditions aux limites, deux comportements limites, indexés par l'indice p valant 1 ou 2, peuvent être obtenus. On se ramène classiquement [1] à un ouvert fixe

= ω× ]-1, 1 [ par la bijection π ε :

x = (x 1 , x 2 , x 3 ) ∈ → x ε = π ε x = (x 1 , x 2 , εx 3 ) ∈ ε . ( 3 
)
On note d'une part mD , mN , eD , eN les images par

(π ε ) -1 de ε mD , ε mN , ε eD , ε eN et d'autre part ± = ω × {±1}, lat = ∂ω× ]-1, 1[ . Enfin, on pose ∂ i = ∂x i .
On suppose que les coefficients électromécaniques vérifient :

∃M ∈ L ∞ ( , L(H )) (indépendante de ε) telle que M ε (π ε x) = M(x), p.p. x ∈ , ∃η 0 > 0; M(x)h • h η 0 |h| 2 , ∀h ∈ H, p.p. x ∈ . ( 4 
)
L'ordre de grandeur des actions extérieures est choisi comme suit : 3 × L 2 ( eN ). On suppose que ϕ 0 possède un prolongé à encore noté ϕ 0 de classe H 1 ( ). A l'état électromécanique s ε = (u ε , ϕ ε ) défini sur ε , on associe un état mis a l'échelle s p (ε) = (u p (ε), ϕ p (ε)) défini sur par :

       f ε α (π ε x) = εf α (x), f ε 3 (π ε x) = ε 2 f 3 (x), F ε (π ε x) = ε 2-p F (x), ∀x ∈ , g ε α (π ε x) = ε 2 g α (x), g ε 3 (π ε x) = ε 3 g 3 (x), ∀x ∈ mN ∩ ± , w ε (π ε x) = ε 3-p w(x), ∀x ∈ eN ∩ ± , g ε α (π ε x) = εg α (x), g ε 3 (π ε x) = ε 2 g 3 (x), ∀x ∈ mN ∩ lat , w ε (π ε x) = ε 2-p w(x), ∀x ∈ eN ∩ lat , ϕ ε 0 (π ε x) = ε p ϕ 0 (x), ∀x ∈ eD , (5) où (f, F, g, w) est un élément (indépendant de ε) de L 2 ( ) 3 × L 2 ( ) × L 2 ( mN )
∀x ε = π ε x ∈ ε , u ε α (x ε ) = ε u p (ε) α (x), u ε 3 (x ε ) = u p (ε) 3 (x), ϕ ε (x ε ) = ε p ϕ p (ε)(x), ( 6 
)
s p (ε) est alors solution du problème mathématique P(ε, ) p suivant, équivalent au problème physique de départ :

P(ε, ) p Trouver s p (ε) ∈ (0, ϕ 0 ) + V ( ) tel que m p (ε)(s p (ε), r) = L(r), ∀r ∈ V ( ), V ( ) = {t = (v, ψ) ∈ H 1 ( ) 3 × H 1 ( ); u = 0 sur mD et ψ = 0 sur eD }, avec :                m p (ε)(s, r) = M(x)k p (ε, s) • k p (ε, r) dx, k p (ε, r) = k p (ε, (v, ψ)) = (e(ε, v), (∇ (p) (ε, ψ))), e(ε, v) αβ = e(v) αβ , e(ε, v) α3 = 1 ε e(v) α3 et e(ε, v) 33 = 1 ε 2 e(v) 33 , 2e(v) ij = ∂ i v j + ∂ j v i , ∇ (p) (ε, ψ) α = ε p-1 ∂ α ψ, ∇ (p) (ε, ψ) 3 = ε p-2 ∂ 3 ψ, L(r) = L(v, ψ) = f • v dx + F ψ dx + mN g • v ds + eN wψ ds (7)
les indices α, β variant de 1 a 2, les indices i, j de 1 à 3.

Un premier modèle

On suppose ici que ϕ 0 admet un prolongement à indépendant de x 3 . Il est alors commmode de décomposer H en la somme directe de deux sous-espaces orthogonaux

H ∧ et H ⊥ , où H ∧ = {h = (e, g) | e i3 = 0 et g 3 = 0} et H ⊥ = {h = (e, g) | e αβ = 0 et g α = 0} et de noter h ⊥ et h ∧ les projections sur H ⊥ et H ∧ d'un élément arbitraire h de H . Ainsi nous avons Mh = M ∧∧ h ∧ + M ∧⊥ h ⊥ + M ⊥∧ h ∧ + M ⊥⊥ h ⊥ , où M ∧∧ ∈ L(H ∧ , H ∧ ), M ∧⊥ ∈ L(H ⊥ , H ∧ ), M ⊥∧ ∈ L(H ∧ , H ⊥ ) et M ⊥⊥ ∈ L(H ⊥ , H ⊥ ). Puisque M ∧∧ et M ⊥⊥ sont strictement positifs sur H ⊥ et H ∧ , M 1 = M ∧∧ -M ∧⊥ (M ⊥⊥ ) -1 M ⊥∧ est bien défini comme élément de L(H ∧ , H ∧ ).
Il faut bien noter que ni M ∧∧ , ni M 1 ne sont nécessairement symétriques, mais que :

η 0 |ξ ∧ | 2 H M 1 (x)ξ ∧ • ξ ∧ , ∀ξ ∧ ∈ H ∧ , p.p. x ∈ , (8) 
car, bien évidemment :

(Mξ ) ⊥ = 0 ⇒ M 1 ξ ∧ = (Mξ ) ∧ , M 1 ξ ∧ • ξ ∧ = Mξ • ξ. ( 9 
)
A tout s = (v, ψ) de V ( ) on associe k(s) = (e(v), ∇ψ) ∈ L 2 ( ; H ). On pose V ∧ ( ) = {s ∈ V ( ); k(s) ⊥ = 0}, ainsi, si s = (v, ψ) ∈ V ∧ ( ), v est un déplacement de Kirchhoff-Love tandis que ψ ne dépend pas de x 3 . On a alors le résultat de convergence : THÉORÈME 1. -Lorsque ε → 0, la famille (s 1 (ε)) ε>0 des uniques solutions de P(ε, ) 1 converge fortement dans V ( ) vers l'unique solution s 1 (0) de :

P(0, ) 1 Trouver s ∈ (0, ϕ 0 ) + V ∧ ( ) tel que M 1 k(s) ∧ • k(r) ∧ dx = L(r) pour tout r ∈ V ∧ ( ).
Démonstration. -Grâce à (1), on déduit des inégalités de Korn et de Poincaré que (s 1 (ε), k(ε, s 1 (ε))) est borné dans V ( ) × L 2 ( ; H ) puis que k(s 1 (ε)) ⊥ converge fortement vers 0 dans L 2 ( ; H ). Ainsi, notant la convergence faible, il existe une sous-suite encore indexée par ε telle que :

   (s 1 (ε), k 1 (ε, s 1 (ε))) (s 1 (0), k) dans V ( ) × L 2 ( ), k(s 1 (ε)) ⊥ → 0 dans L 2 ( ; H ) s 1 (0) ∈ (0, ϕ 0 ) + V ∧ ( ), k(s 1 (0)) ∧ = k∧ . ( 10 
)
On établit ensuite comme dans [1, pp. 37-38] que :

(M k) ⊥ = 0. ( 11 
)
Dans l'équation associée à P(ε, ) 1 on prend alors r ∈ V ∧ ( ) arbitraire et on déduit que s 1 (0) est solution de P(0, ) 1 . A cause de (2), cette solution étant unique, la famille entière (s 1 (ε)) ε>0 converge faiblement dans V vers s 1 (0). Enfin, pour établir la convergence forte de s 1 (ε) vers s 1 (0), il suffit dans (4) de choisir h = k(ε, s(ε)) -k puis d'intégrer sur et de passer à la limite dans le membre de droite de l'inégalité obtenue grâce à (9)-(11).

Remarque 1. -De par la définition même de V ∧ et d'une caractérisation classique des déplacements de Kirchhoff-Love, P(0, ) 1 équivaut en fait à un problème bidimensionnel posé dans ω. De plus, dès que 1 -1 x 3 M(•, x 3 ) dx 3 = 0 (ce qui a lieu si les coefficients électromécaniques sont des fonctions paires de x 3 ) il y a découplage entre les déplacements membranaires et de flexion au sens où ils sont solutions de deux équations variationnelles indépendantes. Par des développements asymptotiques formels, un tel modèle limite a été obtenu dans [START_REF] Maugin | An asymptotic theory of thin piezoelectric plates[END_REF] dans le cas eD = ∅. Notre analyse mathématique s'étend sans difficultés à ce cas si l'on suppose que les densités de charges électriques ont des moyennes nulles sur leurs supports et si l'on quotiente par les constantes les espaces fonctionnels précédents associés aux potentiels électriques.

Un second modèle

On suppose ici que w = 0 ou que eN = ∅ et que la fermeture δ de la projection sur ω de eD coïncide avec ω. On décompose H en la somme directe de trois sous-espaces orthogonaux H = {h = (e, g); e i3 = g α = 0},

H • = {h = (e, g); e αβ = g i = 0}, H ♣ = {h = (e, g); e ij = g 3 = 0}. Comme précédemment, M 2 = M -M • (M •• ) -1 M • est bien défini comme élément de L(H , H ). On note 1 eD = eD ∩ ± , on pose H 1 ∂ 3 ( ) = {ψ ∈ L 2 ( ); ∂ 3 ψ ∈ L 2 ( )} et V ( ) = {s = (v, ψ); v ∈ V KL ( ), v = 0 sur mD et ψ ∈ H 1 ∂ 3 , ψ = 0 sur 1 eD }.
On a le résultat de convergence : THÉORÈME 2. -Lorsque ε → 0, la famille (s 2 (ε)) ε>0 des uniques solutions de P(ε, ) 2 converge fortement dans H 1 ( ) 3 × H 1 ∂3 ( ) vers l'unique solution s 2 (0) de :

P(0, ) 2 Trouver s ∈ (0, ϕ 0 ) + V ( ) tel que M 2 k(s) • k(r) dx = L(r) pour tout r ∈ V ( ).
Démonstration. -La démonstration qui généralise celle de [START_REF] Sene | Modélisation asymptotique de plaques : Contrôlabilité exacte frontière, piézoélectricité[END_REF] est identique dans le principe à celle du Théorème 1 : on montre que (s

2 (ε), k 2 (ε, s 2 (ε)) (s 2 (0), k2 ) dans H 1 ∂3 ( ) × L 2 ( ; H ) avec ( k2 ) ♣ = (M k2 ) • = 0 et s 2 (0) ∈ (0, ϕ 0 ) + V ( ).
Remarque 2. -Comme constaté dans [START_REF] Sene | Modélisation asymptotique de plaques : Contrôlabilité exacte frontière, piézoélectricité[END_REF] dans le cas particulier où a ε correspond à de l'élasticité homogène et isotrope, dès que eD ⊃ ± et que M ne dépend pas de x 3 , le potentiel électrique ϕ 2 (0) est un polynôme du second degré en x 3 dont les coefficients ne mettent en jeu que la composante de flexion du déplacement u 2 (0), ce qui entraîne le découplage des équations variationnelles « bidimensionnelles » vérifiées par les déplacements membranaire et de flexion. Lorsque

• δ ω, on a convergence de ϕ 2 (ε) dans H 1 ∂3 ( • δ × ]-1, 1[) et de ϕ 2 (ε) -1 2 1 -1 ϕ 2 (ε)(•, x 3 ) dx 3 dans H 1 ∂3 ((ω \ δ)× ]-1, 1[ ).

Remarques

D'une part, le premier modèle avec ϕ 0 = 0 correspond à la situation physique où la plaque piézoélectrique est utilisée comme capteur, le second modèle correspondant à un actionneur (cf. [START_REF] Bisegna | A consistent theory of thin piezoelectric plates[END_REF]). Lorsque w = 0 et ϕ 0 est indépendant de x 3 , c'est l'intensité seule de ϕ ε 0 vis-à-vis de l'épaisseur ε qui gouverne le type de modèle limite. D'autre part, les modèles de comportement ont été identifiés par des problèmes posés dans solutionnés par des limites s p (0) d'états électromécaniques mis à l'échelle. Si l'on définit sur ε un état électromécanique « physique » s ε p (0) par s ε p (0)(π ε x) = s p (0)(x), ∀x ∈ , cet état électromécanique est solution d'un problème posé dans ε transporté de P(0, ) p par π ε qui correspond alors à un modèle de plaque piézoélectrique mince d'épaisseur 2ε. Cet état à la cinématique simplifiée est asymptotiquement équivalent à s ε au sens où : 

         lim ε→0 ε -1 ε ε -2 |(u ε p ) α (0) -u ε α | 2 + |(u ε p ) 3 (0) -u ε 3 | 2 dx ε = 0, lim ε→0 ε -3 ε |e ε αβ ((u ε p ) α (0)) -e ε αβ (u ε )| 2 dx ε = 0 et ε -3 ε |e i3 (u ε )| 2 dx ε est borné, lim ε→0 ε -3 ε |ϕ ε 1 (0) -ϕ ε | 2 + |∂ ε α ϕ ε 1 (0) -∂ ε α ϕ ε | 2 dx ε = 0 et ε -3 ε |∂ ε 3 ϕ ε | 2 dx ε est borné, lim ε→0 ε -5 ε |ϕ ε 2 (0) -ϕ ε | 2 + ε 2 |∂ ε 3 ϕ ε 2 (0) -∂ ε 3 ϕ ε | 2 dx ε = 0 et ε -3 ε |∂ ε α ϕ ε | 2 dx ε est borné. ( 12 

  symétriques et positifs. De par le couplage piézoélectrique, M ε n'est pas symétrique. Cependant, sous des hypothèses réalistes de bornitude des a ε , b ε , c ε et d'ellipticité uniforme de a ε et c ε , et avec des actions extérieures suffisamment régulières, le problème admet une solution faible unique. La question est d'en étudier le comportement lorsque ε → 0.

  ∂x ε i en affectant de l'indice supérieur ε les symboles des opérateurs différentiels usuels. L'état électromécanique de la plaque est déterminé par un couple s ε = (u ε , ϕ ε ) de champs de déplacement u ε et de potentiel électrique ϕ ε . La plaque est soumise d'une part à des forces de densités volumique f ε et surfacique g ε sur ε mN et d'autre part à des charges électriques de densités volumique F ε et surfacique w ε sur ε eN . La plaque est encastrée sur de ∂ ε dont la normale unitaire extérieure est notée n ε . On suppose que chacune des surfaces précédentes est de mesure positive et que ε mD = γ 0 × ]-ε, ε[ , avec γ 0 ⊂ ∂ω. Les équations de détermination d'une configuration d'équilibre sont alors :

	ε mD et un potentiel électrique ϕ ε 0 donné est imposé sur ε eD . Les couples ( ε mD , ε mN ) et ( ε eD , ε eN )
	réalisent une partition

) 3. Quelques propriétés de M p

  Il est commode de décomposer H ∧ et H en la somme directe de sous-espaces H ∧m , H ∧e , H m , H e correspondant aux composantes mécaniques et électriques et d'associer ainsi à M p les opérateurs M p mm , M p me , M p em , M p ee . En considérant l'influence des symétries cristallines (cf. [4, p. 145]) sur la structure de M lors d'une polarisation perpendiculaire à la plaque, on déduit : (i) M 2 mm n'est composé que de coéfficients mécaniques. (ii) Pour les classes cristallines m, 32, 422, 6, 622 et 6m2 on a M 1 mm = M 2 mm . (iii) En dehors de ces classes, M 1 mm est toujours couplé avec des termes électriques. (iv) M 1 est symétrique pour les classes 2, 222, 2mm, 422, 4, 4mm, 42m, 622, 6mm et 23, M 2 est symétrique pour les classes m, 222, 32, 422, 6, 622 et 6m2. Ces cas sont intéressants car la loi de comportement est alors donnée par une énergie convexe quadratique. (v) Dans le cas du premier modèle, il y a découplage à la limite entre les équations mécaniques et électriques pour les classes 2, 222, 2mm, 4, 4, 422, 4mm, 42m, 6, 622, 6mm et 23. Dans le cas du second modèle, ce découplage a lieu pour les classes m, 32, 422, 6, 622 et 6m2. Cependant, bien qu'il y ait découplage, la loi d'élasticité n'est en général pas celle des plaques purement mécaniques puisque dans les opérateurs M p mm et M p gg , il y a un mélange de coefficients élastiques, piézoélectriques et diélectriques. Il est bien clair que ces résultats se trouvent modifiés dans le cas d'une polarisation tangentielle.