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Abstract

In this paper, forced responses are investigated in a two degree-of-freedom
linear system with a linear coupling to a Nonlinear Energy Sink (NES) sub-
jected to quasi-periodic excitation. The quasi-periodic regimes associated to
quasi-periodic forcing in the regime of 1:1-1:1 are studied analytically using
the complexification method combined to the averaging method in terms of
multi-time parameter. Local bifurcations of the quasi-periodic regimes are
also analyzed using the excitation frequencies as control parameters. The
nonlinear differential system is also solved numerically in time domain and
the responses are analyzed in view of the analytical results. Stable and unsta-
ble quasi-periodic responses are found in good agreement with the analytical
study, and strongly modulated responses are noticed. We observe that a
single NES can be efficient for the reduction of two resonance peaks even if
they are well separated, incommensurable, and excited simultaneously.
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viscous damping coefficient of membrane

Poisson ratio of membrane

first resonance frequency of the tube ¢

Air density

Membrane density

damping ratio of the 1-DOF system modeling the tube ¢
sound wave velocity

diameter of pipe i

diameter of membrane

Young’s modulus of membrane

thickness of membrane

cubic stiffness of the 1-DOF system modeling of the NES
stiffness of the 1-DOF system modeling the tube

linear stiffness of the 1-DOF system modeling of the NES
length of pipe ¢

mass of the 1-DOF system modeling the tube ¢

mass of the 1-DOF system modeling of the NES

radius of membrane

area of pipe @

area of membrane

volume of the coupling box: pipes/NES



1. Introduction

A series of papers [1, 2, 3, 4] demonstrated that a passive control of sound
at low frequencies can be achieved using a vibroacoustic coupling between
the acoustic field (the primary system) and a geometrically nonlinear thin
baffled structure (the nonlinear absorber). In [1, 2|, the thin baffled structure
consists of a simple thin circular visco-elastic membrane whereas in [3, 4] a
loudspeaker used as a suspended piston is considered. In the four papers,
theoretical and experimental results are reported considering transient and
periodic external excitation. The reduction principle of sound is based on
the phenomenon called Targeted Energy Transfer (TET) or Energy Pumping
[5]. If the nonlinear absorber is properly designed for the primary system,
an irreversible energy transfer from the linear system toward the absorber
occurs, the energy is dissipated within the absorber damper and the forced
dynamic response of the primary system is limited [6]. This means that the
nonlinear system behaves like a ”sink” where there is motion localization
and energy dissipation. In literature, this is also called Nonlinear Energy
Sink (NES). The complex dynamics of this kind of coupled systems can be
described in terms of resonance capture or nonlinear normal modes [5].

Under periodic external excitation applied to the primary system, the
nonlinear absorbers can efficiently reduce the resonance peak by entering
the whole system in a quasi-periodic motion with repetitive TET phase [6].
Weakly quasi-periodic responses and strongly quasi-periodic responses (also
named “strongly modulated responses”) can exist or coexist [7, 8]. The very
important point is that this peak reduction can occur in a wide frequency
band, with the NES adapting itself to the resonance frequencies of the pri-
mary system. On the other hand, the NES can operate efficiently only in a
limited range of the amplitude of the primary system. Following these re-
sults, design and optimization of the nonlinear absorber have been addressed
in [9, 10].

Similar tools have been used to investigate a two Degree-Of-Freedom
(DOF) linear systems with only one attached NES. An analysis of a com-
petitive energy transfer between a two DOF linear system and the NES in
terms of transient dynamic was presented in [11] exhibiting two activation
energy thresholds and proposing scenarios to forecast the TET mechanics.
Periodic external excitation was considered in [12] where the ability of the
NES to reduce the vibration from both excited modes of the primary system
is demonstrated.



In the works exposed above, TET was shown for single frequency, two
frequency or broadband excitation spectrum [13], but always close to one
single resonance frequency of the primary (linear) system. In these situations
a NES is a more effective vibration absorber than usual linear dampers,
mainly because its action is not limited to the immediate vicinity of a single
fixed frequency. The question that arises is the width of the efficient range of
a NES: can a single NES reduce well-separated resonance peaks of a primary
system that are excited at the same time? The present work looks for the
existence of this property that could broaden the applications of TET.

In this study, an acoustic medium (as in [1, 2, 3, 4]) is considered as
a primary system coupled to a simple thin circular visco-elastic membrane
(as in [1, 2]). However, two significant differences can be highlighted from
these past studies: firstly, the acoustic medium is modeled using two modes
and secondly the coupling effect between the primary system and the NES
is analyzed under two different harmonic excitations.

The paper is organized as follows. In Section 2, the system under study
is described and modeled as a two DOF linear acoustic system coupled to a
NES. We establish the equations of motion that will be transformed along
the analytic treatment. In Section 3, we express the system response to
periodic and quasiperiodic excitation using a complexification method, and
we express the stability analysis of these solutions. Complexification is used
to split solutions into fast and slow components. Slow components can be
seen as a slowly varying amplitude of an oscillation. These different time
scales permit to separate the variables: the fast components are assumed to
be at the source frequencies, the slow are found by averaging the equations in
terms of multi-time parameters. In this process, several terms are neglected.
In order to control the magnitude of these terms, the equations are written in
dimensionless form prior to complexification. This process ends up with an
autonomous set of differential equations, and solutions appear in the form
of polynomial roots. The stability and local bifurcation analysis are done
by monitoring the evolution of small perturbations. In Section 4, we apply
the general formulas established before on a realistic case. We establish
the responses to periodic, then quasiperiodic excitations and point out the
differences. Next we check the validity of these results with direct numerical
integration of the dimensional equations of motion. In Section, 5 we gather
the main observations and we conclude.



2. Description of the vibroacoustic system

Acoustic source (Vs) Coupling box (Vm)

pipe 1 (L1, S1,ul)

ul] Lyl

ps pm L,

- qm

Eil I—u>2 NES
pipe 2 (L2, S2, u2) ‘

(box pipes/source) (box pipes/NES)

Figure 1: Schema of the vibroacoustic system.

The system under study is shown Fig. 1. It consists of an acoustic medium
coupled to a simple thin circular clamped visco-elastic membrane by means
of a coupling box. The acoustic medium is composed by two pipes of different
lengths and section areas opened on both ends. In practical terms, the length
can be adjusted using U-shaped pipes. The coupling between the pipes and
the membrane is ensured acoustically by the air in a coupling box, which is
sufficiently large to give a weak linear coupling stiffness. A pre-stress can
be imposed at the membrane boundaries. An acoustic source consisting of a
loudspeaker and a coupling box which is connected to the entrance of both
pipes is used.

2.1. Associated model

Following [2] and [3] and under the same assumptions, a simple model to
predict qualitatively the behavior of the vibroacoustic system can be obtained
corresponding to the following equations of motion.

The equation of motion of the pipe 1 is given by

maiin (t) + 271/ kimain (8) 4+ krug (t) = —Sipm(t) — Sips(t) (1)

where wu;(t) denotes the acoustic displacement at the end of the pipe, pn(t)
denotes the pressure in the coupling box pipes/NES, ps(t) denotes the pres-
sure in the coupling box pipes/source and the parameters satisfy

poS1Ly pocsmS1 . . 2 ko gn?
= 2—Ll gving W? = E = L_% (2)

and k?l =

ma
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The equation of motion of the pipe 2 is given by

Matia(t) + 2To/ kamotia(t) + koua(t) = —Sopm(t) — Saps(t) (3)

where us(t) denotes the acoustic displacement at the end of the pipe and the
parameters satisfy

SoLL 2:2¢G 2.2
_ foZ2n —,0002017;2 2 giving w§2 _ Q. (4)

and ]{32 = 7
2

mo

The equation of motion of the pre-stressed membrane (NES) is given by
o f12 . 3 2 . o Sm
Mantn (8) + i | 50 (8) + 0 (1) | + k3 (0 (8) + 20qun ()P (8)) = =P ()

f) 2
()
where ¢, (t) denotes the transversal displacement of the center of the mem-
brane and the parameters satisfy

pnSonfim 1.015°  Eh
m=——0 ) kn= ; 6
" 3 36 (1—1?)R2 (6)
1 [ 101541 ER2 8t Eh
- m_and ky = ——rm
fo 27r\/12(1 ) pmRE B T 31 )R, (M)

Here f; denotes the first resonance frequency of the membrane without pre-
stress and f7 denotes the first resonance frequency of the membrane with pre-
stress. The resonance frequency f; can be measured experimentally so it can
be considered as a parameter of the model. As described in [2], the nonlinear
equation of motion (5) has been obtained considering the membrane as a
thin elastic structure with geometric nonlinearities and using a one DOF
Rayleigh-Ritz reduction with a single parabolic shape function to describe
the transversal displacement of the membrane. All details can be found in
2].

The vibroacoustic coupling between the two pipes and the membrane is
given by the acoustic pressure p,,(t) into the coupling box pipes/NES, which
is dependent on wuy(t), us(t) and ¢y () accordingly to

Sm . i
Pun() = k(=22 () + Sy (1) + Soua(t)) with by = T2 (8)



For simplicity, the coupling box pipes/source and the loudspeaker are not
modeled. We assume that the acoustic source is characterized by the acoustic
pressure pg(t) into the coupling box pipes/source. In case of bi-periodic (or
quasi-periodic) excitation, the acoustic pressure is of the form

ps(t) = By cos(wit + 7)) + Es cos(wit + ¢5) 9)

where wj and wj are two incommensurable frequencies and ¢} and ¢f are
two arbitrary phases.
Hence the dimensional equations of motion read as

mliil (t) + 27'1 \/ k?lmlil,l (t) + k1u1 (t)

+S1 Ky (Syus (t) + Saua(t) — %qm(t)) = —S1ps (1), (10)
Maiia(t) + 270/ kamatia(t) + kyus(t)
+Soky(Syuy () 4 Saug(t) — %qm(t)) — —S,ps(1), (11)
MG (t) + (G (), g (1))
—%kb(slul(t) + Souy(t) — %qm(t)) =0 (12)
where
f(@,2) = ky (}c—gx + m‘:) + ks (2° + 2n|z|?2) . (13)

2.2. Nondimensional equations of motion

Egs. (10-11) are first rewritten in the matrix form

MU (1) + CU(L) + KU(D) ~ by 22 ( o ) Gult) = — ( o )ps(t) (14)

)

and the matrices M, C and K are easily deduced from Egs. (10-11).
Introducing the following change of variable

where

U(t) = ®V(t) with V(1) = < 28; ) (15)



where the modal matrix
b =[PP

is defined following the relations
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K®; = w® M®,; for i = 1,2 with w® < w? and ®"M® = M,

Egs. (10-12) read as
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__kb‘§1Qm(t) = _Slps(t)>

2
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Using now the following rescaled quantities

281 Ul( )

_ 25w

nlt) = g7 = wl) = g

and the time normalization

T

T1(7) = 21(—5), To(T) = 22(—

Wl

T

and z3(t) =

5),5(7) = a(—

Wl

Wl

5) with 7 = wi't,

Eqgs (18-20) take the following nondimensional form

5?1(7) + >\11£?1(T) + >\12£TU2( T)
To(T) + A Z1(7) + AgaZa(T)

+W2 o(T) —
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where

w w
w1 = w_li)a Wy = w_§)7 (27>
So S Sy
A = 2(n @Y + o @31) A2 =2(1 P11 P12 + 7 2‘1321(1’22) (28)
S Sy Sy’
25,1, Sy 45,1, Sy
b+ D Fl=—— (0 ) 2
b = 2V — (P11 + Py 5'1) = 2 (P11 + Do 51) (29)
S Sy L S L
)\21 = 2(T13—q)11q)12 + qu)glq)gg) Sj L: )\22 = 2(7'1 Sl @?2 + TQq)%Q)L—;, (30)
25515 S o, L2 4S5 L4 Sy o, L2
fo = 2 ((1)1252 + Pgy)° 7% Fy, = poc(2)7r2—5mh<q)123 + Ppp)? 2 (31)
8 Pm hm31 SQ 881 52 2
=_ §) d = — k. n(d Dy —)*, 2
3 Sle( 11 + Pog 51) 4 e S? n(Pyy + Doy 51) (32)
1651]12 S2
O3 = —— B kan(d 0] 33
3 PocomS2 31( P11 + P 51) (33)
8Ly [} Sa.9 8S,L.h? Sa.9
——— k(P iiJ Ky = —— o ks(P Py — 34
/)00077252 13 (P11 P Sl) pociT2SE (Pu1 D 51) (34
and
Ds(7) = Ey cos(@0iT + ¢F) + Eq cos(wsT + ¢5) (35)
with . .
~S w w?
o] = W_1 and @ = w_{)' (36)

Note that now dot ( ~ ) denotes the differentiation with respect to the
nondimensional time 7.

To simplify the notations, the upper symbol tilde (7) will be dropped in
the sequel and the time dependence will be omitted.

The time normalization has been defined from the resonance frequency
w? of the pipe 1 (see Eq. (2)). This choice gives closed-form expressions for
the nondimensional model parameters and hence facilitated the analysis of
the order of magnitude of these parameters (see section below). Of course,
the resonance frequency wy of the acoustics part (see Eq. (17)) could also be
used. Note that in the configuration under interest, w?® and w! are very close
(see Table 1).



2.3. About the order of magnitude of the parameters

The parameters in Eqgs. (24-26) have not the same order of magnitude.
Firstly, to ensure that the membrane can be viewed as a grounded NES [5]
with respect to the acoustic medium, the volume of the coupling box has
to be chosen large enough with respect to the pipe volumes. These choices
imply that the volume ratios are small (= ¢ << 1) and hence, following (29)
and (31), (1 and (3, are proportional to €. Considering now the nonlinear
term K3, due to the scaling process (22) and (23) the order of magnitude of
K3 (see (34)) is given by (hy/Rum)*hy, which leads to a parameter of order €
if hy, << 1 and h, << R,. Finally, the damping parameters A;1, A2, A2t
Aoz, C1 and C3 which model the acoustical and material (in the membrane)
dissipative phenomena can also be considered as parameters of order €.

These properties will be used in the sequel to study analytically the equa-
tions of motion (24-26).

3. Analytic treatment

This section is devoted to the analytical study of quasi-periodic regimes
when the frequencies of excitation are near the two resonance frequencies of
the system.

The complexification method combined to the averaging method will be
applied starting from Eqs. (24-26) written as

By Adn o+ Az +win — fizs = —Fips, (37)
Fg + N5 T1 + Nsoibg + waxg — B5w3 = —Fapy, (38)
vis + Cfig + Csasis + Kz + Kirs
+05(—x1 —xa+x3) = 0 (39)
with
ps(T) = Eycos(WiT + ¢}) + Eo cos(wsT + ¢5) (40)

where the upper script (€) indicates the parameter is proportional to e.
Choosing € << 1 establishes the order of magnitude of the corresponding pa-
rameters in agreement with the orders of magnitude discussed in Section 2.3.
We assume that the excitation frequencies are detuned off in the following

form
w] = wy + o1 and Wi = wy + 09 (41)

where 0 and oy are also considered as small parameters.

10



3.1. Complexified system

New variables are introduced as
x; =, +a; fori=1,2and 3 (42)

to capture frequency components with respect to wy; and w, respectively. For
1 = 1,2 and 3, the following complex change of variables are considered

-1

lekar = Dy g
¥ - w JT;
pe (43)
g = B
2

where j = y/—1. The variables ¢, and ¢? are assumed as slowly evolving
compared to the frequencies of excitation.
Substituting Eq. (43) into Eq. (42), we obtain

Ty = —%(QOilejwlT (’0 e —JjwrT + g02eJ‘*’2T gO_ZZG_ijT> (44>

and after time derivation

. w : — w . .

Ty = 71(9036“” + e ) + f(wfemf + gl (45)
QSZ = Wl(@bilejw” +jw QOZ-lejwlT) + WQ(Qb?ejsz +jw2g0$ej“27)
‘] w1t —JwiT J wWoT —iwoT

_iwl((ple.] 1 _}_901 Jjwi )—2(,02(%016’] 2 +S02 jwa ) (46)

where (7) denotes complex conjugate.
As usual in multi-periodic case[14, 15], a multiple time parameter (71, 75)
can be introduced
(11, 72) = (w17, wsT) (47)

giving
T; = —§(golem — e T el e ™) for i = 1,2 and 3. (48)

Substituting Eqs. (44-46) into Eqgs. (37-39), the resulting equations can
be averaged with respect to the excitation frequencies w; and ws separately

11



yielding the following system of slow modulation

B _IEy

€ €
)\le 1 )\1 w

. 1 o1 T S
Wigr + =5 %w%ﬂgws = 5 ——ellmeD | (49)
. S, Wy ASowW j
W1¢%+ 2; 90%"‘( Q; 1+§( f—w2))g02
ﬁQ F2E1 S
2ol = ———THD (50
, Ciw j .
Ywigs + ( 12 -+ %(Wf - K —ﬂg))wg
Cewl 3K
+(3T_ —)(|90| + 2|93 3
35
+J33(901+902) = 0, (51)
. A w j ASow
wrgf + (L2 + 2 (w] — )t + 2220
_RE .
HgE = Ty, (@)
. ASw AS € FE OoTdS
wag + =] + 2 22 ﬁwi = — ) (53)
) Ctw j .
e + (52 + S0 — K1 — 55)¢
Ce(.Ug 3K
=g~ —IgAP + 2lea)e3
35
+J—3(901+902) = 0. (54)

The first three equations Eqs (49)-(51) have been obtained using the following

averaging operator
2w 2m )
/ / R(r, 1) " dmdmy (55)
o Jo

written in multi-time parameter. The last three equations Eqs (52)-(54)
result from the use of the following averaging operator

27 27
/ / R(T, 7)e” ™drdm. (56)
o Jo

An additional change of variables is needed to reduce the system into au-
tonomous one.

12



Introducing for ¢ = 1,2 and 3, the following new variables

Lo—jo17— j93
801 - QO !
{ @2 = p2eioaT—ids (57)

Eqgs (49-54) are reduced to the autonomous form

. A w j ASow
w1¢}+(%+%2wlal)g@i+ 1; ~ )
B 1 kB
Prot — 58
+J 2 @3 2 9 ( )
. ASw ASow
g+ A (B (900, 1 — W)
FE
2 = -2 )
. C"‘wl J €
w15 + ( 12 + 52w + Ywi — K1 — 35))e3
C’Gwl 3K ﬁ
+( ?;3 —J—)(|903|2+2|<P )¢3+J7‘°’(<ﬁ1+¢2) = 0, (60)
) AEw ] Aow
wat + ( 1; 2 +%(2w202+w2 —wi))et + 1; 28
51 F1E2
Pro2 — _ 61
+.] 2 903 2 ) ( )
. AS W2 AS [0%)) J
waps + 212 o7 + ( 2; 5 )3
FE
+J@90§ = ——— (62
. CSw j .
Ywrh + (T + 5 (2waon +qwh — Ky — 55))f
Ceu)g 3K ﬁ
( ?’8 — )(|903!2+2!<p3| )¢3+J23(<p?+90§) = 0. (63)

To simplify the hat sign (7) has been omitted.

When E, = 0 (respectively E; = 0), Egs. (61-63) (respectively Egs. (58-
60)) are trivially satisfied with p? = p3 = @2 = 0 (respectively p] = p3 =
ot = 0) and the resulting equations Eqs. (58-60) (respectively Eqs. (61-63))
are in agreement with the results described in [12].

3.2. Quasi-periodic solutions
The quasi-periodic solutions of Eqs. (37-39) correspond to the fixed points

$o = (SOiOa 90%0» 90111,(» 90%07 @307 ‘Pgo)T (64)

13



of Egs (58-63).

By setting
PrL=¢1 =y =95 =5 =5 =0, (65)
we obtain a system of algebraic equations which can be re-organized as

Aljwr ] Afpwi - BT FiEy

(T + §ZW101)S010 TP = TI5 %0 (66)
Ag;wlgpio (% + %(201101 +wi —w3))pp = _J%90 - %’(67)
(% + %(27w101 + ”)/Wf - K — 55))%0:1),0
(B b s 2l = il + k). (69)
(Ai;@ " %(2@02 +wi —wi))ely + %9030 = .]521 P30 — F12Ez (69)
)‘212% 0l + ()\5;2 + %2w202)¢§0 - _J%SOQ B FQQEQ’WO)
(szw + %(2&)2’}/02 + ’ng - K — 55))9030
+<C§8w2 — 3K6)(‘¢30|2 + 2|50l )30 = _J%(%O +¢5)- (71)

Solving the linear system Eqgs. (66-67) (respectively Egs. (69-70)) with
respect to the unknown variables ], and ), (respectively ¢, and ¢3,) and
substituting the result into in Eq. (68) (respectively Eq. (71)), we obtain

w30(bo + il@sol” + bal03]?) = co (72)
(respectively
¥30(do + di|pzel* + dae3pl*) = eo) (73)

where by, by, b, co, do, di, dy and eg are complex coefficients (not given here).
Finally Eqs. (72-73) can be reduced to the following two polynomials of order
31in Z) = |piy]? and Zy = |p3,|? with real coefficients

brb1 Z7 + (biba + bibo) Z7 Zy + babe 21 Z35+

(bob1 + boby) Z7 + (boby + bob2) Z1 Zo + boboZ1 = coCa, (74)
dody Z3 + (dvdy + dydy) Z2 7, + dydy 20 Z2+
(dodg + dod2) Z5 + (dody + dod1)Z1 Za + dodoZy = eney. (75)

14



The polynomial system (74)(75) admits at most 9 zeros Zy = (Z19, Z2).
The zeros can be real-real, real-complex, or complex-complex moreover non-
real terms occur in complex conjugate pair of zeros. The quasi-periodic
solutions correspond to real-real zeros with both positive values. Note that
starting from Zjp = |¢3|* and Zayy = |03]?, ¢los P20 and i, (respectively
02, pa and ¢%)) can easily be deduced from Egs. (72) and (66-67) (respec-
tively Egs. (73) and (69-71)).

3.3. Stability analysis and local bifurcation of the quasi-periodic solutions

The stability analysis of a quasi-periodic response of Eqs. (37-39) can be
explored analyzing the stability of the associated fixed point g of Eqs. (58-
63).

Re-writing Eqgs. (58-63) as

$=Ap+B(p.p), (76)

where ¢ = (¢1, 93, 3, 91, 3, ¢3)", introducing the linearized terms of B and
its conjugate B around (¢, ®) = (0, Po) as

B(po + 0, @0 + 0p) ~ 0,B (w0, P0)0¢ + 0B (0, $0)de

Bl(po + 8¢, 50 + 8p) ~ 9,B (w0, 90)d% + 9B (w0, $0)dp

and linearizing Eq. (76) (and its conjugate equation) at (¢, ®) = (0, @0),
we obtain the following close linear system

5o\ _ A +0,B(p0,P0))  9B(p0, o) o
(E) B < 9B (0. ¥0) A+ 0B (0, P0) > < dp ) - (77)

The eigenvalues of the associated matrix characterize the local stability
property of the fixed point ¢y. The eigenvalues can also be used to localize
bifurcation points with respect to some control parameters. Saddle-Node
(SN) and Hopf bifurcations will be analyzed in the sequel with respect to the
detuning frequency parameters o, and os.

4. Application to a nominal configuration

In view of future experiments, the vibro-acoustic system (see Fig. 1) under
study is defined from the numerical values of the parameters given in terms
of geometrical quantities L; = 2.40 m, d; = 2x 0.075 m, S; = 7 x 0.075% m?,

15



Ly =1.60m,dy, =2x0.10m, Sy = 7x0.10®> m?, V,, = 2x0.027 m?, d,, = 2x
0.03 m, Sy, = 70.03%2 m2, hy, = 0.3 x 0.001 m; in terms of material quantities
po=13kgm™> ¢y =350 ms ', pp =980 kg m™*, £ = 1480000 Pa and
v = 0.49 and in terms of damping quantities 7, = 0.007 and 7 = 0.007.
With this choice, the volume S, of the coupling box is larger than the pipe
volumes L15; and LySs.

The associated numerical values of the parameters characterizing the di-
mensional model (see Eqs (10-12)) are then given by m; = 0.0275675 kg, ki =
5786.43 N m™*, my = 0.0326726 kg, ky = 15430.5 N m™ ', k, = 2.949 x 10°,
My, = 0.000277088 kg, ky, = 0.527154 N m™!, k3 = 5.43879 x 105 N m 2,
n = 0.00025, fy = 6.94192 Hz and f; = 40 Hz. Note that the values of the
parameters related to the membrane (m,,, kn, k3, 7, fo and f1) have been
chosen in reference to the experiment data given in [2].

This set of parameter values is in agreement with the order of magnitude
of the parameters discussed in Section 2.3. The numerical values of the
parameters characterizing the nondimensional model (see Egs. (24-26)) follow
asw; = 1.05632, 5, = 0.0819989, F; = 0.06556, wo = 1.64101, B2 = 0.501569,
F, = 0.401016, v = 0.809151, K; = 0.243498, K3 = 0.00680993, C| =
0.000840005, C5 = 0.00155998, \1; = 0.0141894, A5 = —0.000459194, A9y =
—0.00280879 and A9 = 0.0119723.

i wy w? wy? w; = g—?
(Hz) (Hz) (Hz)
1] 458.149 | 483.953 | 486.329 | 1.05632
(72.9167) | (77.023) | (77.402)
2| 687.223 755.286 758.309 | 1.64856
(109.375) | (120.208) | (120.689)

Table 1: Resonance frequencies.

The values of the resonance frequencies w! (as defined in Egs. (2) and
(4)) and w? (as defined in Eq. (17)) are given in Table 1 and compared with
the resonance frequencies w}® of the underlying linear system (k3 = 0) of the
dimensional model Egs. (10-12). Also reported in Table 1 are the values of
the reduced resonance frequencies w; characterizing Eqgs. (37-39). As already
mentioned, w} and w? are close. Moreover w? and wy® are also close showing
that the linear part of the membrane does not introduce a strong coupling
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between the pipes and the membrane. The resonance frequencies of the
acoustics medium are well separated.

Here, it is interesting to note that choosing the detuning parameters oy

and 0y as 7+ = 0 and 22 = 0, the excitation frequencies of the associated

w2
bi-periodic excitation are equal to the resonance frequencies w!. Moreover

va
choosing the detuning parameters o; and oy as :’)—1 = ‘%a — 1(=~ 0.0042) and
Z—z = f:;a —1(~ 0.004), the excitation frequencies of the associated bi-periodic

excitation are equal to the resonance frequencies w;®.

4.1. Periodic solutions

We assume here that the excitation is periodic with

2
TPoCyH

ps(T) = Ej cos(wit) with Ey, = ey, x 107° (78)

for k=1 or 2.

As already indicated in Section 3, the analytical treatment when the
excitation is of the form (78) coincides with the methodology proposed in[12].
Hence we will just discuss some classical behaviors.

Fig. 2 shows the frequency-response diagrams deduced from the complex-
ification approach combined to the averaging method. For the both cases
(k=1 and k = 2), two excitation levels are considered: a low excitation
level (e; = 0.80 for k = 1 and ey = 1.60 for k& = 2) giving one stable solution
over the frequency range considered (see black curves in Fig. 2) and a high
excitation level (e; = 0.90 for £ = 1 and ey = 1.80 for k¥ = 2) showing no
unique solution zones and instability properties (see grey curves in Fig. 2).

Considering now only the high excitation level cases (e; = 0.90 for k = 1

and e; = 1.80 for k = 2), frequency-response diagrams in terms of n[lax] |z (t)|
te|t1,ta

for i = 1,2 and 3 obtained from the fixed points of Eqs (58-63) and by nu-
merical integration of Egs. (37-39) using the fixed point as initial conditions
(to = 0) are plotted Fig. 3. Also reported are the frequency-response dia-
grams obtained by numerical integration of the associated underlying linear
system of Eqgs. (37-39) (i.e. with C5 = 0 and K3 = 0). The solver NDSolve
available in (¢Mathematica to solve ordinary differential equations was used
with ¢; = 1000 and ¢, = 2000. The quantity tér[iax] |z;(t)| was chosen because

1,t2
it can be used as a criterion for ear or structure damage.
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Figure 2: (a-c): || for i = 1,2 and 3 with e; = 0.80 (black) and 0.90 (grey). (d-f): |©?°]
for i = 1,2 and 3 with e5 = 1.60 (black) and 1.80 (grey). Stable solutions (dot markers),

unstable solutions (circle markers). (Ej = ek%frfg x 1076 for k =1 and 2).

First of all, it interesting to note that the responses obtained by numerical
integration of Eqgs. (37-39) are very close to the responses predicted by the
analytical method (fixed points of Eqs (58-63)) when the stability criterion
is satisfied (see filled square markers in Fig. 3). Moreover, in the unstable
zone, that is to say when no periodic solution exits, the responses obtained
by numerical integration differ from the responses obtained by the analytical
method. In this zone, the responses can be quasi-periodic or strongly quasi-
periodic (see [12, 5]). While a quasi-periodic solution can be found as a sum
of periodic terms, a strongly quasi-periodic response, also named Strongly
Modulated Response (SMR), can not be captured by a local (linear) analysis
of the fized point of the averaged equations. It is characterized by a magnitude
of the amplitude modulation which is equal to the response amplitude (see the
amplitude modulation Fig. 10)

As expected, when k& = 1 that is to say when the excitation frequency
is near the resonance frequency w; (see Fig. 3(a-c)), the membrane acts as
a nonlinear noise absorber. The x; component is reduced compared to the
linear case. The energy is mainly transferred to the x3 component with
a smaller amplification of the x5 component. Symmetrical results hold for
k =2 (see Fig. 3(d-f)).
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Figure 3: n[lax | |z;(t)| for ¢« = 1,2 and 3 obtained from the fixed points of Eqs (58-
telty,t2

63) (black), by numerical integration of Eqs. (37-39) (circle markers) and by numerical
integration of the associated underlying linear system of Eqgs. (37-39) (continuous curves).
(a-c): e; = 0.90 and ez = 0. (d-f): e = 0 and e; = 1.80. Filled square markers denote

2
unstable fixed point solutions. (Ey = ey 2> x 107 for k = 1 and 2).

4.2. Quasi-periodic solutions

We assume now that the excitation is quasi-periodic with

2
TPoC

ps(T) = B4 cos(wiT+ @) + Es cos(wiT + ¢3) with By, = ey, x 107, (79)

We first analyze the quasi-periodic responses from the complexification
approach combined to the averaging method. The quasi-periodic responses
are characterized from Egs. (74-75). Fig. 4 shows the number of stationary
solutions (fixed points of the complexified and averaged model) in the domain
defined by —0.3 < olwfl < 0.3 and —0.3 < 02w2_1 < 0.3 and for various
excitations levels (eq, e2) with e; € {0.80,0.90} and ey € {1.60,1.80}. These
level values were considered separately in the periodic case (Section 4.1). The
stability zones are reported in Fig. 5. In terms of stability properties, Fig. 4
defines the boundary of the possible SN bifurcations whereas Fig. 5 defines
the boundary of the possible Hopf bifurcations. Depending on the source
detuning and amplitude, zones with one, three or five solutions have been
found (see Fig. 4) associated to different stability properties (see Fig. 5).
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Figure 4: Number of fixed points of Eqs (58-63) for (a) (e1, e2) = (0.80,1.60), (b) (e1,e2) =
2
(0.80,1.80), (c) (e1,e2) = (0.90,1.60) and (d) (e1,e2) = (0.90,1.80) with Ej = e} >0 x
1076 for K = 1 and 2. One solution (white zone), three solutions (black zone) and five
solutions (grey zone).

For (e1,e3) = (0.80,1.60), four small zones with three solutions appear

20

(see Fig. 4 (a)) included in a large zone with one solution, stable only in
a limited area (see Fig. 5 (a)). Two tongues in the ojw; '-direction defin-
ing stable solutions are included into the instability zone showing that the
system behavior is not similar considering the oyw; '-direction and the ogw; *-
direction. Moreover, it is interesting to note that for (e, es) = (0.80,0.) and
(e1,e2) = (0.,1.60) (see periodic case) unstable solutions were not observed.
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Figure 5: Stability zones of the fixed points of Eqs (58-63) for (a) (e1,e2) = (0.80,1.60),
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2

E, = ek%;’;" x 1076 for kK = 1 and 2. Zero stable solution (black zone) and one stable

solution (white zone).

A first potential extension of the TET efficiency range appears: a detuned
perturbation added to a main excitation could trigger the SMR mode when
the amplitude threshold for self-triggering is not reached.

When increasing e; and/or es, the previous patterns (in terms of number
of stationary solutions and stability zones) are reproduced and amplified
along the axis ojw; ' = 0 and/or oow; ' = 0 (see Figs 4 (b,c,d) and 5 (b,c,d)).

It is now interesting to check the validity of the complexification approach
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combined to the averaging method. This can be done by comparing as in the

periodic case the multi-frequency-response diagrams in terms of rr[lax} |z (t)]
telty,ta

fori = 1,2 and 3 obtained from the fixed points of Eqs (58-63), by numerical
integration of Eqs (58-63) using the fixed point as initial conditions (ty = 0)
and by numerical integration of the associated underlying linear system of
Egs. (37-39).

For (e1,e3) = (0.80,1.60), the multi-frequency responses along the seg-
ment line AB in the plane (oyw;", oowy ') (see Figs. 4 and 5) are shown on
Fig. 6. The segment line AB is parametrized by s where s = 0 corresponds to
the point A and s = 1 to the point B. For s &~ 0.5, the excitation frequencies
of the associated bi-periodic excitation are near to the two resonance frequen-
cies wi®* and wy®. The stable quasiperiodic solutions are well predicted by the
analytical approach outside the instability zone (for s < 0.1 and s > 0.96) as
well as on the stable tongue zone inside the instability zone. Finally in the
zones correspondng to unstable fixed point solutions, the responses obtained
by numerical integration differ from the responses obtained by the analytical
approach. Using s as the control parameter, a bifurcation analysis can be
carried out. The results are reported on Fig. 6 for the x3 component showing
SN and Hopf bifurcation points.
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Figure 6: II[’laX | |z;(t)| for ¢ = 1,2 and 3 obtained from the fixed points of Eqs (58-
telt1,t2

63) (black curve with square markers), by numerical integration of Eqs. (37-39) (grey
circle markers) and by numerical integration of the associated underlying linear system of
Egs. (37-39) (black continuous curve) versus s the parametrization of the segment line AB
in the plane (oyw; ", ogwgl)(see Figs. 4 and 5). Square markers denote unstable fixed point
solutions and vertical dashed (respectively continuous) lines refer to Hopf (respectively SN)

bifurcations. e; = 0.80 and es = 1.60 (Ef, = ek%ﬁf’ x 1076 for k =1 and 2).

The same comments can be made on Fig. 7 (respectively Fig. 8) where the
multi-frequency responses obtained with (eq,e2) = (0.90,1.60) (respectively
(e1,e2) = (0.80,1.80)) along the segment line E'F (respectively C'D) in the
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plane (o1w; !, oow, ') (see Figs. 4 and 5) are shown. These two configuration
can be compared respectively to the periodic cases: (e, e2) = (0.90,0.) (see
Fig. 3 (a-c)) and (ej,ez) = (0.,1.80) (see Fig. 3 (d-f)). This comparison
shows again that the system behavior is not similar considering the ojw; *-
direction and the ow, '-direction. The results along the segment line EF
are very close to the periodic case (e1,e3) = (0.90,0.) where only the
component is amplified. Conversely, the results along the segment line C'D
differ significantly from the periodic case (ey, e2) = (0.,1.80).

In all the situations exposed above, it can be noticed that mzax(mgix |z ()])

is always lower than the maximum value of the equivalent set of variables
obtained from the underlying linear system (solid lines in Figs. 3, 6-8). In
simple words, it means that the addition of a NES to this linear system
reduces its maximal amplitude of vibration: a single NES has an effective
action as a vibration limiter simultaneously on the two resonances of a linear
System.

()35
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0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6
s s S

Figure 7: ten[%a)tc | |z;(t)| for ¢ = 1,2 and 3 obtained from the fixed points of Egs (58-
1,02
63) (black curve with square markers) , by numerical integration of Egs. (37-39) (grey
circle markers) and by numerical integration of the associated underlying linear system of
Egs. (37-39) (black continuous curve) versus s the parametrization of the segment line EF
in the plane (oyw; ', oows ') (see Figs. 4 and 5). Square markers denote unstable fixed point
solutions and vertical dashed (respectively continuous) lines refer to Hopf (respectively SN)
bifurcations. Square and circle markers denote unstable fixed point solutions. e; = 0.90

and ey = 1.60 (E), = ek%:f’ x 1076 for k =1 and 2).

4.3. Numerical verification

This numerical verification has several objectives. First, it is a partial
cross-check of the proposed analysis because it was carried out from the vi-
broacoustic model and with a different solver. The dimensional equations of
motion Egs. (10-12) were solved with (©Matlab ordinary differential equation
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Figure 8: I{l&x |z;(t)| for ¢ = 1,2 and 3 obtained from the fixed points of Egs (58-
te

1,t2]
63) (black curve with square markers) , by numerical integration of Eqgs. (37-39) (grey
circle markers) and by numerical integration of the associated underlying linear system
of Egs. (37-39) (black continuous curve) versus s the parametrization of the segment line
CD in the plane (oyw; ', 09wy ') (see Figs. 4 and 5). Square markers denote unstable
fixed point solutions and vertical dashed (respectively continuous) lines refer to Hopf
(respectively SN) bifurcations. Square and circle markers denote unstable fixed point

solutions. e; = 0.80 and e; = 1.80 (E) = ek%;fg x 1076 for k = 1 and 2).

solver (Runge-Kutta (4,5) formula), versus (©Mathematica ordinary differ-
ential equations solver NDSolve (with the choice Automatic for the option
Method) used with the nondimensional system (see previous Section). For
the same parameters, the difference of the results obtained with the two
solvers are in agreement with the precision of the numerical methods. Sec-
ond, it permits to visualize the form and frequency content of the unstable
responses. Third, it gives access to inner phenomena such as the spatial and
temporal localization of the energy dissipation.

In the next subsections we give results obtained along the segment lines
traced on Fig. 4. The dimensional equations of motion Eqs. (10-12) were
solved assuming zero initial conditions (to = 0).

4.3.1. Frequency analysis around the quasi-periodic regimes

Fig. 9 displays the discrete Fourier transforms (Fast Fourier Transform
(FFT) method) of the displacement of the membrane g¢,,(t) for ¢t € [0, 30]
(with frequency steps : 0.2 rad/s) obtained for different values of s (0.17,
0.71, and 0.79) on CD segment line in Fig. 8. In all the curves, the two main
peaks correspond to the excitation frequencies. The other features of the
curves differ.

Fig. 9 (a) corresponds to a quasi-periodic solution (s = 0.17 in Fig. 8 (¢)).
Two peaks only are visible.
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Fig. 9 (b) corresponds to the vicinity of a Hopf bifurcation (s = 0.71
in Fig. 8 (c)) according to the analysis performed in Section 3. We notice
the presence of satellite peak around the main peaks. The distance between
the main and satellite peaks is 22 rad/s, a value close to the difference be-
tween the main peak and the imaginary part of the complex eigenvalues that
characterize the Hopf bifurcation. There is no simple linear combination of
the source frequencies that gives a result close to this value, and these fre-
quencies here can be considered incommensurable. Thus, these peaks do not
come from interaction of the excitation frequencies, so the simulated results
are consistent with the analytic approach.

Fig. 9 (c) corresponds to the vicinity of a SN bifurcation (s = 0.79 in
Fig. 8 (c)) according to the analysis performed in Section 3. Here we do not
notice clear satellite peaks, only a noisy background is present as a trace of
non harmonic features. There is no indication of an imaginary part in the
eigenvalues that arise at this bifurcation point, which is consistent with a SN
bifurcation.

(a) quasiperiodic regime — s = 0.17 (b) Hopf bifurcation - s = 0.71 (c) saddle node - s =0.79
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Figure 9: Fast Fourier Transform of g, (¢) with ¢ in [0 30 s] for different values of s on
the segment line CD. (a) s = 0.17 (w; = 496 rad/s, we = 750 rad/s), (b) s = 0.71
(wp = 496 rad/s, we = 764 rad/s), (¢) s = 0.79 (w1 = 496 rad/s, wy = 765 rad/s).

4.8.2. Dissipated power in SMR

For a system with one tube only, as studied before [7, 8], a harmonic
excitation can produce a strongly modulated response, indicating an alter-
nation of modes corresponding successively to resonance build up and TET.
For more complicated systems, the analysis is less easy but the same ideas
can be considered as a basis of reflection.

We have found temporal responses in the central unstable part of the
segments CD (see Fig. 8) and EF (see Fig. 7), where a strongly modulated
pattern is observed. To analysis the pattern, the powers dissipated in the
three subsystems (the pipe 1, the pipe 2 and the membrane) have been
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compared. The power dissipated in a subsystem was obtained by making
the product of the opposite of the dissipative forces with the speed of the
corresponding variables characterizing the subsystem. With the notations
used in Egs. (10-12), we get

Pl(t> = 27'1 YV klmlu%(t) (80)
Pg(t) = 27'2 AV k’gmgﬂg (t) (81)
Pp(t) = 2ksnlgm(t)]dn(t) (82)

where P, denotes the power dissipated in the tube i, and P,, denotes the
power dissipated in the membrane.

We chose this representation for two reasons. First, we want to distin-
guish TET from resonance build-up: we expect a strong dissipation in the
NES during TET. Second, this representation does not differ fundamentally
from the velocity or displacement representations: if the systems were not
coupled, the amplitude ratio between the velocity and displacement would
be a constant, and the dissipation amplitude would have an amplitude pro-
portional to the square of these quantities. Note that we also used the flux of
mechanical energy between the different components of the system in order
to check the conservation of energy (not shown here).

Fig. 10 (a) corresponds to the point s = 0.53 in the segment line CD (see
Fig. 8 (c¢)). Here the source is tuned at the resonance peak of the highest
main linear mode. It is close to the resonance peak of tube 2 although it
is higher because of the stiffness added by the coupling box. The source is
detuned for the lowest main linear mode (which is close to the resonance
peak of tube 1).

We observe almost no dissipation in tube 1 (top curve), and some dis-
sipation occurs in tube 2 and in the membrane (the NES). The responses
display a strong modulation : the magnitude of the amplitude modulation
of the response is equal to its amplitude, like the SMR reported in [12, 5]).
More precisely, an alternation of two regimes can be observed. One regime
corresponds to resonance build-up in tube 2 (middle curve), for instance
around the 19" second: the source feeds the tube, with an amplitude too
small to be balanced by the dissipation there, thus the amplitude (and dis-
sipation) grows. There is clearly very few connection between the tube and
the membrane since the latter one is not much excited (bottom curve). The
second regime of the alternation corresponds to irreversible energy transfer
from tube 2 to the membrane. There is a sudden burst in the membrane
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Figure 10: Power dissipated in the system as a function of time. From top to bot-

tom: power dissipated in tube 1, tube 2, and in the membrane. (a) s = 0.53 in
CD (wy = 496 rad/s, ws = 759 rad/s), (b) s = 0.5 in EF (w; = 485 rad/s,
ws = 740 rad/s). The time scale is large compared to the excitation periods (8 ms and

13 ms). The light grey bottom curves peak at values close to 1.5 W (a) and 0.24 W (b)
and overlap the other curves. The teeth in the curves correspond to a 25 ms modulation
for both graphs.

dissipation (roughly two orders of magnitude) and a decrease in the tube 2
dissipation indicating a decrease in amplitude there despite the source activ-
ity. This is a clear similarity with simpler systems, although a closer look
shows a modulation in dissipation in the two regimes.

Fig. 10 (b) corresponds to the point s = 0.50 in the segment line EF
(see Fig. 7 (c)). Here the source is tuned at the resonance peak of the lowest
main linear mode (close to the resonance of tube 1). The source is detuned
for the highest main linear mode (close to the resonance of tube 2 ).

Here the observations differ slightly from the upper ones. The membrane
and tube 1 behave in accordance with the alternation regime described above,
but dissipation is important in tube 2. It seems that tube 2 amplitude reaches
a limit, too small to trigger TET. It seems also that a part of the energy in
tube 2 is quickly flushed away when the tube 1 triggers TET. The main goal
of this section being a check of the analytical results of Section 3, we did
not analyze these observations deeper. In particular we neglected here the
various couplings in the system.

5. Conclusions

In the framework of NES properties exploration, we studied a 2 DOF
linear system weakly coupled to a NES and submitted to a quasi-periodic
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excitation near its main resonance frequencies. We used different methods in
order to describe its behavior, among them complexification and numerical
integration of motion equations, and we analyzed the results in terms of
stability, frequency content, and energy dissipation.

We observed different regimes ascribed to periodic, quasi-periodic or SMR
regimes, and we cross-checked the consistency of the methods when possible.

We proposed a method to approach the quasi-periodic solutions as roots
of a polynomial and to determine their stability. We observed that in theory,
a detuned perturbation can trigger TET, that TET in one part of a system
can flush away energy in another part, and that a single NES can limit the
greatest vibration amplitude although the system is excited simultaneously
around its two main resonance frequencies with comparable amplitudes.

This theoretical and numerical work paves the way for future experiments.
It would also be interesting to analyze more thoroughly the unstable solu-
tions, in the perspective of broadening the applications of NES for complex
and permanent excitations.
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Table captions

e Table 1: Resonance frequencies.
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Figure captions
e Figure 1: Schema of the vibroacoustic system.

e Figure 2: (a-c): |¢!°| for i = 1,2 and 3 with ¢; = 0.80 (black) and
0.90 (grey) and ey = 0. (d-f): \<p10| for i = 1,2 and 3 with and e; =0
and e = 1.60 (black) and 1.80 (grey). Stable solutions (dot markers),

unstable solutions (circle markers). (Ep = ek%f;g x 107% for k =
1 and 2).

e Figure 3: n[lax |z;(t)| for i = 1,2 and 3 obtained from the fixed points
telt

of Egs (58-63) (black), by numerical integration of Eqs. (37-39) (circle
markers) and by numerical integration of the associated underlying
linear system of Eqs. (37-39) (continuous curves). (a-c): e; = 0.90 and
es = 0. (d-f): e; = 0 and e; = 1.80. Filled square markers denote

unstable fixed point solutions. (Ej = ek%f;g x 107% for £ =1 and 2).

e Figure 4: Number of fixed points of Eqs (58-63) for (a) (ej,e3) =
(0.80,1.60), (b) (e1, e2) = (080, 1.80), (c) (e1, e2) = (0.90, 1.60) and (d)
(e1,e2) = (0.90,1.80) with E), = ek”‘p/oco x 107¢ for k = 1 and 2. One
solution (white zone), three solutions (black zone) and five solutions

(grey zone).

e Figure 5: Stability zones of the fixed points of Eqs (58-63) for (a)
(e1,e2) = (0.80,1.60), (b) (e1,e2) = (0.80, 1. 80) (c) (e1,e2) = (0.90,1.60)
and (d) (e, e2) = (0.90,1.80) with Ej = ekTr‘p/OCO x107% for k = 1 and 2.
Zero stable solution (black zone) and one stable solution (white zone).

e Figure 6: n[lax] |z;(t)| for i = 1,2 and 3 obtained from the fixed points
te|ty,ta

of Egs (58-63) (black curve with square markers), by numerical integra-
tion of Egs. (37-39) (grey circle markers) and by numerical integration
of the associated underlying linear system of Eqs. (37-39) (black con-
tinuous curve) versus s the parametrization of the segment line AB in
the plane (oyw; ', oow;, ) (see Figs. 4 and 5). Square markers denote
unstable fixed point solutions and vertical dashed (respectively contin-
uous) lines refer to Hopf (respectively SN) bifurcations. e; = 0.80 and

ey = 1.60 (Ek—ek”po% x 1079 for £ =1 and 2).
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o Figure 7: Ir[laX] |z;(t)| for i = 1,2 and 3 obtained from the fixed points
te|ty,ta

of Egs (58-63) (black curve with square markers), by numerical integra-
tion of Eqgs. (37-39) (grey circle markers) and by numerical integration
of the associated underlying linear sysetm of Eqgs. (37-39) (black con-
tinuous curve) versus s the parametrization of the segment line EF in
the plane (ojw;?, oow; ) (see Figs. 4 and 5). Square markers denote
unstable fixed point solutions and vertical dashed (respectively contin-
uous) lines refer to Hopf (respectively SN) bifurcations. Square and
circle markers denote unstable fixed point solutions. e; = 0.90 and

es = 1.60 (Ek—ekmo% x 107% for k = 1 and 2).

e Figure 8: n?ax |z;(t)| for i = 1,2 and 3 obtained from the fixed points
telt

of Eqs (58-63) (black curve with square markers) , by numerical integra-
tion of Eqs. (37-39) (grey circle markers) and by numerical integration
of the associated underlying linear system of Eqs. (37-39) (black con-
tinuous curve) versus s the parametrization of the segment line C'D in
the plane (oyw; !, oowy ') (see Figs. 4 and 5). Square markers denote
unstable fixed point solutions and vertical dashed (respectively contin-
uous) lines refer to Hopf (respectively SN) bifurcations. Square and
circle markers denote unstable fixed point solutions. e; = 0.80 and

e = 1.80 (Ey = ek”poco x 107% for k = 1 and 2).

e Figure 9: Fast Fourier Transform of ¢,,(t) with ¢ in [0 30 s| for different
values of s on the segment line CD. (a) s = 0.17 (w; = 496 rad/s,
wy = 750 rad/s), (b) s = 0.71 (w; = 496 rad/s, wy = 764 rad/s),
(c) s = 0.79 (w; = 496 rad/s, wy = 765 rad/s).

e Figure 10: Power dissipated in the system as a function of time. From
top to bottom: power dissipated in tube 1, tube 2, and in the mem-
brane. (a) s = 0.53in CD (w; = 496 rad/s, wy = 759 rad/s), (b)

= 0.5in EF (w; = 485 rad/s, wy = 740 rad/s). The time scale is
large compared to the excitation periods (8 ms and 13 ms). The light
grey bottom curves peak at values close to 1.5 W (a) and 0.24 W (b)
and overlap the other curves. The teeth in the curves correspond to a
25 ms modulation for both graphs.
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