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1 Introduction

For strongly elliptic operators it is well known that the associated semigroup has a kernel
which satisfies Gaussian bounds. On R? this was proved by Aronson [Aro] and later
different proofs were found to handle operators on domains [Dav] [Ouh3] [AE1], Laplace-
Beltrami operators [Sal| [Gri], subelliptic operators on Lie groups [VSC] [ER| [DER] and
references therein. This subject has attracted attention in the last decades and it is now
well understood that Gaussian upper bounds for heat kernels play a fundamental role in
problems from harmonic analysis such as weak type (1,1) estimates for singular integral
operators, boundedness of Riesz transforms and spectral multipliers, L,-analyticity of the
corresponding semigroup, L,-maximal regularity, L,-independence of the spectrum,....
See Chapter 7 in [Ouh3] and the monographs mentioned above for an overview on the
subject.

It is our aim in the present paper to study the heat kernel of the Dirichlet-to-Neumann
operator. Let Q € R be a bounded connected open set with Lipschitz boundary. Denote
by I' = 002 the boundary of €2, endowed with the (d — 1)-dimensional Hausdorff measure.
Note that I" is not connected in general. The Dirichlet-to-Neumann operator A is an
unbounded operator on Ly(I") defined as follows. Given ¢ € Lo(I'), solve the Dirichlet
problem

Au=0 weakly on Q (1)
Ur = ¢
with u € W'(Q). If u has a weak normal derivative 9% in Ly(I'), then we say that
¢ € DIN) and Ny = %. See the beginning of Section 2 for more details on this defi-

nition. The Dirichlet-to-Neumann operator, also known as voltage-to-current map, arises
in the problem of electrical impedance tomography and in various inverse problems (e.g.,
Calder6n’s problem). It is well known that N is positive and self-adjoint, so —N generates
a Cop-semigroup S on Lo(I"). Moreover, S is holomorphic in the right half-plane. If © has a
C*-boundary, then N is equal to /—Arp, up to a pseudo-differential operator of order 0,
where Ay p is the Laplace-Beltrami operator on T' (see Taylor [Tay] Appendix C of Chap-
ter 12). This implies that S has a smooth kernel K. Since the semigroup generated by
—App has Gaussian kernel bounds, the semigroup generated by —v/—Ajp satisfies Pois-
son kernel bounds (see, for example, [Yos| page 268). Therefore one would expect that the
kernel of the semigroup S generated by —A\ also satisfies Poisson bounds. It is tempting
to use perturbation arguments to achieve this idea but this is highly non-trivial because
the operators in consideration are not differential operators (these are pseudo-differential
operators). Nevertheless we shall prove a Poisson upper bound for the heat kernel of A/
and show that this is even true for complex time. One of the main theorems of this paper
reads as follows.

Theorem 1.1 Suppose Q C R? is bounded connected with a C®-boundary I'. Let N be
the Dirichlet-to-Neumann map and let K be the kernel of the semigroup generated by —N .
Then there exists a ¢ > 0 such that

A 1)~ d=1)
K. (2, 9)] < e (cos )2y UZAD)

(1+ |x—y|>d

2]

forall x,y € T and z € C with Re z > 0, where § = arg z.
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We also prove upper bounds for various derivatives of K, in Theorem 6.1. As a Corol-
lary of the upper bound with complex time one obtains immediately that the semigroup
generated by —A on L,(T") is holomorphic on the right half-plane for all p € [1, c0).

For positive time ¢ we prove a more general version of Theorem 1.1 in which we allow
a positive measurable potential. Let V € L, (Q) and suppose that V' > 0. Let ANy be the
Dirichlet-to-Neumann operator with the condition Au = 0 in (1) replaced by (—A+V)u =
0 weakly on . Then again Ny is a positive self-adjoint operator in Ls(T") (see Section 2).
We prove the following Poisson bounds for the heat kernel of Ny, .

Theorem 1.2 Suppose Q C R? is bounded connected with a C®-boundary I'. Let V €
Lo () and suppose that V' > 0. Then the semigroup generated by —Ny has a kernel K.
Moreover, there exists a ¢ > 0 such that

c(t A1)~ g=t

|z —y[\?
1)
(1+

for all x,y € T and t > 0, where Ay is the first eigenvalue of Ny .

0< K (z,y) <

The proof of Theorem 1.2 follows by domination of semigroups. Indeed, we prove on
any Lipschitz domain € that the semigroup SV generated by —N is pointwise dominated
by the semigroup S. At first sight, this is not obvious since Ny does not seem to be a
perturbation of A/ by some positive potential. This domination of semigroups implies the
domination of their corresponding kernels and hence the Poisson bound for K} follows
from that of K, for positive time. In Section 2 we will prove positivity and domination
properties. Moreover, we prove that the semigroup S generated by —Ny is sub-Markovian
and ultracontractive. This then gives estimates on the L,~L, norm ||.S} ||, -1, for all ¢ > 0
and 1 < p < ¢ < co. These imply the existence of a bounded semigroup kernel for SV
and S. In order to deduce (off-diagonal) Poisson bounds for S we use a multi-commutator
argument of McIntosh and Nahmod [MN]. If M, denotes the multiplication operator with
a function g € C*(T'), then one needs L,~L, bounds on the commutator [M,,S;] and
higher order commutators [My, [...,[M,, S ...]]. Using Duhamel’s formula these involve
commutators like [M,,[...,[M,,N]..]], for which we prove appropriate L,~L, bounds
using a powerful theorem of Coifman and Meyer [CM], and Riesz potentials. Together
with the estimates on ||S;||z,—z, for all £ > 0 we then establish Poisson bounds for K in
Section 4. Unfortunately, this proof breaks down if one wants to prove Poisson bounds
for K, with z in the right half-plane, since we do not have appropriate L,~L, estimates
for S,. Nevertheless, using the semigroup 7" associated to a high enough power of N, we
will be able, with the Coifman—Meyer commutator bounds, Sobolev embedding theorem
and spectral theorem, to prove bounds on ||[My, T%|||5,— ., and higher order commutators
in Section 5. By subordination these give bounds for multi-commutators in S, and then
Poisson-type bounds for K,, but with a loss of an €. Luckily, the latter still imply the
missing bounds ||S.||z,—z, for all 1 < p < ¢ < co. Then the method in Section 4 gives
the bounds of Theorem 1.1 for complex z. In Section 6 we deduce Poisson bounds for the
derivatives of K. Finally we discuss holomorphy and H..-functional calculus for Ny and
N in Section 7. In the appendix we collect definitions and theorems for Sobolev spaces on
compact manifolds which we need throughout the paper.

Finally, we emphasize that all the methods and heat kernel bounds in this paper are
also valid if AV is the Dirichlet-to-Neumann operator on a compact Riemannian manifold
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without boundary. In addition all we used is that N is a self-adjoint elliptic pseudo-
differential operator of order 1 on a compact Riemannian manifold without boundary.
Hence one can state all the results in this setting.

2 Positivity and domination

In this section we define the Dirichlet-to-Neumann operator with a potential. We then
prove that its associated semigroup on Ly(I") is sub-Markovian and also prove domina-
tion between semigroups associated with Dirichlet-to-Neumann operators with different
potentials.

We assume throughout this section that €2 is a bounded Lipschitz domain of R?. (In
the rest of this paper we require that 2 has a C*°-boundary.) Let V € L (€2, R) be a
(real-valued) potential. Define the space Hy of harmonic functions for —A + V' by

Hy = {u € W"(Q) : —Au + Vu = 0 weakly on Q}.

Here and in what follows —Au + Vu = 0 weakly on 2 means that v € W1?(Q) and

/VU.V—XJF/Vuy:O
Q Q

for all y € C°(€). Note that we can replace x € C®(Q) by x € W;*(). Define the
continuous sesquilinear form ay: WH23(Q) x Wh2(Q) — C by

av(u,v):/Vu.WJr/Vu@.
Q Q

It is clear that Hy is a closed subspace of W12(Q) and
Hy = {u € W"*(Q) : ay(u,v) = 0 for all v € ker Tr }, (2)

where Tr: W2(Q) — Ly(T) is the trace operator.

Denote by Ap the Laplacian with Dirichlet boundary conditions on 2. Define the form
al: W2 (Q) x Wy?(Q) — C by ol = aV|W01’2(Q)><W01’2(Q)' Then —Ap + V is the operator
associated with the form a). If V' > 0, then 0 ¢ o(—Ap + V). The space W?(Q) has the
following decomposition.

Lemma 2.1 Suppose 0 ¢ o(—Ap + V). Then
Wh(Q) = W 2(Q) @ Hy.

In particular
Tr (Hy) = Tr (WH2(Q)). (3)

Proof This result is already proved in [AM] Lemma 3.2 when V' is constant. The proof
given there works in our setting but we repeat the arguments for completeness.

Define A: W, 2(Q) — Wy *(Q) by (Au,v) = al(u,v). Since 0 ¢ o(—Ap + V) it
follows from [ABHN] Proposition 3.10.3 that A is invertible. Let v € W1?(Q2). Define

F e W,?(Q) by
F(v):/Vu.WJr/VuU
Q Q
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Then there exists a unique 1, € W, *(Q) such that Auy = F. This means that (Aug, x) =
F(x) for all x € W,*(€) and hence

/QV(u—uo).V—XJr/QV(u—uo)y:0.

It follows that u — uy € Hy and so u = ug + (u — ug) € WOI’Q(Q) + Hy. The fact that
0¢ o(—Ap + V) implies easily that W, *(Q) N Hy = {0}. O

A direct consequence of Lemma 2.1 is that the trace Tr is injective as an operator from
Hy into Ly(T). Indeed, if u,v € Hy such that Tru = Trov, then u — v € Hy N Wy (Q).
Thus v — v = 0. This is a key ingredient for the next coercivity estimate.

Lemma 2.2 Suppose 0 ¢ o(—Ap + V). Then there are p > 0 and w € R such that
ay (u, w) + w [ TrullL,e) > pllullizq)

for all uw € Hy.

Proof Since the embedding of W2(Q2) into Lo(Q) is compact, it follows that for all
€ (0,1) there exists a ¢ > 0 such that

Aw%dw%mwgﬂﬂw (4)
T

for all uw € Hy,. Therefore,

/|u|2 < L/ |vu|2+L/|Tru|2.
Q 1—¢ Q 1—¢ r

wwMZ/WW+/WW
Q Q
/ Vul — [V / fu?
( /‘v |2 C||V||oo/|T

Choosing € = (4(||V]|eo + 1)) one deduces that

Voo
ay (u, u) + cVI /|T1"u\2 > %/ |Vul?.
1—c¢ T Q

CVOO
v+ (e+ DA=) [imvap =3 [ 190p+ [P = dulfsg

by using (4) again. O

Thus

Hence



It follows from (2) and Lemmas 2.1 and 2.2 that we can apply [AE2] Corollary 2.2: there
exists an m-sectorial operator, which we denote by Ny, such that for all ¢, 9 € Ly(T') one
has ¢ € D(Ny) and Ny = ¢ if and only if there exists a u € W1?(Q) such that Tru = ¢

and
/QVU.W+/QV1L®:aV(u,v):/F@Z)m (5)

for all v € W12(Q). Since ay is symmetric, the operator Ny is self-adjoint. Obviously
Ny is bounded below. If ¢, ¢ and u are as above, then choosing v € C°(Q) gives
Au =V u e Ly(Q) as distribution. Hence

/Qvu.ﬁ+/g(Au)@:/me

for all v € W'2(Q) and 2% = ¢ by the Green formula. Thus for all ¢,¢ € Ly(T') one has
o € D(Ny) and Ny = v if and only if there exists a u € W1?(Q) such that Tru = ¢,
Au = V u as distribution and % = .

The self-adjoint operator —Ny generates a quasi-contraction holomorphic semigroup
SV on Ly(T'). When V = 0 we write for simplicity N'= Ny and S = S°.

There is another way to describe the operator Ny, this time with a form with domain in
Ly(T). Since Tr |, is injective, we can define the form by with domain D(by) = Tr (Hy)
by

by (Tru, Trv) = ay(u,v)

for all u,v € Hy. We equip D(by) with the inner product (Tru, Trv)p,) = (u, v)w1r2x).
Since Hy is closed in WH2(Q) it is clear that D(by) is a Hilbert space. It follows from
Lemma 2.2 that the form by is continuous and elliptic. Then Ay is the operator associated
with by. Indeed, let ¢,¢ € Ly(T'). Then ¢ € D(Ny) and Nye = 1 if and only if there
exists a u € WH(Q) such that ¢ = Tru and (5) is valid for all v € W?(Q). Using (2)
it follows that then u € Hy. Moreover, if u € Hy, then (5) is valid for all v € Wy*(9Q).
Hence by Lemma 2.1 it is equivalent with the statement that there exists a © € Hy such
that ¢ = Tru and

bv(% TI‘U) = (wa Trv)L2(F)

for all v € Hy, .
In the rest of this section we prove the sub-Markovian property of SV, a domination
property and L,—L, estimates.

Theorem 2.3

(a) If=Ap+V >0and0¢ o(—Ap+V), then the semigroup SV is positive.
(b)  IfV >0 then SV is sub-Markovian.

Proof ‘(a)’. When V is a constant, the positivity of the semigroup is proved in [AM]
Theorem 5.1. The same proof works here, but we repeat the arguments for completeness.
By the well known Beurling—Deny criteria (see [Dav], Section 1.3 or [Ouh3], Theorem 2.6),
it suffices to prove that ¢t € D(by) and by (¢, ¢7) < 0 for all real valued ¢ € D(by).
Let ¢ € D(by) be real valued. There exists a u € Hy such that ¢ = Tru. Without loss of
generality, u is real valued. Then ¢* = Tr (u*) € Tr (W'%(Q)) = Tr Hy = D(by) by (3).
By Lemma 2.1 we can write ut = ug + uy and u™ = vy + v, with ug, vy € W,*(Q) and
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uy,v1 € Hy. Taking the difference, yields u = u™ — 4~ = (ug — vg) + (u1 — v1). Since both
u,u; —v1 € Hy it follows that ug = vy. Therefore with (2) one deduces that

bv<¢+7907) = ay(ur,v1) = ay(u1,v0 + v1) = ay (ug + u1, vo + v1) — ay (uo, vo + v1)

+

=ay(u",u") — ay(ug, vg) = —ay (ug, vo)

= —ay (uo, up) = —/QVUO‘Q + V |uol?) <0,
Q

since

av(u+,u)z/ﬂV(u*).V(u)jL/Vquu:0

Q
and we used the assumption —Ap + V' > 0 in the last step. This proves the positivity of
the semigroup SV on Ly(T).

‘(b)’. By [Ouh2] or [Ouh3], Corollary 2.17 it suffices to prove that 1 A ¢ € D(by) and
by (LT A, (p—1)") >0 for all ¢ € D(by) with ¢ > 0. Let ¢ € D(by) and suppose ¢ > 0.
As above, the fact that 1 Ap € D(by) follows from (3). Let u € Hy be such that ¢ = Tru.
Without loss of generality, u is real valued. We decompose 1 Au = ug+u; € I/VO1 2(Q) D Hy.
Then
(u—1F " =u—1Au=(—up) + (u—u) € W;*(Q) @ Hy.

Using (2) one deduces that
by (LA, (p—1)7) =ay(uy,u—uy) = ay(ug + ur, u — u)
= ay (ug + ur, —uo +u — uy) + ay (ug + uy, o)

= Clv(uo + Uy, —Ug + U — ul) + av(uo,uo)

= /QV(]I Au).V((u—1)%)+ / VA Au) (u—1)"

Q
Q Q

:/V(u—]l)++/|Vuo\2+/Vu§20
0 0 0

as required. a

Note that the second part of the previous result can also be deduced from the next
theorem in which we prove the domination property.

Theorem 2.4 Let Vi, Vo € Loo(Q,R) be such that Vi < Vo, —Ap + Vi > 0 and 0 ¢
o(—=Ap +Vy). Then
0< 520 <8¢

pointwise for all t >0 and 0 < ¢ € Lo(T'). In particular, if 0 <V € Ly (Q2), then
0< S5 p < S

for allt >0 and 0 < p € Ly(I).



Proof Using criteria for domination of semigroups (see [Ouh2] or [Ouh3], Theorem 2.24)
it suffices to prove that

bV2 (907 ¢) > bV1(907 ’17/)) (6)
for all 0 < ¢, 9 € D(by,). Note that

D(by;) = Tr (W*(2)) = D(bys)

and the ideal property in [Ouh2] or [Ouh3] is satisfied since both semigroups S** and S"2
are positive by Theorem 2.3 (see Proposition 2.20 in [Ouh3]).

Let 0 < ¢,% € D(by,). There are real valued uy,v; € Hy, and ug, vy € Hy, such that
Tru; = Trug = ¢ and Trv; = Trvy = . Since uy — uy € WOI’Q(Q) and vy € Hy, one has

by, (0, 1) = av, (U2, v2) = ay, (ur, v2)

= ay,; (u1, v2) + /(Vz — V1) uy vg
Q

== aV1 (uluvl) +/

(Va = Vi) ug vy = by, (0, 9) +/(V2 — V1) uq va.
Q Q

By the lemma below, we show that u; > 0 and vy > 0. Hence fQ(VQ — Vi)uive > 0 and
(6) follows. O

We have the following maximum principle.

Lemma 2.5 Suppose that V € Loo(Q,R) with —Ap +V >0 and 0 ¢ o(—=Ap + V). Let
0 <y € D(by) and let u € Hy be real valued such that Tru = @. Then u > 0 on S.

Proof By definition of u € Hy one has

/Vu.Vx—i—/VuX:O
Q Q

for all y € Wy*(€2). Note that u~ = 0 on I since u = ¢ > 0 on I'. Hence u~ € W,*(Q)
by [Alt] Lemma A.6.10 and we can choose x = u~. We obtain

/QVu.V(u) —i—/QVuu =0.

Because [, V(u").V(u~) = 0 we arrive at

/Q|V(u_)|2+/QV|u_|2:0.

Since —Ap +V >0and 0 ¢ o(—Ap + V) we conclude that u~ = 0. O

Now we prove L,L, estimates for the semigroup SV. Note that A; > 0 in the next
theorem.

Theorem 2.6 Suppose that d > 2, let 0 <V € Loo() and let Ay € o(Ny) be the first
eigenvalue of Nvy. Then for all1 < p < q < oo and t > 0 the operator S} is bounded from
L,(Q) into L,(2). Moreover, there exists a C > 0 such that

HStV”qu <C(tA 1)_(d_1)(%—%) oMt

for allt >0 and p,q € [1,00] with p < q.



Proof Suppose first that d > 3. By Theorem 2.4.2 in [Ne¢], the trace Tr is a bounded

227:21). This implies that there exists a C' > 1

operator from D(by) into L(T"), where s =
such that
1S ells < C(bv (S @, 5 9) + 118, ¢ll3)

for all t > 0 and ¢ € Ly(T). Therefore, S} maps Lo(T') into L,(T') with
1S 205 < CE12 ¢

Since the semigroup S} is sub-Markovian by Theorem 2.3, the last estimate extrapolates
and provides the L1—L., estimate

15 1500 < CT 7 !

for a suitable C’ > 0, uniformly for all t > 0, see [Cou] or [Ouh3|, Lemma 6.1. By [Ouh3],
Lemma 6.5, the last estimate improves to

”StVH1~>00 S C//tf(dfl) ef)qt (1 _i_t)dfl.

The conclusion of the theorem follows by interpolation.
If d = 2, we apply the same arguments and use Theorem 2.4.6 in [Nec]. a

3 Smoothing properties for commutators

Let (M, g) be a compact Riemannian manifold (without boundary) of dimension m. For
general definitions and theorems on compact Riemannian manifolds we refer to the ap-
pendix. We emphasize that we do not assume that M is connected. Then M has a
finite number of connected components, say M, ..., My, with M; # M, if i # j. For all
i€ {l,..., N} the component M; is a compact connected Riemannian manifold. Therefore
it has a natural Riemannian distance, denoted by d;;,. We denote by diam M; its diameter.
Set D =1+ Zfil diam M;. We wish to define a distance on the full manifold. For all
i€{l,..., N} fix once and for all an element x; € M;. Let

W={g€C®(M,R): max |g(z:)—g(z;)|+D[[Vgll < D}. (7)

Ifz,y € M and g € W, then there are4,j € {1,..., N} such that x € M; and y € M;. Note
that |V (g|a,)||Lesy < 1. Therefore |g(z) — g(z;)| < dag(z,2;) < diam M;. Similarly,
lg(y) — g(z;)| < diam M;. Moreover, |g(x;) — g(z;)| < D. Hence |g(x) — g(y)| < 3D. Since
this is for all ¢ € W, we can define the function py: M x M — [0, 00) by

pu(x,y) =sup{lg(z) —g(y)| : g € W} (8)

We collect some properties of py;.

Lemma 3.1

(a)  The function pys is a metric on M, bounded by 3D.
(c) Ifi,jed{l,....N}, ze M;, ye M; and i # j, then py(x,y) > 1.
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(d)  Suppose k € N and M is embedded in R*. Then there exists a ¢ > 0 such that
¢ Mo —yl < par(z,y) < clz —y
for all x,y € M.

Proof Clearly pj, satisfies the triangle inequality and is symmetric. If 7 € {1,..., N} and
x,y € M;, then py(x,y) < da(x,y). Conversely, if § € C*(M;,R) and ||Vl ) <1
then one can define g € C*°(M,R) by g(z) = g(2) if z € M; and ¢(2) = g(z;) if z & M,.
Then g € W and [g(z) — g(y)| = [9(z) — g(y)| < par(z,y). Hence duy,(z,y) < pu(z,y).
Therefore pas|axm; = da,. Finally, let 4,5 € {1,..., N}, v € M; and y € M; with i # j.
It is easy to see that pp(x;, ;) > D. Hence py(z,y) > D — py(x,z;) — pu(y, z;) > 1.
The last statement follows from Lemma A.9 and the fact that the compact components
M; are disjoint. a

Although we do not need the following definition until Section 5, it is convenient to
state it now. Let k € IN. Define

Wy, = C>®(M,R) : D) — gl D ‘9|l < DY. 9
=19 € (M, R) Z,yjer{nl??fN}lg(x) g(z;)| + ge?}?_?fk}HVgH <D}. (9

Clearly Wi D W5 D .. .. Define pg\?:M X M — [0,00) by

o () = sup{|g(e) — g(y)| : g € Wi}.

Then pi/ (z,y) > pi} (z,y) > .. .
Lemma 3.2 Let k € N. The function pg\’;) 15 a metric on M and it is equivalent to pyy.
Proof Note that for all i € {1,..., N} the map

(z,y) — sup{|g(z) — g(y)| : g € C°(M;) and ||V'g||o for all £ € {1,...,k}}

is a metric on M; which is equivalent to dy;,. (See Lemma A.8.) Then the first part of the
lemma follows as in the proof of Lemma 3.1. Moreover, the second part follows from this
equivalence. a

In the proofs we need various estimates on commutators of pseudo-differential operators
with C°°(M)-functions. On R™ these read as follows. We denote by S(R™) the Schwartz
space.

Theorem 3.3 Let k € N and T € OPS*(R™). Letn € {k,... k+m}.
(a) Ifn =k then for all p € (1,00) there exists a ¢ > 0 such that
[[My, [+ [M,,, T1 - JJully, < ¢ [[Vgilleo - 1V gnlloo [l

for all g1, ..., 9, € S(R™) and u € C°(R™).
(b) Ifne{k+1,....,k+m—1} then for all p € (1, ;) there exists a ¢ > 0 such that

1[Mg,, [+ [My,, T] .. JJullg < cl[Vaillos - - - [[Vgalloo llullp
forall g, ..., g9, € S(R™) and u € C(R™), where % — % = o=k

9



(¢) Ifn=k+m then there exists a ¢ > 0 such that
IIMyy, [+ [My,,, T1 - JJulloo < ¢l[Vailloo - 1Vgnlloo [lullx
forall gi,...,g, € S(R™) and u € C(R™).

Proof Statement (a) follows from [CM] Théoreme 2.

Next suppose that n € {k+ 1,...,k + m}. Let K be the (distributional) kernel of
T. Since T' € OPS*(R™), there exists a ¢ > 0 such that |K(x,y)| < c|x —y|=™* for all
z,y € R™ with z # y. (See [Ste2] Proposition VI.4.1.) Let g,..., g0 € S(R™). Let K
denote the kernel of [M,,,[...,[M,,,T]...]]. Then K(z,y) = K(z,v) [15-(g5(z) — g;(y))
for all x # y. Hence
cVailloo - - Vgnlloo

|K(z,y)| < |z — y|m*("*’f)

for all x,y € R™ with = # y. _
Ifne{k+1,...,k+m—1} then |K| is a Riesz potential and the boundedness of the
multi-commutator from L, into L, follows from [Stel] Theorem V.1.

Finally, if n = k 4+ m then K is bounded. Therefore the multi-commutator is bounded
from L; into L. O

The theorem transfers to compact Riemannian manifolds. We emphasize that the
manifold does not have to be connected in the next proposition.

Proposition 3.4 Suppose M is compact. Let k € N and T € OPS*(M). Let n €
{k,....k+m}.

(a) Ifn =k then for all p € (1,00) there exists a ¢ > 0 such that
I[M, [ [Mg,,, T Jlull, < cflull,

for allu € C>*(M) and g1,...,9, € W.
(b) Ifne{k+1,....k+m—1} then for allp € (1,...,-") there exists a ¢ > 0 such

that
1My, [-- - [My,, T1 - - Jlullg < ¢ lull,
for allu e C*(M) and g1,...,9, € W, where % - % = ok,

(¢c) Ifn=k+ m then there exists a ¢ > 0 such that
I[M, [ [My,,, T Jlulloe < ¢ lully
for allu € C>*°(M) and g1,...,9, € W.

Proof Since M is compact there are L € IN and for all £ € {1,..., L} there exist an
open U, C M, a C*-diffeomorphism ¢,:U, — B(0,1) and x,, X, € C(Uy) such that
2521 Xe = 1 and X,(z) = 1 for all = € supp x,. Without loss of generality we may assume
that there exists a ¢y > 0 such that

V(9097 MlLmBo1) < 0lIVYllLaany,
lull e < colluo oy L, B0, and

lvo o Lo < collvllL,w)
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for all ¢ € {1,...,L}, g € C*(Uy), u € Ly(Uy) and v € Ly(Uy). Since T is a pseudo-
differential operator on the compact manifold M, one can write

L
T=> M,TMg, +T

where T has a C'°°-kernel representation, i.e., there exists a C*°-function K: M x M — C
such that

(Tou)(x /K:L’y dy

for all w € C°(M) and x € M.
The multi-commutator with 7} is easy to estimate. Let gq,...,9, € W. Then

(8 0 5] T = | 6000 (T o) = ) o)

< D) [ 1)l uty)ldy
M
for all w € C>°(M) and x € M, where we used Lemma 3.1(a). Hence

1Mo, s My, To] - Jull,an) < (3D)" (VOl(M))¥ 575 || K [[ull, ar

for all u € C>*(M).
Next we estimate the multi-commutators involving M,, T My,. For all £ € {1,...,L}

there exists a classical pseudo-differential operator Tg of order k such that

Tow = (XﬁT<<w'(5&OSOZl)) OW)) °wy

for all w € S(R™). By the corresponding part of Theorem 3.3 there exists a ¢, > 0 such
that B
Mg, [ [Ma, T - JJullg < ee[[Vinlloo - [V Anloo [lull,

for all hy, ..., h, € S(R™) and u € C(R™).

Let £ W1°(B(0,1)) — W1>(R™) be an extension operator as in [Stel] Theorem VI.5
with respect to the domain B(0,1) C R™. Note that £(h) € C®(R™) for all h €
C*(B(0,1)). Without loss of generality we may assume that supp E(h) C B(0,2) for
all h € Wh(B(0,1)).

Now let £ € {1,...,L}. Let g € W. Then

IV ((9 = 927 0) 0 7" )ty < IEN g0 97 = (97027 )(O) lwr=ar0

< 2[IE V(9 ° ¢y LB,
< 2¢ |EN IVl Lo (ary
<2 €]

11



Now let gy,...,9, € W. Write §; = g; — gi(¢; '(0)) and h; = E(gi o ;') € S(R™). Then
IVhillLomm) < 2¢ ||E]]. For all A C {1,...,n} define ga = [[,c4 G and ha = [[;c4 M-
Let w € C*°(M). Then

[Myw [ L) [Myrm MX[ TM)NQ] - Hu = [M§17 [ ) [Mﬁnv sz TM)?@] - Hu
= Y () Mg T Tew).
AeP({1,...n})
So
1My, [ - [Mg,., My, T Mg, ] ... JJul[Ly(ar)
<cl D> (= (Xzz 9aT(gac Xe U)) ° 0y |l Lymm)
AeP({1,...,n})
—al > UM Gao ) T((@ae 0 ) - (wo ) e
AeP({1,...,n})
—all > UM T (b o oY) lryme
AeP({1,...,n})
= Cp H[Mh17 [ B [Mhn7 T] . ]](u © ¢21>"Lq(Rm)
< coee (20 |EN)"™ [1(w o @y Iz, mm)
< cgee (2o IENN)"™ [lullr, ar)-
This proves the proposition. O

The proof of Theorem 1.2 in the next section heavily depends on the bounds of the last
proposition.

4 Poisson bounds for Ktv

We assume for the rest of this paper that Q C R? is bounded and connected, with a C°°-
boundary I'. Recall that we do not assume that I' is connected. For the remaining part of
this paper, fix an element in each connected component of I' as in Section 3, define W as
in (7) and the distance pr as in (8). For all g € C*(T") and p € [1, 0o] define the derivation
d, on L(Ly(T)) by 0,(E) = [M,, E],where M, denotes the multiplication operator with the
function g.

In order not to repeat a proof for the kernel bound for K, with z complex in Section 5, we
prove a slightly more general proposition then that we need at the moment. By Theorem 2.6
we know that the assumptions of the next proposition are valid with o = 0 and N = 0.
For all a € [0, %) define the sector

Yo={2z€C:z=0o0r|argz| <a}. (10)

Note that X, is closed.

12



Proposition 4.1 For all N € [0,00) and ¢ > 0 there ezists a ¢ > 0 such that the following

is valid. Let o € [0,75) and suppose that

1

1l1p-sq < e (cos )7z 740G
for all p,q € [1,00] and z € X, with p < q and 0 < |z| < 1, where § = argz. Then
105 (S:)[[1-500 < ¢ (cos8) VD[]
forallg € W and z € £, with 0 < |z| <1, where § = arg z.

For the proof we need the following decomposition for 53(52). For all £ € IN let

Hi = {(t1, . try1) € (0,00)" oty + . 4ty = 1}
and let d)\; denote Lebesgue measure of the k-dimensional surface Hy.

Lemma 4.2 Let T be a continuous semigroup on the sector ¥, and generator —A on a
Banach space X, where oo € [0,5). Let B € L(X) and define the derivation § on L(X) by
d(E) = [B,E]. Then

o)=Y~ Y /Hﬂkﬂzéj’“(A)Ttkzo...o

k=1 Tlyeeos JrEN
j1+...+jk:n

O Egz 5j1 (A) Tt1 P d)\k(tla e 7tk+1)
forall z € ¥, and n € IN.

Proof Ifn =1 then
1
5(T2) = [B7 Tz] = —Z/ T(lfs)z [B7 A] Tsz ds.
0

Since ¢ is a derivation, the lemma easily follows by induction. a

Proof of Proposition 4.1 Recall that A" € OPS'(M) (see [Tay] Appendix C of Chap-
ter 12). By Proposition 3.4 for all p,q € (1,00) with p < ¢ and (d — 1)(% — %) €
{0,1,...,d — 1}, and in addition for the combination p = 1 and ¢ = oo, there exists
a cpq > 0 such that

”%(N)Hp%q < Cpyg

for all g € W, where j = 1+ (d — 1)(; — ).

We will use the decomposition of Lemma 4.2 and estimate each term in the sum. Let
ke {1,...,d}, (tl,---atk-i-l) € H,,ge W and j1,...,Jr € Nwith j1 +...+ 5 = d.

If k=1 then j; = d and

2" [|Staz 63 (V) Strzllissoo < 121" 1Skazlloosoo 185 (A lissoc [l Staz 1

< 1o |2] (cos )72,
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Suppose k € {2,...,d}. There exists a K € {1,...,k+ 1} such that tx > k+1 Note that
2521(72—1) =d—k<d—1. First suppose K € {1,k+1}. Fix 1 =qgo<p1 < ¢ =p2 <
G2 =p3 < ... < (qk-2=DPrk-1 S qrk-1 S Pk S gk = Pr+1 S Qr4+1 S oo S Qo1 = P S
qrx < pr+1 = oo such that

1 1 1 1 1 Je—1 1 1 k—2
l-—=——=—, — = == and e —
p 2(d—-1) g pe q d—1 g1 Dpr d—1

for all £ € {1,...,k}. Then
W) .- 03H(N) Stzlliseo

‘z|k ”Stk+12 5jk

g

k
< Lo NSusllaoss T T 1StsszNaspess 195 A llpesae

(=1

(d—1) (L1
< |Z‘kC<C089)7 <t1‘2| %_E)HCPNM C089 <t£+1‘z|) (d 1)(% Pe+1)

= ¢ (cos )" (DN o} o 2 L 2

< & (k+ 1) (cos ) FFDN | /2412

where ¢ = & [T, ¢y I K € {1,k + 1} then a similar estimate is valid with possibly
a different constant for ¢’. Integration and taking the sum gives the proposition. a

We are now able to prove the Poisson bounds for real time.

Proof of Theorem 1.2 By Theorem 2.6 and Proposition 4.1 there exists a ¢ > 0 such
that [|62(Se)[l1ee < ct for all g € W and ¢ € (0,1]. Hence

[(g9(x) — g(y))? Ki(z,y)| < ct

for all t € (0,1], z,y € I" and g € W. Optimising over g € W gives pr(z,y)? K;(z,y) < ct
and

d
(M) Ki(v,y) < ct™V

for all x,y € T and ¢ € (0,1]. By Theorem 2.6 there exists a ¢; > 0 such that K;(z,y) <
1S¢|l1500 < c1t7@Y for all t € (0,1] and x,y € T. Hence

d
(1_'_ pF(fay)) Kt(ﬂf,y) S 2d (Cl —|—Cg) t*(dfl).

Since pr is equivalent to the distance (x,y) + |z — y| on I by the Lemma 3.1(d), one
establishes that there is a ¢; > 0 such that

o t_(d_l)

|z —y[\¢
! )
(1+7

for all t € (0,1] and z,y € T, where we used the domination of Theorem 2.4 in the first
inequality.
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Finally we deduce large time bounds. Using Theorem 2.6 there is a c3 > 0 such that
1S hiooo S s (EA )Y e
for all ¢ € [1,00). Since I' is bounded, there is a ¢4 > 0 such that
4 (t A 1)7(d71) —A1t
[z —
L)
(=

for all z,y € T and ¢ € [1,00). This completes the proof of Theorem 1.2. a

K/ (z,y) <

5 Poisson bounds for K.

In this section we will give a proof for Theorem 1.1, that is Poisson kernel bounds for
complex time. The proof follows from Proposition 4.1, once one has semigroup bounds for
|S:llp—q for all 1 < p < ¢ < co. These bounds are easy if p < 2 < ¢, see Lemma 5.2. But if
2 ¢ [p, q] then it is much harder. The method to derive them is to prove bounds for 0%(S.)
from L; to C¥ = W'P. Unfortunately, this method does not allow to give directly the
bounds from L; to L. It is convenient to consider the semigroup generated by a power
of N and then use fractional powers to go back to N.

Define P = N + I. If confusion is possible, then we write P, for the operator on L,(T’),
where p € [1,00]. We start with a regularity result for the Dirichlet-to-Neumann operator.

Proposition 5.1 Let p € (1,00) and n € No. Then W™P(T') = D(P}). In particular,
there exists a ¢ > 0 such that

cHullwnrey < 157ully < e llullwes)
for all w € W™P(T').

Proof The case n = 0 is trivial. Let n € Ny and suppose that W™?(I') = D(P}').
It follows from (C.4) or Proposition C.1 in Appendix C of Chapter 12 in [Tay] that
there exists a pseudo-differential operator V; of order 0 such that P = /—A + Vj.
Then P! = (=A)"*D/2 1 W where W € OPS™(I'). By Lemma A.6 there exists a
¢ > 0 such that [|[Wull, < cllullwnray for all u € C*(I'). By Proposition A.2 one
has WHP(T) = D((=A,)"*+D/2) with equivalent norms. Hence there exists a ¢ > 0
such that ||(—=A )"*1)/2u|]p < ullwosrory for all w € C°(T'). Then ||[P*ull, <
(c+) |Jullwn+1pry for all w € C°°(T"). Since C*(T') is dense in W"™?(I") (see Lemma A.6)
and P is closed, it follows that W"*'»(T') € D(P;*"). The converse follows similarly, once
one knows that C>°(I") is a core for PI?“. The latter can be proved as follows. Let m € IN.
Then P} is an elliptic pseudo-differential operator of order m. Hence D(Py*) = W™(T)
by [Kum] Theorem 3.6.7. So if S® denotes the semigroup generated by —Pz?“, then

SO(C= (D)) = SP(C=(T)) € () D(PFT)™ ﬂ WODmA([) = 0(D),
m=1
where we used the Sobolev embedding of Proposition A.3 in the last step. Hence C*°(T")
is a core for P]?“ and the proof of the proposition is complete. a

Let S be the semigroup generated by —P. For all m € IN let T be the semigroup on
Ly(T") generated by — —(N + I)™. Clearly T™ is holomorphic with angle /2.
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Lemma 5.2 Let m € N, n € Ny and p € (2,00]. Then there exists a ¢ > 0 such that
TS (Ly(T)) € C=(T) and

for all z € C with Rez > 0.

Proof Clearly T\™(Ly(I)) c (2, D(P™) = N, W™T) = C=(T) by Propo-
sition 5.1 and the Sobolev embedding of Proposition A.3. In addition, D(P4-1*") =
Wd=ttn2() c WnP(T'). By Propositions A.3 and 5.1 there exists a ¢ > 0 such that

Pd—1+n

[ullwnr < cfl ull$ Jufly~

n+(d-1)(z ;)
for all u € C>(I"), where a = i . Then the lemma follows by the spectral
n J—

theorem. O

We will use again Lemma 4.2 to decompose 5Z(Tz(m)). This time it involves higher order

derivatives on g. For all k € N define Wy as in (9). In order to estimate 07 (P™) ™ we
need a few lemmas. The third one is the most delicate.

Lemma 5.3 Let a be a multi-index over {1,...,d — 1} and let j € N with || < j. Then
there exist constants cq, € R, where k € {0,...,|a|} and aq,..., a1 are multi-
indices, such that

7777 Ap+1

||
oo =) > Caryonanss Momin - Maarp6), " (0741 T)

‘Ojll 7777 |Oék‘>1
loa [+ +ak1]=]al

for every h € S(RY™Y) and pseudo-differential operator T

Proof It follows by induction to j that 8;6)(T) = j My, &, (T) + 62(8,T) for all i €
{1,...,d —1} and j € IN. Then the lemma follows by induction to |«a]. O

In the next lemma we move the derivatives to the right.

Lemma 5.4 Let j € N and let 5 be a multi-index over {1,...,d —1}. Then there exist
constants cg,. ,., € R, where (3,. .., B2 are multi-indices, such that

-----

aﬁ 5i(T) = Z 651 ----- 5j+2 (58ﬁ1h e 5aﬁjh(8ﬁj+1T)) o aﬁj+2
B, Bj+2
|11+ +|Bj+2]=|B]

for every h € S(R™Y) and pseudo-differential operator T, where
g, T = [0, ..., (05, T . . ]]
if Bjw1 = (i1, ..., 1g).
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Proof Since [0;,01(T)] = do,n(T") + 01([0;, T]), the lemma easily follows by induction to
J and |3]. O

The next lemma is the key estimate in our proof to estimate ||5d(Tz(m)) [P~

Lemma 5.5 For all my,ms € Ny and 7 € N with m; +mg + 1 > 5 there exists a ¢ > 0
such that ' '
[P 65(P) P ully < e[ P2 ull, (11)
for allu e C(T') and g € W, 4myt1-
Proof We may assume that mo =0, or my +msy +1 = j.
We use the notation as in the proof of Proposition 3.4 with p = ¢ = 2 and with 7" = P.

Nowm =d—1. Thuslet L € N, ¢y >0, Ty, K € C°(I' xI') and for all £ € {1,..., L} let
U, 0o, X¢, Xe and Ty be as in the proof of Proposition 3.4. We may assume that

mi+ma+1 mi+mao-+1

Z IV (900, o) <o Z IVl e ()

i=1 i=1

forall ¢ € {1,...,L} and g € C°(U,). Moreover, let x, € C2°(Uy) be such that y,(z) =1
for all = € supp x¢. Then

L
P=>"M,PMg,+T,
=1

where Ty has K as kernel.
We first estimate the contribution of the operator 7j in (11). Note that

L L
|P™ 67(Ty) P2, < sup > 165(To) My, P™u, My, P™)).
veC™ (D), IIvll2<1 ) 21 7o

Let 01,0y € {1,...,L}. By Lemma A.7 for every multi-index v over {1,...,d — 1} with
|7] < my there exists a bounded operator Ty(l) on Ly(T") such that

M, P™ =Y M, (@> 7O,

ly|<ma

Similarly write

ma 9 \7
MXZQ P = Z MX@ (@) T‘EQ)
2

|v[<me
with T? € L(Ls(T")). By (23) there exists a ¢; > 1 such that
0\ 0 \7
10, (557) o, < xlv™gle and 1o, (57-) o] < l¥Plole (12

for all g € Wmitm2tLoo(T) and |y| < my +mg + 1. Let u,v € C®(T) and g € Wi, 1mys1-
Then

[(35(T0) My,, P™u, My, P™ )

= Z Z K( ’ )% My, 5§<T0)ng2( 0 )A/QTV(QQ)U,TV(PU)L

%y, %y,
Iy1]<ma |y2|<ma vh Peo
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Note that
(My,, 63(To) My, w)(x) = /Fle () (g(x) = 9(v)) K (2, y) xe(y) w(y) dy

for all x € T and w € C*(I"). Moreover, |g(x) — g(y)| < 3D for all z,y € T" by
Lemma 3.1(a). Using (12) and the product rule one estimates

1(5) " M, 8T M, (52) "l

[v1l [l

< (e1(G +2)7 021+ 3D | lywriosroe e [lwrinatee VOLT) DY IV iy Vi Ko [0l

=0 =0
for all w € C*°(I"). Now it is clear that there exists a co > 0 such that
|(35(To) My, P™u, My, P™v)| < 3 [[ullz [v]]2
for all u,v € C*°(") and g € W, 4my+1- Then
1P™ 83(To) P ulla < ca L* Jullz < e L* | P™ ™7 ul

for all w € C*°(T") and g € Wi, ympt1-

The estimates for the other terms in the decomposition of P involve much more work,
as in Proposition 3.4. This time let &: Wmitm2FtLleo(B(( 1)) — Wmitmatleo(R4-1) he an
extension operator as in [Stel] Theorem VL5 with respect to the domain B(0,1) C R4
Again note that £(h) € C*®(R4™!) for all h € C=(B(0,1)). Without loss of generality we
may assume that supp £(h) C B(0,2) for all h € Wmtm2tleo(B(0,1)). Let £ € {1,...,L}.
Let g € Wi 4+mo+1. Then

19°€ ((9 = 9(6e(0))) 0 07 Yl gatrs-ny < I€Nlg 005" = (90 07 YO lwonrsras = 01y

m1+mo+1

<2E DY IV (9007 lraso)

=1

m1+mo+1

<2llEll Y IV gllwm

=1
<C
for all i € {1,...,m; +mo + 1}, where C' = 2¢q ||E]| (m1 + ma + 1).
As a consequence of Proposition 5.1 there exists a ¢ > 0 such that [[P™uls <
e Yo IViu|2 for all w € C*°(T'). So it suffices to show that there exists a ¢ > 0 such that
IV" 65(My, P My, ) P™2ully < || P ull (13)

for all w € C*(T"), g € Wi 4mpr1, £ € {1,...,L} and i € {0,...,m}. Next fix ¢ €
{1,...,L}.

18



First suppose that ms = 0. Let «, f be a multi-indices over {1,...,d — 1} with |a| <
j—1and |8 < (my+1—75) V0. Let g € Wiy tmor1. Choose h = E(§ o ;') where
g =9—9g(¢;'(0)). Using Lemma 5.3 one has

107, 95,65 (M, P Mg, Jull oy

Pe “Peg

< ¢ (9% 0" §(Te))(w o 9y )| ymay

<Y Y w10 Mgorn .. Mooind) (0% T)) (w0 o7 )|y
=0 (0% IPTPN Q41
Ionl ----- Iozk\>1

<o 3N Y Jeammn | (B DPCH@ 605 T)) (w0 o) e
hI<IBl k=0 | Skt

||+ Ak 1 |=la

But then Lemma 5.4 gives
1076, (0 T))(wo oy )| Lma1)

< Z |C6s..., Bj—k+2| )

By Bi—kt
[B1]+.. +|5J k+2| 11

N (Goun - Oy (D3, 40 (0551 T0))) 0 0%-542) (w0 )| oyt

<es Y el VOBl VOB h |
B1yeees ﬁ]
1Brl+-.+185 - k+2| vl

o542 ((Xew) © @ ooy

<CFe 3 (el 105 (Rew) 0 6 | ooy

61 ----- B]
|1+ +B5- k+2| 1

for a suitable ¢5 > 0, where we used the Coifman—Meyer estimate of Theorem 3.3(a) in
the penultimate step. This is possible since [ax1| < |af —k < j —k — 1 and hence
9++1T, € OPSI™% and then also 0, _ypy (01 T,) € OPS’~* by [Ste2] Theorem VI.7.3.
Then [[0%-++2 (%) 0 97 | paqrsy < € [PPs52ul ) < e [P 190y for a suit-
able ¢, > 0. This completes the proof of (13) if my = 0.

Finally suppose that m; + ms + 1 = j. Note that P™ € OPS™?. Using Lemma A.7
it follows that for every multi-index v over {1,...,d — 1} with |y| < my there exists a
bounded operator 7), on Ly(I") such that

Mg, P = 3 Mg, (%)VTV.

[y|<ma

Let a be a multi-index with |a| < m;. We shall show that (13) is valid. Using Lemma 5.3
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twice one deduces that first

105, 05 (My, P Mg,) P™u)|1y(r)

e g
<o 3 110 6(T) 0 (Tyu) 0 97 Y|y
[v[<m2
|ot]
< ¢ Z Z Z [T
|v|<mg k=0 Q1 yeey Ot 1
[t ]yees g |>1
x| +...+ |1 =]
Mo . Mo (0 T) 07 (L) 0 ) gy
|ot]
- ~ .
oYY o CEIEHE T S (@) 0 6
|v|<mg k=0 Q1 yeey Ot 1
|t ;e ag|>1
loa |+ 4| ep1]=|e]
and next

16575 (0 T2) 87 (o) © 0 )| agra-)

ol
< E : § |0717---7'Yk/+1| '
Y15 VE/ 41
|'Yl‘7 7"7k">1

i+t Vi 1 =1

6 @ T ) My .. Mo (Ty) 0 97 ) parasy

vl
/ N A —
<cs Z > |y | CF NIVRIS I (Tw) © 0 )| 1y
Y15V 41
[v1 ] lvgr 21

[Y1l+e et Vi 1 =1

o]
< Co G5 Z > 91 O T a2 (] oy
Y15 VE 41
[Y1ls-o | vper [ 21

[Yil+ et Vi 1 =11

for a suitable ¢; > 0, where we used again the Coifman-Meyer estimate of Theorem 3.3(a)
in the penultimate step. This is possible since |agy1| + 1+ |[yer1] < myp —k+ 1+ mg —
k' = 7 — k — K and hence 0%+ T, 0%+ € OPSI~F=*. The proof of the Lemma 5.5 is
complete. O

Lemma 5.6 Foralln € N, my,...,m,1 € Ny and ji,..., 5, € N withmy+...+mpi1+
n > j1+ ...+ jn there exists a ¢ > 0 such that

[P 63 (P) P2 . P g (P) Py, < o Pt metnii—iny |

for allu e C®(I") and g € Wi 4. 4mopr4n-
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In particular, if mi + ...+ mu1 +n =71+ ...+ Jn, then the operator
P™ §3(P) P™ .. P §in(P) P
extends to a bounded operator from Lo(I") into Lo(T).

Proof The proof is by induction to n. The case n = 1 is done in Lemma 5.5.
If my +mo + 1 > j; then it follows from Lemma 5.5 that

[P 671 (P) P2 . P §In(P) P
< c||[prtmatisagi(py P P g (P) P

for a suitable constant ¢ and one can use the induction hypothesis. Suppose that m;+mqy+
1 < j;. Let k € {2,...,n} be chosen minimal such that m; +...+my1+k > j1+. ..+ k.
Therefore mi;+...+mp+k—1<j1+...+ g1 and mp1+1 > jp. Let N =j1+.. .4+ —
k—mi—...—mg. Then N € {1,...,myy1}. Note that mi+...+mp+k+N = ji+... 4+ Jk.
Moreover, N4+mp +1—jr =41+ ...+ jpo1—k+1—mqy — ... —mp_1 > my > 0. So
N +myp +1 > j,. Hence

| P 5;1 (P)p™ ... .p™ 55” (P) P14
< [P (P) P2 L Pt §T(P) P §TE(P) PN gog -
mp+1—N Sik+1 in M,

|| PTERTEGIAL(P) L) (P) P |,

But by duality
[P Pt §T1 (P) P §IR(P) PY|goys = [|PY 675 (P) P™ §71(P) ... P™ |32
< c||PNFETIEL G (P) P |y

for a suitable ¢ > 0 by Lemma 5.5. Now one can use twice the induction hypothesis. O

Lemma 5.7 Let j,m € N and ky, ko € Ny with ki + ko +m > j. Then there exists a ¢ > 0
such that ‘ ‘
P4 5(P™) Plouly < e P,

for allu e C(T') and g € Wi, 1 kytm-

Proof Since ¢, is a derivation, there are constants c,, j,
such that

€ R, independent of g,

7777 Mn+1

SHP™) = Cony grrimgn P 00N (P) P2 522(P) .60 (P) P

where the sum is over all n € {1,...,5}, mq,...,mu1 € Ng and 71, ..., j, € IN such that
i1+ ...+ Jn=7and m + ...+ mys1 +n =m. Now apply Lemma 5.6. a

Lemma 5.8 Let k,m € N, £ € Ny and ji,...,jx € {1,...,m}. Then there exists a ¢ >0
such that
| PETI §ik(P™Y T T 63 (P™) TS|y < || PRy,

Zk+1 9

forallu € C®(T'), g € Wi and z1, . . ., 2111 € C withRe z, > 0 foralln € {1,... k+1}.
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Proof Since T.™ commutes with P and |7 m) |22 < 1 this follows easily by induction
from Lemma 5.7. O

Lemma 5.9 Let m,n € N, { € Ny and p € [2,00]. Suppose that d — 1 < 2m and n < m.
Then there exists a ¢ > 0 such that

|P# 6Ty < € (Re )~ 703 (Re )~/ (Re )" |2
forall z € C and g € Wimie with Rez > 0.

Proof We use Lemma 4.2 to rewrite 53(Tz(m)). Let k € {1,...,n} and ji,...,jr € N
with j1+...4+jx = n. Let (t1,...,txr1) € Hy. There exists a K € {1,...,k+ 1} such that
tg > lc+r1 Then

2 F[PET™ 53 (PY T LT 6 (P T |

tpr12 g tr 2
< IT oy -

NPT (P T T S (P T I ol (14)

tk+1z/2 g ty 2 t2 z t1 2z 1

By Lemma 5.2 and duality there exists a suitable ¢; > 0 such that

m —d=il-1 _d-101_1 m _d-1 i1
HTt(H)l 2/2H2‘>p Scatyy © 7 (Rez)™ ™) and HTt(l z)/2”1*>2 <crty " (Rez)” o
(15)

We next estimate the big factor in (14).
Suppose that K € {2,...,k}. Then
1P T™ o3 (P TR T 63 (P T o

tk+1z/2 g ty 2 t2 z t1 2z

< |\PtTt™ . sy T T s (P T o, -

thr12/2°9 tg 2 cttk412 Vg lg /2
AT, oy T T e (P T e (16)

where we used duality in the second factor. By Lemma 5.8 and the decomposition 7;(}’:2 o=

Tt(:g /4 © Tt(;”i /4 there are suitable cg, c3 > 0 such that

th+12/2 79 tg 2 txi12 Y

< o | PO s o

Y

where we used the spectral theorem in the last step. The second factor in (16) can be

bounded similarly. Since tx > k#“, there is a suitable ¢4 > 0 such that

1PET™ 63 (P TR T S (P Tl < 4 (Rez)~(EHkmm/m,

tk+1z/2 g ty 2 t2 z

Combining this with (14) and (15) one deduces that
NPT o (P T T 6 (P T sy

—d=L(l_1y

Bl

_ _d-1
< ey (Re z)fdfml(k%)(Re z)_(“k’”_")/m |z|Ft, 2t
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The cases K = 1 and K = k+ 1 are similar. Integrating over Hy and taking the finite sum
gives the result. O

Lemma 5.10 Let m € N with m > d and v € (0,1). Then there exists a ¢ > 0 such that
Hé;l(TZ(m))HLI%CV < ¢(cos 9)(1”’)/’” (cos @)™ \z|(1’”)/m
for all z € C and g € W1 with Rez > 0, where 0 = arg z.

Proof This follows from Lemma 5.9 with p = &£ ¢ = 1 and n = d, followed by the

1—v

Sobolev embedding of Proposition A.10. a

At this stage we have the required bound for 5d(TZ(m)) from L; to C¥. In order to obtain
a bound for §4(S.) = €* 5d(T§1)) we need a lemma on subordination.

Lemma 5.11 Let —A be the generator of a semigroup in a Banach space E which 1is
bounded holomorphic in the sector X2 ,. Lel I' € L(L(E)) and D C E a subspace. Let

X,Y be two Banach spaces with D C X. Let N € R and § € (—o0, %) Suppose that
F(e*u, F(e*VYu e Y and

1F(e7*ully < M (cos0) ™™ |27 ||ul|x
forallu e D and z € 25 o, Where 0 = argz. Then
|F (e ully < e5 M (cos8)(cos8) "= |2 Jlul|.x
forallu € D and » € X33 ,, where cg = [~ \/%—W 5732 ¢ s sP ds and 0 = arg 2.

Proof For all z € C with Rez > 0 define p.: (0,00) — C by

1 —3/2

w(s) = i zs

_zZ
e 4s,

Then -
e VB = / pi(s) e B ds
0

for all ¢ > 0 and every bounded strongly continuous semigroup by the example on page
268 in [Yos]. Fix z =re” € C with |0| < Z and r € (0,00). Choosing B = ¢’ A gives

Tt IVA = VB = / pa(s) e ds (17)
0

for all ¢t € (0,00). Since both sides in (17) extend holomorphically to the sector 2 /4 One

deduces that -
e_z\/z = / ,LLT.ez'O/Q(S) G_SGZQA ds.
0

Now let ©w € D. Then

—z > —get?
|F (e )ully < / |tyios=(s)| |1 F (e7* 4 )ully ds
0
< / |ftyei0/2(8)] M (cos )N s ||ul| x ds.
0
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But

r2 cos @

o o 1
/ |ftyei0s2(5)] 87 ds < / —— s e $Pds
0 0o V 4

] 1
_ 2 9)/3—5/ 8/2 o B g
T COS S e S S
0 \/471'

= cs 1% (cos 9)6_%.

Therefore )
IF (e ully < c5 M (cos 0) N2 127 [lu|

as required. O

Lemma 5.12 Let v € (0,1). Then there exists a ¢ > 0 such that

Hé;l(TZ(l))HLIHCU < c¢(cos )" (cos «9)’d’k/2 |zt

forall z € C and g € Wakgy1 with Rez > 0, where k = Hggg} and 6 = arg z.

Proof Note that 2¥ > d. Let ¢ > 0 be as in Lemma 5.10 with m = 2*. For all 8 € (0, 1)
let cg be as in Lemma 5.11. Using Lemma 5.11 it follows by induction to ¢ that

15Tl
< CC_y)ak - - - C1—y)jor—t+1 (COS «9)7d+12;’cy (cos 9)*(%*12;’:) ... (cos 9)7(%*2'3—7%) |z\21k;—u‘Z
= CC1_p)/2k - - - C(1—v)jor—t+1 (COS 9)’d’z/2 (cos 9)21'%5 ‘z|21%e

for all £ € {0,...,k}. Choosing ¢ = k gives the estimate of the lemma. O

We are now able to prove the main theorem of this section.

Theorem 5.13 For all v € (0,1) there exists a ¢ > 0 such that

—(d-1)
|Kz(x7 y)‘ <c (COSG)lﬂ/ (COS 9)*d*k/2 (|Z| A 1)

_ d—v
<1 Ll y\)

2]

for all z € C with Rez > 0, where k = Hgig} and § = arg z.

Proof Let ¢ > 0 be as in Lemma 5.12. By Lemma 3.2 there exists a ¢y > 0 such that

1 kd
- pr(z,y) < p& V(. y) < coprla,y)

for all z,y € I'. Let g € Wokgyq. Then

|(F5(TV)u) (@) = (05(TE)u)(2')] < c(cos ) (cos @)~ 2] pr(z, ') [|ull,
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for all uw € L1 (T") and =, 2’ € T'. Hence

[(9(x) — g()? K.(z,y) — (9(z) — g(y))" K.(2',y)| e 7

< c(cosB) 7 (cos ) ~4R 2|21 pp(x, 2')
for all z,2’,y € I'. Choosing =’ = y gives
l9(2) = g K= (2, y)[ e < e (cos ) (cos )42 2" pr(x, a')"
for all x,y € I'. Optimizing over g € Wa, it follows that
co? pr(@, ) | K. (2, y)[ ™% < e (cos8)' 7 (cos 6) M2 [ pr (@, ')

for all =,y € I'. Therefore

xZ, d—v —v —d— —(d— ez
(pr(|z|y)) |K.(z,y)] < ccl(cosf) 7 (cos ) ~47H/2 |z| (=D R (18)

for all z,y € T". It follows from Lemma 5.2 and duality that there exists a suitable ¢; > 0
such that
(Ko (2, )] < [T [l1m0 €% < 1 (cos 8) 71071 [ 1071 eltes (19)

for all z,y € I'. Then the theorem for |z| <1 follows from adding (18) and (19), together
with Lemma 3.1(d).

Finally we deal with the case |z| > 1. Let C' > 0 be as in Theorem 2.6. Then for all
z =t +1is with ¢ > 0 one estimates

15211500 < |[St/2]l2—00 [[Sisll2—2 [|St/2ll1-2

2 1 —(d d—1,+2 —(d—1) —(d—1)
< C“l1A=|z|cost < 27°C* (cos @ zl| A1 ) 20
2

Since I' is bounded, there exists a ¢ > 0 such that

(|z| A1)~=1)
_ d—v — _ d—v
(1+ |z yl) (1 N |z yl)

|| ||

SZ o0 — —(Ad—
Ko, y)] < e —elimoe gim1 0 (gog )=

for all z,y € T" and z € C with Rez > 0 and |z| > 1. This completes the proof of the
theorem. O

Corollary 5.14 For all v € (0,1) there exists a ¢ > 0 such that
”S'Z”pﬁp <c (COS (9)7d7k/2+171/

for all p € [1,00] and z € C with Rez > 0, where k = Hzg‘;} and 6 = arg z.

Proof The bounds for p = 1 follows from a quadrature estimate from the Poisson bounds
in Theorem 5.13. Then the bounds for p € (1, 00| follow from duality and interpolation.d

25



Corollary 5.15 For all v € (0,1) there exists a ¢ > 0 such that
1S2]1psq < ¢ (cos§)~dH/21=Y ‘z|—(d—1)(%_é

for all p,q € [1,00] and z € C with p < q, Rez > 0 and |z| < 1, where k = [%1 and
0 = argz.

Proof This follows from interpolation of the bounds of Corollary 5.14 and the bounds
(20). O

We are finally able to prove the full Poisson bounds for complex z.

Proof of Theorem 1.1 This follows from Proposition 4.1 and Corollary 5.15, similarly
as in the proof of Theorem 5.13. a

6 Derivatives

The kernel K, of the operator 5, is a smooth function. The aim of this section is to prove
Poisson bounds for the spacial derivatives of K. If confusion is possible, then we denote
by a subscript (1) and (2) the first or second variable on which a derivative acts.

The main theorem of this section is the following.

Theorem 6.1 For all k,¢ € Ny there exists a ¢ > 0 such that

-1) |Z|—(k+£) 62\,2\

—(d
(VT 52) (2, 3)] < c (cos ) Hard -+ 2

(1+ \w—y|>d

2]

forall z € C and x,y € I with Rez > 0, where 6 = arg z.

The proof uses interpolation and the Poisson bounds of Theorem 1.1. The first step is
that Theorem 1.1 has an easy corollary.

Corollary 6.2 There exists a cg > 0 such that
1025211500 < co (cos 8) 21D (|2 A 1)~ [P
forall j € {0,...,d} and z € C with Re z > 0, where = arg z.
The key estimate for the proof of Theorem 6.1 is in the following lemma.

Lemma 6.3 Let (V,p) be a chart, x € C*(V), j € {0,...,d} and a a multi-index over
{1,...,d —1}. Then there exists a ¢ > 0 such that

o\« , ,
1(55) M Tl < e (121 A D7D 2 3] ] (cos )21
'd

Jor all g € Worjiayjaj41 and z € C with Rez > 0, where 0 = arg 2.
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Proof Letk = Hgi‘;} and ¢ = d+ |a]+1. Let p € (d—1,00). By Lemma 5.9 there exists

a ¢; > 0 such that

(£—j)
1P 83 (T |1y < 1 |2] 75 0730 2] 7 2 (cos §) 24

for all g € Wy, and 2 € C with Rez > 0. Arguing as in the proof of Lemma 5.12 one
deduces that there exists a ¢y > 0 such that

_1 _(0— —2d—0—
1P 63T [ < g |27V 27079 (cos ) 720

for all g € Wak, 4y and 2z € C with Re z > 0. Hence by Proposition 5.1 there exists a c3 > 0
such that

13T | yryswesey < s |27 D078 279 (cos 6) 244

for all g € Wok;p and 2z € C with Rez > 0. Next, let ¢y > 0 be as in Corollary 6.2. By
Proposition A.4 there exists a ¢4 > 0 such that

0\«
||(%> )ty < e X ullyeny el Ty

for all w € C*°(I"), where
o

Therefore
0\« »
1(55) M BT o

< ea[IMy S (TINT, rywreqry 1M S5 (TED

(IM)—Loo(T)
L j ¥
< <C3 | My [lwewmy—wenr |Z| —Hi=y) |z| =D (cose)Qd—f—k)

1—y

' (CO xlloe (121 A 17D |22 (00s«9)’2d(d+1)>
< cs (|2] A 1)"@D 2] Il |2 (cos ) 2@+~
for a suitable constant cs. .

Lemma 6.4 Let (V,p) be a chart, x € C*(V), and a a multi-index over {1,...,d — 1}.
Then there exists a ¢ > 0 such that

0
dof 9 (1) 1—|a 2d(d+2)—|a
15((55) M T lhosoe < (12 A D' (J2] v 1) (cos)

Jor all g € Warjiayjal+1 and z € C with Rez > 0, where § = arg z.

Proof It follows by induction to m that for all m € INy and multi-indices B1, ..., Bm, ¥
over {1,...,d — 1} there is a constant cg, g, , € R such that

.....

9 \e 0
5;;“((%) M) =3 hpn M(i)ﬁlg.._M(aa)ﬁmg<%)vMX (21)



uniformly for all g € C°°(I"), where the sum is over all 31, ..., B,y with |B1],...,|Bm| € N
and 81|+ ...+ |Bn| + |7 = |a|. Note that |a| —|y| > m. Since J, is a derivation, one has

d

() w35 () () o

7=0
Now use (21) and Lemma 6.3. O

Lemma 6.5 Let (V) be a chart, x € CX(V), and o a multi-index over {1,...,d — 1}.
Then there exists a ¢ > 0 such that

9 \a L|~(d=1) |5 ~lal g2I2] ) .
((32)" (e D) (o] < EELE T oy s
(1 E )

forallt >0 and x,y € M.

Proof This follows from Lemma 6.4 by minimizing over g, together with the bounds of
Lemma 6.3 with 7 = 0. a

In order to have derivatives on both variables we use duality and the next lemma, which
states that the convolution of two Poisson bounds is again a Poisson bound.

Lemma 6.6 There exists a ¢ > 0 such that

/ (tA1)~@=D (A1) ~E@D 5 < (t A1)~

1+|x225 @+|Z_m> (1+E:1ﬂf

t t

forallt >0 and z,y € T.

Proof For all ¢t > 0 define P:I' xI' = R by

tA1)~(@=D tA1)~d=D
B(x,w:/(A) D) d-.
T

(155 ()

Let
/ (tA1)~@=D
Co = Ssup sup - < 0.
t€(0,00) z€l' JT (1 X |z — y‘)
t
Let t > 0 and z,y € I'. Then
tA1)~@b
Pi(z,y) < / ( ) (AT Ay < (EAT)TED,
r (1 |'I _ Z| )d
t

Moreover, |z — y|¢ < (|o — 2| + |z — y|)? < 2¢(|x — 2| + |z — y|?). Hence
(¢ 1) (¢ A1)

(el eyl e
(e ) (1 552

o — yl* Py(a,y) < 2° /
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But

/(Ml)_(d_l)”‘Zld_ (tA1)~Y d,z</(t/\1)(d1) a (A
T ‘.T—Z‘ d ‘z_y| d — r ‘Z—y| P

<co(tA1)"W@D ¢

Estimating similarly the other term one deduces that
|z — y|* Pz, y) < 2% ¢o (1A 1)*(d*1) 4.
Then the lemma follows with ¢ = (1 + 2¢F1)c. O

Proof of Theorem 6.1 Let (Vi,¢1) and (Va,¢2) be charts, x; € C®(Vi,R), x2 €
C>*(Va,R), and « and 8 be multi-indices over {1,...,d — 1}. The semigroup property
gives

(o e

- [ (Go) (e vE)) o) (52):, (18K )@ p)de

dpr1/ ) @)
for all z,y € I' and z € C with Rez > 0. But
((G2)" (e k)@ = ((-2) (oo 1) w2
g2/ dp2/ (1)
Using Lemmas 6.5 and 6.6 it follow that there exists a ¢ > 0 such that

9\ /9 \F 12|~ [ 5| ~(al+18D 212 D
9 K. < §)—Ad(d+2)—lal-|8]
‘((&pl)(l)(8¢2>(2)<<X1®X2) ))(:c,y)| = (1 . |z — y\)d (cos 0)

2]

for all z,y € I' and z € C with Rez > 0. Now the theorem follows by a partition of the
unity and Lemma A.1. O

7 Holomorphy and H,-functional calculus

In this section we give applications of our Poisson bounds to the L,-holomorphy of the
semigroup as well as H..-functional calculus and sharp spectral multipliers. We start with
the holomorphy. Recall that the operator Ay is self-adjoint and hence the semigroup SV is
holomorphic on the sector X7 , in Ly(I"), where X, is defined in (10). If V' > 0 then SV is
a contraction operator on Lo(I") for every z € X° /o~ On the other hand, the Poisson bound
we proved allow to extend the semigroup SV from L,(T') N Ly(T) to a strongly continuous
semigroup on L,(I") for all p € [1,00). A natural question concerns the holomorphy of the
extension to L, (I") and describe the sector of holomorphy. It is now well known (cf. [Ouhl]
or [Ouh3| Corollary 7.5) that a Gaussian upper bound of the heat kernel of a self-adjoint
semigroup implies analyticity on L; on the sector X° /2 This fact is not clear if instead we
have Poisson bounds. Nevertheless we have the following result.
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Theorem 7.1 Suppose 0 <V € Loo(R). The semigroup SV is holomorphic on Ly(T) on
the sector Ec;ld. If V=0, then S is holomorphic on Li(I') on the sector X/

Proof For all z € C with Rez > 0 let K be the kernel of SV. By Theorem 1.2 and
Proposition 3.3 in [DR] it follows that for all € € (0,1) and 0 € (0,e%) there is a C' > 0
such that

(22)

for all z € ¥ and z,y € I'. Now suppose hat de < 1. Then by [DR] Proposition 2.3 the
semigroup t — S, extends to a Cy-semigroup on Li(T') for each ¢ € (—0,6). Integrating
the bounds of (22) on the (d — 1)-dimensional manifold I" we see that there is a C" > 0
such that

/F K (2,y)| do(z) < C"

for all z € 3 and y € I'. Therefore the semigroups (szw)bo are bounded, uniformly for all

¢ € (—0,0). Hence SV is holomorphic on L;(I") on the sector X3 by [Kat] Theorem IX.1.23.
This means that we have holomorphy of S¥ on L;(T") on the sector Ec;%'
If V =0 we apply Theorem 1.1 to obtain the second assertion. O

We do not know whether SV is holomorphic on the right half-plane on L;(I"). Another
application of Theorem 1.2 concerns the H,-functional calculus.

Theorem 7.2 Suppose V> 0. Let u € (W(Zl),w) and p € (1,00). Then Ny has a
bounded Hy(%5,)-functional calculus on Ly(T'). Moreover, f(Ny) is of weak type (1,1) for
all f € Hoo(X).

If V =0 then the above is valid for all p € (0, 7).

Proof This follows from (22) and Theorem 3.1 in [DR] if V # 0. If V' = 0 we can use
the bounds for complex time in Theorem 1.1, which allow any choice of p € (0, 7). O

An interesting particular case of the holomorphic functional calculus is the boundedness
on L,(T) of imaginary powers N{¥. The bounded imaginary powers on L,(T") in case V = 0
were proved before by Escher—Seiler [ES| with different methods.

We emphasize that for the operator NV, stronger results are known. Indeed a spectral
multiplier theorem is proved in [SS], Theorem 3.1. More precisely, it follows from the
results there that f(N) is bounded on L,(T") for all p € (1,00) provided f satisfies the
Hormander condition

sup 1£()B(E)[we2s < 00,

where [ is a smooth non-trivial auxiliary function and s > %. It follows easily from the
Cauchy formula that the latter condition holds if f is a bounded holomorphic function in
some sector of angle p > 0.

Note that using our Poisson bound one can adapt the method from [DOS] to obtain
the previously mentioned spectral multiplier result for A/. Indeed, if one uses Theorem 1.1
instead of a Gaussian bound as supposed in [DOS] and the Avakumovic-Agmon-Hoérmander
theorem for the spectral projection of pseudo-differential operators on compact manifolds,
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then one argues as in Section 7.2 of [DOS]. Even though the power of cosf in Theorem
1.1 is not optimal, it is then reduced by the interpolation argument as in the proofs of
Theorems 3.1 or 3.2 in [DOS]. The advantage of this method is that we obtain in addition
that f(A) is of weak type (1, 1) which is not stated in [SS].

A Compact manifolds

Let (M, g) be a Riemannian manifold (without boundary) of dimension m. We always
assume that a Riemannian manifold is o-compact. Then M has a natural Radon measure
denoted by |- |. Let p € [1,00] and k € IN. Set

WEP(M) = {u € Lyioe(M) :uo o™t € WEP(p (V)) for every chart (V) )}

loc loc
If w e WP(M) and (V, ) is a chart on M then se = (Di(uop™))op € Lyie(V),
(M), every

loc

where D, denotes the partial derivative in R™. Moreover for all u € WP

chart (V,¢) on M and i € {1,...,m} define Viu, Vyu € Lploc( ) by Viu =

Viu = 377" gij V/u. Note that V . and Viu depend on the chart (V, ). Let k E ]N and
)

u € WEP(M). Then there exists a unique element |V*u| € Ly 1oc(M) such that

loc

vl = ( i (vil...vw)m)”2

i1, =1

for every chart (V, ) on M. Set |V°u| = |u|. Similarly, if u € C(M x M) and k, ¢ € NN,
then there exists a unique element |V’(“1) Vé)u\ € C(M x M) such that

VG V@)“MV = ( Z Z (Vi Vo Ve - Vigu) -

- - : : 1/2
(Vi VL vgg)u)>

for every chart (V, ) on M. With obvious modifications one can also define |V'(“1) Vé)u| €
C(MxM)ifk=0or{=0.
Now also allow k = 0, so k € INg. Define the Banach space W*?(M) by

WHEP(M) = {u € WEP(M) : |[Viu| € L,(M) for all j € {0,...,m}}

loc

with norm

k N 1
lllwescany = (31197l )
j=0

If u,v € WH2(M) then there exists a unique element Vu - Vv € Li(M) such that

m

(Vu-Vo)ly = (Viu) Vi

i=1

for every chart (V) on M. Clearly if (V,¢) is a chart on M with V compact, then for
every multi-index ~ over {1,...,m} there exists a ¢ > 0 such that

o (2], et e
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for all uw € WM Conversely, one has the following estimate on compact manifolds.

Lemma A.1 Suppose M is compact. Let N € N and for alln € {1,. N} let (Vi, @n)
be a chart on M and x, € CX(V,) such that 0 < x, < 1. Suppose that Z _ Xn=1. Let
k,¢ € Ny. Then there exists a ¢ > 0 such that

(7 Vol e 3 3 S (500 () (G @ ) o)

n,m=1|a|<k |B|<¢ 90

for alluw € C®(M x M) and xz,y € M, where (%)?1) acts on the first variable, we use
multi-index notation, etc.

Define the sesquilinear form a: W2(M) x WH2(M) — C by a(u,v) = [ Vu-Vo. Then
a is closed and positive. The Neumann Laplace—Beltrami operator A on M is the
associated self-adjoint operator. If (V) is a chart on M then

d
0
Au= g

”meaw ! fﬁw

for all u € C°(V). Since the form a satisfies the Beurling-Deny criteria it follows that the
semigroup S generated by A extends to a continuous contraction semigroup S® on L, (M)
for all p € [1,00). We denote by A, the generator of S (P) If no confusion is possible, then
we drop the suffix p in A,

Proposition A.2 If M is compact, k € N and p € (1,00) then W*P(M) = D((—A,)*/?).
Moreover, C*(M) is dense in WP(M).

Proof See [Heb| Proposition 3.2. O

We need various Sobolev embeddings.

Proposition A.3 Suppose M is compact. Let k,n € Ny and p € (2,00]. Suppose %—% <
£ Then Wkn2(M) C W™P(M) and there exists a ¢ > 0 such that

lullwrany < ellullfmensan lullz;(r
)
1

n+m(%—;)

I WhEn2(M) | wh =
for allu e (M), where o ——?

Proof These bounds are well known on R and then follow on a compact manifold by
localization. a

Proposition A.4 Suppose M is compact. Let (V,p) be a chart, x € C*(V) and o a
multi-index over {1,...,d —1}. Let p € (m,00) and £ € N be such that { > |a| + 1. Then
there exists a ¢ > 0 such that

0\«
1(55) Ccodllaian < e lxulienan el Jun

for all uw € C*°(M), where



Proof By the Sobolev embedding theorem and interpolation there exists a ¢ > 0 such
that

[ollwiatoemy < € 1015 eoqmm) 10117 (gemy

for all v € W*P(R™). Using the chart (V, ) and localizing with x gives the proposition.O

Lemma A.5 Let (Vi,¢) and (Va, %) be charts on M, let x1,x2 € C°(M) and suppose
that supp x1 C Vi and suppxz C Vo. Let k € Ny and T € OPSF(M). Let p € (1,00).

Then for every multi-index o over {1,...,m} with |a| < k there exists a bounded operator
Ty on L,(M) such that

M, TM, =3 M, ( )QMXQ.

la|<k

Proof There exists a 7 € OPS*(R™) such that

Tw= (xlT((w«xQowl)) ow)) o

for all w € S(R™). By the proof of Proposition VI.5 in [Ste2] for all multi-indices o with
|a| < k there exists a pseudo-differential operator T, of order 0 such that T' = Z\al <k T* e

8. Each T, is bounded on L,(R?) by [Ste2] Proposition VI.4. Then the lemma follows by
a coordinate transformation. a

Lemma A.6 Suppose M is compact. Let k € Ny and T € OPS*(M). Let p € (1,00).
Then there exists a ¢ > 0 such that || Tu||, < c||ullwrrarn for allu € C=(M).

Proof This follows with a partition of the unity from Lemma A.5. a

Lemma A.7 Let (V, ) be a chart on M and x € C(V). Let k € Ny and T € OPS*(M).
Let p € (1,00). Then for every multi-index o over {1,...,m} with |o| < k there exists a
bounded operator T,, on L,(M) such that

0\«
MT =3 M, (&0) T..
|a|<k
Proof This follows from Lemma A.5, duality and a partition of the unity. a

For the remaining part of this section suppose that the manifold M is connected. Then
the Riemannian manifold has a natural distance, denoted by d;;. Note that

du(z,y) = sup{|g(z) — g(y)| : g € C*(M) and ||Vgll < 1} (24)

for all 2,y € M. See, for example [ABE| Proposition 2.2. We need some equivalence of
the distance on M. Since M is compact, one can locally regularize using a finite number
of charts. Therefore (24) implies the next lemma.
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Lemma A.8 For all N € IN there exists a ¢ > 0 such that
1 ' )
ng(x,y) <sup{g(z) —g(y) : g € C*(M) and |[V'g|loc <1 foralli € {1,...,N}}
S CdM(:Evy)
forall z,y € M.

Moreover, for embedded manifolds the distance dj; is comparable with the Euclidean
distance. This is a consequence of [Hel] Proposition 9.10.

Lemma A.9 Suppose k € N and M is embedded in R*. Then there exists a ¢ > 0 such
that

1
for all x,y € M.

Finally we introduce Hélder spaces. If v € (0, 1) then we denote by C¥(M) the space of
all Holder continuous functions of order v with respect to the distance dj;, with seminorm

u(x) — uly)|
[wlllevary = sup :
() T#y dM(xvy)V
The norm on C¥(M) is given by ||u||cvar) = [|ulloc + |||1|||cv(ary- With this norm the space

C¥(M) is a Banach space. Moreover, one has the following Sobolev embedding.

Proposition A.10 Suppose M is compact and p € (m,o0). Set v = 1 — . Then
WhP(M) C C*(M). In particular, there exists a ¢ > 0 such that

H““C”(M) < CHUHWLP(M)
for all w € WLP(M).

Proof See [Heb] Theorem 3.5. O
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