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Abstract

We consider a non-autonomous form a : [0, T ] × V × V → C where V

is a Hilbert space which is densely and continuously embedded in another
Hilbert space H . Denote by A(t) ∈ L(V, V ′) the associated operator.
Given f ∈ L2(0, T, V ′), one knows that for each u0 ∈ H there is a unique
solution u ∈ H1(0, T ; V ′) ∩ L2(0, T ; V ) of

u̇(t) + A(t)u(t) = f(t), u(0) = u0.

This result by J. L. Lions is well-known. The aim of this article is to find
a criterion for the invariance of a closed convex subset C of H ; i.e. we
give a criterion on the form which implies that u(t) ∈ C for all t ∈ [0, T ]
whenever u0 ∈ C. In the autonomous case for f = 0, the criterion is known
and even equivalent to invariance by a result proved in [Ouh96] (see also
[Ouh05]). We give applications to positivity and comparison of solutions
to heat equations with non-autonomous Robin boundary conditions. We
also prove positivity of the solution to a quasi-linear heat equation.

Key words: Sesquilinear forms, non-autonomous evolution equations, non-
linear heat equations, invariance of closed convex sets.

MSC: 35K90, 35K59, 31D05.

1 Introduction

The aim of this article is to prove an invariance criterion for evolution equations
governed by a non-autonomous form. Throughout the article we consider the
following situation. Let V, H be Hilbert spaces over K = R or C such that

V
d
→֒ H ; i.e., V is densely and continuously embedded in H . For T > 0, we

consider
a : [0, T ] × V × V → K

such that a(t, ., .) is sesquilinear on V and satisfies the following conditions

|a(t, u, v)| ≤ M‖u‖V ‖v‖V (t ∈ [0, T ], u, v ∈ V ) (1.1)

Re a(t, u, u) + ω‖u‖2
H ≥ α‖u‖2

V (t ∈ [0, T ], u ∈ V ) (1.2)

a(., u, v) is measurable for all u, v ∈ V (1.3)

∗Corresponding author.
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In the case where K = R this means that a(t, ., .) is bilinear; moreover the
real part sign Re can be omitted in (1.2) and everywhere else in the sequel.
Condition (1.1) means that a(t, ., .) is V-bounded with t-independent bound, we
call condition (1.2) quasi-coercivity and simply coercivity if ω = 0. We call such
a, satisfying (1.1)-(1.3) simply a non-autonomous closed form on H . Define
A(t) ∈ L(V, V ′) by 〈A(t)u, v〉 = a(t, u, v). Let MR(V, V ′) := H1(0, T ; V ′) ∩
L2(0, T ; V ) be the usual maximal regularity space. By a theorem due to Lions
[Lio61] (see also [Sho97], Chap. III) for each u0 ∈ H , f ∈ L2(0, T ; V ′) there
exists a unique u ∈ MR(V, V ′) satisfying

{

u̇(t) + A(t)u(t) = f(t) t-a.e.

u(0) = u0.
(1.4)

It is well known that MR(V, V ′) ⊂ C([0, T ]; H) and hence u has a unique con-
tinuous representative. Thus the initial condition makes sense.
Let C ⊂ H be a closed convex set and denote by P : H → C the orthogonal
projection onto C. Our main result, Theorem 2.2, says the following: If u0 ∈ C
and

P (V ) ⊆ V, Re a(t, P v, v − P v) ≥ Re〈f(t), v − P v〉 (1.5)

for all v ∈ V , then u(t) ∈ C for t ∈ [0, T ]. For f 6= 0 this criterion seems to
be new even in the autonomous case. If f = 0, then in the autonomous case
condition (1.5) is also necessary for the invariance of C. The criterion in this
autonomous setting is due to [Ouh96] and it is widely used to study positiv-
ity, Lp−contractivity and domination for various semigroups. This criterion is
in the spirit of the famous Beurling-Deny criteria which characterize the sub-
Markovian property of a semigroup in terms of the corresponding form. As
a corollary of our result, if we choose the convex set to be the positive cone
we characterize positivity of the solution u of the Cauchy problem (1.4) if the
initial date u0 and the non-homogeneous term f are positive. This corollary
is also stated in [DL88, Chap. XVIII, § 5] however with an erroneous proof.
Other corollaries concern a characterization of the sub-markovian property of
the solution u as well as comparison of solutions u and v of two different Cauchy
problems, see Section 3. In Section 4 some concrete examples are given. We con-
sider non-autonomous Robin boundary conditions and also parabolic equations
with time dependent coefficients. In this concrete setting we prove positivity
and characterize comparison. We also consider a quasi-linear problem for which
we prove existence of a positive solution.
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2 Invariance of closed convex sets

Let V and H be separable Hilbert spaces over K = R or C such that V
d
→֒ H

(by this we mean that V is continuously and densely embedded in H). We keep
the same notation as in the introduction and use (. | .)H , (. | .)V , ‖.‖H and ‖.‖V

for their scalar products and norms and denote by 〈., .〉 the duality between V ′

and V . We consider a non-autonomous closed form

a : [0, T ] × V × V → K.

As in the introduction we denote by A(t) ∈ L(V, V ′) the operator associated
with the form a. Given f ∈ L2(0, T ; V ′) and u0 ∈ H we have seen in (1.4) that
the Cauchy problem

(CPf )

{

u̇(t) + A(t)u(t) = f(t) a.e.

u(0) = u0

has a unique solution u ∈ MR(V, V ′) = H1(0, T ; V ′) ∩ L2(0, T ; V ).
In this section we study invariance properties of the solution u. To make

this precise, let us fix a closed convex set C of H . We introduce the following
definition.

Definition 2.1. Given f ∈ L2(0, T ; V ′), we say that the convex set C is invari-
ant for the Cauchy problem (CPf ) if for each u0 ∈ C the solution u of (CPf )
satisfies u(t) ∈ C for all t ∈ [0, T ].

Recall that the solution of (CPf ) is in C([0, T ]; H). Our aim is to provide a
criterion in terms of a(t, ., .) and f for this invariance property. As an application
we obtain positivity and Lp-contractivity for the Cauchy problem (CPf ). In the
autonomous case, criteria in terms of the form that characterize this property
are given in [Ouh96].

Let P : H → C be the orthogonal projection onto C; i.e. for x ∈ H , P x is
the unique element xC in C such that

Re(x − xC | y − xC)H ≤ 0 (2.1)

for all y ∈ C. In the autonomous case the invariance of V under P is a necessary
condition for invariance of C [Ouh96, Theorem 2.1]. Thus we assume throughout
that

P (V ) ⊂ V. (2.2)

Our main result in this section is the following.

Theorem 2.2. Let a be a non-autonomous closed form on V . Let f ∈ L2(0, T ; V ′)
and let C be a closed convex subset of H such that (2.2) is satisfied. Then C is
invariant for (CPf ) provided

Re a(t, P v, v − P v) ≥ Re〈f(t), v − P v〉 (2.3)

for all v ∈ V and a.e. t ∈ [0, T ].

The following lemma is crucial for the proof of Theorem 2.2.
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Lemma 2.3. Let u ∈ MR(V, V ′). Then for t, r ∈ [0, T ] with r ≤ t the following
identity holds:

‖u(t) − P u(t)‖
2
H − ‖u(r) − P u(r)‖

2
H = 2

∫ t

r

Re〈u̇(s), u(s) − P u(s)〉 ds

Proof. We consider for simplicity the case r = 0 and t = T . Recall that

C∞([0, T ]; V ) is dense in MR(V, V ′) (2.4)

and
MR(V, V ′) →֒ C([0, T ]; H). (2.5)

For these two properties, see e.g. [Sho97, Proposition III.1.2]. By (2.4), there
exists a sequence (un)n∈N ⊂ C∞([0, T ]; V ) such that

un → u in L2(0, T ; V ) and u̇n → u̇ in L2(0, T ; V ′). (2.6)

For each fixed n,

‖un(T ) − P un(T )‖2
H − ‖un(0) − P un(0)‖2

H =

∫ T

0

d

ds
‖un(s) − P un(s)‖2

H ds.

Note that P : H → H is a contraction and hence P un ∈ H1(0, T ; H) (see
Theorem 5.3 in the Appendix). Thus

‖un(T ) − P un(T )‖
2
H − ‖un(0) − P un(0)‖

2
H

= 2

∫ T

0

Re(u̇n(s) − (P un)̇ (s) | un(s) − P un(s))H ds.

Now for a.e. s ∈ (0, T )

Re((P un)̇ (s) | un(s) − P un(s))H

= lim
h→0

Re 1
h (P un(s + h) − P un(s) | un(s) − P un(s))H

Using (2.1) we see that the right hand side is positive for h > 0 and negative
for h < 0. Thus

Re((P un)̇ (s) | un(s) − P un(s))H = 0.

It follows that

‖un(T )−P un(T )‖
2
H − ‖un(0) − P un(0)‖

2
H

= 2

∫ T

0

Re(u̇n(s) | un(s) − P un(s))H ds

= 2

∫ T

0

Re〈u̇n(s), un(s) − P un(s)〉 ds.

(2.7)

By (2.5) and the continuity of P in H it follows that the left hand side of (2.7)

converges to ‖u(T ) − P u(T )‖
2
H − ‖u(0) − P u(0)‖

2
H .

Suppose un −P un is bounded in L2(0, T ; V ), then there exists a subsequence
converging weakly to some function g ∈ L2(0, T ; V ). Moreover since P : H → H

is a contraction and since un → u in L2(0, T ; V ) also un − P un converges to
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u−P u in L2(0, T ; H). Thus g = u−P u and by (2.6) a subsequence of the right

hand side of (2.7) converges to 2
∫ T

0
Re〈u̇(s), u(s) − P u(s)〉 ds.

Thus to prove the lemma it remains to show that un − P un is bounded in
L2(0, T ; V ). By (2.3) we have

Re a(t, P un(t), un(t) − P un(t)) ≥ Re〈f(t), un(t) − P un(t)〉

Hence by quasi-coercivity and V -boundedness of the form a

α‖un(t) − P un(t)‖
2
V

≤ Re a(t, un(t) − P un(t), un(t) − P un(t)) + ω‖un(t) − P un(t)‖
2
H

≤ Re a(t, un(t), un(t) − P un(t)) − Re〈f(t), un(t) − P un(t)〉

+ ω‖un(t) − P un(t)‖
2
H

≤ M‖un(t)‖V ‖un(t) − P un(t))‖V + ‖f(t)‖V ′‖un(t) − P un(t)‖V

+ ω‖un(t) − P un(t)‖2
H .

From this and the standard inequality

ab ≤
1

4ǫ
a2 + ǫb2 (ǫ > 0, a, b ∈ R)

we see that for some constant M ′ > 0 (independent of n and t)

‖un(t) − P un(t)‖
2
V ≤ M ′

(

‖un(t)‖
2
V + ‖f(t)‖

2
V ′ + ‖un(t) − P un(t)‖

2
H

)

. (2.8)

By (2.6) the sequence (un)n∈N is bounded in L2(0, T ; V ). Consequently, it is
bounded in L2(0, T ; H). Since P is a contraction on H the sequence (un −
P un)n∈N is bounded in L2(0, T ; H). It follows from (2.8) that (un − P un)n∈N

is a bounded sequence in L2(0, T ; V ).

Proof of Theorem 2.2. Fix u0 ∈ C. Our aim is to prove that u(t) ∈ C for all
t ∈ [0, T ]. By Lemma 2.3 and (2.2), for all t ∈ [0, T ] we have

‖u(t) − P u(t)‖
2
H

= 2

∫ t

0

Re〈u̇(s), u(s) − P u(s)〉 ds

= 2

∫ t

0

Re〈−A(s)u(s) + f(s), u(s) − P u(s) 〉 ds

= 2

∫ t

0

[

− Re a(s, u(s), u(s) − P u(s)) + Re〈f(s), u(s) − P u(s)〉
]

ds

= 2

∫ t

0

[

− Re a(s, u(s) − P u(s), u(s) − P u(s))

− Re a(s, P u(s), u(s) − P u(s)) + Re〈f(s), u(s) − P u(s)〉
]

ds

≤ 2

∫ t

0

− Re a(s, u(s) − P u(s), u(s) − P u(s)) ds

where we used the assumption (2.3) for the last inequality. From quasi-coercivity
of the form a and the previous estimate we obtain

‖u(t) − P u(t)‖
2
H ≤ 2ω

∫ t

0

‖u(s) − P u(s)‖
2
H ds (t ∈ [0, T ]).
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We conclude by Gronwall’s lemma that ‖u(t)−P u(t)‖2
H = 0 for all t ∈ [0, T ].

The following extension of Theorem 2.2 is of interest in applications. Let
a be as before and f ∈ L2(0, T, V ′). Consider two closed convex sets C1 and
C2 of H and denote by P1 and P2 the orthogonal projections onto C1 and C2,
respectively.

Theorem 2.4. Suppose that C1 is invariant for (CPf ) and that

v ∈ V ∩ C1 implies P2v ∈ V and

Re a(t, P2v, v − P2v) ≥ Re〈f(t), v − P2v〉 (2.9)

for a.e. t ∈ [0, T ]. Then C1 ∩ C2 is invariant for (CPf ).

Proof. Suppose that u0 ∈ C1 ∩ C2. Since C1 is invariant for (CPf ), the solution
u satisfies

u(t) ∈ C1 ∩ V for a.e.t ∈ [0, T ].

We extend u to ũ on R by u(0) on (−∞, 0) and u(T ) on (T, ∞). Note that
u(0) and u(T ) ∈ V because of (2.5). Take the convolution un := ρn ⋆ ũ with a
standard mollifier ρn. Then un ∈ C∞(R; V ) and un(t) ∈ C1 for all t ∈ R and
(2.9) holds for v = un(t) for each n and all t ∈ [0, T ]. Using this sequence we
obtain exactly as in the proof of Lemma 2.3

‖u(t) − P2u(t)‖
2
H − ‖u(r) − P2u(r)‖

2
H = 2

∫ t

r

Re〈u̇(s), u(s) − P2u(s)〉 ds.

From this we can reproduce the proof of Theorem 2.2. Indeed,

‖u(t) − P2u(t)‖
2
H

= 2

∫ t

0

Re〈u̇(s), u(s) − P2u(s)〉 ds

= 2

∫ t

0

[

− Re a(s, u(s), u(s) − P2u(s)) + Re〈f(s), u(s) − P2u(s)〉
]

ds

= 2

∫ t

0

[

− Re a(s, u(s) − P2u(s), u(s) − P2u(s))

− Re a(s, P2u(s), u(s) − P2u(s)) + Re〈f(s), u(s) − P2u(s)〉
]

ds

≤ 2

∫ t

0

− Re a(s, u(s) − P2u(s), u(s) − P2u(s)) ds.

where we use (2.9) since u(s) ∈ C1 ∩ V for a.e. s. We use again quasi-coercivity

and Gronwall’s lemma to obtain ‖u(t) − P2u(t)‖2
H = 0 for all t ∈ [0, T ].

3 Positivity and comparaison

In this section we assume for simplicity that K = R and let H = L2(Ω, µ) where
(Ω, µ) is a measure space. For f ∈ L2(Ω, µ) we let f+(x) := max{f(x), 0}, f− :=
(−f)+, |f | = f++f−. We write f ≥ 0 as short hand for f(x) ≥ 0 µ-a.e. We keep
the notations of the introduction; i.e. V is a Hilbert space which is continuously
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and dense imbedded into H = L2(Ω, µ) and a : [0, T ] × V × V → R is a non-
autonomous closed form. We say that V is a sublattice of H if v ∈ V implies
v+ ∈ V . We let L2(Ω, µ)+ := {g ∈ L2(Ω, µ) : g ≥ 0} and V+ := L2(Ω, µ)+ ∩ V .
Given f ∈ L2(0, T ; V ′), we say that f is positive and write f ≥ 0 if 〈f(t), v〉 ≥ 0
t-a.e. for all 0 ≤ v ∈ V .

Proposition 3.1. Assume that V is a sublattice of H and a(t, v+, v−) ≤ 0 for
a.e. t and all v ∈ V . Let u0 ∈ V+ and f ≥ 0. Then the solution u of (1.4)
satisfies u(t) ≥ 0 for all t ∈ [0, T ].

Proof. We take the closed convex set

C = {v ∈ L2(Ω, µ) : v ≥ 0}

The orthogonal projection onto C is given by P v = v+. By our assumptions we
have

a(t, v+, v−) ≤ 0 ≤ 〈f(t), v−〉 (t ∈ [0, T ]).

This implies (2.3) and we apply Theorem 2.2.

This proposition is known. It is formulated in Theorem 2 of [DL88, Chap.
XVIII, § 5]. However the proof there seems not correct (one cannot take v =
−u− in (4.49) since u depends on t). A correct proof is given in [Tho03].
Corollary 3.1 is also proved in the case of elliptic operators with Dirichlet or
Neumann boundary conditions in [DD97]. In the autonomous case the criterion
is also necessary, see [Ouh96].

Next we consider the submarkovian property. For v ∈ L2(Ω, µ), we set
v ∧ 1 = inf{v, 1}. Then, v ∧ 1, (v − 1)+ ∈ L2(Ω, µ) and v = v ∧ 1 + (v − 1)+.

Proposition 3.2. Assume that v ∧ 1 ∈ V and a(t, v ∧ 1, (v − 1)+) ≥ 0 for
all t ∈ [0, T ], v ∈ V and that f ≤ 0. Let u0 ∈ L2(Ω, µ) such that u0 ≤ 1
µ-a.e. Then the solution u of (1.4) satisfies u(t) ≤ 1 µ-a.e. for all t ∈ [0, T ]. In
particular, if u0 ≤ 0, then u(t) ≤ 0 for all t ∈ [0, T ].

Proof. We choose the convex set

C = {v ∈ L2(Ω, µ) : v ≤ 1}.

The orthogonal projection P from L2(Ω, µ) to C is given by P v = v ∧ 1. More-
over, for v ∈ V ,

a(t, P v, v − P v) = a(t, v ∧ 1, (v − 1)+) ≥ 0 ≥ 〈f, (v − 1)+〉.

Thus the first claim follows from Theorem 2.2.
From homogeneity it follows that u0 ≤ λ µ-a.e. implies u(t) ≤ λ µ-a.e. for

all λ > 0. If u0 ≤ 0, it follows that u(t) ≤ λ for all λ > 0. Hence u(t) ≤ 0.
Applying this to −u0 instead of u0 the claim follows.

Next we investigate domination. For that we consider a second Hilbert space

W
d
→֒ L2(Ω, µ) and a closed non-autonomous form b : [0, T ] × W × W → R.

We denote by B(t) ∈ L(W, W ′) the operator given by 〈B(t)w, v〉 = b(t, w, v) for
w, v ∈ W . We consider L2(Ω, µ) →֒ W ′ as before. Then for all w0 ∈ W there
exists a unique w ∈ MR(W, W ′) satisfying

{

v̇(t) + B(t)v(t) = g(t) t-a.e.

v(0) = v0.
(3.1)
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Proposition 3.3. Assume that V, W are sublattices of H such that V is an
ideal of W in the sense that V ⊂ W and for v ∈ V , w ∈ W , 0 ≤ w ≤ v

implies w ∈ V . We assume furthermore that a(t, v+, v−) ≤ 0 for all v ∈ V and
b(t, w+, w−) ≤ 0 for all w ∈ W . Let u0 ∈ H+ and v0 ∈ W such that u0 ≤ v0

and f, g ∈ L2(0, T ; V ′) such that f ≤ g. Then the solution u of (1.4) and the
solution v of (3.1) satisfy

u(t) ≤ v(t) (t ∈ [0, T ]),

provided the forms satisfy b(t, u, v) ≤ a(t, u, v) for a.e. t ∈ [0, T ] and all u, v ∈
V+.

Proof. We consider the space L2(Ω, µ) × L2(Ω, µ) and the form

c : [0, T ] × (V × W ) × (V × W ) → R

given by c(t, (v1, w1), (v2, v2)) = a(t, v1, v2) + b(t, w1, w2). Consider the set

C := {(u, v) ∈ L2(Ω, µ) × L2(Ω, µ) : 0 ≤ u ≤ v}.

Then C is closed and convex. The conclusion of the proposition follows from
invariance of C.
Note that by assumptions and Proposition 3.1, the convex set

C1 := {(u, v) ∈ L2(Ω, µ) × L2(Ω, µ) : 0 ≤ u and 0 ≤ v}

is invariant. Hence by Theorem 2.4 we may restrict attention to non-negative
u ∈ V and v ∈ W . The projection P from L2(Ω, µ) × L2(Ω, µ) to C is given by

P (u, v) = (u − 1
2 (u − v)+, v + 1

2 (u − v)+).

Suppose now that (v, w) ∈ V × W with 0 ≤ v and 0 ≤ v. Set u := 1
2 (v − w)+.

We have (u, v) − P (u, v) = (u, −u), 0 ≤ v − u ≤ v and 0 ≤ u ≤ v. Thus by
assumption b) v − u, u ∈ V and

c(t, P (v, w), (v, w) − P (v, w))

= a(t, v − u, u) + b(t, w + u, −u)

= a(t, v − u, u) − b(t, v − u, u) + b(t, v − u − (w + u), u)

≥ 0

≥ 〈f, u〉 − 〈g, u〉

= 〈(f, g), (v, w) − P (v, w)〉

by assumption d) and the inequality

b(t, v − u − (w + u), u) = − 1
2b(t, (w − v)+, (w − v)−) ≥ 0

for a.e. t ∈ [0, T ]. Now the claim follows from Theorem 2.4.

4 Applications

In this section we give some applications to concrete examples which illustrate
our abstract results. In all cases, we deliberately consider typical, simple situa-
tions and do not aim for the greatest generality.
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I) Elliptic operators with time-dependent coefficients. We consider elliptic
operators of second order with time-dependent coefficients. Let Ω be an open
set of Rd and consider on the real Hilbert space L2(Ω, dx) the form

a(t, u, v) =

d
∑

k,j=1

∫

Ω

akj(t, x)∂ku∂jv dx

for u, v ∈ V where V is a closed subspace of H1(Ω) which contains H1
0 (Ω).

Recall that H1(Ω) and H1
0 (Ω) are sublattices of L2(Ω). We assume that the

coefficients akj are measurable and uniformly bounded on [0, T ] × Ω and satisfy
the usual ellipticity condition

d
∑

k,j=1

akj(t, x)ξkξj ≥ η|ξ|2

for all ξ = (ξ1, ..., ξd) ∈ R
d and for a.e. (t, x) ∈ [0, T ] × Ω. Here η > 0 is a

constant. As before we denote by A(t) the associated operator and for given
f ∈ L2(0, T ; V ′) we denote by u ∈ MR(V, V ′) the solution of the Cauchy problem
(1.4).

Proposition 4.1. 1) Suppose that f ≥ 0 and v+ ∈ V for all v ∈ V . If u0 ≥ 0
then u(t) ≥ 0 for all t ∈ [0, T ].
2) Suppose that f ≤ 0 and v ∧ 1 ∈ V for all v ∈ V . If u0 ≤ 1 then u(t) ≤ 1 for
all t ∈ [0, T ].

Proof. This is an immediate application of Propositions 3.1 and 3.2 and the
classical formulae

∂kv+ = χ{v>0}∂kv, ∂k(v ∧ 1) = χv≤1∂kv

for all v ∈ H1(Ω).

The space V incorporates the boundary condition. For example, if V =
H1

0 (Ω), then we deal with Dirichlet boundary conditions whereas V = H1(Ω)
corresponds to Neumann boundary conditions in the sense that the conormal
derivative ∂u

∂νA
(depending on the coefficients akj) vanishes at the boundary.

Since for u ∈ H1(Ω), v ∈ H1
0 (Ω), 0 ≤ u ≤ v implies that u ∈ H1

0 (Ω) we deduce
from Proposition 3.3 the following.

Proposition 4.2. Suppose that f ≥ 0 and let u0 ∈ L2(Ω)+. Denote by u ∈
MR(H1

0 (Ω), H1
0 (Ω)′) the solution of (1.4) with respect to V = H1

0 (Ω) and by
u ∈ MR(H1(Ω), H1(Ω)′) the solution of (1.4) with respect to V = H1(Ω). Then
0 ≤ u(t) ≤ u(t) for all t ∈ [0, T ].

II) A quasi-linear problem. In our second example we consider a quasi-linear
problem for which we prove existence of a positive solution.
Let Ω be a bounded open set of Rd and let H be the real-valued Hilbert space
L2(Ω, dx) and let V be a closed subspace of H1(Ω) which contains H1

0 (Ω). If
V 6= H1

0 (Ω) we assume that Ω has continuous boundary (in the sense of graphs)
to ensure that the embedding of V in H is compact. This latter property is

9



always true for V = H1
0 (Ω) on any bounded domain Ω.

For j, k ∈ {1, . . . , d} let

mkj : [0, T ] × Ω × R → R

be measurable functions such that mkj(t, x, .) is continuous for a.e. (t, x). We
assume furthermore that there exists η > 0 such that

d
∑

k,j=1

mkj(t, x, y)ξkξj ≥ η|ξ|2

for all t ∈ [0, T ], x ∈ Ω, y ∈ R and ξ ∈ Rd. Finally we assume that
|mkj(t, x, y)| ≤ const for all t ∈ [0, T ], x ∈ Ω, y ∈ R. The quasi-linear problem
we consider here is the following:

(NCP )























u̇ −

d
∑

k,j=1

∂k(mkj(t, x, u)∂ju) = f(t) t-a.e.

u(0) = u0 ∈ H

u ∈ MR(V, V ′)

(4.1)

Here we assume that f ∈ L2(0, T, V ′) and u0 ∈ H are given. If u ∈ MR(V, V ′) ⊂
L2(0, T ; H), then akj(t, x) := mkj(t, x, u(t)(x)) defines measurable functions
for j, k = 1, . . . , d which satisfy the assumptions of I). We denote by Au(t) ∈
L(V, V ′) the elliptic operator with coefficients akj(t, x). A function u ∈ MR(V, V ′)
is called a solution of (4.1) if

{

u̇(t) + Au(t)u(t) = f(t) a.e.

u(0) = u0.

We shall prove existence of a solution to (NCP ) which in addition is non-
negative if the initial data u0 is non-negative. This will be done by a fixed point
argument. Given g ∈ L2(0, T ; H), consider the non-autonomous closed form
ag : [0, T ] × V × V → R defined by

ag(t, u, v) :=

d
∑

k,j=1

∫

Ω

mkj(t, x, g(t))∂ku∂jv dx.

Note that we can choose constants such that (1.1), (1.2) holds (taking α := η,
ω := η and M appropriately). We denote by Ag(t) the operator associated with
the form ag(t, ., .). For u0 ∈ H and f ∈ L2(0, T ; V ′) we know by Lions’ theorem
(see (1.4)) that there exists a unique solution ug ∈ MR(V, V ′) of the Cauchy
problem

{

u̇g(t) + Ag(t)ug(t) = f(t) t-a.e.

ug(0) = u0.

In addition
‖ug‖

MR(V,V ′) ≤ C
[

‖u0‖H + ‖f‖L2(0,T ;V ′)

]

, (4.2)

where C > 0 is a constant which does not depend on g, see [Sho97], Propo-
sition 4.12 on p. 112 and subsequent comments. We define the mapping S :
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L2(0, T ; H) → L2(0, T ; H) by Sg := ug. By (4.2), the range of S is bounded in
MR(V, V ′). In addition, since we assume that V is compactly embedded into H

we deduce from the Aubin-Lions Lemma [Sho97, Proposition III.1.3] that the
range of S is relatively compact in L2(0, T, H). Thus it remains to prove that
S is continuous to conclude by Schauder’s fixed point theorem that there exists
u ∈ MR(V, V ′) such that Su = u. This u is a solution of (4.1).

Now we show that S is continuous. Let gn → g in L2(0, T ; H) and set
un := Sgn. Since a sequence converges to a fixed element u if and only if
each subsequence has a subsequence converging to u we may deliberately take
subsequences. Since L2(0, T ; H) is isomorphic to L2((0, T ) × Ω) we may assume
(after taking a sub-sequence) that gn → g for a.e. (t, x). Furthermore since
the sequence un is bounded in MR(V, V ′) we may assume (after taking a sub-
sequence) that un → u in L2(0, T ; H) and un ⇀ u in MR(V, V ′). Thus u̇n ⇀ u̇

in L2(0, T ; V ′), ∂jun ⇀ ∂ju in L2(0, T ; H) for all j ∈ {1, . . . d} and un(0) →
u(0) = u0 in H since MR(V, V ′) is continuously embedded into C([0, T ], H).
Since gn → g for a.e. (t, x) also mkj(t, x, gn(t)(x)) → mkj(g(t, x, g(t)(x)) for a.e.
(t, x) and all j, k ∈ {1, . . . d}. Finally Sgn = un is equivalent to

〈u̇n, v〉L2(0,T ;V ′),L2(0,T ;V ) +

d
∑

j,k=1

(∂jun | mjk(t, x, gn)∂kv)L2(0,T ;H)

=〈f, v〉L2(0,T ;V ′),L2(0,T ;V ) (v ∈ L2(0, T ; V ))

and un(0) = u0. Since by the dominated convergence theorem

mjk(t, x, gn)∂kv → mjk(t, x, g)∂kv

in L2(0, T ; H), taking the limit as n → ∞ yields

〈u̇, v〉L2(0,T ;V ′),L2(0,T ;V ) +

d
∑

j,k=1

(∂ju | mjk(t, x, g)∂kv)L2(0,T ;H)

=〈f, v〉L2(0,T ;V ′),L2(0,T ;V ) (v ∈ L2(0, T ; V ))

and u(0) = u0, which is equivalent to Sg = u. Hence S is continuous and we
have existence of a solution u.

In order to prove positivity we observe that for any g ∈ L2(0, T ; H) we
may apply Proposition 4.1 to ug = Sg and deduce that each ug is positive.
Consequently, also the fixed point u is positive. We have proved the following
result.

Proposition 4.3. For u0 ∈ H and f ∈ L2(0, T, V ′) there exists a solution u to
(NCP ). In addition u satisfies the following assertions.
1) Suppose that f ≥ 0 and v+ ∈ V for all v ∈ V . If u0 ≥ 0 then u(t) ≥ 0 for
all t ∈ [0, T ].
2) Suppose that f ≤ 0 and v ∧ 1 ∈ V for all v ∈ V . If u0 ≤ 1 then u(t) ≤ 1 for
all t ∈ [0, T ].

III) Non-autonomous Robin boundary conditions. Our third example con-
cerns the Laplacian with time dependent Robin boundary conditions. We sup-
pose that Ω be a bounded domain of Rd with Lipschitz boundary Γ. Denote by
σ be the (d − 1)-dimensional Hausdorff measure on Γ. Let

β : [0, T ] × Γ → R

11



be a bounded measurable function. We consider the symmetric form

a : [0, T ] × H1(Ω) × H1(Ω) → R

defined by

a(t, u, v) =

∫

Ω

∇u∇v dx +

∫

Γ

β(t, .)uv dσ. (4.3)

In the second integral we omitted the trace symbol. The form a is H1(Ω)-
bounded and quasi-coercive. The first statement follows readily from the con-
tinuity of the trace operator and the boundedness of β. The second one is a
consequence of the inequality

∫

Γ

|u|2 dσ ≤ ǫ‖u‖
2
H1(Ω) + cǫ‖u‖

2
L2(Ω), (4.4)

which is valid for all ǫ > 0 (cǫ is a constant depending on ǫ). Note that (4.4)
is a consequence of compactness of the trace as an operator from H1(Ω) into
L2(Γ, dσ), see [Nec67, Chap. 2 § 6, Theorem 6.2].

The operator A(t) associated with a(t, ., .) on H := L2(Ω) is (minus) the
Laplacian with time dependent Robin boundary conditions

∂νu(t) + β(t, .)u = 0 on Γ.

Here we use the following weak definition of the normal derivative. Let v ∈
H1(Ω) such that ∆v ∈ L2(Ω). Let h ∈ L2(Γ, dσ). Then ∂νv = h by definition
if

∫

Ω
∇v∇w +

∫

Ω
∆vw =

∫

Γ
hw dσ for all w ∈ H1(Ω).

Given f ∈ L2(0, T ; H1(Ω)′) and u0 ∈ L2(Ω), we denote by uβ the solution
of











u ∈ MR(H1(Ω), H1(Ω)′) satisfying

u̇(t) + A(t)u(t) = f(t) t-a.e.

u(0) = u0.

(4.5)

Proposition 4.4. 1) If f ≥ 0 and u0 ≥ 0 then uβ(t) ≥ 0 for all t ∈ [0, T ].
2) (monotonicity) If β1 and β2 are such that β1(t, .) ≤ β2(t, .) for t ∈ [0, T ] and
u0 ≥ 0, then uβ2

(t) ≤ uβ1
(t) for all t ∈ [0, T ].

Proof. Assertion 1) is a consequence of Proposition 3.1. Assertion 2) follows
from Proposition 3.3 since the forms with β = β1 or β = β2 satisfy the assump-
tions of this proposition.

An interesting consequence of the previous proposition is that if β ≥ 0 and
f = 0, then

uβ(t)(x) ≤ Ct−d/2et

∫

Ω

exp[−c
|x − y|2

t
]u0(y) dy. (4.6)

Here C and c are positive constants. The reason is that uβ(t) ≤ u(t) where
u is the solution of (4.5) with β = 0. In the latter case, the operator A(t) is
time-independent and coincides with the Neumann Laplacian. It is well known
that the heat kernel of this operator has a Gaussian upper bound, see [Dav89],
Chapter 3 or [Ouh05], Chapter 6. This gives (4.6).
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Similarly, if one considers (4.5) with f = 0 and initial data u(s) = u0 ≥ 0 at
some s ≥ 0, then the estimate becomes

uβ(t)(x) ≤ C(t − s)−d/2e(t−s)

∫

Ω

exp[−c
|x − y|2

t − s
]u0(y) dy. (4.7)

Remark 4.5. We could replace in Proposition 4.4 the Laplacian by an elliptic
operator in divergence form as in example I). The statement and the comments
following this proposition hold in this setting with the same proof.

5 Appendix: Vector-valued 1-dimensional Sobo-

lev spaces

We summarize some results on Hilbert space-valued Sobolev spaces . Given
u ∈ L2(0, T ; H) a function u̇ ∈ L2(0, T ; H) is called the weak derivative of u if

−

∫ T

0

u(s)ϕ̇(s) ds =

∫ T

0

u̇(s)ϕ(s) ds

for all ϕ ∈ C∞
c (0, T ). Thus we merely test with scalar-valued test functions ϕ

on (0, T ). It is clear that the weak derivative u̇ of u is unique whenever it exists.
We let

H1(0, T ; H) := {u ∈ L2(0, T ; H) : u has a weak derivative u̇ ∈ L2(0, T ; H)}.

It is easy to see that H1(0, T ; H) is a Hilbert space for the scalar product

(u | v)H1(0,T ;H) :=

∫ T

0

[

(u(t) | v(t))H + (u̇(t) | v̇(t))H

]

dt.

As in the scalar case [Bre11, Section 8.2] one shows the following.

Proposition 5.1. a) Let u ∈ H1(0, T ; H). Then there exists a unique w ∈
C([0, T ]; H) such that u(t) = w(t) a.e. and

w(t) = w(0) +

∫ t

0

u̇(s) ds.

b) Conversely, if w ∈ C([0, T ]; H), v ∈ L2(0, T ; H) such that w(t) = w(0) +
∫ t

0 v(s) ds, then w ∈ H1(0, T ; H) and ẇ = v.

In the following we always identify u ∈ H1(0, T ; H) with its unique con-
tinuous representative w according to a). We prove a vector-valued version of
[Bre11, Proposition 9.3].

Proposition 5.2. Let u ∈ L2(0, T ; H). The following are equivalent:

(i) u ∈ H1(0, T ; H);

(ii) there exists C ≥ 0 such that for 0 < c < d < T, |h| < min{c, T − d} one
has

∫ d

c

‖u(t + h) − u(t)‖2
H dt ≤ C2|h|2.
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In that case C =
( ∫ b

a ‖u̇‖
2
H dt

)1/2
is the optimal constant.

Proof. (i)⇒(ii). Using at first the Cauchy-Schwarz inequality and then Fubini’s
Theorem we have for h > 0

∫ d

c

‖u(t + h) − u(t)‖
2
H dt

=

∫ d

c

∥

∥

∥

∫ t+h

t

u̇(s) ds
∥

∥

∥

2

H
dt

≤

∫ d

c

∫ t+h

t

‖u̇(s)‖
2

ds dt · h

= h
[

∫ d

c

∫ s

s−h

‖u̇(s)‖
2
H dt ds +

∫ d+h

d

∫ s

d

‖u̇(s)‖
2
H dt ds

]

≤ h2
[

∫ d

c

‖u̇(s)‖2
H ds +

∫ d+h

d

‖u̇(s)‖2
H ds

]

≤ h2

∫ T

0

‖u̇(s)‖2
H ds.

The proof for h < 0 is similar.
(ii)⇒(i). Let v ∈ C1

c ((0, T ); H). Let supp v ⊂ [c, d] ⊂ [0, T ] with 0 < c <

d < T . Then for |h| < min{c, T − d},

∣

∣

∣

∫ d

c

(v(t + h) − v(t) | u(t))H dt
∣

∣

∣
=

∣

∣

∣

∫ d

c

(v(t) | u(t + h) − u(t))H dt
∣

∣

∣

≤ C|h|‖v‖L2(0,T ;H).

It follows that
∣

∣

∣

∫ T

0

(v̇(t) | u(t))H dt
∣

∣

∣
≤ C‖v‖L2(0,T ;H)

for all v ∈ C1
c (0, T ; H). Since C1

c (0, T ; H) is dense in L2(0, T ; H) and since
L2(0, T ; H)′ = L2(0, T ; H) with respect to the natural duality, there exists u̇ ∈
L2(0, T ; H) such that

−

∫ T

0

(v̇(t) | u(t))H dt =

∫ T

0

(v(t) | u̇(t))H dt

for all v ∈ C∞
c (0, T ; H). Given ϕ ∈ C∞

c (0, T ; H), v ∈ H , choosing v(t) = ϕ(t)v
we deduce that

−

∫ T

0

ϕ̇(t)u(t) dt =

∫ T

0

ϕ(t)u̇(t) dt

for all ϕ ∈ C∞
c (0, T ; H). Thus u ∈ H1(0, T ; H).

Now we come to the main point of this appendix which is needed in Section 2.

Theorem 5.3. Let S : H → H be Lipschitz-continuous; i.e.

‖S(x) − S(y)‖H ≤ L‖x − y‖H (x, y ∈ H),

where L ≥ 0. Then S ◦ u ∈ H1(0, T ; H) for all u ∈ H1(0, T ; H). Moreover,

‖(S ◦ u)̇ ‖L2(0,T ;H) ≤ L‖u̇‖L2(0,T ;H).
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Proof. Let u ∈ H1(0, T ; H). Then by Proposition 5.2

∫ d

c

‖u(t + h) − u(t)‖2
H dt ≤

∫ T

0

‖u̇(t)‖2 dt · |h|2

whenever 0 < c < d < T, |h| < min{c, T − d}. Thus

∫ d

c

‖S(u(t + h)) − S(u(t))‖2
H dt ≤ L2

∫ d

c

‖u(t + h) − u(t)‖2
H dt

≤ L2

∫ T

0

‖u̇(t)‖2
H dt · |h|2.

Now the claim follows from Proposition 5.2.
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