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Maximal Regularity for Evolution Equations

Governed by Non-Autonomous Forms

Wolfgang Arendt, Dominik Dier, Hafida Laasri, El Maati Ouhabaz∗

March 5, 2013

Abstract

We consider a non-autonomous evolutionary problem

u̇(t) + A(t)u(t) = f(t), u(0) = u0

where the operator A(t) : V → V ′ is associated with a form a(t, ., .) :
V × V → R and u0 ∈ V . Our main concern is to prove well-posedness
with maximal regularity which means the following. Given a Hilbert space
H such that V is continuously and densely embedded into H and given f ∈

L2(0, T ; H) we are interested in solutions u ∈ H1(0, T ; H) ∩ L2(0, T ; V ).
We do prove well-posedness in this sense whenever the form is piecewise
Lipschitz-continuous and symmetric. Moreover, we show that each solu-
tion is in C([0, T ]; V ). We apply the results to non-autonomous Robin-
boundary conditions and also use maximal regularity to solve a quasilinear
problem.

Key words: Sesquilinear forms, non-autonomous evolution equations, maximal
regularity, non-linear heat equations.

MSC: 35K90, 35K50, 35K45, 47D06.

1 Introduction

The aim of this article is to study non-autonomous evolution equations governed
by forms. We consider Hilbert spaces H and V such that V is continuously
embedded into H and a form

a : [0, T ] × V × V → C

such that a(t, ., .) is sesquilinear for all t ∈ [0, T ], a(., u, v) : [0, T ] → C is
measurable for all u, v ∈ V ,

|a(t, u, v)| ≤ M‖u‖V ‖v‖V (t ∈ [0, T ]) (V -boundedness)

and such that

Re a(t, u, u) ≥ α‖u‖2
V (u ∈ V, t ∈ [0, T ]) (coerciveness)

∗Corresponding author.
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where M ≥ 0 and α > 0. For fixed t ∈ [0, T ] there is a unique operator
A(t) ∈ L(V, V ′) such that a(t, u, v) = 〈A(t)u, v〉 for all u, v ∈ V . Given f ∈
L2(0, T ;V ′), u0 ∈ H , the Cauchy problem

u̇(t) + A(t)u(t) = f(t) (t ∈ (0, T )), u(0) = u0 (1.1)

is well-posed in V ′; i.e. there exists a unique solution u ∈ MR(V, V ′) :=
L2(0, T ;V ) ∩ H1(0, T ;V ′). Note that MR(V, V ′) →֒ C([0, T ], H) so that the
initial condition makes sense. This is a well-known result due to J. L. Lions,
see [Sho97, p. 112], [DL88, XVIII Chapter 3, p. 620]. However, the result is not
really satisfying since in concrete situations one is interested in solutions which
take values in H and not merely in V ′ (note that H →֒ V ′ by the canonical
identification). In fact, if we consider boundary value problems, only the part
A(t) of A(t) in H does really realize the boundary conditions in question. So
the general problem is whether maximal regularity in H is valid in the following
sense:

Problem 1.1. If f ∈ L2(0, T ;H) and u0 ∈ V , is the solution of (1.1) in
MR(V,H) := H1(0, T ;H) ∩ L2(0, T ;V )?

One has to distinguish the two cases u0 = 0 and u0 6= 0. For u0 = 0
Problem 1.1 is explicitly asked by Lions [Lio61, p. 68] and seems to be open up
to today. A positive answer is given by Lions if a is symmetric (i.e. a(t, u, v) =
a(t, v, u)) and a(., u, v) ∈ C1[0, T ] for all u, v ∈ V . By a completely different
approach a positive answer is also given in [OS10] for general forms such that
a(., u, v) ∈ Cα[0, T ] for all u, v ∈ V and some α > 1

2 . Again, the result in [OS10]
concerns the case u0 = 0.

Concerning u0 6= 0 it seems natural to assume u0 ∈ V as we did in Prob-
lem 1.1. However, already in the autonomous case, i.e. A(t) ≡ A, the solution is
in MR(V,H) if and only if u0 ∈ D(A1/2), and it may happen that V 6⊂ D(A1/2).
So one has to impose a stronger condition on the initial value u0 or the form (e.g.
symmetry). Lions [Lio61, p. 94] gave a positive answer for u0 ∈ D(A(0)) pro-
vided that a(., u, v) ∈ C2[0, T ] for all u, v ∈ V and f ∈ H1(0, T ;H). Moreover,
he asked the following particular case of Problem 1.1 (see [Lio61, p. 95]):

Problem 1.2. For u0 ∈ D(A(0)), is the solution of (1.1) in MR(V,H) =
H1(0, T ;H) ∩ L2(0, T ;V ) provided a(., u, v) ∈ C1[0, T ] for all u, v ∈ V ?

A little bit hidden in his book one finds a solution to Problem 1.2 essentially
in the case where the form is symmetric. In fact, a combination of [Lio61,
Theorem 1.1, p. 129] and [Lio61, Theorem 5.1, p. 138] shows that Problem 1.2
has a positive answer for u0 ∈ V , f ∈ L2(0, T ;H) if a(., u, v) ∈ C1[0, T ] and
a(t, u, v) = a(t, v, u) for all u, v ∈ V , t ∈ [0, T ].

Now we explain our contribution to the problem of maximal regularity for-
mulated in Problem 1.1 (and Problem 1.2). We suppose that the sesquilinear
form a can be written as a(t, u, v) = a1(t, u, v) + a2(t, u, v) where a1 is sym-
metric, V -bounded and coercive as above and piecewise Lipschitz-continuous
on [0, T ], whereas a2 : [0, T ] × V ×H → C satisfies |a2(t, u, v)| ≤ M2‖u‖V ‖v‖H

and |a2(., u, v)| is measurable for all u ∈ V , v ∈ H . Furthermore we consider
a more general Cauchy problem than (1.1) introducing a multiplicative pertur-
bation B : [0, T ] → L(H) which is strongly measurable such that 0 < β0 ≤
(B(t)g | g)H ≤ β1 for g ∈ H , ‖g‖H = 1, t ∈ [0, T ] and study the problem

B(t)u̇(t) +A(t)u(t) = f(t) (t ∈ (0, T )), u(0) = u0 (1.2)
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(where A(t) is the part of A(t) in H). The multiplicative perturbation is needed
for several applications to non-linear problems (see below). Our main result on
maximal regularity is the following (Corollary 5.2): Given f ∈ L2(0, T ;H), u0 ∈
V there is a unique solution u ∈ H1(0, T ;H)∩L2(0, T ;V ) of (1.2). This extends
the result of Lions mentioned above. One of our other results, established in
Section 4, shows that the solution is automatically in C([0, T ], V ). In fact, the
classical result of Lions says that

MR(V, V ′) →֒ C([0, T ];H), (1.3)

and also that for u ∈ MR(V, V ′) the function ‖u(.)‖2
H is in W 1,1(0, T ) with

(‖u‖2
H )̇ = 2 Re〈u̇, u〉, (1.4)

see [Sho97, p. 106]. In the non-autonomous situation considered here we prove
that

MRa(H) := {u ∈ H1(0, T ;H) ∩ L2(0, T ;V ) : A(.)u(.) ∈ L2(0, T ;H)}
is continuously imbedded into C([0, T ], V ) and that for u ∈ MRa(H) the func-
tion a(., u(.), u(.)) is in W 1,1(0, T ) with

(a(., u(.), u(.)))̇ = ȧ(., u(.), u(.)) + 2 Re(A(.)u(.) | u̇(.))H .

Note that if u ∈ MR(V,H) is a solution of (1.1), then automatically u ∈
MRa(H). It is this continuity with values in V which allows us to weaken
the regularity assumption on the form a(t, ., .) from Lipschitz-continuity in The-
orem 5.1 to piecewise Lipschitz continuity on [0, T ] in Corollary 5.2.

We illustrate our abstract results by three applications. One of them con-
cerns the heat equation with non-autonomous Robin-boundary-conditions

∂νu(t) + β(t)u(t)|∂Ω = 0 (1.5)

on a bounded Lipschitz domain Ω. Here ∂ν denotes the normal derivative.
Under appropriate assumptions on β we prove maximal regularity, i.e., that
the solution is in MR(H1(Ω), L2(Ω)). This is of great importance if non-linear
problems are considered. As an example we prove existence of a solution of the
problem











u̇(t) = m(t, u(t))∆u(t) + f(t)

u(0) = u0 ∈ H1(Ω)

∂νu(t) + β(t, .)u(t) = 0 on ∂Ω

i.e., a quasilinear problem with non-autonomous Robin boundary conditions on
a bounded Lipschitz domain Ω ⊂ Rd. It is here that we need well-posedness
and maximal regularity of problem (1.2) with multiplicative perturbation (of
the form Bg = 1

m(u(.))g). Previous results (see [AC10]) did not allow non-

autonomous boundary conditions.
The paper is organized as follows. In Section 2 we put together preliminary

results on operators associated with forms. Also Section 3 has preliminary char-
acter. We prove Lions’ Riesz-Representation Theorem which will be used later.
In Section 4 we prove that MRa(H) is continuously imbedded into C([0, T ];V ),
and in Section 5 we finally prove maximal regularity in H . In Section 6 a series
of examples concerning parabolic equations are given, where the main point con-
cerns non-autonomous boundary conditions. A product rule for vector-valued
one-dimensional Sobolev spaces is proved in the appendix.
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2 Forms and associated operators

Throughout this paper the underlying field is K = C or R. This means that all
results are valid no matter whether the underlying field is R or C. Let V,H be
two Hilbert spaces over K. Their scalar products and the corresponding norms
will be denoted by (. | .)H , (. | .)V , ‖.‖H and ‖.‖V , respectively. We assume that

V →֒
d
H ;

i.e., V is a dense subspace of H such that for some constant cH > 0,

‖u‖H ≤ cH‖u‖V (u ∈ V ). (2.1)

Let
a : V × V → K

be sesquilinear and continuous; i.e.

|a(u, v)| ≤ M‖u‖V ‖v‖V (u, v ∈ V ) (2.2)

for some constant M. We assume that a is quasi-coercive; i.e. there exist con-
stants α > 0, ω ∈ R such that

Re a(u, u) + ω‖u‖2
H ≥ α‖u‖2

V (u ∈ V ). (2.3)

If ω = 0, we say that the form a is coercive. The operator A ∈ L(V, V ′)
associated with a is defined by

〈Au, v〉 = a(u, v) (u, v ∈ V ).

Here V ′ denotes the antidual of V when K = C and the dual when K = R. The
duality between V ′ and V is denoted by 〈., .〉. As usual, we identify H with a
dense subspace of V ′ (associating to f ∈ H the antilinear form v 7→ (f | v)H).
Then V ′ is a Hilbert space for a suitable scalar product.

Seen as an unbounded operator on V ′ with domain D(A) = V the operator
−A generates a holomorphic semigroup on V ′. In the case where K = R we
mean by this that the C-linear extension of −A on the complexification of V ′

generates a holomorphic C0-semigroup. The semigroup is bounded on a sector
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if ω = 0, in which case A is an isomorphism. Denote by A the part of A on H ;
i.e.,

D(A) := {u ∈ V : Au ∈ H}
Au = Au.

Then −A generates a holomorphic C0-semigroup on H (the restriction of the
semigroup generated by −A to H). For all this, see e.g. the monographs [Ouh05,
Chap. 1], [Tan79, Chap. 2].

Next we want to consider the symmetric case. The form a is called symmetric
if

a(u, v) = a(v, u)

for all u, v ∈ V . In that case the operator A is self-adjoint. By the Spectral
Theorem A is unitarily equivalent to a multiplication operator. In terms of the
form this leads to the following spectral representation.

Theorem 2.1 (Spectral Representation of Symmetric Forms). Let a be sym-
metric and coercive. Then up to unitary equivalence H,V,A, A, a are given
as follows. There exists a measure space (Ω,Σ, µ) and a measurable function
m : Ω → [δ,∞) where δ = α

c2

H

such that

H = L2(Ω, µ), V = L2(Ω,mµ), V ′ = L2(Ω, µ
m ).

Moreover

〈f, u〉 =

∫

Ω

fudµ (f ∈ V ′, u ∈ V ), a(u, v) =

∫

Ω

uvm dµ (u, v ∈ V )

and

D(A) = L2(Ω,m2µ), Au = mu (u ∈ D(A)),

Au = mu (u ∈ V ).

Via this representation theorem we may identify H with L2(Ω, µ) with the
scalar product (u | v)H =

∫

Ω uv dµ. Then V = L2(Ω,mµ) with a norm which is
equivalent to the usual norm of L2(Ω,mµ). More precisely,

α‖u‖2
V ≤ ‖u‖2

L2(Ω,mµ) = a(u, u) ≤ M‖u‖2
V . (2.4)

We define the operator A1/2 via this spectral representation by

A1/2u = m1/2u.

Then A1/2 ∈ L(H,V ′) is an isomorphism such that A1/2V = H . The definition
of A1/2 does not depend on the spectral representation. The following estimates
follow from (2.4).

Proposition 2.2. Assume that the form is symmetric and coercive. Then

a) ‖(λ+ A)−1‖L(V ) ≤ c1(1 + λ)−1 for all λ ≥ 0,

b) ‖(λ+ A)−1‖L(V ′,V ) ≤ 1/α for all λ ≥ 0,

c) ‖A−1/2‖L(H,V ) ≤ 1/
√
α and finally,

d) ‖A1/2‖L(H,V ′) ≤
√
M ,

where c1 =
√

M/αmax{1, c2
H/α}.
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3 Lions’ Representation Theorem

In this (still preliminary) section we give Lions’ Representation Theorem, which
will be used later and include its short, elegant proof for convenience.

Theorem 3.1 (Lions’ Representation Theorem [Lio59, p. 156], [Lio61, p. 61]).
Let V be a Hilbert space, W a pre-Hilbert space such that W →֒ V. Let E :
V × W → K be sesquilinear such that

a) for all w ∈ W, E(., w) is a continuous linear functional on V;

b) |E(w,w)| ≥ α‖w‖2
W for all w ∈ W

for some α > 0. Let L ∈ W ′. Then there exists u ∈ V such that

Lw = E(u,w)

for all w ∈ W.

Proof. By the Riesz Representation Theorem there exists a linear map T :
W → V such that E(v, w) = (v |Tw)V for all v ∈ V , w ∈ W. It follows from
coerciveness that

α‖w‖2
W ≤ |E(w,w)| = |(w |Tw)V | ≤ ‖w‖V‖Tw‖V .

Since W →֒ V , there exists α′ > 0 such that

α′‖w‖W ≤ ‖Tw‖V (w ∈ W).

We may assume that TW is dense in V (otherwise we replace V by TW). Then
there exists a unique bounded operator S from V into the completion W̃ of W
such that

STw = w (w ∈ W).

By the Riesz Representation Theorem there exists w̃ ∈ W̃ such that

Lw = (w̃ |w)W̃ (w ∈ W).

For u ∈ V one has the desired property

Lw = E(u,w) (w ∈ W)

if and only if

(w̃ |STw)W̃ = (w̃ |w)W̃ = (u |Tw)V (w ∈ W)

i.e.,
(w̃ |Sv)W̃ = (u | v)V

for all v ∈ TW ; or equivalently for all v ∈ V . Thus u := S∗w̃ has the desired
property.

Remark 3.2 (uniqueness). The vector u is unique if and only if for v ∈ V ,
E(v, w) = 0 for all w ∈ W implies v = 0. This is the same as saying that TW
is dense in V , where T is the mapping of the proof.
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4 Embedding into continuous functions

In this section we show that in a non-autonomous framework a mixed Sobolev
space embeds into a space of continuous functions (extending (1.3) to a non-
autonomous setting). Let V,H be separable Hilbert spaces over K = R or C

such that V →֒
d
H . Let T > 0 and

a : [0, T ] × V × V → K

be a function such that a(t, ., .) : V × V → K is sesquilinear for all t ∈ [0, T ].
We assume that a is V -bounded, and coercive, see Introduction. In addition we
assume in addition that a is symmetric; i.e.,

a(t, u, v) = a(t, v, u) (t ∈ [0, T ], u, v ∈ V ),

and that a is Lipschitz continuous; i.e., there exists a positive constant Ṁ such
that

|a(t, u, v) − a(s, u, v)| ≤ Ṁ |t− s|‖u‖V ‖v‖V (t, s ∈ [0, T ], u, v ∈ V ).

Remark 4.1. It follows from the Uniform Boundedness Principle that a is Lip-
schitz continuous whenever a(., u, v) : [0, T ] → K is Lipschitz continuous for all
u, v ∈ V .

We denote by A(t) ∈ L(V, V ′) the operator associated with a(t, ., .). We
consider the following maximal regularity space

MRa(H) := {u ∈ H1(0, T ;H) ∩ L2(0, T ;V ) : A(.)u(.) ∈ L2(0, T ;H)}.

It is a Hilbert space for the norm ‖.‖
MRa(H) given by

‖u‖2
MRa(H) := ‖u‖2

L2(0,T ;V ) + ‖u̇‖2
L2(0,T ;H) + ‖A(.)u(.)‖2

L2(0,T ;H).

Under the above assumptions on the form a our main result of this section says
the following.

Theorem 4.2. The space MRa(H) is continuously embedded into C([0, T ];V ).
Moreover, if u ∈ MRa(H), then a(., u(.), u(.)) ∈ W 1,1(0, T ) and

(a(., u(.), u(.)))̇ = ȧ(., u(.), u(.)) + 2 Re(A(.)u(.) | u̇(.))H . (4.1)

Observe that for u ∈ MRa(H) one has u(t) ∈ D(A(t)) a.e. and A(.)u(.) =
A(.)u(.) ∈ L2(0, T ;H). Thus (A(.)u(.) | u̇(.))H ∈ L1(0, T ). This explains the
second term on the right hand side of (4.1). The definition of ȧ becomes clear
from the following lemma. In fact, by our assumption A : [0, T ] → L(V, V ′) is
Lipschitz continuous. By Lemma 4.3 a) below there exists Ȧ : [0, T ] → L(V, V ′),
strongly measurable and bounded, such that

Ȧ(t)u = d
dt A(t)u a.e.

for all u ∈ V . We define ȧ by

ȧ(t, u, v) = 〈Ȧ(t)u, v〉

for all t ∈ [0, T ], u, v ∈ V . Thus, for u ∈ L2(0, T ;V ), ȧ(t, u(.), u(.)) =
〈Ȧ(.)u(.), u(.)〉 ∈ L1(0, T ). Thus the right hand side of (4.1) is in L1(0, T ).

For the proof of Theorem 4.2 we need several auxiliary results.
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Lemma 4.3. Let S : [0, T ] → L(V, V ′) be Lipschitz continuous. Then the
following holds.

a) There exists a bounded, strongly measurable function Ṡ : [0, T ] → L(V, V ′)
such that

d

dt
S(t)u = Ṡ(t)u (u ∈ V )

for a.e. t ∈ [0, T ] and

‖Ṡ(t)‖L(V,V ′) ≤ L (t ∈ [0, T ])

where L is the Lipschitz constant of S.

b) If u ∈ H1(0, T ;V ), then Su := S(.)u(.) ∈ H1(0, T ;V ′) and

(Su)̇ = Ṡ(.)u(.) + S(.)u̇(.). (4.2)

For the proof of Lemma 4.3 we recall the following. If a function u : [0, T ] →
V is absolutely continuous, then u̇(t) := d

dtu(t) exists almost everywhere and

u(t) = u(0) +
∫ t

0
u̇(s) ds [ABHN11, Proposition 1.2.3 and Corollary 1.2.7]. In

fact, the space of all absolutely continuous functions on [0, T ] with values in
V is the same as the Sobolev space W 1,1(0, T ;V ) and u̇ coincides with the
weak derivative (this is true for a Banach space V if and only if it has the
Radon-Nikodým property). The function u is in H1(0, T ;V ) if and only if
u ∈ W 1,1(0, T ;V ) and u̇ ∈ L2(0, T ;V ).

Proof of Lemma 4.3. a) Since for u ∈ V , S(.)u is Lipschitz continuous, the
derivative d

dtS(t)u exists a.e. (see [ABHN11, Sec. 1.2]). Let V0 be a countable

dense subset of V . There exists a Borel null set N ⊂ [0, T ] such that d
dtS(t)u

exists in V ′ for all t /∈ N and all u ∈ V0. Since S is Lipschitz-continuous it
follows easily that d

dtS(t)u exists also for all u ∈ V0 = V and t /∈ N . Let

Ṡ(t)u =

{

d
dtS(t)u if t /∈ N and

0 if t ∈ N.

Let L be the Lipschitz constant of S. Then Ṡ(t) ∈ L(V, V ′), with ‖Ṡ(t)‖L(V,V ′) ≤
L for all t ∈ [0, T ] and Ṡ(.)u is measurable for all u ∈ V .

b) Let u ∈ H1(0, T ;V ). Then u ∈ C([0, T ];V ) and

‖u‖∞ := sup
t∈[0,T ]

‖u(t)‖V < ∞.

Denote the supremum norm of S by

‖S‖∞ := sup
t∈[0,T ]

‖S(t)‖L(V,V ′).

We first show that Su is absolutely continuous. Let ǫ > 0. Since u is absolutely
continuous there exists a δ > 0 such that

∑

i

‖u(bi) − u(ai)‖ ≤ ‖S‖−1
∞
ǫ

2
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for each finite collection of non-overlapping intervals (ai, bi) in (0, T ) satisfying
∑

i(bi − ai) < δ. We may take δ > 0 so small that L‖u‖∞δ <
ǫ
2 . Then

∑

i

‖S(bi)u(bi) − S(ai)u(ai)‖

≤
∑

i

‖(S(bi) − S(ai))u(bi)‖ +
∑

i

‖S(ai)(u(bi) − u(ai))‖

≤ L
∑

i

(bi − ai)‖u‖∞ + ‖S‖∞‖S‖−1
∞
ǫ

2

< Lδ‖u‖∞ +
ǫ

2
≤ ǫ.

Thus Su is absolutely continuous. Moreover

(Su)̇ (t) = lim
h→0

1
h (S(t+ h)u(t+ h) − S(t)u(t))

= lim
h→0

[

1
h (S(t+ h) − S(t))(u(t+ h) − u(t))

+ 1
h (S(t+ h) − S(t))u(t)

+ 1
hS(t)(u(t+ h) − u(t))

]

= Ṡ(t)u(t) + S(t)u̇(t) a.e.

Thus (Su)̇ ∈ L2(0, T ;V ′) and so Su ∈ H1(0, T ;V ′).

Recall from Section 2 that A(t)−1/2 ∈ L(V ′, H) is invertible and A(t)−1/2H =
V . One has

A(t)−1/2u =
1

π

∫ ∞

0

λ−1/2(λ+ A(t))−1u dλ (u ∈ V ′),

see [ABHN11, (3.52)] or [Paz83, Sec. 2.6 p. 69]. The inverse operator is denoted
by A(t)1/2 with domain D(A(t)1/2) = V .

Lemma 4.4. The mappings

a) A−1/2 : [0, T ] → L(V ) and

b) A1/2 : [0, T ] → L(V, V ′)

are Lipschitz continuous.

Proof. a) Let u ∈ V . Then by Proposition 2.2 a) and b),
∥

∥A−1/2(t)u − A−1/2(s)u
∥

∥

V

=

∥

∥

∥

∥

1

π

∫ ∞

0

λ−1/2
[

(λ + A(t))−1 − (λ + A(s))−1
]

u dλ

∥

∥

∥

∥

V

=

∥

∥

∥

∥

1

π

∫ ∞

0

λ−1/2(λ+ A(t))−1(A(s) − A(t))(λ + A(s))−1u dλ

∥

∥

∥

∥

V

≤ 1

α

∫ ∞

0

λ−1/2
∥

∥(A(s) − A(t))(λ + A(s))−1u
∥

∥

V ′
dλ

≤ Ṁ

α
|s− t|

∫ ∞

0

λ−1/2
∥

∥(λ+ A(s))−1u
∥

∥

V
dλ

≤ c1
Ṁ

α
|s− t|

∫ ∞

0

λ−1/2(λ+ 1)−1 dλ ‖u‖V .
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b) Let u ∈ V . Then by Proposition 2.2 c)
∥

∥A1/2(t)u − A1/2(s)u
∥

∥

V ′

=
∥

∥A(t)A−1/2(t)u− A(s)A−1/2(s)u
∥

∥

V ′

≤
∥

∥(A(t) − A(s))A−1/2(t)u
∥

∥

V ′
+

∥

∥A(s)(A−1/2(t)u − A−1/2(s)u)
∥

∥

V ′

≤ |t− s|Ṁ
∥

∥A−1/2(t)u
∥

∥

V
+M

∥

∥A−1/2(t)u − A−1/2(s)u
∥

∥

V

≤ |t− s|const ‖u‖V by a).

Lemma 4.5. The mappings

a) A−1/2 : [0, T ] → L(H,V ) and

b) A1/2 : [0, T ] → L(H,V ′)

are strongly continuous.

Proof. a) We know from Proposition 2.2 c) that
∥

∥A−1/2(t)u
∥

∥

V
≤ 1√

α
‖u‖H (u ∈ H, t ∈ [0, T ]).

Since by Lemma 4.4 a) A−1/2(.)u : [0, T ] → V is continuous for u ∈ V , the
claim follows by a 3ǫ-argument.

b) By Proposition 2.2 d) one has
∥

∥A1/2(t)u
∥

∥

V ′
≤

√
M‖u‖H (u ∈ H, t ∈ [0, T ]).

Since by Lemma 4.4 b) A1/2(.)u : [0, T ] → V ′ is continuous for u ∈ V , it is also
continuous for u ∈ H by a 3ǫ-argument.

Next we consider the Hilbert space

MR(V,H) := L2(0, T ;V ) ∩H1(0, T ;H)

with norm
‖u‖2

MR(V,H) := ‖u‖2
L2(0,T ;V ) + ‖u‖2

H1(0,T ;H).

Lemma 4.6. H1(0, T ;V ) is dense in MR(V,H).

Proof. We use the spectral representation Theorem 2.1. Let

Ωn := {x ∈ Ω : m(x) ≤ n}

and
Pnf = 1Ωn

f (f ∈ H = L2(Ω, µ)).

Then P 2
n = Pn = P ∗

n ∈ L(H), PnH ⊂ V , limn→∞ Pnf = f in H for all f ∈ H
and limn→∞ Pnf = f in V for all f ∈ V . Now let u ∈ MR(V,H). Then
un = Pn ◦ u ∈ H1(0, T ;V ) and u̇n = Pn ◦ u̇. Thus un → u in L2(0, T ;V ),
u̇n → u̇ in L2(0, T ;H).

Similarly, we define the Hilbert space

MR(H,V ′) = L2(0, T ;H) ∩H1(0, T ;V ′)

with norm
‖u‖2

MR(H,V ′) = ‖u‖2
L2(0,T ;H) + ‖u‖2

H1(0,T ;V ′).
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Proposition 4.7. Let u ∈ MR(V,H). Then A1/2(.)u(.) ∈ MR(H,V ′) and

(A1/2(.)u(.))̇ = Ȧ1/2(.)u(.) + A1/2(.)u̇(.). (4.3)

Recall that by Lemma 4.4 b) S := A1/2 : [0, T ] → L(V, V ′) is Lipschitz
continuous. Thus by Lemma 4.3 b) there exists Ṡ : [0, T ] → L(V, V ′), which is
strongly measurable and bounded. For typographical reasons we let Ȧ1/2(.) :=
Ṡ(.). Thus for u ∈ L2(0, T ;V ), Ȧ1/2(.)u(.) ∈ L2(0, T ;V ′), which explains that
the first term on the right hand side of (4.3) is well-defined. Concerning the
second, recall from Lemma 4.5 that A1/2 : [0, T ] → L(H,V ′) is strongly mea-
surable and bounded by Proposition 2.2 c). Thus, for u ∈ H1(0, T ;H) one
has A1/2(.)u̇(.) ∈ L2(0, T ;V ′). Thus the right hand side of (4.3) is indeed in
L2(0, T ;V ′).

Proof of Proposition 4.7. a) Let u ∈ H1(0, T ;V ). Since S := A1/2 : [0, T ] →
L(V, V ′) is Lipschitz continuous (Lemma 4.4 b)), it follows from Lemma 4.3 b)
that S(.)u(.) ∈ H1(0, T ;V ′) and

d

dt
S(t)u(t) = Ṡ(t)u(t) + S(t)u̇(t).

Since ‖Ṡ(t)‖L(V,V ′) is bounded on [0, T ], it follows that

‖Ṡ(.)u(.)‖L2(0,T ;V ′) ≤ const ‖u‖L2(0,T ;V ).

Since ‖S(t)‖L(H,V ′) ≤ const (Proposition 2.2 d)), it follows that

‖S(.)u̇(.)‖L2(0,T ;V ′) ≤ const ‖u̇‖L2(0,T ;H).

Finally, since ‖S(t)‖L(V,H) ≤ const , it follows that

‖S(.)u(.)‖L2(0,T ;H) ≤ const ‖u‖L2(0,T ;V ).

We have shown that

‖S(.)u(.)‖
MR(H,V ′) ≤ const ‖u‖

MR(V,H) (u ∈ H1(0, T ;V )). (4.4)

b) Let u ∈ MR(V,H). By Lemma 4.6 there exist un ∈ H1(0, T ;V ) such
that un → u in MR(V,H). It follows from (4.4) that (S(.)un(.))n∈N is a Cauchy
sequence in MR(H,V ′). Let w = limn→∞ S(.)un(.) in MR(H,V ′). Since un → u
in L2(0, T ;V ), passing to a subsequence we can assume that un(t) → u(t) a.e.
in V . Thus S(t)un(t) → S(t)u(t) a.e. in H . Since w = limn→∞ S(.)un(.) in
L2(0, T ;H), it follows that w = S(.)u(.). Thus S(.)u(.) ∈ MR(H,V ′) and

ẇ = lim
n→∞

(S(.)un(.))̇ = lim
n→∞

(

Ṡ(.)un(.) + S(.)u̇n(.)
)

= Ṡ(.)u(.) + S(.)u̇(.)

in L2(0, T ;V ′). This proves the proposition.

Now we are in the position to prove Theorem 4.2.
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Proof of Theorem 4.2. Let u ∈ MRa(H); i.e. u ∈ MR(V,H) and A(.)u(.) ∈
L2(0, T ;H). Then by Lemma 4.5,

A1/2(.)u(.) = A−1/2(.)A(.)u(.) ∈ L2(0, T ;V ).

Moreover by Proposition 4.7, A1/2(.)u(.) ∈ MR(H,V ′). Thus one has even
A1/2(.)u(.) ∈ MR(V, V ′). Consequently the classical continuity result (1.3) im-
plies that A1/2(.)u(.) ∈ C([0, T ];H). Now Lemma 4.5 a) implies that

u = A−1/2(.)A1/2(.)u(.) ∈ C([0, T ];V )

which is the first assertion of Theorem 4.2. In order to prove the second we
deduce from (1.4) that a(., u(.), u(.)) = ‖A1/2(.)u(.)‖2

H ∈ W 1,1(0, T ) and

(a(., u(.), u(.)))̇ = 2 Re〈(A1/2(.)u(.))̇,A1/2(.)u(.)〉.

Hence by Proposition 4.7

(a(., u(.), u(.)))̇ = 2 Re〈Ȧ1/2(.)u(.) + A1/2(.)u̇(.),A1/2(.)u(.)〉
= 2 Re〈Ȧ1/2(.)u(.),A1/2(.)u(.)〉 + 2 Re(A(.)u(.) | u̇(.))H

= ȧ(., u(.), u(.)) + 2 Re(A(.)u(.) | u̇(.))H .

5 Well-posedness in H

Let V,H be separable Hilbert spaces such that V →֒
d
H and let

a : [0, T ] × V × V → K

be a form on which we impose the following conditions. It can be written as
the sum of two non-autonomous forms

a(t, u, v) = a1(t, u, v) + a2(t, u, v) (t ∈ [0, T ], u, v ∈ V )

where
a1 : [0, T ] × V × V → K

satisfies the assumptions considered in Section 4; i.e.,

a) |a1(t, u, v)| ≤ M1‖u‖V ‖v‖V for all u, v ∈ V , t ∈ [0, T ];

b) a1(t, u, u) ≥ α‖u‖2
V for all u ∈ V , t ∈ [0, T ] with α > 0;

c) a1(t, u, v) = a1(t, v, u) for all u, v ∈ V , t ∈ [0, T ];

d) a1 is Lipschitz-continuous; i.e.,

|a1(t, u, v) − a1(s, u, v)| ≤ Ṁ1|t− s|‖u‖V ‖v‖V

for all u, v ∈ V, s, t ∈ [0, T ],

and
a2 : [0, T ] × V ×H → K

satisfies
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e) |a2(t, u, v)| ≤ M2‖u‖V ‖v‖H for all u ∈ V, v ∈ H , t ∈ [0, T ],

f) a2(., u, v) : V × V → K is measurable for all u, v ∈ V .

We denote by A(t) the operator given by 〈A(t)u, v〉 = a(t, u, v) and by A(t) we
denote the part of A(t) in H . Let B : [0, T ] → L(H) be a strongly measurable
function satisfying

β0‖g‖2
H ≤ Re(B(t)g | g)H ≤ β1‖g‖2

H

for all g ∈ H , t ∈ [0, T ] where 0 < β0 ≤ β1 are constants. This implies that B(t)
is invertible and ‖B(t)−1‖ ≤ 1

β0

for a.e. t ∈ [0, T ]. Now we state our results on
existence and uniqueness.

Theorem 5.1. Let u0 ∈ V , f ∈ L2(0, T ;H). Then there exists a unique

u ∈ H1(0, T ;H) ∩ L2(0, T ;V )

satisfying

B(t)u̇(t) + A(t)u(t) = f(t) a.e.

u(0) = u0.

Moreover, u ∈ C([0, T ];V ) and

‖u‖
MR(V,H) ≤ C

[

‖u0‖V + ‖f‖L2(0,T ;H)

]

, (5.1)

where the constant C depends merely on β0,M1,M2, α, T and Ṁ1.

Note that u(t) ∈ D(A(t)) a.e., since A(t)u(t) = f(t) −B(t)u̇(t) ∈ H a.e. So
we may replace A(t) by A(t) in the equation. The fact that the solution u is in
C([0, T ];V ) allows us to relax the continuity condition on a1 allowing a finite
number of jumps. We say that a non-autonomous form a1 : [0, T ]×V ×V :→ K

is piecewise Lipschitz-continuous if there exist 0 = t0 < t1 < · · · < tn = b
such that on each interval (ti−1, ti) the form a1 is the restriction of a Lipschitz-
continuous form on [ti−1, ti] × V × V . Then Theorem 5.1 remains true.

Corollary 5.2. Assume instead of d) that a1 is merely piecewise Lipschitz-
continuous. Let u0 ∈ V , f ∈ L2(0, T ;H). Then there exists a unique

u ∈ H1(0, T ;H) ∩ L2(0, T ;V )

satisfying

B(t)u̇(t) + A(t)u(t) = f(t) a.e.

u(0) = u0.

Moreover, u ∈ C([0, T ];V ).

Proof. By Theorem 5.1 there is a solution u1 ∈ H1(0, t1;H) ∩ L2(0, t1;V ) on
(0, t1) satisfying u1(0) = u0, and u1 ∈ C([0, t1];V ). Since u1(t1) ∈ V we find a
solution u2 ∈ H1(t1, t2;H) ∩ L2(t1, t2;V ) ∩ C([t1, t2];V ) with u2(t1) = u1(t1).
Solving successively we obtain solutions ui ∈ H1(ti−1, ti;H) ∩ L2(ti−1, ti;V ) ∩
C([ti−1, ti];V ) with ui(ti−1) = ui−1(ti−1) i = 1, . . . , n. Letting u(t) = ui(t)
for t ∈ [ti−1, ti) we obtain a solution. Uniqueness follows from uniqueness in
Theorem 5.1.
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Proof of Theorem 5.1. a) Existence: Let

V := {u ∈ H1(0, T ;H) ∩ L2(0, T ;V ) : u(0) ∈ V }.

Then V is a Hilbert space for the norm

‖u‖2
V :=

∫ T

0

‖u̇(t)‖2
H dt+

∫ T

0

‖u(t)‖2
V dt+ ‖u(0)‖2

V .

Let W := H1(0, T ;V ) with the same norm. Consider the sesquilinear form
E : V × W → K given by

E(u,w) :=

∫ T

0

(B(t)u̇(t) | ẇ(t))He
−γt dt

+

∫ T

0

a(t, u(t), ẇ(t))e−γt dt

+ a1(0, u(0), w(0)),

where γ will be determined later. Clearly E(., w) ∈ V ′ for all w ∈ W. We
show coerciveness of E. For that we denote by A1(t) ∈ L(V, V ′) the operator
associated with a1. By assumption d) we have

‖A1(t) − A1(s)‖L(V,V ′) ≤ Ṁ1|t− s|. (5.2)

By Lemma 4.3 there exists a strongly measurable function Ȧ1 : [0, T ] → L(V, V ′)
such that Ȧ1(t)u = d

dt A1(t)u for all u ∈ V and t /∈ N where N ⊂ [0, T ] is a null
set, and

‖Ȧ1(t)‖L(V,V ′) ≤ Ṁ1 (t ∈ [0, T ]).

Let w ∈ W. Recall the definition of ȧ1 and Ȧ1 before Lemma 4.3. Note
that by Lemma 4.3 the function A1(.)w(.) is in H1(0, T ;V ′) and (A1(.)w(.))̇ =
Ȧ1(.)w(.) + A1(.)ẇ(.). Thus it follows from the product rule Lemma 7.2 that
a1(., w(.), w(.)) = 〈A1(.)w(.), w(.)〉 ∈ W 1,1(0, T ) and

a1(., w(.), w(.))̇ = 〈Ȧ1(.)w(.), w(.)〉 + 〈A1(.)ẇ(.), w(.)〉 + 〈A1(.)w(.), ẇ(.)〉
= ȧ1(., w(.), w(.)) + 2 Re a1(., w(.), ẇ(.)).

Multiplying by e−γ. (and using the scalar product rule) we finally obtain that
a1(., w(.), w(.))e−γ. ∈ W 1,1(0, T ) and

[

a1(., w(.), w(.))e−γ.
]

˙= ȧ1(., w(.), w(.))e−γ.

+ 2 Re a1(., w(.), ẇ(.))e−γ. − γ a1(., w(.), w(.))e−γ..
(5.3)
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Now we prove the coerciveness estimate as follows. For w ∈ W one has

|E(w,w)| ≥ ReE(w,w)

≥ β0

∫ T

0

‖ẇ(t)‖2
He

−γt dt+ Re

∫ T

0

a1(t, w(t), ẇ(t))e−γt dt

−M2

∫ T

0

‖w(t)‖V ‖ẇ(t)‖He
−γt dt+ a1(0, w(0), w(0))

= β0

∫ T

0

‖ẇ(t)‖2
He

−γt dt+
1

2

∫ T

0

[

a1(t, w(t), w(t))e−γt
]

˙ dt

− 1

2

∫ T

0

ȧ1(t, w(t), w(t))e−γt dt+
γ

2

∫ T

0

a1(t, w(t), w(t))e−γt dt

−M2

∫ T

0

‖w(t)‖V ‖ẇ(t)‖He
−γt dt+ a1(0, w(0), w(0))

≥ β0

∫ T

0

‖ẇ(t)‖2
He

−γt dt+
1

2
a1(T,w(T ), w(T ))e−γT − 1

2
a1(0, w(0), w(0))

− 1

2
Ṁ1

∫ T

0

‖w(t)‖2
V e

−γt dt+
γ

2
α

∫ T

0

‖w(t)‖2
V e

−γt dt

− ǫ

∫ T

0

‖ẇ(t)‖2
He

−γt dt− M2
2

4ǫ

∫ T

0

‖w(t)‖2
V e

−γt dt+ a1(0, w(0), w(0))

≥ (β0 − ǫ)

∫ T

0

‖ẇ(t)‖2
He

−γt dt+
1

2
a1(0, w(0), w(0))

+
1

2

(

γα− Ṁ1 − M2
2

2ǫ

)
∫ T

0

‖w(t)‖2
V e

−γt dt

≥ δ‖w‖2
V

if ǫ is chosen in (0, β0) and γ > 0 is chosen so large that

γα− Ṁ1 − M2
2

2ǫ
> 0,

for

δ = min

{

α

2
, (β0 − ǫ)e−γT ,

1

2

(

γα− Ṁ1 − M2
2

2ǫ

)

e−γT

}

.

This proves coerciveness.
Now define L ∈ W ′ by

Lw = a1(0, u0, w(0)) +

∫ T

0

(f(t) | ẇ(t))He
−γt dt,

where u0 ∈ V is the given initial value and f ∈ L2(0, T ;H) the given inhomo-
geneity. By Lions’ Representation Theorem there exists u ∈ V such that

E(u,w) = Lw (5.4)

for all w ∈ W. Let ψ ∈ D(0, T ), v ∈ V . Choose w(t) =
∫ t

0
ψ(s) ds · v. Then
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w ∈ W. Hence by (5.4),

∫ T

0

(B(t)u̇(t) | v)Hψ(t)e−γt dt+

∫ T

0

a(t, u(t), v)ψ(t)e−γt dt

=

∫ T

0

(f(t) | v)Hψ(t)e−γt dt.

Since ψ ∈ D(0, T ) is arbitrary, it follows that

(B(t)u̇(t) | v)H + a(t, u(t), v) = (f(t) | v)H (5.5)

a.e. for all v ∈ V . Let V0 be a countable, dense subset of V. We find a null set
N ⊂ [0, T ] such that (5.5) holds for all t ∈ [0, T ] \ N and all v ∈ V0, and hence
for all v ∈ V0 = V . Thus, for t ∈ [0, T ] \N one hast u(t) ∈ D(A(t)) and

B(t)u̇(t) +A(t)u(t) = f(t). (5.6)

We introduce (5.6) into (5.4) and find that for all w ∈ W,

∫ T

0

(f(t) | ẇ(t))He
−γt dt+ a1(0, u(0), w(0)) = E(u,w)

= Lw =

∫ T

0

(f(t) | ẇ(t))He
−γt dt+ a1(0, u0, w(0)).

Consequently
a1(0, u(0), w(0)) = a1(0, u0, w(0))

for all w ∈ W. Letting w(t) ≡ u(0) − u0 we conclude that

α‖u(0) − u0‖2
V ≤ a1(0, u(0) − u0, u(0) − u0) = 0.

Thus u(0) = u0. We have shown that u is a solution.
b) Next we prove that u ∈ C([0, T ];V ). Let u ∈ H1(0, T ;H) ∩ L2(0, T ;V )

be a solution. Note that

‖A2(t)‖L(V,H) ≤ M2 (t ∈ [0, T ]).

Since
A1u(t) = f(t) −B(t)u̇(t) − A2(t)u(t),

it follows that A1u ∈ L2(0, T ;H). Thus u ∈ MRa1
(H) ⊂ C([0, T ];V ) by Theo-

rem 4.2.
c) We prove the estimate (5.1). Since u ∈ MRa1

by b) it follows from
Theorem 4.2 that a1(., u(.), u(.))eγ. ∈ W 1,1(0, T ) and

[

a1(., u(.), u(.))e−γ.
]

˙ = ȧ1(., u(.), u(.))e−γ.

+ 2 Re(A1(.)u(.) | u̇(.))He
−γ. − γ a1(., u(.), u(.))e−γ..

(5.7)

Now even though u might not be in W the above coerciveness estimate goes
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through if we use (5.7) instead of (5.3). In fact

‖f‖L2(0,T ;H)‖u̇‖L2(0,T ;H) +
1

2
M1‖u0‖2

V

≥ Re

∫ T

0

(f(t) | u̇(t))He
−γt dt+

1

2
a1(0, u(0), u(0))

= Re

∫ T

0

(B(t)u̇(t) | u̇(t))He
−γt dt+ Re

∫ T

0

(A(t)u(t) | u̇(t))He
−γt dt

+
1

2
a1(0, u(0), u(0))

≥ β0

∫ T

0

‖u̇(t)‖He
−γt dt+ Re

∫ T

0

(A1(t)u(t) | u̇(t))He
−γt dt

−M2

∫ T

0

‖u(t)‖V ‖u̇(t)‖He
−γt dt+

1

2
a1(0, u(0), u(0))

= β0

∫ T

0

‖u̇(t)‖2
He

−γt dt+
1

2

∫ T

0

[

a1(t, u(t), u(t))e−γt
]

˙ dt

− 1

2

∫ T

0

ȧ1(t, u(t), u(t))e−γt dt+
γ

2

∫ T

0

a1(t, u(t), u(t))e−γt dt

−M2

∫ T

0

‖u(t)‖V ‖u̇(t)‖He
−γt dt+

1

2
a1(0, u(0), u(0))

≥ β0

∫ T

0

‖u̇(t)‖2
He

−γt dt+
1

2
a1(T, u(T ), u(T ))e−γT − 1

2
a1(0, u(0), u(0))

− 1

2
Ṁ1

∫ T

0

‖u(t)‖2
V e

−γt dt+
γ

2
α

∫ T

0

‖u(t)‖2
V e

−γt dt

− ǫ

∫ T

0

‖u̇(t)‖2
He

−γt dt− M2
2

4ǫ

∫ T

0

‖u(t)‖2
V e

−γt dt+
1

2
a1(0, u(0), u(0))

≥ (β0 − ǫ)

∫ T

0

‖u̇(t)‖2
He

−γt dt+
1

2

(

γα− Ṁ1 − M2
2

2ǫ

)
∫ T

0

‖u(t)‖2
V e

−γt dt

≥ δ‖u‖2
MR(V,H)

if ǫ is chosen in (0, β0) and γ > 0 is chosen so large that

γα− Ṁ1 − M2
2

2ǫ
> 0,

for

δ = min

{

(β0 − ǫ)e−γT ,
1

2

(

γα− Ṁ1 − M2
2

2ǫ

)

e−γT

}

.

Now Young’s inequality implies (5.1).
d) Uniqueness: The difference u of two solutions is in MRa(H) and satisfies

B(t)u̇(t) +A(t)u(t) = 0 a.e.

u(0) = 0.

Thus (5.1) shows that u ≡ 0.

17



Our proof of Theorem 5.1 is partly inspired by Lions’ proof of [Lio61,
Théorème 6.1, p. 65] which is valid for u0 = 0 if a is symmetric and C1 for
B ≡ Id. One difference is that we have to take care of the fact that u0 6= 0.
This is done by applying Lions’ Representation Theorem to a different Hilbert
space and modified form which incorporate initial values.

Remark 5.3. Theorem 5.1 remains true if a1 is merely quasi-coercive instead of
coercive. In fact, then we may replace a2 by ã2(t, u, v) = a2(t, u, v) − ω(u | v)H

and a1 by ã1(t, u, v) = a1(t, u, v) +ω(u | v)H and have a = ã1 + ã2 in the desired
form.

Remark 5.4 (Square root property). For f ≡ 0 problem (1.1) does not always
have a positive answer even in the autonomous case. If a(t, u, v) = a(u, v) does
not depend on time, then A = A(t) ∈ L(V, V ′) does not depend on time. Denote
by A the part of A in H . Then −A generates a holomorphic C0-semigroup
(T (t))t≥0 on H . Let f ≡ 0. Then for u0 ∈ H , u(t) = T (t)u0 defines the solution
u ∈ H1(0, T ;V ′) ∩ L2(0, T ;V ) of u̇(t) +Au(t) = 0 a.e. with u(0) = u0.

One has u ∈ H1(0, T ;H) if and only if u0 ∈ D(A1/2) (see [Are04, 4.4.10,
5.3.1, 6.2.2]). However by an example due to A. McIntosh it may happen that
V 6⊂ D(A1/2). We say that the form has the square root property if V =
D(A1/2). The square root property holds for second order differential operators
with measurable coefficients and Dirichlet boundary conditions on a Lipschitz
domain. This is a version of the famous Kato’s square root problem, solved in
[AT03].

If the sesquilinear form a is of the special form a = a1 +a2 with a1 symmetric
and a2 continuous on V × H , then it has the square root property by a result
in [McI72]. Our results give an alternative proof of this statement. In fact,
Theorem 5.1 shows that V ⊂ D(A1/2) and Theorem 4.2 that D(A1/2) ⊂ V .
However, our methods do not work for the more general case where |a2(u, u)| ≤
C‖u‖V ‖u‖H (i.e., u = v) considered by McIntosh.

6 Applications

This section is devoted to applications of our results on existence and maximal
regularity of Section 5 to concrete evolution equations. We show how they
can be applied to both linear and non-linear evolution equations. We give
examples illustrating the theory without seeking for generality. In all examples
the underlying field is R.

6.1 The Laplacian with non-autonomous Robin boundary

conditions

Let Ω be a bounded domain of Rd with Lipschitz boundary Γ. Denote by σ be
the (d− 1)-dimensional Hausdorff measure on Γ. Let

β : [0, T ] × Γ → R

be a bounded measurable function which is Lipschitz continuous w.r.t. the first
variable, i.e.,

|β(t, x) − β(s, x)| ≤ M |t− s| (6.1)

18



for some constant M and all t, s ∈ [0, T ], x ∈ Γ. We consider the symmetric
form

a : [0, T ] ×H1(Ω) ×H1(Ω) → R

defined by

a(t, u, v) =

∫

Ω

∇u∇v dx+

∫

Γ

β(t, .)uv dσ. (6.2)

In the second integral we omitted the trace symbol; we should write u|Γv|Γ if
we want to be more precise. The form a is H1(Ω)-bounded and quasi-coercive.
The first statement follows readily from the continuity of the trace operator and
the boundedness of β. The second one is a consequence of the inequality

∫

Γ

|u|2 dσ ≤ ǫ‖u‖2
H1 + cǫ‖u‖2

L2(Ω), (6.3)

which is valid for all ǫ > 0 (cǫ is a constant depending on ǫ). Note that (6.3)
is a consequence of compactness of the trace as an operator from H1(Ω) into
L2(Γ, dσ), see [Nec67, Chap. 2 § 6, Theorem 6.2].

The operator A(t) associated with a(t, ., .) on H := L2(Ω) is (minus) the
Laplacian with time dependent Robin boundary conditions

∂νu(t) + β(t, .)u = 0 on Γ.

Here we use the following weak definition of the normal derivative. Let v ∈
H1(Ω) such that ∆v ∈ L2(Ω). Let h ∈ L2(Γ, dσ). Then ∂νv = h by definition
if

∫

Ω
∇v∇w +

∫

Ω
∆vw =

∫

Γ
hw dσ for all w ∈ H1(Ω). Based on this definition,

the domain of A(t) is the set

D(A(t)) = {v ∈ H1(Ω) : ∆v ∈ L2(Ω), ∂νv + β(t)v|Γ = 0},

and for v ∈ D(A(t)) the operator is given by A(t)v = −∆v.
By Theorem 5.1, the heat equation











u̇(t) − ∆u(t) = f(t)

u(0) = u0 ∈ H1(Ω)

∂νu(t) + β(t, .)u = 0 on Γ

has a unique solution u ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) whenever f ∈
L2(0, T, L2(Ω)). This example is also valid for more general elliptic operators
than the Laplacian. We could even include elliptic operators with time depen-
dent coefficients.

6.2 Schrödinger operators with time-dependent potentials

Let 0 ≤ m0 ∈ L1
loc(Rd) and m : [0, T ] × R

d → R be a measurable function for
which there exist positive constants α1, α2 and M such that for a.e. x

α1m0(x) ≤ m(t, x) ≤ α2m0(x)

and
|m(t, x) −m(s, x)| ≤ M |t− s|m0(x) x-a.e.
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for all t, s ∈ [0, T ]. We define the form

a(t, u, v) =

∫

Rd

∇u∇v dx+

∫

Rd

m(t, x)uv dx

with domain

V =
{

u ∈ H1(Rd) :

∫

Rd

m0(x)|u|2 dx < ∞
}

.

It is clear that V is a Hilbert space for the norm ‖u‖V given by

‖u‖2
V =

∫

Rd

|∇u|2 dx+

∫

Rd

m0(x)|u|2 dx.

In addition, a is V -bounded and coercive. Its associated operator on L2(Rd) is
formally given by

A(t) = −∆ +m(t, .).

Given f ∈ L2(0, T, L2(Rd)) and u0 ∈ V , we apply Theorem 5.1 and obtain a
unique solution u ∈ H1(0, T ;L2(Rd)) ∩ L2(0, T ;V ) of the evolution equation

{

u̇(t) − ∆u(t) +m(t, .)u(t) = f(t) a.e.

u(0) = u0.

6.3 A quasi-linear heat equation

In this subsection we consider the non-linear evolution equation

(NLCP)











u̇(t) = m(t, u(t))∆u(t) + f(t)

u(0) = u0 ∈ H1(Ω)

∂νu(t) + β(t, .)u(t) = 0 on Γ

The function m is supposed to be continuous from [0, T ] × R with values in
[δ, 1

δ ] for some constant δ > 0. The domain Ω ⊂ Rd is bounded with Lipschitz
boundary and the function β satisfies (6.1). By a solution u of (NLCP) we mean
a function u ∈ H1(0, T, L2(Ω))∩L2(0, T,H1(Ω)) such that ∆u(t) ∈ L2(Ω) t-a.e.
and the equality u̇(t) = m(t, u(t))∆u(t) + f(t) holds for a.e. t ∈ [0, T ]. We have
the following result.

Theorem 6.1. Let f ∈ L2(0, T, L2(Ω)) and u0 ∈ H1(Ω). Then there exists a
solution u ∈ H1(0, T, L2(Ω)) ∩ L2(0, T,H1(Ω)) of (NLCP).

We shall use Schauder’s fixed point theorem to prove this result. This idea
is classical in PDE but it is here that we need in an essential way the maximal
regularity result for the corresponding non-autonomous linear evolution equa-
tion established in Section 5. Some of our arguments are similar to those in
[AC10]. We emphasize that we could replace in (NLCP) the Laplacian by an
elliptic operator with time-dependent coefficients (with an appropriate Lipschitz
continuity with respect to t). Again, we do not search for further generality in
order to make the ideas in the proof more transparent.
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Proof of Theorem 6.1. Let us denote by H the Hilbert space L2(Ω), let V =
H1(Ω) and denote by A(t) the operator on H associated with the form a(t, ., .)
defined by (6.2). As made precise in Subsection 6.1, A(t) is the negative
Laplacian with boundary conditions ∂νu(t) + β(t, .)u(t) = 0 on Γ. Given
v ∈ L2(0, T,H) we set for g ∈ H

Bv(t)g =
1

m(t, v(t))
g.

Note that

δ‖g‖2
H ≤ (Bv(t)g | g)H ≤ 1

δ
‖g‖2

H . (6.4)

By Theorem 5.1 there exists a unique u ∈ MR(V,H) = H1(0, T,H)∩L2(0, T, V )
such that







Bv(t)u̇(t) = −A(t)u(t) +
1

m(t, v(t))
f(t)

u(0) = u0 ∈ V

Now we consider the mapping

S : L2(0, T,H) → L2(0, T,H), Sv = u.

By the estimate (5.1) of Theorem 5.1, we have

‖u‖
MR(V,H) ≤ C

[

‖f‖L2(0,T,H) + ‖u0‖V

]

, (6.5)

with a constant C which is independent of v. In particular, the image of S is
bounded in MR(V,H). Since V = H1(Ω) is compactly embedded into H =
L2(Ω) (recall that Ω is bounded and has Lipschitz boundary), we obtain from
the Aubin-Lions lemma that MR(V,H) is compactly embedded into L2(0, T,H),
see [Sho97, p. 106]. As a consequence, it is enough to prove continuity of S and
then apply Schauder’s fixed point theorem to find u ∈ MR(V,H) such that
Su = u. Such u is a solution of (NLCP).

Now we prove continuity of S. For this, we consider a sequence (vn) which
converges to v in L2(0, T,H) and let un = S(vn). It is enough to prove that (un)
has a subsequence which converges to Sv. For each n ∈ N, un is the solution of

(CP)n







Bvn
(t)u̇n(t) = −A(t)un(t) +

1

m(t, v(t))
f(t)

un(0) = u0 ∈ V

By (6.5), the sequence (un) is bounded in MR(V,H) and hence by extracting a
subsequence we may assume that (un) converges weakly to some u in MR(V,H).
Then (un)n∈N converges in norm to u in L2(0, T,H) by the Aubin-Lions lemma.
By extracting a subsequence again we can also assume that vn(t)(x) → v(t)(x)
a.e. with respect to t and to x. Now let g ∈ V and ψ ∈ D(0, T ), and consider

∫ T

0

(Bvn
(t)u̇n(t) | g)Hψ(t) dt =

∫ T

0

(u̇n(t) |Bvn
(t)g)Hψ(t) dt

= (u̇n(.) |Bvn
(.)gψ(.))L2(0,T,H).
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The last term converges to (u̇(.) |Bv(.)gψ(.))L2(0,T,H). In fact u̇n converges
weakly to u̇ in L2(0, T,H) and Bvn

(.)g converges in L2(0, T,H) to Bv(.)g, by
the Dominated Convergence Theorem. We have proved that

∫ T

0

(Bvn
(t)u̇n(t) | g)Hψ(t) dt →

∫ T

0

(Bv(t)u̇(t) | g)Hψ(t) dt (n → ∞). (6.6)

On the other hand,

∫ T

0

〈A(t)un(t), g〉ψ(t) dt =

∫ T

0

a(t, un(t), g)ψ(t) dt

=

∫ T

0

a(t, g, un(t))ψ(t) dt

=

∫ T

0

〈A(t)g, un(t)〉ψ(t) dt

= 〈A(.)g, un(.)ψ(.)〉L2(0,T,V ′),L2(0,T,V ).

Since (un) converges weakly to u in L2(0, T, V ) it follows that the last term
converges to 〈A(.)g, u(.)ψ(.)〉L2(0,T,V ′),L2(0,T,V ). Hence

∫ T

0

〈A(t)un(t), g〉ψ(t) dt →
∫ T

0

〈A(t)u(t), g〉ψ(t) dt (n → ∞). (6.7)

Therefore, we obtain from (CP)n, (6.7) and (6.6) that

∫ T

0

(Bv(t)u̇(t) | g)Hψ(t) dt =

∫ T

0

(−A(t)u(t) +
1

m(t, v(t))
f(t) | g)Hψ(t) dt.

Since this true for all ψ ∈ D(0, T ) and all g ∈ V it follows that

Bv(t)u̇(t) = −A(t)u(t) +
1

m(t, v(t))
f(t)

for a.e. t ∈ [0, T ]. Finally, the fact that MR(V,H) →֒ C([0, T ];H) together with
the weak convergence in MR(V,H) of (un) to u imply

u0 = un(0) → u(0).

We conclude that u = Sv which is the desired identity.

7 Appendix: Vector-valued 1-dimensional Sobo-

lev spaces

In this section we consider Sobolev spaces defined on an interval (0, T ), where
T > 0, with values in a Hilbert space H . Given u ∈ L2(0, T ;H) a function
u̇ ∈ L2(0, T ;H) is called the weak derivative of u if

−
∫ T

0

u(s)ϕ̇(s) ds =

∫ T

0

u̇(s)ϕ(s) ds
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for all ϕ ∈ C∞
c (0, T ). Thus we merely test with scalar-valued test functions ϕ

on (0, T ). It is clear that the weak derivative u̇ of u is unique whenever it exists.
We let

H1(0, T ;H) := {u ∈ L2(0, T ;H) : u has a weak derivative u̇ ∈ L2(0, T ;H)}.

It is easy to see that H1(0, T ;H) is a Hilbert space for the scalar product

(u | v)H1(0,T ;H) :=

∫ T

0

[

(u(t) | v(t))H + (u̇(t) | v̇(t))H

]

dt.

As in the scalar case [Bre11, Section 8.2] one shows the following.

Proposition 7.1. a) Let u ∈ H1(0, T ;H). Then there exists a unique w ∈
C([0, T ];H) such that u(t) = w(t) a.e. and

w(t) = w(0) +

∫ t

0

u̇(s) ds.

b) Conversely, if w ∈ C([0, T ];H), v ∈ L2(0, T ;H) such that w(t) = w(0) +
∫ t

0
v(s) ds, then w ∈ H1(0, T ;H) and ẇ = v.

In the following we always identify u ∈ H1(0, T ;H) with its unique contin-
uous representative w according to a).

Now we use Proposition 7.1 to prove an integration by parts formula. Let
V,H be Hilbert spaces such that V →֒

d
H . We consider H as a dense subspace

of V ′, cf. Section 2.

Lemma 7.2. Let u ∈ H1(0, T ;V ) and v ∈ H1(0, T ;V ′). Then 〈v(.), u(.)〉 ∈
W 1,1(0, T ) and

〈v(.), u(.)〉̇ = 〈v̇(.), u(.)〉 + 〈v(.), u̇(.)〉

Proof. By Fubini’s Theorem we have

∫ t

0

〈v̇(s), u(s)〉 ds =

∫ t

0

〈

v̇(s), u(0) +

∫ s

0

u̇(r) dr
〉

ds

= 〈v(t), u(0)〉 − 〈v(0), u(0)〉 +

∫ t

0

∫ s

0

〈v̇(s), u̇(r)〉 dr ds

= 〈v(t), u(0)〉 − 〈v(0), u(0)〉 +

∫ t

0

∫ t

r

〈v̇(s), u̇(r)〉 ds dr

= 〈v(t), u(0)〉 − 〈v(0), u(0)〉 +

∫ t

0

〈v(t), u̇(r)〉 − 〈v(r), u̇(r)〉 dr

= 〈v(t), u(t)〉 − 〈v(0), u(0)〉 −
∫ t

0

〈v(r), u̇(r)〉 dr.

Thus

〈v(t), u(t)〉 = 〈v(0), u(0)〉 +

∫ t

0

〈v̇(s), u(s)〉 ds+

∫ t

0

〈v(s), u̇(s)〉 ds

which proves the claim.
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