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OCCUPANCY DISTRIBUTIONS ARISING IN SAMPLING FROM

GIBBS-POISSON ABUNDANCE MODELS

THIERRY HUILLET1, SERVET MARTÍNEZ2

Abstract. Estimating the number n of unseen species from a k−sample dis-
playing only p ≤ k distinct sampled species has received attention for long. It
requires a model of species abundance together with a sampling model. We
start with a discrete model of iid stochastic species abundances, each with

Gibbs-Poisson distribution. A k−sample drawn from the n−species abun-
dances vector is the one obtained while conditioning it on summing to k. We
discuss the sampling formulae (species occupancy distributions, frequency of
frequencies) in this context. We then develop some aspects of the estimation
of n problem from the size k of the sample and the observed value of Pn,k, the
number of distinct sampled species.

It is shown that it always makes sense to study these occupancy problems
from a Gibbs-Poisson abundance model in the context of a population with

infinitely many species. From this extension, a parameter γ naturally appears,
which is a measure of richness or diversity of species. We rederive the sam-

pling formulae for a population with infinitely many species, together with the
distribution of the number Pk of distinct sampled species. We investigate the
estimation of γ problem from the sample size k and the observed value of Pk.

We then exhibit a large special class of Gibbs-Poisson distributions having
the property that sampling from a discrete abundance model may equivalently
be viewed as a sampling problem from a random partition of unity, now in the
continuum. When n is finite, this partition may be built upon normalizing n

infinitely divisible iid positive random variables by its partial sum. It is shown
that the sampling process in the continuum should generically be biased on the

total length appearing in the latter normalization. A construction with size-
biased sampling from the ranked normalized jumps of a subordinator is also
supplied, would the problem under study present infinitely many species. We
illustrate our point of view with many examples, some of which being new ones.

Keywords: Occupancy distributions. Sampling from Gibbs-Poisson dis-
tribution. Species abundance and frequencies. Biodiversity. Combinatorial
probability. Subordinators.

Running title: Gibbs-Poisson sampling and occupancies.

1. Introduction and outline of main results

Estimating the number n of unseen species from a k−sample displaying only p ≤ k
distinct sampled species has been a challenging problem since the mid-twentieth
century, [20]. It requires a model of species abundance together with a sampling
model [16], and the answer to the latter question is of course model-dependent. In
this work, we start with a discrete model of independent and identically distributed

1



2 THIERRY HUILLET1, SERVET MARTÍNEZ2

(iid) stochastic species abundances
(
ξ
d
= ξ1, ..., ξn

)
, based on Gibbs-Poisson distri-

butions for ξ. We discuss the sampling formulae (species occupancy distributions,
frequency of frequencies) in this discrete context; Typically, a k−sample drawn from
the n−species abundances vector is the one obtained while conditioning this vector
on summing to k (the sample size). It has to do with random allocation of balls
into boxes, [33]. Various combinatorial identities arising in this setup are discussed.
A distribution for the number of distinct visited species Pn,k in a k−sample from
a population of size n with Gibbs-Poisson abundance is derived. For this class of
sampling problems, a ‘temperature’ type parameter θ > 0 pops in naturally. It is
a measure of how similar the box occupancy numbers look like statistically, after
the sampling process: the smaller the values of θ, the more likely it is that these
occupancy numbers are disparate. When sampling from ξ, we then discuss some
aspects of the problem of the estimation of the number of species n from the size
k of the sample and the number Pn,k of distinct sampled species, assuming θ to be
known. These results are supplied in Propositions 1 and 3.

It turns out that it always makes sense to study these occupancy problems from
a Gibbs-Poisson abundance model in the context of a population with infinitely
many species, provided n goes to ∞ together with θ going to 0 while nθ → γ > 0.
From this construction, γ then appears as a measure of species richness or diversity.
We rederive the sampling formulae (species occupancy distributions, frequency of
frequencies) for a population with infinitely many species, together with the distri-
bution of the number Pk of distinct sampled species. We discuss the problem of
the estimation of the diversity parameter γ from the size k of the sample and the
number Pk.

One particular model in the Gibbs-Poisson class has been discussed at length in the
literature: the sampling problem from a population with discrete negative binomial
distribution abundance ξ, both when the population is made of a finite number
of species and when there are infinitely many of them. For this particular model,
the sampling formulae are the ones of Ewens, [18]. It is also well-known that the
Ewens sampling formulae may also be viewed as sampling from a continuous random
Dirichlet partition of unity when the number of species is finite or as sampling from a
random Poisson-Dirichlet partition of unity when there are infinitely many classes,
[23]. This property is remarkable. By sampling from a continuous partition of
unity, we mean that we draw independently k uniform random variables on the
unit interval, looking at the subintervals of the partition which are being hit in the
process to form the occupancy distributions of classes.

In this work, we exhibit a large class of Gibbs-Poisson distributions sharing with the
negative binomial distribution this property that sampling from a discrete abun-
dance model may equivalently be viewed as a sampling problem from a random par-
tition of unity in the continuum. When n is finite, this partition may be built upon
normalizing n infinitely divisible independent and identically distributed positive

random variables
(
Y

d
= Y1, Y2, ..., Yn

)
by its partial sum. We exhibit the one-to-one

correspondence between the laws of ξ and Y , assuming ξ to be in the special class.
It is however shown that the sampling process in the continuum should generically
be biased on the total length appearing in the latter normalization. A construction
with size-biased sampling from the ranked normalized jumps of a subordinator is
also supplied, would the problem under study present infinitely many species.
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With this correspondence in mind, we discuss several examples, among which the
Engen extended negative binomial model [15], the Berestycki-Pitman model [4]
for the enumeration of forests of trees with generalized binomial generator, the
polylog and the Mittag-Leffler models. When there are some reasons to suspect
that the ranked species frequencies decay algebraically with the rank number, then
the Engen model is well suited. Would one think of the ranked species frequencies
as decaying exponentially with the rank number, then the Ewens model seems
relevant. If the ranked species frequencies are believed to decay exponentially as
some power of the rank number, then one should opt for the polylog model.

We end up giving a new example of ξ sharing some common issues with the En-
gen’s model (in particular the algebraic decay property of the ranked frequencies).
For this precise model, we are able to give an exact estimator of the biodiversity
parameter.

2. Sampling from discrete Gibbs-Poisson distributions

The sampling problem from a negative binomial abundance model and its Dirichlet
counterpart in the continuum suggest to study the following general construction
(see [24], [25] and [4] for similar recent interest).

2.1. Generating and partition function. With φ• := (φm;m ≥ 1) a sequence
of non-negative real numbers with φ1 > 0, let

(1) φ (x) :=
∑

m≥1

φm
m!

xm

be a formal power series in x. Assume that x0 := sup (x > 0 : φ (x) <∞) ∈ (0,+∞]
is its convergence radius. Then φ (x) defines a convergent series on |x| < x0 and it

is absolutely monotone on (0, x0) in the sense that φ(n) (x) ≥ 0 for all n ≥ 0 and
x ∈ (0, x0) . We call it the local generating function.

Let θ > 0 and consider the ‘partition’ function

(2) Zθ (x) = eθφ(x).

This function also defines a convergent series on |x| < x0 with Zθ (0) = 1. Further,
with σk (θ) = k!

[
xk
]
Zθ (x)

Zθ (x) = 1 +
∑

k≥1

xk

k!
σk (θ)

where, since ∂xZθ (x) = θφ′ (x)Zθ (x), the Taylor coefficients (σk (θ) ; k ≥ 1) of
Zθ (x) satisfy the general recurrence:

(3) σk+1 (θ) = θ
k∑

l=0

(
k

l

)
φk−l+1σl (θ) , k ≥ 0, σ0 (θ) ≡ 1.

Similarly, since ∂θZθ (x) =: Z ′
θ (x) = φ (x)Zθ (x), the Taylor coefficients (σk (θ) ; k ≥ 1)

of Zθ (x) also satisfy the difference-differential recursion:

(4) σ′
k (θ) =

k−1∑

l=0

(
k

l

)
φk−lσl (θ) , k ≥ 1, σ0 (θ) = 1.
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Let
[
xk
]
f (x) be the xk−coefficient in the series expansion of the function f (x).

Then, clearly,

(5) σk (θ) =
k∑

l=1

Bk,l (φ•) θ
l,

with:

Bk,l (φ•) =
k!

l!

[
xk
]
φ (x)

l
=
k!

l!

∗∑
∑

l
j=1mj=k

l∏

j=1

φmj

mj !
≥ 0.

In the latter star-sum, summation runs over the integers (m1, ...,ml) ≥ 1, there are(
k−1
l−1

)
terms in such sums (In the sequel, the star-sums will always take into account

only indexes ≥ 1). So σk (θ) is a degree-k Bell polynomial in θ whose θl coefficient
is Bk,l (φ•) which is known as the Bell exponential polynomial in the variables φ•
(see [10]). On θ > 0, the function σk (θ) is convex and log-concave, for all k. As a
polynomial with non-negative coefficients of degree k, σk (θ) has no strictly positive
real root and (by Descartes rule sign) at most k real negative roots (including 0),
counting roots with their order of multiplicity.

Remarks (Bell polynomials and convolutions).

(i) Define (φ ∗ φ)m :=
∑m−1
l=1

(
m
l

)
φlφm−l, m ≥ 2, as the binomial self-convolution

sequence of φm. Define φ∗pm as the mth term, m ≥ p, of the sequence φ∗p := φ∗...∗φ,
p times; then the following convolution identity is well-known to hold:

Bk,p (φ•) = φ∗pk /p!.

(ii) Because Zθ+θ′ (x) = Zθ (x)Zθ′ (x), the polynomials σk (θ) satisfy

(6) σk
(
θ + θ′

)
=

k∑

l=0

(
k

l

)
σl (θ)σk−l

(
θ′
)

for all θ, θ′ > 0,

and so they form a so-called binomial convolution sequence of polynomials.

If p ≥ 1 is an integer, with σ (1)
∗p
k :=

(
σ (1)

∗p)
k

σk (p) = σ (1)
∗p
k =

∑

k1+...+kp=k

(
k

k1...kp

) p∏

q=1

σkq
(1) .

We clearly have

σk (p) =

p∑

q=1

(
p

q

) ∗∑

k1+...+kq=k

(
k

k1...kq

) q∏

r=1

σkr
(1) .

In other words,

(7) σk (p) =
k∑

q=1

(
p

q

) ∗∑

k1+...+kq=k

(
k

k1...kq

) q∏

r=1

σkr
(1) ,
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where it is tacitly understood that
(
p
q

)
= 0 if q > p. This expression extends to

non-integral arguments θ > 0 of σk (·) as

(8) σk (θ) =: σ (1)
∗θ
k =

k∑

q=1

(
θ

q

) ∗∑

k1+...+kq=k

(
k

k1...kq

) q∏

r=1

σkr
(1)

where
(
θ
q

)
=: {θ}q /q! with {θ}q := Γ (θ + 1) /Γ (θ − q + 1) = θ (θ − 1) .. (θ − q + 1) ,

the usual extension of
(
p
q

)
for the expansion of (1 + x)

θ
. From (8), it is clear again

that σk (θ) is a degree−k polynomial in θ with no constant term. This expression
should be used instead of (5) whenever the values at θ = 1 of σk (·) are available in
the first place, instead of the φ•.

(iii) Putting the expression of σk (θ) in (5) into the recurrence equation (3) which
(σk (θ) ; k ≥ 1) satisfies gives

(9) l ·Bk,l (φ•) =
k−1∑

j=l−1

(
k

j

)
φk−jBj,l−1 (φ•) .

Recalling the boundary conditions

Bk,0 (φ•) = B0,l (φ•) = 0,

except for B0,0 (φ•) := 1, we get in particular

(10) Bk,1 (φ•) = φk and Bk,k (φ•) = φk1 .

(iv) While performing the substitution θ → 1/θ, σk (θ) should be mapped into the
new polynomial with respect to 1/θ

σk (1/θ) = θ−(k+1)
k∑

l=1

Bk,k−l+1 (φ•) θ
l,

involving the ‘reversed’ Bell sequence Bk,k−l+1 (φ•) .

2.2. Discrete Gibbs-Poisson distributions arising from Zθ (x). Let now ξ ∈
N0 := {0, 1, 2, ...} be a discrete random variable whose probability generating (pgf)
is given by:

Φ (u) := E
[
uξ
]

=
Zθ (xu)

Zθ (x)
, |u| ≤ 1.

Since

(11) E
[
uξ
]

= e−θφ(x)(1−φ(xu)
φ(x) ),

ξ is in the compound Poisson class (as a Poisson sum of independent and identically
distributed, say iid, jumps), hence infinitely divisible. The jumps’ height law is given

by its pgf E
[
uδ
]

= φ(xu)
φ(x) , where δ ∈ N := {1, 2, ...} is one of these jumps. Note that

both E [δ] = xφ
′(x)
φ(x) and E [ξ] = θφ (x)E [δ] = θxφ′ (x) are finite when |x| < x0.

Clearly

P (δ = m) =
φmx

m

φ (x) ·m!
, m ≥ 1 and

P (ξ = k) =
σk (θ)xk

Zθ (x) · k! , k ≥ 0.
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We note that P (ξ = k) is also a Gibbs distribution with partition function Zθ (x) .
With y defined by x =: e−y, y is indeed the Legendre conjugate of µ := E (ξ).
So the parameter x in (11) can serve to adjust the mean µ of ξ. We call such
distributions for ξ Gibbs-Poisson (GP) distributions. The random variable ξ will
be used in the sequel as the typical abundance of some species in a population with
n species. Due to its compound Poisson structure, it is tacitly assumed that the
number of species is modelled as a Poisson sum of iid ‘clusters’ each with random
size distributed like δ ≥ 1.

Consider now a sequence
(
ξ
d
= ξ1, ..., ξn, ...

)
of iid Gibbs-Poisson random variables

on N0. Let ζn :=
∑n
m=1 ξm denote their partial sum. Then, because ξ is in the

compound-Poisson class due to Zθ (x)
n

= Znθ (x)

P (ζn = k) =
σk (nθ)xk

Znθ (x) · k! , k ≥ 0.

This is also a Gibbs-Poisson distribution with corresponding partition function
Znθ (x) .

Remark: One could think of starting with φ (x) := φ0 +
∑
m≥1

φm

m! x
m with φ0 ≥ 0

but because we shall deal with GP distributions whose pgfs are given by (11), φ0

plays no role in our problem.

2.3. Sampling from infinitely divisible GP distributions. Define a random
allocation scheme of k distinguishable particles or balls into n distinguishable boxes
by

Kn,k := (Kn,k (1) , ...,Kn,k (n))
d
=
(
ξ
d
= ξ1, ..., ξn | ζn = k

)
,

so that Kn,k (m) counts the number of particles in box m, m = 1, ..., n in a
k−sample. Defining Kn,k from n iid ξ’s conditioned on summing to k, we get
the generalized allocation scheme defined by Kolchin, (see [33]). When the ξ’s are
in addition GP distributed, we call this model sampling from GP distributions.

For such random allocation models, each ξm may be viewed as the theoretical abun-
dance of species m = 1, ..., n (the mth species size). In this context, the random
allocation scheme of k balls into n boxes accounts equivalently for a k−sampling
process designed to model a random pick from ξn := (ξ1, ..., ξn) coming out from
some measurement campaign which counts the number of times each species is be-
ing encountered, proportional to species abundances.

Remark: Since E [ξ] = Φ′ (1) = θxφ′ (x) , θ > 0 and x ∈ (0, x0), we could adjust
the mean µ of ξ so that E [ξ] = µ. Then we would have the relation µ/θ = xφ′ (x)
(Legendre conjugation of x and µ) from which, by Lagrange inversion formula, an
expression of x = x (µ/θ) would follow. However, as we shall see, the actual value
of the mean µ does not really matter after the sampling process.
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Taking now into account the conditioning on the sample size in the definition of
Kn,k’s law, with kn := (k1, ..., kn) ≥ 0 summing to k

(12) P (Kn,k = kn) =
P (ξ1 = k1, ..., ξn = kn)

P (ζn = k)
=

1

σk (nθ)

(
k

k1...kn

) n∏

m=1

σkm
(θ) ,

this (Maxwell-Boltzmann) joint law being independent of x and so of the mean µ
of the ξ’s. In other words, the joint probability generating function of Kn,k reads
(|um| ≤ 1; m = 1, ..., n):

(13) E

[
n∏

m=1

u
Kn,k(m)
m

]
=

1

σk (nθ)

∑

|kn|:=k1+...+kn=k

(
k

k1...kn

) n∏

m=1

σkm
(θ)ukm

m .

From (12), wkm
(θ) := σkm

(θ) /km! is seen to be the Boltzmann weight of box m
with ekm

(θ) := − log (σkm
(θ) /km!) being the energy required to put km balls into

box number m. More precisely, for our random allocation GP model of particles
(13) and from (5), the price to pay for having the lth particle, l ∈ {1, ..., km} ,
in box m simply is l and this event is assigned the weight Bkm,l (φ•) /km!. From
this, one may view θ as a box fugacity parameter which, under our assumptions,
is here common to all boxes (or species). Due to σkm

(θ) being a polynomial in
θ with positive coefficients, the energy ekm

(θ) is a decreasing function of θ and
one may as well interpret θ as some temperature of the boxes (maybe through the
monotone transformation θ ↔ e−1/T ). Note that when θ approaches 0, the energy
ekm

(θ) ∼ − log θ tends to +∞ : because the price to pay to put any number of
particles into a box is extremely high, the optimal strategy is to put them all into
a single box. One therefore expects that, as θ gets very small, the vector Kn,k

gets very skewed (most balls into a single box), that is, completely opposite to the
balanced multinomial

(
k; 1

n , ...,
1
n

)
situation

P (Kn,k = kn) =
k!∏n

m=1 km!
n−k, |kn| = k,

which is obtained for θ → ∞, as a result of σkm
(θ) ∼ (φ1θ)

km . In the latter bal-
anced case, the most probable occupancy state is the centre (k/n, ..., k/n) . As a
conclusion, smaller the values of θ, the more likely it is that the occupancy numbers
Kn,k (m) are disparate.

From (12), the random vector-count Kn,k has exchangeable distribution (invari-
ance under any permutation of the boxes numbers). But obviously, in the ordered
version K(n),k of the box occupancies Kn,k, say with K(n),k (1) ≥ ... ≥ K(n),k (n) ,
the boxes are not equally filled.

- Let us now compute the distribution of one of its typical component, say Kn,k (1).
With l ∈ {0, ..., k}, we get

P (Kn,k (1) = l) = P (ξ1 = l)

[
uk−l

]
Φ (u)

n−1

[uk] Φ (u)
n =

σl (θ)x
l

l!

[
uk−l

]
Zθ (xu)

n−1

[uk]Zθ (xu)
n =

(
k

l

)
σl (θ)σk−l ((n− 1) θ)

σk (nθ)
.
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- Proceeding similarly, with l ∈ {0, ..., k} , we would obtain the law of the partial
sums Kn,k (1) + ...+Kn,k (m), m < n, as

P (Kn,k (1) + ...+Kn,k (m) = l) =

(
k

l

)
σl (mθ)σk−l ((n−m) θ)

σk (nθ)
.

As required,
∑k
l=0 P (Kn,k (1) + ...+Kn,k (m) = l) = 1, as a result of σk (θ) being

a convolution sequence of polynomials, from (6).

- Finally, define {k}l := k (k − 1) ... (k − l + 1) with {k}0 := 1 and let us now
consider the falling factorial moments of Kn,k.

Fix ln := (l1, ..., ln) ≥ 0 summing to l ≤ k. We have

E

[
n∏

m=1

{Kn,k (m)}lm

]
=

n∏

m=1

lm!

[
vk
]∏n

m=1

[
vlmm
]
Zθ (xv (vm + 1))

[vk]Znθ (xv)
.

Since lm!
[
vlmm
]
Zθ (xv (vm + 1)) =

∑
km≥lm

σkm (θ)·(xv)km

(km−lm)! , with kn summing to |kn| =

k, we get

(14) E

[
n∏

m=1

{Kn,k (m)}lm

]
=

∑
kn≥ln

∏n
m=1 σkm

(θ) / (km − lm)!

σk (nθ) /k!
.

These combinatorial quantities arise in the following resampling problem:

Subampling without replacement from Kn,n. Suppose Kn,n (m), m = 1, ..., n
are the random box occupancies of some sample with size exactly equal to the
number n of boxes, generated by some compound-Poisson ξn. So there are at
most n boxes filled by a singleton as a result of

∑n
m=1Kn,n (m) = n. Let p ≤

k ≤ n. We are interested in the event that after a random k−subsampling without
replacement from Kn,n, balls are reassigned at random into boxes so as to end up

in a new occupancy K′
n,k :=

(
K ′
n,k (q) ; q = 1, ..., p

)
where only Πn,k = p boxes

(labeled in arbitrary order) are being filled. So K′
n,k obeys

∑p
q=1K

′
n,k (q) = k and

K ′
n,k (q) ≥ 1. Then, with (k1, ..., kp) ≥ 1 summing to k, the sampling without

replacement strategy yields:

P
(
K ′
n,k (1) = k1, ..,K

′
n,k (p) = kp; Πn,k = p

)
=

(
n

p

)(
k

k1..kp

)E
(∏p

q=1 {Kn,n (q)}kq

)

{n}k

=

(
n
p

)
(
n
k

)E
p∏

q=1

(
Kn,n (q)

kq

)
.

Summing over (k1, ..., kp) ≥ 1

P (Πn,k = p) =

(
n
p

)

{n}k

∗∑

k1+...+kp=k

(
k

k1...kp

)
E

(
p∏

q=1

{Kn,n (q)}kq

)

is the probability that in a k−subsampling without replacement from Kn,n exactly
p ≤ k ≤ n boxes will be filled. Using (14), with kp = (k1, ..., kp) ≥ 1 satisfying
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|kp| = k, we have

E

[
p∏

q=1

{Kn,n (q)}kq

]
=

∑
lp≥0

∏p
q=1 σkq+lq (θ) /lq!

σn (nθ) /n!

and the full expression of the probabilities P (Πn,k = p) can be obtained in terms
of the original weights wk (θ) = σk (θ) /k!.

These questions arise in the discrete theory of compound-Poisson coalescent pro-
cesses where Kn,n is the random reproduction law of some Markov branching pro-
cess preserving the total number n of individuals over the subsequent generations,
[28]. The (m, l) entry of the transition matrix of this Markov process on the state-
space {0, ..., n} is

P (Kn,n (1) + ...+Kn,n (m) = l) =

(
n

l

)
σl (mθ)σn−l ((n−m) θ)

σn (nθ)
, m, l ∈ {0, ..., n} ,

looking at the descent of all size−m subsample of the full population with size n.
Clearly, the states {0, n} are both absorbing.

Looking at this process backward in time, individuals are seen to merge, giving rise
to the ancestral process where individuals are identified if they share a common
ancestor one generation backward in time.

The quantity P
(
K ′
n,k (1) = k1, ...,K

′
n,k (p) = kp; Πn,k = p

)
is then the probability

that a one-step back (k1, ..., kp) to p merger for a subsample of size k occurs in the

ancestral process. The lower-triangular stochastic matrix Q
(n)
k,p := P (Πn,k = p) is

the transition matrix of this pure death Markov process on {0, ..., n}.

Number of filled boxes in Kn,k: Let Pn,k :=
∑n
m=1 I (Kn,k (m) > 0) count the

number of non empty boxes in the sampling process from ξn. With 1 ≤ p ≤ n ∧ k,
the probability that there are only Pn,k = p ∈ [n] visited boxes in the sampling
process, the n − p remaining ones remaining empty, is easily obtained as follows:
Using exchangeability of Kn,k, with kp := (k1, ..., kp) ≥ 1 summing to k, using
(13),

(15) P (Kn,k (1) = k1, ...,Kn,k (p) = kp;Pn,k = p) =

(
n

p

)
k!

σk (nθ)

p∏

q=1

σkq
(θ)

kq!

is the joint probability that there are p ∈ [n] non-empty boxes and that (k1, ..., kp)
are the respective occupancies of the p filled boxes (labeled in arbitrary order).
Note that

P
(n)
k,p := P (Pn,k = p) =

(
n

p

)
k!

σk (nθ)

∗∑

k1+...+kp=k

p∏

q=1

σkq
(θ)

kq!

is the probability that in a k−sample from n species with abundance ξn, the ex-

act number of distinct visited species is p. In particular, P
(n)
k,1 := n σk(θ)

σk(nθ) is the

probability that in this k−sample, only one species is discovered (whichever it is).

The expression (15) turns out to be the canonical Gibbs distribution on finite size-n
partitions of k into p distinct clusters (the filled boxes), derived from the weight
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sequence φ•. In this language, the normalizing quantity σk (nθ) /k! is called the
canonical Gibbs partition function.

Now, from (15), with {n}p := n!/ (n− p)!

(16) P (Pn,k = p) =
{n}p
σk (nθ)

Bk,p (σ• (θ)) , p ∈ {1, ..., n ∧ k} ,

where

(17) Bk,p (σ• (θ)) :=
k!

p!

∗∑
∑ p

q=1 kq=k

p∏

q=1

σkq
(θ)

kq!
=
k!

p!

[
xk
]
(Zθ (x) − 1)

p

is now a Bell polynomial in the polynomial variables σ• (θ) := (σ1 (θ) , σ2 (θ) , ...) .

Conditioning the canonical Gibbs distribution on the number of filled cells being
equal to p yields the corresponding micro-canonical distribution as

P (Kn,k (1) = k1, ...,Kn,k (p) = kp | Pn,k = p)

=
k!

p!

1

Bk,p (σ• (θ))

p∏

q=1

σkq
(θ)

kq!
.

The new normalizing constant Bk,p (σ• (θ)) /k! may be called the microcanonical
partition function.

The microcanonical distribution is independent of n. So, for all models studied here,
the map P → P (Pn,k = P ) is a sufficient statistics in the estimation of n problem
from occupancy data (assuming θ known).

Let us now give some additional details on the distribution of Pn,k.

Proposition 1. (a) Assume k ≥ n. The probability generating function of Pn,k is
given by

(18) E
(
uPn,k

)
=
n−1∑

p=0

(
n

p

)
un−p (1 − u)

p σk ((n− p) θ)

σk (nθ)
,

with:

(19) P (Pn,k = p) =

(
n

p

) p∑

q=1

(−1)
p−q

(
p

q

)
σk (qθ)

σk (nθ)
, p ∈ {1, ..., n} .

In addition,

E (Pn,k) = n

(
1 − σk ((n− 1) θ)

σk (nθ)

)

σ2 (Pn,k) = n

(
σk ((n− 1) θ)

σk (nθ)
+ (n− 1)

σk ((n− 2) θ)

σk (nθ)
− n

(
σk ((n− 1) θ)

σk (nθ)

)2
)

(b) If k < n, (18) and (19) still hold, but now with a modified support for Pn,ks
law:

(20) P (Pn,k = p) =

(
n

p

) p∑

q=1

(−1)
p−q

(
p

q

)
σk (qθ)

σk (nθ)
, p ∈ {1, ..., k} .
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Proof : (a) This follows from Bk,p (σ• (θ)) = k!
p!

[
xk
]
(Zθ (x) − 1)

p
. Indeed, from

(16)

E
(
uPn,k

)
=

n∑

p=0

up {n}p
Bk,p (σ• (θ))

σk (nθ)
=

k!

σk (nθ)

n∑

p=0

(
n

p

)[
xk
]
(u (Zθ (x) − 1))

p

=
k!

σk (nθ)

[
xk
]
(1 − u+ uZθ (x))

n
=

k!

σk (nθ)

n∑

p=0

(
n

p

)
un−p (1 − u)

p [
xk
]
Zθ (x)

n−p

=
n−1∑

p=0

(
n

p

)
un−p (1 − u)

p σk ((n− p) θ)

σk (nθ)

The alternating sum expression of P (Pn,k = p) follows from extracting [up]E
(
uPn,k

)

and the mean and variance of Pn,k from the evaluations of the first and second
derivatives of E

(
uPn,k

)
with respect to u at u = 1.

(b) follows from similar considerations. Indeed, in principle, we should start with

E
(
uPn,k

)
=
∑k
p=0 u

p {n}p
Bk,p(σ•(θ))
σk(nθ) where the p−sum now stops at p = k = k∧n.

But the upper bound of this p−sum can be extended to n because Bk,p (σ• (θ)) = 0
if p > k. ⋄

In (16), the new combinatorial coefficients Bk,p (σ• (θ)) come into the game. They
are given by

Corollary 2. With Sl,p the second kind Stirling numbers,

Bk,p (σ• (θ)) =
k∑

l=p

Bk,l (φ•)Sl,pθ
l = θp ·

k−p∑

l=0

Bk,p+l (φ•)Sl+p,pθ
l,

showing that Bk,p (σ• (θ)) is itself a polynomial in θ with larger (smaller) degree k
(respectively p).

Proof : From (16) and (19), we have

Bk,p (σ• (θ)) =
1

p!

p∑

q=1

(−1)
p−q

(
p

q

)
σk (qθ) (1).

Recalling σk (θ) =
∑k
l=1 θ

lBk,l (φ•) and observing Sl,p =
∑p
q=1 (−1)

p−q (p
q

)
ql gives

the result after reversing the sums. This result actually is in accordance with the Faa
di Bruno formula (see [10]) giving the Taylor coefficients of the composition function

g of the two analytic functions g (x) := eλ,θ ◦ φ (x) where eλ,θ (x) := eλ(e
θx−1) as

Sk (λ) =
k∑

l=1

el (θ, λ)Bk,l (φ•) ,

with el (θ, λ) = θl
∑l
p=1 λ

pSl,p the lth Taylor coefficient of eλ,θ (x) . Clearly indeed,

g (x) = eλ(Zθ(x)−1) = 1 +
∑

k≥1

xk

k!
Sk (λ) =: 1 +

∑

k≥1

xk

k!

(
k∑

p=1

λpBk,p (σ• (θ))

)

1This identity was derived in a different way in [43].
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and the λp-coefficient of Sk (λ) is exactly
∑k
l=pBk,l (φ•)Sl,pθ

l. ⋄

2.4. The estimation of n problem. Let us now to discuss the important ques-
tion of estimating the unknown number of species n based on the data k and P
(assuming θ is known), recalling P (Pn,k = P ) is a sufficient statistics in this esti-
mation problem. Our forthcoming statement holds for a class of φ which is such
that the degree−k polynomial σk (θ) ∈ ZR−(has only real non-positive zeroes).
We recall that σk (θ) ∈ ZR− iff the matrix M with entries Mi,j = Bk,i−j (φ•) ,
i, j = 0, ..., k, with Bk,l (φ•) = 0 if l /∈ {l : Bk,l (φ•) > 0} is totally positive of order
k (with l = 1, ..., k, each l × l minor of M has a nonnegative determinant), [39].
Therefore, there is no simple way to check whether or not σk (θ) ∈ ZR−.

We also recall here, [39], that if and only if the matrix M = Mi,j would be such that
all its 2 × 2 minors have a nonnegative determinant, then the sequence Bk,l (φ•),
l = 1, ..., k (with no internal zeros) is l−log-concave (the l−sequence Bk,l (φ•) is a
Pòlya frequency sequence of order 2). If this is the case, we shall say σk (θ) ∈ PF2.

Proposition 3. Suppose σk (θ) ∈ ZR−. Then the log-likelihood log P (Pn,k = p)
attains its maximum in n at least once and at most twice in which latter case, the
two values are adjacent integers. This leads to the maximum likelihood estimator n̂
of n characterized by:

n̂ = sup

{
n > 0 :

P (Pn,k = P )

P (Pn−1,k = P )
> 1

}
,

where this last quantity verifies n̂ = ⌈P ⌉ , the smallest integer ≥ P , when the set of

integers
{
n > 0 :

P(Pn,k=P )
P(Pn−1,k=P ) > 1

}
is empty.

When this is not the case and for large n, an approximation of the estimator n̂ of
n is given by the implicit equation

P = n̂

(
1 − σk ((n̂− 1) θ)

σk (n̂θ)

)
.

Proof : We extend (16) to n a real variable, so we can differentiate log P (Pn,k = p)

with respect to n > p. In this domain, we have ∂n log {n}p =
∑p−1
q=0

1
n−q , and so we

get

∂n log P (Pn,k = p) =

p−1∑

q=0

1

n− q
− ∂n log σk (nθ) .

Suppose the polynomial σk (θ) ∈ ZR− has zeroes −rl,k where: 0 = r1,k ≤ ... ≤ rk,k.

Then σk (nθ) =
∏k
l=1 (nθ + rl,k) and ∂n log σk (nθ) =

∑k
l=1 (n+ rl,k/θ)

−1
, together

with ∂2
n log σk (nθ) = −∑k

l=1 (n+ rl,k/θ)
−2

< 0.

If
∑p−1
q=0

1
n−q −

∑k
l=1 (n+ rl,k/θ)

−1 (∗)
= 0 , then

∂2
n log P (Pn,k = p) = −

p−1∑

q=0

1

(n− q)
2 +

k∑

l=1

(n+ rl,k/θ)
−2

< 0,

showing that the likelihood is log-concave around the critical points. Hence, if n̂
solves (∗) it is a local maximum and there is no local minimum. The maximum
likelihood estimator of real n is thus unique.
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Coming back to n integer, we deduce that the maximum likelihood estimator of

n is the integer sup
{
n > 0 :

P(Pn,k=P )
P(Pn−1,k=P ) > 1

}
. When n is large, it may thus be

approximated by
P(Pn̂,k=P)

P(Pn̂−1,k=P)
= 1, leading to

{n̂}P σk ((n̂− 1) θ)

{n̂− 1}P σk (n̂θ)
= 1 or P = n̂

(
1 − σk ((n̂− 1) θ)

σk (n̂θ)

)
. ⋄

An alternative estimator. Let us now come to an alternative estimator of n (see
[29] for a similar approach in the particular context of the Dirichlet model given
by φ (x) = −α log (1 − x)). Suppose that for all θ > 0 and k ≥ 1, Bk,p (σ• (θ)) is a
log-concave p−sequence (equivalently, each degree-k λ−polynomial Sk (λ) ∈ PF2).
Then, by Darroch Theorem [12], Bk,p (σ• (θ)) is p−unimodal or bimodal at two
consecutive p. Because the p−sequence {n}p is also log-concave, {n}pBk,p (σ• (θ))

is itself p−log-concave. For each n therefore, there is a unique p̃ defined as p̃ =

sup
{
p > 0 :

P(Pn,k=p)
P(Pn,k=p−1) > 1

}
. Inverting the map n → p̃ (n), given p = P , there

exists a unique ñ, approximately characterized by
P(Pñ,k=P−1)
P(Pñ,k=P)

= 1, which can

serve as an alternative estimator of n given the data (k, P ) . From (16), it is thus
given by

ñ = P +
Bk,P−1 (σ• (θ))

Bk,P (σ• (θ))
.

If k ≥ n, taking the expectation with respect to P, we have

E (ñ) = E (P ) +
n∑

p=1

Bk,p−1 (σ• (θ))

Bk,p (σ• (θ))

{n}p
σk (nθ)

Bk,p (σ• (θ))

= E (P ) +
n∑

p=2

{n}pBk,p−1 (φ•)

σk (nθ)
= E (P ) +

n∑

p=2

(n− (p− 1))
{n}p−1Bk,p−1 (φ•)

σk (nθ)

= E (P ) + n

(
1 − {n}nBk,n (φ•)

σk (nθ)

)
−
(
E (P ) − n

{n}nBk,n (φ•)

σk (nθ)

)
= n.

So, when k ≥ n, ñ is an unbiased estimator of n. The Fisher information of n is

I (n) = −E
(
∂2
n log P (Pn,k = P )

)
= E

(
P−1∑

q=0

1

(n− q)
2

)
−

k∑

l=1

(n+ rl,k/θ)
−2

> 0,

giving the Cramér-Rao bound for the variance: σ2 (ñ) ≥ I (n)
−1

.

2.5. Frequency of frequencies. This suggests to look at the frequency of fre-
quencies distribution problem. For i = 0, ..., k, let now

(21) An,k (i) =
n∑

m=1

I (Kn,k (m) = i)

count the number of boxes visited i times by the k−sample, with An,k (0) = n−Pn,k,
the number of empty boxes.

Let (a1, a2, ...) be non-negative integers satisfying
∑
i≥1 ai = p and

∑
i≥1 iai = k.
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It follows from (12) that

(22) P (An,k (1) = a1, An,k (2) = a2, ...) =
{n}p · k!
σk (nθ)

∏

i≥1

{(
σi (θ)

i!

)ai 1

ai!

}
.

Taking An,k (0) into account, let (a0, a1, ..., ak) be non-negative integers satisfying∑k
i=0 ai = n and

∑k
i=1 iai = k. Then

P (An,k (0) = a0, An,k (1) = a1, ..., An,k (k) = ak) =
n! · k!
σk (nθ)

k∏

i=0

{(
σi (θ)

i!

)ai 1

ai!

}
.

Note from this that, with
∑k
i=1 iai = k and

∑k
1 ai ≤ n, the normalization condition

gives the identity

(23)
∑

a1,...,ak

k!(
n−∑k

1 ai

)
!

k∏

i=1

{(
σi (θ)

i!

)ai 1

ai!

}
=
σk (nθ)

n!
.

From this, we get:

Proposition 4. If p = n− a0, the joint distribution of (An,k (1) , ..., An,k (k)) and
Pn,k reads
(24)

P (An,k (1) = a1, ..., An,k (k) = ak;Pn,k = p) =
{n}p · k!
σk (nθ)

k∏

i=1

{(
σi (θ)

i!

)ai 1

ai!

}
.

Let us compute the falling factorial moments of An,k (i), i = 1, ..., k.

Proposition 5. Let ri, i = 1, ..., k be non-negative integers satisfying
∑k

1 ri = r ≤
n and

∑k
1 iri = κ ≤ k. We have

(25) E

[
k∏

i=1

{An,k (i)}ri

]
= {n}r {k}κ

σk−κ ((n− r) θ)

σk (nθ)

k∏

i=1

(
σi (θ)

i!

)ri

.

Proof:

E

[
k∏

i=1

{An,k (i)}ri

]
=

n! · k!
σk (nθ)

∑

a1,...,ak

1(
n−∑k

1 ai

)
!

k∏

i=1

{(
σi (θ)

i!

)ai 1

(ai − ri)!

}

=
n! · k!
σk (nθ)

k∏

i=1

(
σi (θ)

i!

)ri ∑

a1,...,ak

1(
n−∑k

1 ai

)
!

k∏

i=1

{(
σi (θ)

i!

)ai−ri 1

(ai − ri)!

}
.

The normalization condition (23) gives:

∑

a1,...,ak

1(
n−

∑k
1 ai

)
!

k∏

i=1

{(
σi (θ)

i!

)ai−ri 1

(ai − ri)!

}
=

σk−κ ((n− r) θ)

(n− r)! · (k − κ)!
.

Finally, we get

E

[
k∏

i=1

{An,k (i)}ri

]
= {n}r {k}κ

σk−κ ((n− r) θ)

σk (nθ)

k∏

i=1

(
σi (θ)

i!

)ri

. ⋄
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In particular, if all ri = 0, except for one i for which ri = 1 (r = 1, κ = i), then

(26) E [An,k (i)] = n {k}i
σk−i ((n− 1) θ)

σk (nθ)

σi (θ)

i!
= nP (Kn,k (1) = i) .

This shows that the expected number of cells visited i times is n times the prob-
ability that there are i visits to (say) cell one. In fact, we have the more general
statement:

Corollary 6. If ri = # {m ∈ {1, ..., n} : km = i} , then

E

[
k∏

i=1

{An,k (i)}ri

]
= n!P (Kn,k (1) = k1, ...,Kn,k (n) = kn) ,

so that the joint falling factorial moments of the As can directly be obtained in
terms of the joint distribution of the Ks.

Proof: With the ri as stated, using a sampling without replacement argument

P (Kn,k (1) = k1, ...,Kn,k (n) = kn | An,k (1) , ..., An,k (k)) =

1

n!

k∏

i=1

{An,k (i)}ri
.

Averaging over the As gives the announced result. ⋄

2.6. The ∗−limit of sampling distributions (the infinitely many species
abundance model). Theoretical biologists work in a framework of a population
with infinitely many species, with the more frequent one occurring with abundance
ξ(1), second more frequent with abundance ξ(2), ... with ξ(1) ≥ ξ(2) ≥... Sampling

from
(
ξ(1), ξ(2), ...

)
turns out to be a challenging problem. This requires the intro-

duction of a model with infinitely many species (not only n) with ordered abundance
ξ(m), m ≥ 1. For such abundance models, a k−sample will represent the met in-
dividuals of various species when sampling from a population with infinitely many
species, [8]. One can think of obtaining such models while considering the limit
n→ ∞ and θ → 0 in the preceding model with n species. Indeed, as we saw, small
values of the temperature θ > 0 was an indication on how disparate the abundance
numbers ξn were. But it may happen that some (necessarily few) of the (ξm)

n
m=1

are not so small with the hope that the ranked ξ(m)s would have a non-degenerate
limit as n→ ∞, θ → 0 while nθ → γ > 0. We call such a limit the ∗−limit.

It turns out that for the class of Gibbs-Poisson allocation models considered in
this Section, the ∗−limit always makes sense. This illustrates that limiting models
should come down from some finitary counterpart, [21]. We first verify our claim
intuitively.

Observing indeed that

σk (θ) ∼θ↓0 θBk,1 (φ•) = θφk and Bk,p (σ• (θ)) ∼θ↓0 θpBk,p (φ•)

and recalling {n}p ∼n→∞ np, we easily get:
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Proposition 7. From (15), with (k1, ..., kp) ≥ 1 summing to k and p ≤ k

P (Kn,k (1) = k1, ...,Kn,k (p) = kp;Pn,k = p) →∗

(27) P∗ (Kk (1) = k1, ...,Kk (p) = kp;Pk = p) =
k!

p!

γp

σk (γ)

p∏

q=1

φkq

kq!

and

(28) P (Pn,k = p) →∗ P∗ (Pk = p) =
γp

σk (γ)
Bk,p (φ•) .

Equivalently, the limiting probability generating function of Pk also reads

(29) E∗
(
uPk
)

=
σk (γu)

σk (γ)
,

with mean E∗ (Pk) = γ
σ′

k(γ)
σk(γ) . From this,

(30) P∗ (Kk (1) = k1, ...,Kk (p) = kp | Pk = p) =
k!

p!

1

Bk,p (φ•)

p∏

q=1

φkq

kq!

which is independent of γ.

Further, from (22), with (a1, a2, ...) satisfying
∑
i≥1 iai = k and

∑
i≥1 ai = p

P (An,k (1) = a1, An,k (2) = a2, ...) →∗

(31) P∗ (Ak (1) = a1, Ak (2) = a2, ...) =
γpk!

σk (γ)

k∏

i=1

(φi/i!)
ai

ai!
.

Equivalently, from (24)

P (An,k (1) = a1, ..., An,k (k) = ak;Pn,k = p) →∗

(32) P∗ (Ak (1) = a1, ..., Ak (k) = ak;Pk = p) =
γpk!

σk (γ)

k∏

i=1

(φi/i!)
ai

ai!
.

and

(33) P∗ (Ak (1) = a1, ..., Ak (k) = ak | Pk = p) =
k!

Bk,p (φ•)

k∏

i=1

(φi/i!)
ai

ai!
,

which is also independent of γ.

(27) or (32) are the canonical Gibbs distributions on partitions of k into p distinct
clusters, derived from the weight sequence φ•. In this context, the normalizing
quantity σk (γ) /k! is called the canonical Gibbs partition polynomial(2). Condi-
tioning the canonical Gibbs distribution on the number of filled boxes being equal
to p yields the corresponding micro-canonical distributions (30) or (33). The new
normalizing constant Bk,p (φ•) /k! is called the microcanonical partition function.

Let us finally compute the falling factorial moments of Ak (i), i = 1, ..., k.

2The occupancy distribution (32) also appears in Ecology in a species abundance model occur-
ring in the Hubbell’s unified neutral theory of biodiversity. In this context, γ is the fundamental
biodiversity number, [26].
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Proposition 8. Let ri, i = 1, ..., k be non-negative integers satisfying
∑k

1 ri = r

and
∑k

1 iri = κ ≤ k. We have

(34) E∗

[
k∏

i=1

{Ak (i)}ri

]
= γr {k}κ

σk−κ (γ)

σk (γ)

k∏

i=1

(
φi
i!

)ri

.

Proof: This follows straightforwardly from Proposition 5 while taking the ∗−limit
and using σi (θ) ∼ θφi for small θ. This formula is a generalization of the Watterson
expression [42] obtained in the special Ewens context when φ (x) = − log (1 − x),
with φi = (i− 1)! and σk (γ) = Γ (γ + k) /Γ (γ) =: (γ)k ; see Section 3 for a special
account on this model. From (34), we easily get a closed-form expression for the
mean E∗ (Ak (i)), i ≤ k, the variance σ∗2 (Ak (i)), for all i with 2i ≤ k and the
covariance Cov∗ (Ak (i1) , Ak (i2)) for all i1 6= i2, i1 + i2 ≤ k. ⋄

We observed that (30) or (33) were independent of γ,meaning that P → P∗ (Pk = P )
is a sufficient statistics in the estimation of γ problem. Let us now briefly investigate
this problem.

2.7. The estimation of γ problem. We wish now to discuss the question of
estimating γ from the data k and P. From (28)

∂γ log P∗ (Pk = p) = p/γ − ∂γ log σk (γ) .

Suppose the polynomial σk (γ) ∈ ZR− with zeroes −rl,k where: 0 = r1,k ≤ ... ≤
rk,k. Then σk (γ) =

∏k
l=1 (γ + rl,k) and ∂γ log σk (γ) =

∑k
l=1 (γ + rl,k)

−1
, together

with ∂2
γ log σk (γ) = −∑k

l=1 (γ + rl,k)
−2

< 0 (γ → σk (γ) is log-concave).

If p/γ −∑k
l=1 (γ + rl,k)

−1 (∗)
= 0 , then

∂2
γ log P∗ (Pk = p) = −p/γ2 +

k∑

l=1

(γ + rl,k)
−2

< 0,

showing that γ̂ solving (∗) is a local maximum and that log P∗ (Pk = p) has no
local minima. So γ̂ is the maximum likelihood estimator of γ. Even though σk (γ)
(1/σk (γ)) is a log-concave (respectively log-convex) function of γ, the log-likelihood
is a log-concave function of γ leading to the existence of γ̂. To summarize, there
exists a maximum likelihood estimator γ̂ of γ which is characterized by the implicit
equation:

P = γ̂
σ′
k (γ̂)

σk (γ̂)
.

Let us now come to another estimator of γ. If σk (γ) ∈ ZR−, then by Newton’s
inequality ([22], p.52)

Bk,p (φ•)
2 ≥ Bk,p−1 (φ•)Bk,p+1 (φ•)

(
1 +

1

p

)(
1 +

1

k − p

)
> Bk,p−1 (φ•)Bk,p+1 (φ•) .

So Bk,p (φ•) is p−log-concave and by Darroch Theorem, Bk,p (φ•) is p−unimodal
or bimodal at two consecutive p, with mode (maybe up to one unit) equal to
σ′
k (1) /σk (1). Because the p−sequence γp is also log-concave (and log-convex),
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γpBk,p (φ•) is itself p−log-concave and therefore there exists a unique γ̃ such that
P∗(Pk=p)

P∗(Pk=p−1) = 1. It is thus defined by

γpBk,P (φ•)

γp−1Bk,P−1 (φ•)
= 1, or γ̃ =

Bk,P−1 (φ•)

Bk,P (φ•)
.

This γ̃ is an alternative explicit estimator of γ based on the data k and P.

Taking the expectation with respect to P, we have

E∗ (γ̃) =
k∑

p=1

Bk,p−1 (φ•)

Bk,p (φ•)

γp

σk (γ)
Bk,p (φ•) = γ

k∑

p=2

Bk,p−1 (φ•)
γp−1

σk (γ)

= γ
k−1∑

p=1

Bk,p (φ•)
γp

σk (γ)
= γ

(
1 − (φ1γ)

k

σk (γ)

)
< γ.

This shows that γ̃ is not an unbiased estimator of γ.

Remark: The estimator γ̃ only requires that the sequence Bk,p (φ•) be p−log-
concave and, although sufficient, it is therefore not necessary that σk (γ) ∈ ZR−;
the sequence Bk,p (φ•) only needs to be a Pòlya frequency sequence of order 2 (so
σk (γ) ∈ PF2) for γ̃ to be well-defined. In this spirit, we draw the attention on a
result in [3], stating that if the non-null roots of σk (γ) all lie in the angular cone
φ ∈ (2π/3, 4π/3) of the complex plane, then σk (γ) has p−log-concave coefficients.

3. Sampling from Dirichlet partition: a special case

We now briefly investigate one particular model of species abundance ξn.

• Sampling from a binomial negative sample.

Assume φ (x) = − log (1 − x) , with φm = (m− 1)! and let Zθ (x) = (1 − x)
−θ

.
Thus, with (θ)k := θ (θ + 1) ... (θ + k − 1) denoting the (rising factorial) Pochham-
mer symbol, σk (θ) = (θ)k and ξ is a binomial negative random variable with
parameters θ and 1 − x. Note that σk (θ) ∈ ZR−. From (11), the jumps’ height δ
of ξ is seen to obey a logarithmic series distribution.

When sampling from this discrete species-abundance model ξn = (ξ1, ..., ξn), for
instance (12) takes the particular form:

(35) P (Kn,k = kn) =
P (ξ1 = k1, ..., ξn = kn)

P (ζn = k)
=

k!

(nθ)k

n∏

m=1

(θ)km

km!
.

Substituting (θ)k to σk (θ) in (15) gives its particular expression.

Because σk+1 (θ) = (k + θ)σk (θ) , it follows from (3) and (4) that with Sk (λ) =

k!
[
xk
]
eλ((1−x)

−θ−1), Sk+1 (λ) = (θλ+ k)Sk (λ) + θλS′
k (λ) . Thus, the Bell coef-

ficients Bk,p (σ• (θ)) = Bk,p ((θ)•) = [λp]Sk (λ) , appearing in (16), obey a simple
3−term recurrence [14], [27]

Bk+1,p ((θ)•) = θBk,p−1 ((θ)•) + (pθ + k)Bk,p ((θ)•) ,
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which should be considered with the boundary conditions

Bk,0 ((θ)•) = B0,p ((θ)•) = 0,

except for B0,0 ((θ)•) := 1. This observation is important because it follows from
(16), that, there exist transition probabilities

P (Pn,k+1 = p+ 1 | Pn,k = p) =
(n− p) θ

nθ + k
and

P (Pn,k+1 = p | Pn,k = p) =

∑p
r=1 (θ + kr)

nθ + k
=
pθ + k

nθ + k
.

such that,

P (Pn,k+1 = p) =
(n− p+ 1) θ

nθ + k
P (Pn,k = p− 1) +

pθ + k

nθ + k
P (Pn,k = p) .

The first transition probability gives the probability of the event that a new species
is discovered given p < n of them were discovered from a previous sample of size
k ≥ p (the so-called law of succession, [17]) in a size−n population.

Considering the sampling formulae in the ∗−limit, the expressions (30) and (33)
with φi = (i− 1)! and Bk,p (φ•) = sk,p (the absolute first kind Stirling numbers)
are the Ewens sampling formulae [18]. Due to σk+1 (θ) = (k + θ)σk (θ) , the Bell
coefficients Bk,p (φ•) = Bk,p ((• − 1)!) also obey a 3−term recurrence

Bk+1,p ((• − 1)!) = Bk,p−1 ((• − 1)!) + kBk,p ((• − 1)!) .

• Sampling from a Dirichlet partition of unity in the continuum.

It turns out that this sampling formula can be obtained while following a different
path for the sampling procedure:

Consider indeed the following random partition into n fragments of the unit inter-
val. Let θ > 0 be some parameter and assume that the random fragments sizes
Sn (θ) := (S1,θ, ..., Sn,θ) (with

∑n
m=1 Sm,θ = 1) are distributed according to the

(exchangeable) Dirichlet Dn (θ) density function on the n−simplex, that is to say

(36) fS1,θ,...,Sn,θ
(s1, ..., sn) =

Γ (nθ)

Γ (θ)
n

n∏

m=1

sθ−1
m · δ(∑

n
m=1 sm−1).

Alternatively, with (θ)q := Γ (θ + q) /Γ (θ) , the law of Sn (θ) is characterized by its
joint moment function

(37) E

(
n∏

m=1

Sqm

m,θ

)
=

1

(nθ)∑
n
m=1 qm

n∏

m=1

(θ)qm
.

We shall put Sn (θ)
d∼ Dn (θ) if Sn (θ) is Dirichlet distributed with parameter θ.

Sn (θ) can be obtained while considering
(
Yθ

d
= Y1,θ, ..., Yn,θ

)
, an iid random vector

with Yθ
d∼ gamma(θ) and letting Sm,θ = Ym,θ/ (Y1,θ + ...+ Yn,θ), m = 1, ..., n

(normalizing the Ym,θs by their sum). Sn (θ) accounts now for a n−species frequency
(proportion) model, but now in the continuum. We now come to the sampling
procedure from Sn (θ).
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Let (U1, ..., Uk) be k iid uniform throws on the unit interval partitioned according
to Sn (θ). Let

Kn,k := (Kn,k (1) , ...,Kn,k (n)) ≥ 0

be an integral-valued random vector which counts the number of visits to the dif-
ferent fragments of Sn (θ) in this k−sample. Hence, if Ml is the random fragment

label in which the lth trial Ul falls, Kn,k (m) :=
∑k
l=1 I (Ml = m), m = 1, ..., n.

With |kn| = k and kn := (k1, ..., kn) ≥ 0, Kn,k follows the conditional multinomial
distribution:

(38) P (Kn,k = kn | Sn (θ)) =
k!∏n

m=1 km!

n∏

m=1

Skm

m,θ.

Averaging over Sn (θ), we find

(39) P (Kn,k = kn) = EP (Kn,k = kn | Sn (θ)) =
k!

(nθ)k

n∏

m=1

(θ)km

km!
,

which is the Dirichlet-multinomial distribution, with E (Kn,k (m)) = k/n. We shall

put Kn,k
d∼ Dn,k (θ).

The sampling from Sn (θ)
d∼ Dn (θ) formula (39) coincides with the one (35) ob-

tained while sampling from a discrete species abundance model ξn with negative
binomial distributions. The ∗−limit of this Dirichlet model is known to lead to the
Ewens sampling formulae which are particular incarnation of (30) and (33) with
φi = (i− 1)! and Bk,p (φ•) = sk,p. See [31] and [32].

It is worthwhile to explore if this remarkable property (or maybe a weaker one)
propagates to sampling from other discrete species abundance model.

4. Sampling problems from a special GP class

We shall now exhibit a sub-class of GP models whose statistical properties are very
similar to the ones developed in the latter Section for the Dirichlet model.

4.1. Sampling from a special GP class. Let us first define the class of φ we
will be interested in.

The special class S.

We first recall that a function h (x) defined on some interval x ∈ (−∞, x0) is
absolutely monotone on some open interval I ⊆ (−∞, x0) if it is C∞ with h(n) (x) ≥
0 for all n ≥ 0 and x ∈ I.

We shall consider the following special class model

Definition 1. Suppose that φ (x) (with φ1 > 0 and φm ≥ 0, m ≥ 2) as from (1),
is defined (finite) on the unbounded half-domain x ∈ (−∞, x0) with 0 < x0 ≤ ∞
and that φ′ (x) is absolutely monotone for all x ∈ (−∞, x0). If this is the case, we
shall put φ ∈ S. If φ ∈ S, Zθ (x) = exp (θφ (x)) is also defined on x ∈ (−∞, x0)
and absolutely monotone there.
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• Examples of φ ∈ S are x, ex − 1 (Bell), − log (1 − x), (1 − x)
−α − 1, α > 0 and

1 − (1 − x)
α
, α ∈ (0, 1).

• Examples of φ /∈ S are polynomials with positive coefficients
∑d
l=1 clx

l (d ≥ 2),
xex, sinh (x), cosh (x)− 1 and tan (x). Although the latter φ’s can be expanded as
in (1) and all have non-negative Taylor coefficients φm (φ1 > 0), the corresponding
φ′ (x) are not absolutely monotone on (−∞, x0) although they are of course on
(0, x0).

Remarks and properties:

- If φ ∈ S, so does clearly φ̃ (x) := aφ (bx) for all a, b > 0. We can check that:

Bk,p

(
φ̃•

)
= apbkBk,p (φ•) .

- If φ1, φ2 ∈ S, then φ1 + φ2 ∈ S and the composition φ1 ◦ φ2 ∈ S. This allows
to produce a lot of new examples of φ’s in S from the ones already introduced.
For instance because φ1 = (1 − x)

−α − 1 and φ2 = 1 − (1 − x)
α

both belong to
S, would α ∈ (0, 1) , φ1 + φ2 = 2 sinh (−α log (1 − x)) belongs to S, together with

φ1 ◦ φ2 = (1 − x)
−α2

− 1 and φ2 ◦ φ1 = 1 −
(
2 − (1 − x)

−α
)α

.

- If φ1, φ2 ∈ S, the product φ := φ1 · φ2 /∈ (in the first place because φ1 = 0). The
Taylor coefficients φm of φ are

φm =
m−1∑

l=1

(
m

l

)
φ1
l φ

2
m−l =

(
φ1 ∗ φ2

)
m

, m ≥ 2

and the φm do not necessarily form a log-convex sequence, even though φ1
m, φ

2
m,

m ≥ 1, would be log-convex themselves. This is not in contradiction with the
Davenport and Pòlya theorem [13] stating that the binomial convolution of two
log-convex sequences is log-convex because the φ1, φ2 sequences here have no con-
stant terms: φ1

0 = φ2
0 = 0 (resulting in φ1 = 0). The reason why, when φ (x) ∈ S,

log-convexity of the sequences (φm)m≥1 pops in is:

Proposition 9. When φ ∈ S, the function h (x) := φ′ (−x) is completely mono-
tone on the domain x ∈ (−x0,∞) ,meaning it is C∞ with (−1)

n
h(n) (x) ≥ 0 for all

n ≥ 0 and x ∈ (−x0,∞) . So (from Bernstein theorem [5]), h (x) is the Laplace-
Stieltjes transform (LST) of some finite non-negative measure µ on [0,+∞) :
h (x) =

∫∞

0
e−xtdµ (t) . We have

h (x) =
∑

m≥0

φm+1

m!
(−x)m

and so φm+1 is the mth moment of dµ, with finite total mass φ1. By the Cauchy-

Schwarz inequality, for all m ≥ 2, φm+1φm−1 ≥ φ2
m, showing that when φ ∈ S,

(φm)m≥1 is a log-convex sequence. Upon shifting, (φm)m≥1 is the moment sequence

of some non-negative measure dπ (t) := t−1dµ (t) .

Let us now consider Zθ (−x) = eθφ(−x) =: e−θψ(x), with

ψ (x) := −φ (−x) , x > −x0.
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Proposition 10. When φ ∈ S, it holds that ψ′ (x) = h (x) =
∫∞

0
e−xtdµ (t) is

completely monotone, so Zθ (−x) = e−θψ(x) is the LST of some infinitely divisible
random variable (or process) Yθ on [0,+∞) , whose integral moments are all finite.
The function ψ is the Laplace exponent of Yθ with ψ (x) =

∫∞

0
(1 − e−xt) dπ (t) for

some positive Lévy measure dπ (t) = t−1dµ (t) , integrating 1 ∧ t [40]. Therefore,
when φ ∈ S,

Zθ (−x) = E
(
e−xYθ

)
= e−θψ(x) = 1 +

∑

k≥1

(−x)k
k!

σk (θ) ,

with (σk (θ) , k ≥ 0) being the Stieltjes moment sequence of Yθ : σk (θ) = E
(
Y kθ
)
.

Thus, when φ ∈ S, for all θ > 0, (σk (θ))k≥0 forms a k−log-convex sequence and

for all k ≥ 1, all θ > 0 : σk+1 (θ)σk−1 (θ) ≥ σk (θ)
2
.

Since E
(
e−xY n,θ

)
= e−nθψ(x), σk (nθ) is also the kth moment of the sum Y n,θ :=

Y1,θ + ...+ Yn,θ of n iid terms Ym,θ . So, σk (nθ) = E
(
Y
k

n,θ

)
= E

(
Y knθ
)
.

Note finally that taking Zθ (x) = Z1
θ (x)Z2

θ (x) where Ziθ (x) = eθφi(x) for two φi in

S, with σik (θ) defined by Ziθ (x) = 1+
∑
k≥1

xk

k! σ
i
k (θ), two k−log-convex sequences,

the sequence σk (θ) defined by Zθ (x) = 1 +
∑
k≥1

xk

k! σk (θ) obeys

σk (θ) =
k∑

l=0

(
k

l

)
σ1
l (θ)σ2

k−l (θ) =
(
σ1 (θ) ∗ σ2 (θ)

)
k
, k ≥ 0,

and is k−log-convex by Davenport and Pòlya theorem, as a binomial convolution
of two log-convex sequences.

Sampling from ξn when φ ∈ S.

Assume φ ∈ S and consider the sampling problem from ξn, where ξ is constructed
as in Section 2 from φ, but now for φ ∈ S. Note that in this case

E
(
uξ
)

= eθ[φ(xu)−φ(x)] = e−θ[ψ(−xu)−ψ(−x)].

In a general sampling problem from ξn, the joint probability generating function
of Kn,k was given by (13). From (12) and making use of φ ∈ S, we have

(40) P (Kn,k = kn) =
k!

σk (nθ)

n∏

m=1

σkm
(θ)

km!
=

(
k

k1...kn

)∏n
m=1 E

(
Y km

m,θ

)

E
(
Y
k

n,θ

) ,

Remark: Because (40) does not depend on the common mean of the Ym,θ’s, we
can as well define the reduced random variables with mean 1 : Xm,θ := Ym,θ/ (θφ1) ,

m = 1, ..., n and Xn,θ :=
∑n
m=1Xm,θ. Then, with Sm,θ := Xm,θ/Xn,θ, m = 1, ..., n

defining a random partition Sn (θ) = (S1,θ, ..., Sn,θ) of unity into n id (mean 1/n)
parts

(41) P (Kn,k = kn) =

(
k

k1...kn

)∏n
m=1 E

(
Xkm

m,θ

)

E
(
X
k

n,θ

)
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=

(
k

k1...kn

)∏n
m=1 E

(
X
k

n,θS
km

m,θ

)

E
(
X
k

n,θ

)

as well. The latter expression is identified to an occupancy distribution arising from
sampling from the random partition of unity Sn (θ) but size-biased by the total
length Xn,θ. In the occupancy distribution (41) indeed, realizations of (Xm,θ)

n
m=1

giving rise to large values of the sum Xn,θ are favored, compared to the “neutral”

multinomial one say Q (Kn,k = kn) :=
(

k
k1...kn

)∏n
m=1 E

(
Skm

m,θ

)
, based on the same

Sn (θ).

Whenever Xn,θ would be independent of Sm,θ = Xm,θ/Xn,θ, m = 1, ..., n, (the
only possible way to have this is when Sn (θ) has Dirichlet(θ) distribution, [23]),
this expression boils down to the usual sampling one

P (Kn,k = kn) =

(
k

k1...kn

)
E

(
n∏

m=1

(
Xm,θ/Xn,θ

)km

)
= Q (Kn,k = kn) .

Alternatively, from (41), the joint pgf of Kn,k also reads

E

[
n∏

m=1

u
Kn,k(m)
m

]
=

E
[
(
∑n
m=1 umXm,θ)

k
]

E
(
X
k

n,θ

) =
E
[
X
k

n,θ (
∑n
m=1 umSm,θ)

k
]

E
(
X
k

n,θ

) .

Its computation is thus amenable to the normalized kth moment of the weighted
sum

∑n
1 umXm,θ of iid mean 1 infinitely divisible random variables with LST

E
(
e−xXθ

)
= eθφ(−x/(θφ1)) = e−θψ(x/(θφ1)) and moments E

(
Xk
θ

)
= σk (θ) / (θφ1)

k
, k ≥

1.

Note also that with kp := (k1, ..., kp) ≥ 1 summing to k

P (Kn,k (1) = k1, ...,Kn,k (p) = kp;Pn,k = p)

=

(
n

p

)(
k

k1...kp

)∏p
q=1 E

(
X
k

n,θS
kq

q,θ

)

E
(
X
k

n,θ

) .

is the joint probability that there are p ∈ [n] non-empty boxes and that (k1, ..., kp)
are the respective occupancies of the p filled boxes, labeled in arbitrary order. Again

P
(n)
k,p :=

(
n

p

) ∗∑

k1+...+kp=k

(
k

k1...kp

)∏p
q=1 E

(
X
k

n,θS
kq

q,θ

)

E
(
X
k

n,θ

)

is the probability that in a k−sample from n species with abundance ξn in the
special class S, the exact number of distinct visited species is p.

To summarize, we conclude

Proposition 11. When φ ∈ S and when the discrete species abundance model
ξn is built on φ, its occupancy distribution (12) can alternatively be interpreted as
an occupancy distribution (41) arising from sampling from the random partition of
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unity Sn (θ) but size-biased by the total length Xn,θ appearing in the normaliza-

tion of Sm,θ := Xm,θ/Xn,θ. The positive random variable Xθ
d
= X1,θ is infinitely

divisible. The correspondence between ξ and (mean 1) Xθ is:

E
[
uξ
]

= e−θφ(x)(1−φ(xu)
φ(x) ) and E

(
e−xXθ

)
= eθφ(−x/(θφ1)) = e−θψ(x/(θφ1)).

Note finally that ψ (x/ (θφ1)) being the Laplace exponent of Xθ :

E
(
e−xXθ

)
= e−θ

∫ ∞
0 (1−e−xt)dπθ(t),

where the Lévy measure dπθ (t) integrates 1∧ t. The measure dµθ (t) = tdπθ (t) is a

finite positive measure with all finitem−moments:
∫∞

0
tmdµθ (t) = φm+1/ (θφ1)

m+1
,

m ≥ 0. So
(
(θφ1)

−m
φm

)

m≥1
is the moment sequence of dπθ (t).

With S1,θ := X1,θ/Xn,θ, define finally µk := E
[
Sk1,θ

]
, k ≥ 1, the sequence of

the moments of S1,θ; then (µk; k ≥ 1) is a Hausdorff sequence which is completely
monotonic in the sense that

(42) (−1)
l
∆lµk ≥ 0 for each l, k ≥ 0

where ∆lµk is the lth iterate of the difference operator ∆µk := µk+1 − µk.

Examples. Examples of admissible φ ∈ S were − log (1 − x), (1 − x)
−α−1, α > 0

and 1 − (1 − x)
α
, α ∈ (0, 1).

The LST E
(
e−xXθ

)
of Xθ in each case is (1 + x/θ)

−θ
, exp

[
−θ
(
1 −

(
1 + x

αθ

)−α)]

and exp
[
−θ
((

1 + x
αθ

)α − 1
)]

corresponding respectively to a Gamma(θ, θ) distri-
bution, a compound Poisson sum of iid gamma(α, αθ) random variables and an
exponentially damped stable(θ, α). For this last case, let Σ > 0 be a stable(θ, α)
random variable i.e. with LST E

(
e−xΣ

)
:= exp [−θxα], x ≥ 0. Let fΣ be its density.

Define a random variable Yθ with damped density fYθ
(t) = 1

E(e−Σ)e
−tfΣ (t), t > 0.

Its LST is E
(
e−xYθ

)
= E

(
e−(x+1)Σ

)
/E
(
e−Σ

)
= exp−θ [(1 + x)

α − 1]. Upon scal-
ing Yθ, Xθ := Yθ/ (θα) is mean 1. In the sampling context, the last example was
recently considered in ([15], [16], [24] and [25]). They were named the generalized
inverse Gaussian or Engen models. ♦

Remark. in the degenerate case, φ (x) = x, Xθ is purely atomic with Xθ
d∼ δ1.

The LST of Xθ can be obtained from the one of the first gamma(θ, θ) example:

E
(
e−xXθ

)
= (1 + x/θ)

−θ
as θ → ∞. In this very particular (admissible) case,

Sn = (1/n, ..., 1/n) is the uniform deterministic partition of unity (the Maxwell-
Boltzmann case). ♦

4.2. The *-limit. We now come back to the ∗−limit.

Let φ ∈ S. With γ > 0, let (Yγ)γ≥0 be a subordinator with Y0 = 0 and LST

E
(
e−xYγ

)
= e−γψ(x), ψ (x) = −φ (−x) .
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Under assumptions on φ, E (Yγ) = γφ1 <∞. Then the Laplace exponent ψ reads

(43) ψ (x) =

∫ ∞

0

(
1 − e−xt

)
dπ (t) ,

for some positive Lévy measure π on (0,∞) , integrating 1 ∧ t, [6]. Let π (t) :=∫∞

t
dπ (s) be the tail function of π and assume π (t) → ∞ as t→ 0(3). Then

(44) Yγ
d
=
∑

k≥1

π−1 (Γk/γ)

where (Γk)k≥1 are the points of a standard Poisson Point Process (PPP) on (0,∞)
with intensity 1. The random variables

∆(k) (γ) := π−1 (Γk/γ)

with ∆(1) (γ) ≥ ∆(2) (γ) ≥ ... constitute the ranked jumps’ heights of the subordi-
nator Yγ (they are infinitely many, with 0 as a limit point). They form a PPP on
the half-line with intensity γdπ (t) , and the law of ∆(k) (γ) can easily be computed
to be

(45) P
(
∆(k) (γ) ∈ dt

)
=
γkπ (t)

k−1

(k − 1)!
e−γπ(t)dπ (t) .

By Campbell formula indeed (see [34], [32]), for all measurable function g for which∫∞

0

(
1 − e−xg(t)

)
dπ (t) <∞, we have

E


exp



−x

∑

k≥1

g
(
π−1 (Γk/γ)

)





 = exp

{
−γ
∫ ∞

0

(
1 − e−xg(t)

)
dπ (t)

}
.

Putting g (t) = t, E
(
e−xYγ

)
= e−γψ(x), as claimed.

From the above construction, we can define a random distribution on the infinite-
dimensional 1−simplex by normalizing the ranked jumps’ heights of Yγ by itself.
Consider again Yγ and, with θ := γ/n, define Ym,θ := Ymθ − Y(m−1)θ, m = 1, ..., n

which are mutually independent. Then, Y n,θ :=
∑n
m=1 Ym,θ = Ynθ = Yγ . If we rank

the Ym,θ’s, with Y(1),θ ≥ ... ≥ Y(n),θ(
4), then, [30], as n→ ∞, θ → 0, nθ = γ

(46)
(
Y(1),θ, ..., Y(n),θ, 0, 0, ...

) d→
∗

(
∆(1) (γ) ,∆(2) (γ) , ...

)
.

Normalizing,
(
Y(1),θ/Yγ , ..., Y(n),θ/Yγ , 0, 0, ...

) d→
∗

(47)
(
∆(1) (γ) /Yγ ,∆(2) (γ) /Yγ , ...

)
=: S∞ (γ) :=

(
S(1),γ , S(2),γ , ...

)
,

with S∞ (γ) defining a random partition of unity with infinitely many (ordered)
pieces.

3If π has a finite limit, the random partition of unity defined in (47) is finite with a random
Poisson number of pieces (see Example (iii) below). This case deserves a special treatment.

4If Yθ has a density (π has no atom), these inequalities are strict.
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If t > 0 is some (small) cutoff or threshold value, letN+ (t) :=
∑
k≥1 I

(
∆(k) (γ) > t

)

count the numbers of atoms of the partition of Yγ exceeding t. By Campbell formula

E (exp {−xN+ (t)}) = exp

{
−γ
∫ ∞

0

(
1 − e−xI(s>t)

)
dπ (s)

}

(48) = exp
{
−γπ (t)

(
1 − e−x

)}

is the full LST of N+ (t). This shows that N+ (t) is Poisson distributed with mean
γπ (t). Recalling π (t) →

t→0
∞, the law of large numbers gives

(49) N+ (t) /π (t)
a.s.→ γ, as t→ 0.

The fact that N+ (t) is Poisson may be also checked as follows. We have N+ (t) =
inf
(
k ≥ 1 : ∆(k) (γ) ≤ t

)
−1 and P (N+ (t) ≥ k) = P

(
∆(k) (γ) > t

)
= P (Γk ≤ γπ (t)) =

e−γπ(t)
∑
l≥k

[γπ(t)]l

l! . So N+ (t) is Poisson with mean γπ (t).

Because also, by the strong law of large numbers, Γk/k → 1 a.s. as k → ∞, recalling
Γk = γπ

(
YγS(k),γ

)
, we get

γπ
(
YγS(k),γ

)
/k → 1 a.s. as k → ∞.

From the behavior of π (t) near t = 0, the decay rate of S(k),γ to 0 as k → ∞
follows.

Sampling from Sm,θ := Ym,θ/Yγ , m = 1, ..., n. Define as in (40) a size-biased (SB)
sampling procedure for which (|kn| = k)

(50) P (Kn,k = kn) =

(
k

k1...kn

)E
(
Y kγ
∏n
m=1 S

km

m,θ

)

E
(
Y kγ
) .

Recall that this SB procedure is not the standard sampling from a k uniform throw
on Sm,θ, m = 1, ..., n, obtained while counting the number of uniform hits within
each Sm,θ. Indeed, would the latter sampling model hold, instead of (50), one would
rather expect the multinomial occupancy distribution

Q (Kn,k = kn) =

(
k

k1...kn

)
E

(
n∏

m=1

(Ym,θ/Yγ)
km

)
,

and in general, we have Q (Kn,k = kn) 6= P (Kn,k = kn)

However, as from the usual size-biased sampling point of view, see [2] for example,
we have

(51) P (Kn,k = kn) =
EQ

(
Y kγ · I (Kn,k = kn)

)

EQ

(
Y kγ
) ,

consistently with size-biasing Kn,k
d∼ Q on the total length Yγ .

According to (50), the joint pgf of Kn,k is

E

(
n∏

m=1

u
Kn,k(m)
m

)
=

1

E
(
Y kγ
)

∑

k1,...,kn≥0
|kn|:=k1+...+kn=k

(
k

k1...kn

) n∏

m=1

ukm
m E

(
n∏

m=1

Y km

m,θ

)
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(52) =
E
[
(
∑n
m=1 umYm,θ)

k
]

E
(
Y kγ
) ,

which is akin to (40).

Finally, by symmetry or exchangeability, SB sampling from S(m),θ := Y(m),θ/Yγ ,
m = 1, ..., n can similarly be defined by

E

(
n∏

m=1

u
Kn,k((m))

(m)

)
=

E
[(∑n

m=1 u(m)Y(m),θ

)k]

E
(
Y kγ
) ,

where in the latter formula, Kn,k ((m)), m = 1, ..., n are now the relabeled occupa-
tion numbers of the boxes with sizes S(m),θ arranged in decreasing order.

Proposition 12. The distribution of Kn,k ((m)), m = 1, ..., n is exchangeable.

Proof: With π the random permutation transforming Ym,θ into Y(m),θ, m = 1, ..., n,
due to the exchangeability of the Ym,θs, for all deterministic permutation σ of
{1, ..., n}:

n∑

m=1

uπm
Yπm,θ =

n∑

m=1

umYm,θ
d∼

n∑

m=1

umYσm,θ =
n∑

m=1

uπm
Yσ◦πm,θ

and so E
(∏n

m=1 u
Kn,k((m))

(m)

)
is a symmetric function of the u(m) = uπm

. ⋄
From these considerations, we can state the following result:

Proposition 13. Let γ = nθ. When φ ∈ S, with (σk (θ) , k ≥ 0) the Stieltjes
moment sequence of some infinitely divisible subordinator Yγ with Laplace exponent
ψ (x) = −φ (−x), the occupancy distributions (12), (15) and (24) are size-biased
sampling distributions from Sm,θ := Ym,θ/Yγ , m = 1, ..., n as defined by (50) or
(51). They are also the joint distribution of the occupation numbers Kn,k ((m)),
m = 1, ..., n obtained by SB sampling from S(m),θ = Y(m),θ/Yγ , m = 1, ..., n.

Corollary 14. When φ ∈ S and π has infinite mass (φ (x) →
x→−∞

−∞), the

occupancy distributions (27), (31) and (32) are size-biased sampling distributions
from S∞ (γ) =

(
S(1),γ , S(2),γ , ...

)
defined in (47).

Proof: The proof follows from the previous Proposition, the fact that (27) and (32)
were obtained as weak ∗−limits of (15) and (24), from (47) and from symmetry. ⋄
For instance, from (27)

P∗ (Kk ((1)) = k1, ...,Kk ((p)) = kp;Pk = p) =
k!

p!

γp

σk (γ)

p∏

q=1

φkq

kq!

=
E∗
(
Y kγ
∑∗
m1<...<mp

∏p
q=1 S

kq

(mq),γ

)

E
(
Y kγ
)

is the probability that there are p visited species in the k−sample, each visited kq
times, and that they were obtained after SB sampling from S(m1),γ > ... > S(mp),γ

for any ordered sequence m1 < ... < mp.
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In particular, the probability that, in a size-biased sampling procedure from S∞ (γ),
all elements of the k−sample are of the same species (whichever species it can be)
is thus

(53)
E∗
(
Y kγ
∑
m≥1 S

k
(m),γ

)

E
(
Y kγ
) = γ

φk
σk (γ)

= E∗ (Ak (k)) .

This identity also follows from (31) with a1 = ... = ak−1 = 0, ak = 1 and p = 1
(only one species visited k times).

We observe that, as γ → 0 (or E∗ (Yγ) → 0 as well), due to σk (γ) ∼ γφk, this
probability tends to 1, showing that γ itself may be viewed as some temperature
parameter for the population with infinitely many species: the smaller γ, the larger
the probability is that any k−sample visits a single one species (among which the
one with largest frequency S(1),γ).

Similarly, the probability that all elements of the k−sample reveal only two species
(whichever species they can be) is

k−1∑

l=1

E∗
(
Y kγ
∑∗
m1<m2

Sl(m1),γ
Sk−l(m2),γ

)

E∗
(
Y kγ
) =

1

2

γ2k!

σk (γ)

k−1∑

l=1

φl
l!

φk−l
(k − l)!

=
γ2

σk (γ)
Bk,2 (φ•) .

This identity follows from (31) with al = 1, ak−l = 1, aj = 0 if j 6= {l, k − l}
and p = 2 (only two species visited, one l times and the other one k − l times),
summing on l = 1, ..., k − 1 and from φ∗2k = 2Bk,2 (φ•). More generally, if p ≤
k, γp

σk(γ)Bk,p (φ•) is the probability that all elements of the k−sample reveal p

distinct species (consistently with (28)), (γφ1)
k

σk(γ) the probability that all species in

the k−sample are of distinct types. When γ is small this latter probability is
polynomially small ∼ γk−1.

Finally, the probability that only one species is visited by the k−sample and that
it is the mth more abundant one is

(54)
E∗
(
Y kγ S

k
(m),γ

)

E∗
(
Y kγ
) =

E
(
∆(m) (γ)

k
)

E
(
Y kγ
) =

1

(m− 1)!

∫∞

0
e−xxm−1π−1 (x/γ)

k
dx

σk (γ)
.

=
γ

σk (γ)

1

(m− 1)!

∫ ∞

0

tk (γπ (t))
m−1

e−γπ(t)dπ (t) ,

consistently with (45). Summing (54) over m ≥ 1, we recover from (53), that

φk = 1
γ

∫∞

0
π−1 (x/γ)

k
dx =

∫∞

0
tkdπ is the kth moment of the Lévy measure dπ.

In particular, the probability that only one species is visited by the k−sample and
that it is the more abundant one is (compare with (53))

E∗
(
Y kγ S

k
(1),γ

)

E∗
(
Y kγ
) =

γ

σk (γ)

∫ ∞

0

tke−γπ(t)dπ (t)

=
γφk
σk (γ)

[
1 − 1

φk

∫ ∞

0

tk
(
1 − e−γπ(t)

)
dπ (t)

]
.

When γ gets very small, this probability approaches 1 from below, up to an O (γ)
residual term: again, S(1),γ dominates the other smaller S(m),γ and for small values
of the biodiversity parameter γ therefore, the species frequencies S(m),γ ; m ≥ 1
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turn out to be very disparate.

5. Examples

Let us supply some Examples illustrating our results.

(i) Take the Fisher logarithmic series model φ (x) = − log (1 − x) ∈ S, resulting in
ξ obeying a negative binomial distribution with parameters θ > 0 and 1−x ∈ (0, 1),
[20]. Here φ• = (• − 1)!. Then Yγ is a Moran subordinator with Lévy-measure:
dπ (t) = t−1e−tdt. The Laplace exponent of Yγ is ψ (x) = log (1 + x) , in accor-
dance with ψ (x) = −φ (−x) . In that particular case,

(
S(1),γ , S(2),γ , ...

)
∼ PD (0, γ),

a Poisson-Dirichlet partition with parameter γ, [23]. Because, due to well-known
properties of Gamma-distributed random variables, Yγ is independent of Sm,θ =
Ym,θ/Yγ , m = 1, ..., n, the size-biased sampling distributions from (S1,θ, ...Sn,θ)
corresponds to the usual multinomial one. In this well-known model for species
frequency, σk (θ) = (θ)k . So σk (θ) ∈ ZR−.

Because π (t) ∼ − log t as t → 0, N+ (t) := #
{
k : ∆(k) (γ) > t

}
grows like −γ log t

as t→ 0. Besides,
− logS(k),γ ∼ k/γ as k → ∞

and the ordered frequencies decay exponentially fast with k: species with small
frequency get exponentially rare.

Assuming θ known, the Maximum Likelihood Estimator (MLE) estimator of n in

the finitely many species model is given implicitly by P = n̂
(
1 − σk((n̂−1)θ)

σk(n̂θ)

)
, so

here

P = n̂

(
1 − ((n̂− 1) θ)k

(n̂θ)k

)
.

When θ = 1, this estimator is explicitly given by

n̂ =
(k − 1)P

k − P
,

where, as conventional wisdom suggests, n̂ will be large when the difference between
1/P and 1/k is small (new species are being frequently discovered). The MLE

estimator of γ in the infinitely many species model is given implicitly by P = γ̂
σ′

k(γ̂)
σk(γ̂) ,

[41], so here

P =
k−1∑

l=0

γ̂

γ̂ + l
.

The estimator γ̂ is biased but its bias decreases as k grows. The alternative estima-

tor γ̃ =
Bk,P−1(φ•)
Bk,P (φ•) with Bk,p (φ•) = sk,p is also biased and can be computed using

the recursion for third kind Stirling numbers

Bk+1,p ((• − 1)!) = Bk,p−1 ((• − 1)!) + kBk,p ((• − 1)!) .

(ii) The full two-parameters PD (α, γ) defined in [37] can be obtained while sub-
ordinating the damped α−stable subordinator (see (iii) below) to an independent
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Moran one with parameter γ/α. And considering the normalized ranked sizes of
the subordinate jumps: here, independently of this partition of unity, Yγ again is
gamma(γ) distributed. As shown in [37], PD (α, γ) has many interesting proper-
ties, [35]. This partition of unity leads to a generalized (unbiased) Ewens’ sampling
formula called Pitman’s sampling formula, [36].

(iii) Take φ (x) = (1 − x)
−α − 1 ∈ S where α > 0. Here φ• = (α)• resulting

in ξ being a Poisson sum of negative binomial increments δ. The Lévy-measure
corresponding to Yγ is the Gamma(α, 1) probability density: dπ (t) = 1/Γ (α) ·
tα−1e−tdt. The Laplace exponent of Yγ is ψ (x) = 1−(1 + x)

−α
, in accordance with

ψ (x) = −φ (−x) . Because π is integrable with mass 1, Yγ is a subordinator in the
compound Poisson class (a Poisson(γ) sum of iid positive jumps with Gamma(α, 1)
density). For this reason

Yγ
d
=




P(γ)∑

k=1

π−1 (Γk)


 · I (P (γ) ≥ 1) + 0 · I (P (γ) = 0) ,

where (Γk)k≥1 are the points of a standard PPP on (0,∞) with intensity 1, inde-

pendent of P (γ) which is Poisson(γ) distributed. The random variables

∆(k) (γ) := π−1 (Γk) ; k = 1, ..,P (γ)

with ∆(1) (γ) ≥ ... ≥ ∆(P(γ)) (γ) constitute the ranked jumps’ heights of the subor-
dinator Yγ (they are here finitely many); normalizing with Yγ , size-bias sampling is
therefore from a finite random partition of unity. Note that when π is integrable,
the biodiversity parameter γ interprets directly as the expected number of species
in the population.

We first recall that for φ• = (α)• as in the case study

Bk+1,p (φ•) = αBk,p−1 (φ•) + (k + pα)Bk,p (φ•) .

When α = 1, Bk,p (•!) =
(
k−1
p−1

)
k!
p! are the Lah numbers.

Recalling also P∗ (Pk = p) = γp

σk(γ)Bk,p (φ•) , we get the recursion

P∗ (Pk+1 = p) =
γp

σk+1 (γ)
(αBk,p−1 (φ•) + (k + pα)Bk,p (φ•)) =

σk (γ)

σk+1 (γ)
(αγP∗ (Pk = p− 1) + (k + pα)P∗ (Pk = p)) .

This shows that the event Pk+1 = p only depends on the event Pk = p− 1 (respec-
tively Pk = p), when a new species (respectively no new species) is being discovered
as the sample size is increased by one unit. And not on further past events such as

Pl = p − 1 for p − 1 ≤ l < k. The transition rates are λp,p+1 = αγ σk(γ)
σk+1(γ)

(inde-

pendent of p but dependent on k) and λp,p = (k + pα) σk(γ)
σk+1(γ)

. λp,p+1 is the rate at

which a new species is being discovered given p of them were previously discovered
in a size−k sample. This suggests an underlying sequential urn scheme, [7], [41].
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The estimator γ̃ =
Bk,P−1(φ•)
Bk,P (φ•) of γ can easily be evaluated numerically thanks to

the three-term recurrence which Bk,p (φ•) fulfills. When α = 1, it is

γ̃ =
P (P − 1)

k − P + 1
=
P

k

1
1

P−1 − 1
k

.

For the four following examples, an appeal to length-biased sampling distributions
from S∞ (γ) is required.

(iv) With α ∈ (0, 1) , take φ (x) = 1 − (1 − x)
α ∈ S, resulting in ξ being a Pois-

son sum of extended negative binomial increments δ (also called a Poisson-Pascal
random variable). Here φ1 = α, φm = α (1 − α)m−1, m ≥ 1 and the weight of
large clusters is smaller than in Example (i) where φm = (m− 1)!. We therefore
expect small clusters sizes to be enhanced. In this case, Yγ is a damped α−stable

subordinator with Lévy-measure: dπ (t) = α/Γ (1 − α) · t−(α+1)e−tdt. The Laplace
exponent of Yγ is ψ (x) = (1 + x)

α − 1, in accordance with ψ (x) = −φ (−x) .
Because π (t) ∼ 1/Γ (1 − α) · t−α as t → 0, N+ (t) := #

{
k : ∆(k) (γ) > t

}
grows

like γ/Γ (1 − α) · t−α as t→ 0. Besides,

S(k),γ ∼
(

γ

Γ (1 − α)

)1/α

Y −1
γ k−1/α as k → ∞

and the ordered frequencies only decay algebraically fast with k. Species with small
frequency are long-tailed (there are many small size groups or rare species in the
Engen model, compared to the Ewens model).

In this model, φ• = α (1 − α)•−1 . Because φ1 = α and φm+1 = φm (m− α), m ≥ 1,
it follows from (3, 4) that σk+1 (θ) = (θα+ k)σk (θ) − θασ′

k (θ) . Thus, the Bell
coefficients Bk,p (φ•) , appearing in (16), again obey a simple 3−term recurrence

Bk+1,p (φ•) = αBk,p−1 (φ•) + (k − pα)Bk,p (φ•) .

They constitute generalized Stirling numbers studied by [9]. It can be checked that
σk (θ) /∈ ZR−.

This model is amenable to similar conclusions as the ones from the previous example
with recursion now given by

P∗ (Pk+1 = p) =
σk (γ)

σk+1 (γ)
(αγP∗ (Pk = p− 1) + (k − pα)P∗ (Pk = p)) .

Equation (32) with φ• = α (1 − α)•−1 is the Engen’s extended negative binomial
sampling formula [24]. The particular case α = 1/2 is studied in [25]. The micro-
canonical distribution (33) coincides when φ• = α (1 − α)•−1 with the one occurring
in the Pitman sampling formula ([24], Remark 3).

(v) Let φ (x) solve the functional equation φ (x) = x expφ (x) . Then φ (x) =∑
m≥1

φm

m! x
m with φm = mm−1 is the Cayley generating function appearing in

the enumeration of rooted labeled trees with m nodes. The convergence radius of
this series is x0 = e−1 with φ (x0) = 1 and φ′ (x0) = ∞. Clearly φm is log-convex,
it is a Stieltjes moment sequence and φ ∈ S. The associated Laplace exponent
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ψ (x) = −φ (−x) is the Lambert function. Because ψ (x) ∼ log x as x → ∞,
π (t) ∼ − log t as t → 0 and N+ (t) := #

{
k : ∆(k) (γ) > t

}
grows like −γ log t as

t→ 0. Besides, like in Example (i)

− logS(k),γ ∼ k/γ as k → ∞.

The partition function Zθ (x) = exp θφ (x) occurs in the enumeration of forests of

Cayley trees. The Bell coefficients are Bk,p (φ•) =
(
k−1
p−1

)
kk−p (number of forests

with k nodes and p trees) in accordance with the global weights σk (θ) = θ (k + θ)
k−1

.
So σk (θ) ∈ ZR−. Assuming θ known, the MLE estimator of n in the finitely many

species model is given implicitly by P = n̂
(
1 − σk((n̂−1)θ)

σk(n̂θ)

)
, so here

P = n̂− (n̂− 1)

(
1 − θ

k + n̂θ

)k−1

.

The MLE estimator of γ in the infinitely many species model is given by P = γ̂
σ′

k(γ̂)
σk(γ̂) ,

so here explicit

γ̂ =
k (P − 1)

k − P
.

The alternative (biased) estimator is γ̃ =
Bk,P−1(φ•)
Bk,P (φ•) . Thus

γ̃ =
k (P − 1)

k − P + 1
=

1
1

P−1 − 1
k

;

it is also explicit and very close to γ̂.

(vi) As a next example, let φ (x) solve the functional equation φ (x) = xg (φ (x))
where g (x) = (1 + bx)

a
with either b > 0 and a ≥ 1 or a and b both negative.

φ (x) is the generating function appearing in the enumeration of rooted trees when
the generating function g of the offspring is either (generalized) binomial or neg-
ative binomial. Then φm = (m− 1)!

(
am
m−1

)
bm−1 are non-negative numbers. We

conjecture that φ ∈ S. It holds [28] that x0 = (ab)
−1

(1 − 1/a)
a−1

with φ (x0) =
1/ (b (a− 1)) and φ′ (x0) = ∞. For this tree model first discussed in [4], the La-
grange inversion formula gives [1]

Bk,p (φ•) =

(
k − 1

p− 1

)
{ak}k−p bk−p,

where {a}l := a (a− 1) ... (a− l + 1). Recalling γ̃ =
Bk,P−1(φ•)
Bk,P (φ•) , we get

γ̃ =
b (P − 1)

k − P + 1
((a− 1) k + P ) =

b
1

P−1 − 1
k

(
a− 1 +

P

k

)
,

which is explicit. Again, would 1/k be close to 1/ (P − 1), then γ̃ would be es-
timated to be large. Would a → ±∞, b → ±0 while ab → 1, we recover the
results just obtained for Cayley trees (consistently with g (x) = (1 + bx)

a → ex). If
a = b = 1, we recover Example (iii) with α = 1. When k is large, the minimum of
B2
k,p (φ•) / (Bk,p−1 (φ•)Bk,p+1 (φ•)) is attained when p = [λk] for some λ ∈ (0, 1) ,

with value
λ

1 − λ

(1 − λ) k + 1

λk − 1

(a− 1 + λ) k + 1

(a− 1 + λ) k
→
k→∞

1
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and the sequence Bk,p (φ•) is p−log-concave.

(vii) Let α > 0 and let φ (x) =
∑
m≥1m

−αxm be the polylog function. The

convergence radius of this series is x0 = 1 with φ (x0) <∞ iff α > 1 and φ′ (x0) <∞
iff α > 2. φ (x) is defined for x < x0 and φ (x) → −∞ as x → −∞. We have
φm = m!m−α and (φm)m≥1 constitutes a log-convex sequence because for allm ≥ 2,

φm+1φm−1 = (m+ 1)! (m− 1)!
(
m2 − 1

)−α

> (m+ 1)! (m− 1)!m−2α > m!2m−2α = φ2
m.

The sequence φm satisfies Carleman’s condition
∑
m≥1 φ

−1/(2m)
m = ∞. Thus φ ∈ S

and ψ (x) = −φ (−x), x > −1, is the Laplace exponent of some polylog subordina-
tor with Lévy measure dπ. Because φ (x) ∼ − [log(−x)]α /Γ (1 + α) as x → −∞,
[11], −φ (−x) =: ψ (x) → ∞ as x → ∞ and π has infinite total mass. In this
example, when α > 1, the weight of large clusters φm is smaller than in Exam-
ple (i) where φm = (m− 1)!. When α > 1, we therefore expect small clusters
sizes to be enhanced as in Example (iv), but to a lesser extent. Because indeed
π (t) ∼ [− log t]

α
/Γ (1 + α) as t → 0, N+ (t) := #

{
k : ∆(k) (γ) > t

}
grows like

γ [− log t]
α
/Γ (1 + α) as t→ 0. Besides,

− logS(k),γ ∼ (Γ (1 + α) /γ)
1/α

k1/α as k → ∞

and the ordered frequencies decay exponentially fast, but now with k1/α (in a
‘stretched exponential’ Weibull way).

(viii) As another example with φ ∈ S but with π integrable, consider the Mittag-
Leffler function φ (x) =

∑
m≥1

1
Γ(1+mα)x

m, where α ∈ (0, 1) . We have ψ (x) :=

−φ (−x) =: 1 − ϕ (x) where

ϕ (x) :=
∑

m≥0

1

Γ (1 +mα)
(−x)m .

ϕ (x) is the Mittag-Leffler LST of the random variable S−α
α where Sα is an α−stable

random variable with LST E
(
e−xSα

)
= e−x

α

, [38]. Here φ• = Γ(1+•)
Γ(1+α•) and because

of the latter link with the Mittag-Leffler LST, the φ• sequence is log-convex and
φ ∈ S. For this model, the discrete abundance ξ is thus a Poisson sum of discrete
Mittag-Leffler increments δ with

P (δ = m) =
1

Γ (1 +mα)

xm

φ (x)
, m ≥ 1.

In the size-bias sampling from a random partition point of view, the Lévy-measure
corresponding to Yγ is dπ (t) = fα (t) dt where fα (t) is the density of S−α

α . The
Laplace exponent of Yγ is ψ (x) = −φ (−x) . Because π is integrable with mass 1,
Yγ is a subordinator in the compound Poisson class (a Poisson(γ) sum of iid positive
jumps with Mittag-Leffler density fα (t)). In the Mittag-Leffler case, the size-bias
sampling is again from a finite random partition of unity, as in Example (iii). Note

that as α → 0, φ (x) ∼ (1 − x)
−1 − 1 (which is a particular case of (iii)) whereas

when α→ 1, φ (x) ∼ ex − 1 which is the Bell model, also in the S class.
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(ix) Let φ (x) solve the functional equation φ (x) = xg (φ (x)) where g (x) = 1 +

x2/2. Then φ (x) =
(
1 −

√
1 − 2x2

)
/x is the generating function appearing in the

enumeration of rooted binary labeled trees. Only the odd φm’s are non-zero. The

convergence radius of this series is x0 = 1/
√

2 with φ (x0) =
√

2 and φ′ (x0) = ∞.
Clearly φ /∈ S because φ is only defined on |x| ≤ x0, so not absolutely monotone
on (−∞, x0).

6. A new Engen-like example

We end up giving a new example of ξ sharing some common issues with the Engen’s
model.

Preliminaries. Previously, let us start with a general fact. Let φ⋆ (x) be some
‘local’ generating function with non-negative coefficients φ⋆m. Define Z⋆1 (x) =

expφ⋆ (x), together with σ⋆k (θ) , the Bell polynomials associated to φ⋆ (x): Z⋆1 (x)
θ

=:

1 +
∑
k≥1

σ⋆
k(θ)
k! xk. Define now the new generating functions

φ (x) = xZ⋆1 (x) and Zθ (x) = exp (θφ (x)) .

The Taylor coefficients of φ are: φm = mσ⋆m−1 (1) . The Bell polynomials now

associated to φ (x) are: Zθ (x) = 1 +
∑
k≥1

σk(θ)
k! xk, with

σk (θ) =
k∑

p=1

Bk,p
(
•σ⋆•−1 (1)

)
θp.

Because σ⋆k (θ) are binomial convolution polynomials, the following identity holds,
[1]

(55) Bk,p
(
•σ⋆•−1 (1)

)
=

(
k

p

)
σ⋆k−p (p) .

Three simple examples are:

- φ⋆ (x) = αx, α > 0. Then σ⋆k (θ) = αkθk leading to: Bk,p
(
•α•−1

)
=
(
k
p

)
(αp)

k−p
.

- φ⋆ (x) = eαx−1, α > 0. Then σ⋆k (θ) = αk
∑k
p=1 Sk,pθ

p (where Sk,p are the second

kind Stirling numbers), leading to: Bk,p
(
α•−1B•−1

)
=
(
k
p

)
αk−p

∑k−p
q=1 Sk−p,qp

q

where Bk =
∑k
p=1 Sk,p are the Bell numbers.

- φ⋆ (x) solves φ⋆ (x) = x exp (αφ⋆ (x)) , α > 0. Then σ⋆k (θ) =
∑k
p=1Bk,p (φ⋆•) θ

p

with Bk,p (φ⋆•) =
(
k−1
p−1

)
(αk)

k−p
, leading to

σ⋆k (θ) = θ (θ + αk)
k−1

.

We conclude that, with φ• = • (1 + α (• − 1))
•−2

Bk,p (φ•) =

(
k

p

)
p (p+ α (k − p))

k−p−1
.

If α = 1, φ• = • (1 + α (• − 1))
•−2

= ••−1 and we recoverBk,p
(
••−1

)
=
(
k
p

)
pkk−p−1 =(

k−1
p−1

)
kk−p.

The example.
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Let φ⋆ (x) = −α log (1 − x) , α > 0. Then σ⋆k (θ) = (αθ)k . Looking at φ (x) =
x expφ⋆ (x) and

Zθ (x) = exp (θφ (x)) = eθx(1−x)
−α

,

with φ• = • (α)•−1, we get σk (θ) =
∑k
p=1Bk,p (φ•) θ

p where

(56) Bk,p
(
• (α)•−1

)
=

(
k

p

)
(αp)k−p .

Proposition 15. The new model φ (x) = x (1 − x)
−α ∈ S iff α ∈ [0, 1] .

Proof: First, the convergence radius of φ is x0 = 1.

We have φ′ (x) = (1 − x)
−(α+1)

(1 − x (1 − α)) and φ′ > 0 for all x < x0 only

if α ∈ [0, 1] . Let then α ∈ [0, 1]. Then φ(k) (x) = (1 − x)
−(α+k)

(ak − xbk) and

suppose both ak and bk are positive with ak/bk > 1 in such a way that φ(k) > 0 for
all x < x0. Then

φ(k+1) (x) = (1 − x)
−(α+k+1)

((α+ k) ak − xbk (α+ k − 1))

with ak+1 = (α+ k) ak and bk+1 = bk (α+ k − 1). Both ak+1 and bk+1 are positive

with ak+1/bk+1 > ak/bk > 1. So φ(k+1) > 0 for all x < x0. ⋄
Corollary 16. When α ∈ (0, 1), in the infinitely many species context, sampling

from a discrete abundance model ξ built on φ (x) = x (1 − x)
−α

interprets as size-
bias sampling from a random partition of unity S∞ (γ) with ordered frequencies
decaying algebraically fast with k. The Laplace exponent associated to Yγ is ψ (x) =

−φ (−x) = x (1 + x)
−α

, x > −1. The estimator γ̃ of the biodiversity parameter γ
is explicitly given by

(57) γ̃ =
P

k − P + 1

(α (P − 1))k−P+1

(αP )k−P
.

Proof: Clearly ψ (x) ∼ x1−α → ∞ as x→ ∞ and the corresponding Lévy measure
π has infinite mass.

We have π (t) ∼ t−(1−α) → ∞ as t → 0 so that N+ (t) := #
{
k : ∆(k) (γ) > t

}

grows like γt−(1−α) as t→ 0 and

S(k),γ ∼ Y −1
γ (k/γ)

−1/(1−α)
as k → ∞.

Like in the Engen model, the ordered frequencies decay algebraically fast with k.

The expression of γ̃ in (57) follows from (56). ⋄

When both k and P are large, together with k−(1 − α)P , using a simple asymptotic
form for (56)

γ̃ ∼ P (k − (1 − α)P )

k − P + 1

(
1 +

α+ k − P

α (P − 1)

)−α

.
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Statistics, 1, 353–355 (1973).
[8] Bunge, J.; Fitzpatrick, M. Estimating the Number of Species: A Review. Journal of the

American Statistical Association, Vol. 88, No. March 1998, pp. 364-37 (1998).
[9] Charalambides, Ch. A.; Singh, J. A review of the Stirling numbers, their generalizations and

statistical applications. Comm. Statist. Theory Methods, 17, no. 8 (1988).
[10] Comtet, L. Analyse combinatoire. Tomes 1 et 2. Presses Universitaires de France, Paris,

(1970).
[11] Costin, O.; Garoufalidis, S. Resurgence of the fractional polylogarithms. Math. Res. Lett. 16,

no. 5, 817-826 (2009).
[12] Darroch, J. N. On the distribution of the number of successes in independent trials. Ann.

Math. Statist. 35, 1317-1321 (1964).
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