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THE REDUCED HARTREE-FOCK MODEL FOR SHORT-RANGE
QUANTUM CRYSTALS WITH DEFECTS

SALMA LAHBABI

ABSTRACT. In this article, we consider quantum crystals with defects in the
reduced Hartree-Fock framework. The nuclei are supposed to be classical par-
ticles arranged around a reference periodic configuration. The perturbation is
assumed to be small in amplitude, but need not be localized in a specific re-
gion of space or have any spatial invariance. Assuming Yukawa interactions, we
prove the existence of an electronic ground state, solution of the self-consistent
field equation. Next, by studying precisely the decay properties of this solution
for local defects, we are able to expand the density of states of the nonlinear
Hamiltonian of a system with a random perturbation of Anderson-Bernoulli
type, in the limit of low concentration of defects. One important step in the
proof of our results is the analysis of the dielectric response of the crystal to
an effective charge perturbation.

1. INTRODUCTION

In solid state physics and materials science, the presence of defects in materi-
als induces many interesting properties, such as Anderson localization and leads
to many applications such as doped semi-conductors The mathematical modeling
and the numerical simulation of the electronic structure of these materials is a
challenging task, as we are in the presence of infinitely many interacting particles.

The purpose of this paper is to construct the state of the quantum electrons of
a mean-field crystal, in which the nuclei are classical particles arranged around a
reference periodic configuration. We work with the assumption that the nuclear
distribution is close to a chosen periodic arrangement locally, but the perturbation
need not be localized in a specific region of space and it also need not have any
spatial invariance. To our knowledge, this is the first result of this kind for Hartree-
Fock type models for quantum crystals, with short-range interactions. By studying
precisely the behavior of our solution, we are then able to expand the density of
states of the Hamiltonian of the system in the presence of a random perturbation of
Anderson-Bernoulli type, in the limit of low concentration of defects, that is when
the Bernoulli parameter p tends to zero. The state of the random crystal and the
mean-field Hamiltonian were recently constructed in [8]. Our small-p expansion is
the nonlinear equivalent of a previous result by Klopp [19] in the linear case.

The mean-field model we consider in this paper is the reduced Hartree-Fock
model [31], also called the Hartree model in the physics literature. It is obtained
from the generalized Hartree-Fock model [25] by removing the exchange term. As
the Coulomb interaction is long-range, it is a difficult mathematical question to de-
scribe infinite systems interacting through the Coulomb potential. In the following,
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2 SALMA LAHBABI

we assume that all the particles interact through Yukawa potential of parameter
m > 0. In fact, we can assume any reasonable short-range potential, but we con-
centrate on the Yukawa interaction in dimension d € {1,2,3} for simplicity. We
consider systems composed of infinitely many classical nuclei distributed over the
whole space and infinitely many electrons.

We start by recalling the definition of the reduced Hartree-Fock (rHF) model
for a finite system composed of a set of nuclei having a density of charge vy, and
N electrons. The electrons are described by the N-body wave-function (called a
Slater determinant)

¢($1a"' axN) = det((pj(‘ri))’

1
VN!
where the functions ¢; € L*(R?) satisfy (¢;, ;) = 0;j. The rHF equations then
read

Hepi = Xip;

H:f%AqLV V1<i<N, (1)
—AV +m?V = }Sd’1| (P — Vnuc)

where py(z) = Zf;l los(#)|* and A1, - -+, Ay are the smallest N eigenvalues of the
operator H, assuming that Ay < Any4;. Here, Sd_1’ is the Lebesgue measure of
the unit sphere S~ (|S9| = 2, | S| = 27, |S?| = 47). The existence of a solution
of (1) is due to Lieb and Simon [26].

In order to describe infinite systems, it is more convenient to reformulate the
rHF problem in terms of the one-particle density matriz formalism [24]. In this
formalism, the state of the electrons is described by the orthogonal projector v =

Zizil |pi){pi| of rank N and the equations (1) can be recast as
y=1(H <eF)

H= —%A—FV (2)
—AV +m?V =[S (py — Vaue) ,

where formally p,(z) = v(z,z) and the Fermi level ep is any real number in the
gap [An, AN+1)-

For infinite systems, the rHF equation is still given by (2), but v is now an infinite
rank operator as there are infinitely many electrons in the system. The operator
v needs to be locally trace class for the electronic density p, to be well-defined in
L, (RY.

The rHF equation (2) was solved for periodic nuclear densities

Vnuc = Vper = Z 77( - k)

keER

by Catto, Le Bris and Lions in [10], and periodic nuclear densities with local per-
turbations
Vnue = Zn('_k)‘f'l/
kER
were studied by Cancés, Deleurence and Lewin in [7]. We have denoted by R the
underlying discrete periodic lattice. The corresponding Hamiltonians are denoted
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by Hper and H,. Stochastic distributions,

Vane(w, ") = Y n(- = k) + > qe(w)x(- — k)

kER kER

for instance, were treated in [8].
Our present work follows on from [7, 6, 8]. We are going to solve the equation (2)
in the particular case where

Vnuc = Vper 1+ V, (3)

where v, is a periodic nuclear distribution so that the corresponding background
crystal is an insulator (the mean-field Hamiltonian Hye, has a gap around e ), and
v e L2 (RY) is a small enough arbitrary perturbation of the background crystal.
The perturbation v needs to be small in amplitude locally, but must not be local
or have any spatial invariance.

The rHF model is an approximation of the N-body Schrédinger model, for which
there is no well-defined formulation for infinite systems so far. The only available
result is the existence of the thermodynamic limit of the energy: the energy per
unit volume of the system confined to a box, with suitable boundary conditions,
converges when the size of the box grows to infinity. The first theorem of this form
for Coulomb interacting systems is due to Lieb and Lebowitz in [22]. In this latter
work, nuclei are considered as quantum particle and rotational invariance plays a
crucial role. For quantum systems in which the nuclei are classical particles, the
thermodynamic limit was proved for perfect crystals by Fefferman [12] (a recent
proof has been proposed in [17]) and for stationary stochastic systems by Blanc
and Lewin [4]. Similar results for Yukawa interacting systems are simpler than for
the Coulomb case and follow from the work of Ruelle and Fisher [13] for perfect
crystals and Veniaminov [32] for stationary stochastic systems. Unfortunately, very
little is known about the limiting quantum state in both cases.

For (orbital-free) Thomas-Fermi like theories, the periodic model was studied
in [26, 9], the case of crystals with local defects was studied in [5] and stochastic
systems were investigated in [3]. To the best of our knowledge, the only works
dealing with systems with arbitrary distributed nuclei are [9, 2| for Thomas-Fermi
type models.

As mentioned before, our work is the first one to consider this kind of sys-
tems in the framework of Hartree-Fock type models. Our results concern small
perturbations of perfect crystals interacting through short-range Yukawa potential.
Extending these results to more general geometries and for the long-range Coulomb
interaction are important questions that we hope to address in the future.

After having found solutions of (2) for any (small enough) v € L2 .. (RY), we
study the properties of this solution for local perturbations v. This enables us to
investigate small random perturbations of perfect crystals. Precisely, we consider

nuclear distributions
Vnuc(wa-r) = Vper(w) + Z Qk(w)X(‘T - k)a
kER

where (g;)rer are i.i.d. Bernoulli variables of parameter p and x is a compactly
supported function which is small enough in L?(R%). We are interested in the
properties of the system in the limit of low concentration of defects, that is when
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the parameter p goes to zero. We prove that the density of states of the mean-
field Hamiltonian H, = —%A + Vjp, which describes the collective behavior of the
electrons, admits an expansion of the form

J
ny =no + Zujpj +O(p”™h). (4)
j=1
Here, ng is the density of states of the unperturbed Hamiltonian Hye,r = —%A—i—Vper

and p1; is a function of the spectral shift function for the pair of operators Hyer and

H,, the latter being the mean-field Hamiltonian of the system with only one local

defect constructed in [7]. We give in Theorem 2.7 a precise meaning of O(p/*+1).
In [19], Klopp considers the empirical linear Anderson-Bernoulli model

H= —%A +Vo+V with V(wz)=Y qwn(z—k),

kER
where Vj is a linear periodic potential and 7 an exponentially decaying potential.
He proves that the density of states of the Hamiltonian H admits an asymptotic
expansion similar to (4). The case where V(w, x) is distributed following a Poisson
law instead of Bernoulli is dealt with in [20]. Our proof of (4) follows the same lines
as the one of Klopp. The main difficulty here is to understand the decay properties
of the mean-field potential V solution of the self-consistent equations (2). For
this reason, we dedicate an important part of this paper to the study of these
decay properties. In Theorem 2.3 below, we show that for a compactly supported
perturbation v, the difference V' — V,,; decays faster than any polynomial far from
the support of the perturbation v. Moreover, we show that the potential generated
by two defects that are far enough is close to the sum of the potentials generated
by each defect alone.

The article is organized as follow. In Section 2, we present the main results of the
paper. We start by recalling the reduced Hartree-Fock model for perfect crystals
and perfect crystals with local defects in Section 2.1. In Section 2.2, we state the
existence of solutions to the self-consistent equations (2) for vyyue given by (3). We
also explain that our solution is in some sense the minimizer of the energy of the
system. We also prove a thermodynamic limit, namely, the ground state of the
system with the perturbation v confined to a box converges, when the size of the
box goes to infinity, to the ground state of the system with the perturbation v.
In Section 2.3, we prove decay estimates for the mean-field density and potential.
In Section 2.4, we present the expansion of the density of states of the mean-field
Hamiltonian. The proofs of all these results are provided in Sections 4, 5, 6 and 7.
In Section 3, we study the dielectric response of a perfect crystal to a variation of
the effective charge distribution, which plays a key role in this paper.

Acknowledgement. I thoroughly thank Eric Cancés and Mathieu Lewin for their
precious help and advices. The research leading to these results has received funding
from the European Research Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013 Grant Agreement MNIQS no. 258023).

2. STATEMENT OF THE MAIN RESULTS

2.1. The rHF model for crystals with and without local defects. In defect-
free materials, the nuclei and electrons are arranged according to a discrete periodic
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lattice R of RY, in the sense that both the nuclear density vpu. = Vper and the
electronic density are R-periodic functions. For simplicity, we take R = Z¢ in the
following. The reduced Hartree-Fock model for perfect crystals has been rigorously
derived from the reduced Hartree-Fock model for finite molecular systems by means
of thermodynamic limit procedure in [10, 7] in the case of Coulomb interaction. The
same results for Yukawa interaction are obtained with similar arguments. The self-
consistent equation (2) then reads

Yo = 1 (Hper < 6F)

1
Hper = _§A + Vper (5)
—AVper + mQVper = ’Sd_l‘ (Pyo — Vper) -

It has been proved in [10, 7] that (5) admits a unique solution which is the unique
minimizer of the periodic rHF energy functional.

Most of our results below hold only for insulators (or semi-conductors). We
therefore make the assumption that

Hper has a spectral gap around ep. (6)

The rHF model for crystals with local defects was introduced and studied in [7].
A solution of the rHF equation (2) is constructed using a variational method. One
advantage of this method is that there is no need to assume that the perturbation
v is small in amplitude. The idea is to find a minimizer of the infinite energy of
the system by minimizing the energy difference between the perturbed state and
the perfect crystal. The ground state density matrix can thus be decomposed as

Y =" + Qv (7)
where @, is a minimizer of the energy functional
y 1
E(Q) = Tr o (Hper = €7)Q) + 5 Dm(p@ — v pq — ) (8)

on the convex set
1
= {Q* = Qa -7 S Q S 1-—- Y0, (7A + 1)2 Q S 62(L2(Rd))5
(A+1)F Q¥ (A +1)F € &y(LARY) },
where QT = (1 —70)Q(1 — ), @~ = 1Q0 and Tr . (A) = Tr (ATT + A7),
We use the notation &, to denote the pth Schatten class. In particular &5 is the set

of Hilbert-Schmidt operators. The second term of (8) accounts for the interaction
energy and is defined for any charge densities f,g € H~1(R?) by

9)

Do(f.g) = 5] do= [ [ @) Ynla =~ gt de
R4 |p| +m Re JRa
where f(p) f]Rd e~ %dy is the Fourier transform of f. The Yukawa
kernel Ym7 the inverse Four1er transform of |§4=1| (Ip]> +m?2)~1, is given by
m~te ™l ifd =1,
Yo(x) =< Ko(mlz]) ifd=2,

|:L'|71€7m‘m| ifd=3,
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where Ky (r) = fooo e~"esht dt is the modified Bessel function of the second type [23].
It has been proved in [7] that the energy functional (8) is convex and that all its

minimizers share the same density p,. These minimizers are of the form

WZ]I(HSGF)—F(S

H:4§A+v (10)
—AV +m?V =[S (py — Vper — V),

where 0 < § < 1 (H = er). If v is small enough in the H~!'-norm, then § = 0.

One of the purposes of this article is to find decay estimates of the potential V'
solution of (10) that are necessary in the study of the Anderson-Bernoulli random
perturbations of crystals.

2.2. Existence of ground states. In this section, we state our results concerning
the electronic state of a perturbed crystal. The host crystal is characterized by a
periodic nuclear density vper € L2 ;¢ (R?) such that the gap assumption (6) holds.
The perturbation is given by a distribution v € L2 .. (R?). The total nuclear
distribution is then

Vnuc = Vper +v.
In Theorem 2.1 below, we show that if v is small enough in the Lﬁnif -norm, then
the rHF equation (2) admits a solution . This solution is unique in a neighborhood
of 7p. The proof consists in formulating the problem in terms of the density p, and
using a fixed point technique, in the spirit of [15].

Theorem 2.1 (Existence of a ground state). There exists a. > 0 and C > 0 such
that for any v € L2 ;; (RY) satisfying ||V - L S a there is a unique solution

unif
v € B110c(L2(RY)) to the self-consistent equation
v=1(H <er)
1
H=-sA+V (11)

—AV +m?V = ‘Sd_ll (py =V — Vper)
satisfying
1oy = poollze . <ClIvla - (12)

We denote this solution by ., the response electronic density by p, = p, — pvo
and the defect mean-field potential by V, =V — Vjer.

For a local defect v € L?(R%) N L}(R?) such that ||| ;- . < ac, equation (11)
admits a unique solution which coincides with the groun({nétate ~ solution of (7)
constructed in [7]. Indeed, the solution «, given in Theorem 2.1 is a solution of the
defect problem (10). Moreover, in the proof of Theorem 2.1, we prove that H has
a gap around €p, thus necessarily 6 = 0 in (10). As all the solutions of (10) share
the same density, (10) (thus (11)) admits a unique solution.

The ground state constructed in Theorem 2.1 is in fact the unique minimizer of
the "infinite" rHF energy functional. Indeed, following ideas of [16], we can define
the relative energy of the system with nuclear distribution vy, by subtracting the
"infinite" energy of 7, from the "infinite" energy of a test state ~:

1
EX(Y) = Try, (H =€) (Y = 1)) + 5 Dm (07 = Py 07 = 1) -
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This energy is well-defined for states v such that v — ~, is finite rank and smooth
enough for instance, but one can extend it to states in a set similar to K in (9).
The minimum of the energy £ is attained for v = 7, = 1 (H < er). Moreover,
as H has a gap around ep, £ is strictly convex and v, is its unique minimizer.

In the following theorem, we show that if we confine the defect v to a box of
finite size, then the ground state of the system defined by the theory of local defects
presented in Section 2.1 converges, when the size of the box goes to infinity, to the
ground state of the system with the defect v defined in Theorem 2.1. We denote
by [, = [-L/2,L/2)".

Theorem 2.2 (Thermodynamic limit). There exists a. > 0 such that for any

v e L2 ; (RY) satisfying ||v| - . < ac, the sequence (Vwir, JLen\{o} converges in

S1.10c(L2(RY)) to v, as L — <.

2.3. Decay estimates. In this section, we prove some decay estimates of the mean-
field potential V,, and the mean-field density p,,, which will be particularly important
to understand the system in the presence of rare perturbations in the next section.

Theorem 2.3 below is crucial in the proof of Theorem 2.7. Indeed, we will need
uniform decay estimates for compactly supported defects, with growing supports
and uniform local norms.

Theorem 2.3 (Decay rate of the mean-field potential and density). There exists
e, C" >0 and C > 0 such that for any v € L2(R?) satisfying ||v|| 2 L S e, we
have for R > 2

—C’(lo 2
HVuHHgmf ®RN\Cr(v) T HPvHLﬁmf ®a\Cr(v)) < Ce log 10 ||VHL3nif (R) 5 (13)
where Cr(v) = {x € R?, d(z,supp(v)) < R}.

Remark 2.4. Using the same techniques as in the proof of Theorem 2.3, we can
prove (see [21]) that there exists o, a.,C’ > 0 and C' > 0 such that for any v €
L%(R?) satisfying ”VHLfm;f < ac and V| g-1 < «, we have for R > 2
’ 2
Vol g2 @y + 100l L2 @ireneyy < Ce™C U V] Lo gay - (14)

Estimate (14) gives a decay rate of the solution of the THF equation for crystals with
local defects, far from the support of the defect. In particular, it shows that p, €
LY(R?). This decay is due to the short-range character of the Yukawa interaction.
In the Coulomb case, it has been proved in [6] that for anisotropic materials, p, ¢
LY(RY).

The decay rate of V,, and p, proved in Theorem 2.3 is faster than the decay of
any polynomial, but is not exponential, which we think should be the optimal rate.

Proposition 2.5 below is an important intermediary result in the proof of Theo-
rem 2.2. It says that the mean-field density p, and potential V,, on a compact set
depend mainly on the nuclear distribution in a neighborhood of this compact set.

Proposition 2.5 (The mean-field potential and density depend locally on v).
There exists a. > 0 such that for any B > 2 there exists C > 0 such that for
any v € L2 . (RY) satisfying ||V ;- . Sacand any L > 1 we have

unif

c
IV, — VVLHﬂgnif (B(0,L/48)) T v — purll 12 (B(0,L/45)) < § iz

unif unif

where vy, = vir, .
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In the same way, we obtain the following result which will be very useful in the
proof of Theorem 2.7. We prove that the potential generated by two defects that
are far enough is close to the sum of the potentials generated by each defect alone
in the sense of

Proposition 2.6. There exists a. > 0 such that for any 8 > 2, there exists
C > 0 such that for any v1,v2 € LER?) satisfying ||v1]| 2 . Nvell 2 . <o and
R = d(supp(v1), supp(v2)) > 0, we have

HVulJer - Vu2 HHﬁnif (CR/4B (v2)) + ||p1/1+l/2 — Puy HLfmif (CR/45 (v2))

C
< =5 (Imllz,, + el )
Proof. The proof is the same as the one of Proposition 2.5 with v = v; + v and
L =2R. ]

2.4. Asymptotic expansion of the density of states. In this section, we use
our previous results to study a particular case of random materials. In the so-called
statistically homogeneous materials, the particles are randomly distributed over the
space with a certain spatial invariance. More precisely, the nuclear distribution
(thus the electronic density) is stationary in the sense

VnuC(Tk(w)a-T) = Vnuc(wa T+ k)a

where (7)peze is an ergodic group action of Z? on the probability set Q (see
Figure 1). One famous example of such distributions is the Anderson model

e o o o G\.d'{@.@

o | o | o o Q.p%.a)
e o o o T‘JJQ.@.

Perfect crystal Statistically homogeneous material

FiGURE 1. Example of a stationary nuclear distribution

Vnuc(wax) = Z Qk(w) X(:E - k)a

kezd

where, typically, x € C°(R?) and the g’s are i.i.d. random variables. The reduced
Hartree-Fock model for statistically homogeneous materials was introduced in [8].
The state of the electrons is described by a random self-adjoint operator (y(w)),cq
acting on L?(R?) such that 0 < y(w) < 1 almost surely. The rHF equation is then

V(w) =1 (H(w) <er) +6(w)
H(w) = —%A +V(w,) almost surely, (15)
~AV(w,) +m?*V(w,-) = ’Sdil‘ (P () — ¥(w, "))
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where 0 < 6(w) < 1y, (H (w)) almost surely. The solutions of (15) turn out to be
the minimizers of the energy functional

1
Ql,nuc(’Y) =Tr <<§A — 6F> 7) + D, (Py — Vnucs Py — Vnue),

where Tr (A) =E (Tr (1rAlr)) and

D, (/R/f ~ y)g(y) d:cdy).

Here, I' = [-1/2,1/ 2) denotes the semi-open unit cube. Thanks to the convexity
of £, ., it has been proved in [8] that the minimizers of £,  share the same
dens1ty Therefore, the Hamiltonian H solution of (15) is umquely defined.

In this paper, we are interested in the particular case of random perturbation of
perfect crystals

Vnuc(wa -T) = Vper('r) + V;D(w’ ‘T)

in the limit of low concentration of defects. We restrict our study to Anderson-
Bernoulli type perturbations, that is, we suppose that at each site of Z%, there is a
probability p to see a local defect x, independently of what is happening in the other
sites. More precisely, we consider the probability space 2 = {0, 1}Zd endowed with
the measure P = (pdy + (1 — p)50)®zd and the ergodic group action 7 (w) = w. 4.
The defect distribution we consider is then given by

vp(w,z) = Y au(w)x(z — k)

kezd

where ¢, is the k" coordinates of w and y € L2?(R?) with supp(x) C I'. The
qx’s are 1.i.d. Bernoulli variables of parameter p. If |x| ;2 < ac, then 6(w) =0
almost surely and (15) admits a unique solution. For almost every w, this solution
coincides with the solution of (11) constructed in Theorem 2.1. For convenience,
we will from now on use the notation

HO = Hper —€F,

where we recall that e is the Fermi level. We introduce the mean-field Hamiltonian
corresponding to the system with the defect v,

H,=Hy+V,, with V, (w,z)="Yy,* (pl,p - Vp) .

As V, is stationary with respect to the ergodic group (7x)geze and uniformly
bounded in Q2 x R¢, then by [27, Theorem 5.20], there exists a deterministic positive
measure ny(dzr), the density of states of H,,, such that for any ¢ in the Schwartz
space S(R)

/R (@) (dr) = Tx (p(H,)).

For K C Z%, we define the self-consistent operator corresponding to the system
with the defects in K

Hyig = Hy + Vk,
where

VK:Ym*(pK_VK)a VK:ZX(_k) and PK = Pvk-
keK
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If |[K| < oo, we denote by &x(x) the spectral shift function [33] for the pair of
operators Hi and Hy. It is the tempered distribution in &’(R) satisfying, for any

¢ € S(R),
Tr (p(Hr) — p(Ho)) = /RéK(z)w’(w) dr = */Rfé((z)w(x) dz.

In Theorem (2.7) below, we give the asymptotic expansion of the density of states
np in terms of powers of the Bernoulli parameter p.

Theorem 2.7. For x € L?(R?) such that supp(x) C I' and K C Z¢ such that
|K| < oo, we define the tempered distribution pg by

prc(e) =~ 3 (DI g (),

& 2,
There exists e > 0 such that if || x|l ;2 < e, then
(i) for j € {1,2}, puj =3 keczde, Wi s a well-defined convergent series in

|K|=j,0eEK
S'(R).
(ii) for J <2, there exists Cy > 0, independent of x such that for any ¢ € S(R),
J
(@) = (0, 0) =D (15 2)| < Colixll: D, Naglp)p”™,
Jj=1 a<(J+3)(d+1)

BT +A+(T+2)d
where ng is the density of states of the unperturbed Hamiltonian Hy and
s
Nors(9) = |2 25

In Theorem 2.7, we only present the expansion of the density of states until the
second order J = 2. The proof of the expansion up to any order J € N should
follow the same lines and techniques used here.

A result similar to Theorem 2.7 was obtained in [19] in the linear case. Materials
with low concentration of defects were studied by Le Bris and Anantharaman [1].
in the framework of stochastic homogenization.

The proof of Theorem 2.7 follows essentially the proof of [19, Theorem 1.1]. It
uses the decay of the potential related to each local defect. In [19, Theorem 1.1],
the linear potential is assumed to decay exponentially. In our nonlinear model, the
decay estimates established in Section 2.3 play a crucial role in the proof.

The rest of the paper is devoted to the proofs of the results presented in this
section. In the next section, we study the dielectric response of the crystal to an
effective charge perturbation. The results of Section 3 will be used in later sections.

3. DIELECTRIC RESPONSE FOR YUKAWA INTERACTION

In this section, we study the dielectric response of the electronic ground state of
a crystal to a small effective charge perturbation f € L2 . (R?). This means more
precisely that we expand the formula

Qr=1(Ho+ f+Ynm<0)—1(Ho<0)

in powers of f (for f small enough) and state important properties of the first
order term. The higher order term will be dealt with later in Lemma 4.1. For
Coulomb interactions and local perturbation f € L?(R%) N Co(R?), where Co(R?) is
the Coulomb space, this study has been carried out in [6] in dimension d = 3.
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The results of this section can be used in the linear model or the mean-field
framework. In the reduced Hartree-Fock model we consider in this paper, the
effective charge perturbation is f = p, — v, where p, is the electronic density of
the response of the crystal to the nuclear perturbation v defined in Theorem 2.1.
Expanding (formally) Q in powers of f and using the resolvent formula leads to
considering the following operator

1 1 1
= Y ———dz,
Qs 2mj£cz—Hof* - Hy "

where C is a smooth curve in the complex plane enclosing the whole spectrum of Hy
below 0 (see Figure 2). By the residue Theorem, the operator Q1,5 does not depend

C
o(Ho)

FIGURE 2. Graphical representation of a contour C C C enclosing
o(Hp) N (—o0,0].

on the particular curve C chosen as above. We recall that Ve, is —A bounded with
relative bound 0. Thus Hy is bounded below by the Rellich-Kato theorem [28,
Theorem X.12|. Theorem 3.1 below studies the properties of the dielectric response
operator L : f — pq, , and the operator (1 + L',)*l, which will play an important
role in the resolution of the self-consistent equation (11). In particular, it gives
the functional spaces on which £ and (14 £)~" are well-defined for both local and
extended charge densities. It also says that (1 4 L',)_l is local in the sense that its
off-diagonal components decay faster than any polynomial. We consider H~!(R?),
endowed with the scalar product

1 F®)gp) J

<fag>H*1 = (27T)d i |p|2 2

Theorem 3.1 (Properties of the dielectric response). We have

(i) The operator
L: H'RY) — H'(RY
f = “PQu, s
is well-defined, bounded, non-negative and self-adjoint. Hence 1 + L 1is
wnwvertible and bicontinuous.
(ii) The operator L is bounded from H~1(RY) to L2(R?) and 1/(1 + L) is a
well-defined, bounded operator from L%(RY) into itself.
(iii) The operator
L: L2

unif

RY) = Li (RY)

unif

f = “PQ1, s

is well-defined and bounded. The operator 1+ L is invertible on L2 .. (R%)
and its inverse is bounded.
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(iv) There exist C > 0 and C' > 0 such that for any j,k € Z% such that
|k — 4] > 1, we have

1
Iry, T £11F+k

< Ce=C'(loglk—=i1)* (16)

B
Proof. The proof consists in the following 6 steps. In the whole paper C' > 0 and
C’" > 0 are constants whose value might change from one line to the other.
Step 1. Proof of (i). The proof is similar to the one of [6, Proposition 2], with the
Yukawa kernel Y,,, instead of the Coulomb kernel. In the Yukawa case, H!(R¢)
plays the role of the Coulomb space. The proof of [6, Proposition 2| can easily be
adapted to our case. We skip the details for the sake of brevity.
Step 2. Proof of (ii). Let f € H-1(R%). Then Y,, * f € L*(R?) and
~ 2 2
)| )| )
=0 [ ey =Cfl.
Ip| —|—m2) Re |p|” +m

(17)

Therefore, by [6, Proposition 1], Q1,5 € K, where K has been defined in (9), and
Lf=-pg,, € L*(R?). Arguing by duality, we have for any W € L?(R¢),

Yo £ = 57 [
R4 (

Tr (Q1,fW) = /]Rd PQ, s W. (18)
Besides, by the Kato-Seiler-Simon inequality [30, Theorem 4.1] for d < 3
. _d
Vp =2, [If(=iV)g(@)lle, < Cm)7 [[fllLs 9l (19)
and the fact that
(z— Hp) "' (1= A) is uniformly bounded on the contour C, (20)
we have ) )
Yin w L*(R?
o *fz—Ho € 63(L7(RY))
and
15 (QuaW)| = |5 T (s Yo x F o W) o] < O fl, (17
P = N T e —Hy T T H,y # =S Em xSz 1 e -

(21)
The bound (20) follows from the following lemma.
Lemma 3.2. Let W € L2 . (R?). Then there exists C > 0, depending only on the

unif

L2 ¢ -norm of W, such that for any z € C\ o(—A + W), we have
_ 1+ |2
1
< .
s = Canama vy
In particular, if A is a compact set of C\o(—=A+W), then (—A+1)(—A+W —z)~1

is uniformly bounded on A.

[(~A+1)(~A+W -z

The proof of Lemma 3.2 is elementary, it can be read in [21]. In view of (17), (18)
and (21), it follows that

[enw] <l 1.
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We deduce that

LAl < Cl Al -
We now prove that (1 4+ £)~! is bounded on L*(R%). Let g € L?(R%) and f €
H~Y(R?) such that (1 + L)f = g. Then, f = g— Lf € L>(R%). As 1/(1+ L) is
bounded from H~1(R?) into itself, we have

[l < Cligllg-+ < Cllgll e -

Therefore, as £ is continuous from H~!(R%) to L?(R9) ,

Ifllg2 = llg = Lfll g2 < llgllpe +1LF M2 < Nlgllpe + Cllf g < Cllgllge

which concludes the proof of (7).
Step 3. Proof of the first part of (iii): L is well-defined and bounded on L2 ;; (R%).
First, we consider a bounded operator A € B(L?(R%)) and prove that (z—Hp) "1 A(z—
Hp)~! is locally trace class. For y € L°(R?) and z € C, we have by (20) and the
Kato-Simon-Seiler inequality (19) that x(z — Ho)~'A(z — Ho) !y is trace class and
that there exists C' > 0 independent of z € C such that
1 1 1 1

Tr A A
’ (XZHO ZHOX) Z*HO Z*HOX

1
zZ — HQ

<|x

(G5

1]l 5
(CP

2
< CllAllg lIxlzz -

zZ— Sy

1
< Hx HOX

It follows that the operator (z — Hg) 1 A(z — Hp) ! is locally trace class and that
its density p, is in L _(R?). We now show that p, is in fact in L2 .. (R%). Let

loc unif

k € Z% and u be a non-negative function in L>(I" + k). It holds, taking x = +/u,
1 1
Tr ( x A X )| <ClAlgllullp - (22)

that
/pU=/px2
Rd N R4 N Z*HO Z*HO

By linearity, we deduce that p, € L°>°(R?) and
<llpzlipe < CllAllg -

lolza
As all these estimates are uniform on the compact set C, the operator
(2im) ! $o (2 — Ho) " A(z — Hy) " dz is locally trace class and its density p is in

L2 . (R?) and satisfies

unif
ol < ClAlL. (23)

We now consider the case when A =Y, * f is a potential generated by a charge
density f € L2 .. (R?). The following Lemma gives the functional space Y, * f

unif
belongs to when f € L2 . (R?).
Lemma 3.3. Let f € L? . (R?) and Y € LY _(R?) such that
Z 1Yl Lo (rry < 00, (24)
kezd
for some 1 < p,q < co. Then, the function Y * f is in L" ;; (RY) with 1+ 1/r =

1/p+1/q and there exists C > 0 independent of f such that
Y = fHL‘:mf <C ||fHL3n

if
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The proof of Lemma 3.3 is exactly the same than the one of [8, Lemma 3.1], we
omit it here. AsY,, satisfies (24) for p = 2, we have
Yo f € L%RY) and Yo+ fll < Cl1fll2 - (25)
Therefore, by (23)
HPQl,fHLfmif < C Yo * fHLoo <C HfHLfm )

if

which proves that £ is well-defined and bounded from L2 ., (R?) into itself. This
concludes Step 3.

In the rest of the proof, we use a localization technique. We will thus need Lem-
mas 3.4 and 3.5 below. Lemma 3.4 gives an estimate on the commutator between
the dielectric response operator £ and a localizing function in both L?(R%) and
L2 . (R%). Lemma 3.5 gives a decay rate of a real sequence satisfying a recursion
relation that will be satisfied by the localized sequence. The proofs of Lemmas 3.4

and 3.5 are postponed until the end of the proof of the proposition.

Lemma 3.4. Let x be a smooth function in C°(R?) such that 0 < x <1, x =1
on B(0,1) and x = 0 outside B(0,2). For any set I C Z* and R > 1 we denote by
Br.r = Uker (B(0,R) + k) and by x1,r(x) = x (d(z,I)/R). The family of functions
(XI,R)Rzl satisfy 0 < x1,r <1, x1,r =1 on By g, X1,r =0 outside Brar and

R|Vxr1r(z) + R? [Axrr(z)| <C ae., (26)

where C' is independent of the set I. We denote by nr.r =1 — x1,r. Then, there
exists C > 0 and C" > 0 such that for any I C Z¢ and any f € L*(R%)!

In1,RYm * f — Yo x (0r,Rf) g2 + l01,R, £] £l 2

IN

i)

L2) , (27)

+ H ]]‘BI,SR\BI,R/2f

c —-C'R
7 (" tesiamninst ],

C v
E (6 on ||fHL2 + H]IBI,SR\BI,R/ZJC

and for any f € L2 ., (RY)

unif
01,7 Ym * f =Y x (0t g Pl gz + Nlnr, L1 F 1 2
C( -cnr
<5 (<",

IN

+ H]IBI,SR\BI,R/zf’

f

L) e

Lemma 3.5. Let (zr)r>0 be a non-increasing family of real numbers such that for

any R >0,

C o C
TR < ¢ O Ryo + TR/ (29)
for given C >0 and C’,a > 0. Then, there exists C > 0 and C' > 0 such that for
any R > 2

ap < CeC o8 R0 (30)

We now proceed with the proof of Theorem 3.1. We first prove (iv), then we
prove that 1+ £ is invertible on L2 .. (R?).

In the whole paper, we use the convention f x gh =hf *g=h(f *g).
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Step 4. Proof of (iv). We explain how to use Lemmas 3.4 and 3.5 to prove (16). Let
ke Z%and for R > 1, let ng = n¢ky,r and Br = By g as defined in Lemma (3.4).

Let g € L2(R%) and denote by f = (1 + £) ' Ip4rg. For R > 1, we have
r(f+Lf)=nrlryrg =0.
Therefore

I+ L)nrf=nrf+Lorf = Lorf —nrLf = [L,nr] f.
Since 1/(1 + £) is bounded on L2(R?), it follows that

1
= <
I fls = | g 1eaml o] < € 10c0m) 1
C _C/ C

< e RN e+ [ Upamima ]| L B
where we have used Lemma 3.4 in the last step. Denoting by xp = ||II.]Rd\BZRf||L2,
the estimate (31) leads to

C _o c
TR S Ee ¢ RZL'O + ESCR/4.

Therefore, Lemma 3.5 gives that there exists C' > 0 and C’ > 0 such that for any
R>2

Han”LZ < TR/ < Ce—C/(logR)Zl_O _ Ce_c/(logR)2 Hf||L2 < Ce_cl(logR)2 ||g||L2(p+k),

where the last inequality follows from the fact that (1+£)~! is bounded on L2(R%).
Finally, as Ir4; < njr—j|/1-1/2, then

< CeC'loglh—i])? Ce=C"(oglk=iD g1, .

1
]1F+31 £]1F+k9 ||g||L2(F+k) =

L2
Step 5. Proof that 1+ L is surjective on L2 .. (R?). Let g € L2 ., (R?) and consider

gr, = glp, for L € 2N+1. As 1+L is invertible on L2(R%), there exists f;, € L2(R?)
such that

I+ L)fr =9z (32)
and

1
11F+j1+—£111“+kg

Ifellzz *]SHP ]1F+;1+ Z Iryrg|| < sup

b ‘
keZanTy, 12 IS kezanr,

L2
Using (16), we obtain

lfllz, <swC > e gl 4+ Clglle
JIEEL ema\(j)

<Clgll 2

nif unif

for a constant C' independent of L. The space L2 .. (R?) is known to be the dual
of 1Y(L?) = {f € LE (RY), 3, cza 1l L2rtny < oo} which is a separable Banach
space. Therefore, since the sequence (fr,)r>1 is bounded in L2 .. (R?), there exists

a subsequence of (f,)r>1 (denoted the same for simplicity) and f € L2 .. (R?) such
that fr, —, f in L2 . (R?) and

1£lls, < timinf fells < Cllglls, - (33)

unif
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We now want to pass to the limit in the sense of distributions in (32). Since C°(R%)
is dense in ¢'(L?), the sequence (fr) converges to f in D'(R?). Next, we need to
show that for any ¢ € D(R?),

| et me 0 (30

L—oo

We denote by p, 1, the density associated with the operator (z — Ho) 'Yy, (f -
fr) (z— Ho)~'. Then

[ci-me=g=§ [ pred

and, as ¢ has compact support, we have by (22) and (25)

‘/ Pz, LY
Rd

where the constant C' > 0 is independent of L and z € C. By the dominated
convergence theorem, it is therefore sufficient, for proving (34), to show that for
any z € C

<Clf = felie Ml < Clallze el

/ Pz — 0. (35)
Rd

L—oo
For R > 1, we define p; 1, out,r and p. r,in,r to be the densities associated with the
operators

1 1 1 1

mﬂRd\B(O,R)Ym *(f=fr)— 7 and  —— Ho]lB(o,R)Ym *(f=fr)— o

respectively. Therefore p. 1, = ps 1.out,R + P2,L,in,r- Let € > 0. In the following, we
will choose R large enough such that f Pz, L,out, R is small for any L. Then, using
the weak-* convergence of fr to f we show that fpz,L,in,RsO is small for L large
enough. Reasoning similarly than in the proof of (22), we find

/ Pz,L,out,RP
Rd

<CIf - fillys (36)
2
( )

Now, we need the following lemma.

Lemma 3.6. Let W € L2 ,; (R?) and H = —A + W. There exists C > 0 and

C’ >0, depending only on ||W/|| ;2 . » such that for any x € L2(RY) andn € L*°(RY)

satisfying R = d (supp(x), supp(n)) > 1, and any z € C\ o(H), we have
[z < cer@e =R g, ..

where ¢1(2) = d(z,0(H))™!, c2(2) = d(z,0(H))/(|z| +1). In particular, if A is a

compact set of C\ o(H), then

1 2

1
1ga\B(0,R) o ot

Igra\B(o,R) o V-

"

(GP

1 _c
[xG=mn| <Rl e
2

where C and C' do not depend on z but depend, in general, on A.



SHORT-RANGE QUANTUM CRYSTALS WITH DEFECTS 17
Proof of Lemma 3.6. We have

HX(Z —H) 77‘

Z/ X(2)G- (z, y)n(y)|* da dy,
CP R xR

where G, (z,y) in the kernel of (z — H)™'. By |29, Theorem B.7.2] and [14, Corol-
lary 1] we have for |z —y| > 1

|G (2,y)| < Cey(z)eCe2B)=vl,
where C' > 0 and C’ > 0 depend only on [|IWW||;- . Therefore

—1 2 2 2 a0 _
e =B al” < Carlel Inle 2 sup [ Lauppi e 2=l dy
G2 z€supp(x) /R4

2 2 —C’
< Cer(2)? (Il X7z e =R,
O

We now go back to (36). Using that ||f — fz]| 2
we have for R large enough

/ Pz,L,out,RP
Rd

We can thus choose R such that (37) is smaller than /2. Besides, we have

1 1
z in = T‘r ]l Ym -
/de L.in,RY ( BO.R) Ym * (f fL)z—HO‘pz — Ho)

<Cgll ;2  and Lemma 3.6,

if

2 !
<Cliglz Nl e @™ (37)

= / 1po,r)Ym * (fL — f)p,
Rd
where p is the density associated with the trace class operator (z — Ho) ™' ¢ (z — Hg) ™.
For R’ > 0, we have

'/Rd 1po,r)Ym * (fL — f)P‘ =

/ / Y (x —y) (f = fr) (y) dyp(z) dx
B(0,R) JR4

<

/ / Yin(z —y) (f — fo) (y) dyp(z) dz
B(0,R) J B(0,R’)

+ lpllgs- (38)

/ Youl- =) (f = f2) () dy
R4\ B(0,R’) Los(B(0,R))
AsY,, is exponentially decaying, we can choose R’ such that the second term of the
RHS of (38) is smaller that €/4. As to the first term, by the weak-x convergence of
fr to f in L2 .. (R?), we have that

unif

hm):/ Yle - o) (f = f1) () dy  — 0,
B(0,R’)

L—oo
for any « € B(0, R). Besides, we have for a.e. € B(0, R)
he(@) < el <CIF = fillz < Clalye

if

(see (25)). By the dominated convergence theorem, it follows that one can choose
L large enough such that the first term of the RHS of (38) is smaller that e/4.
This concludes the proof of (35), thus the proof of (34). We are now able to
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pass to the limit in (32), which concludes the proof of the surjectivity of 1+ £ on
L2 . (R?). In view of (33), we have shown that there exists C' > 0 such that for

unif

any g € L2 ., (R?), there exists f € L2 .. (R?) such that

unif unif
A+0f=g and [flz <Clgla - (39)

Step 6. Proof that 1+ L is injective on L2 ;; (R?). Let f € L2 .; (R?) be such that

unif unif

(14+L)f =0. For R>1, let xgr = x{o0},r as in Lemma 3.4. Then,
Xrf+ xrL(f) =0,

if

and thus
(1+ L) (xrf) = Lxrf — xrL(f) = [L,XxR] [-

As g :=[L,xr] f € L?*(R%), then the solution ¢ = xgf of (1 + L)y = g is unique
and satisfies [|¢]| 2 . < Cllgll 2 by (39). Therefore

Ixrflz < CULxR) 2

Using Lemma 3.4, we have

if

Ixefllps < CNL xRl Flle = C LR flls

if if

C
< Zlflz, - (40)

As ||xrfll 2 . Is a non-decreasing function of R converging to 1172 . when R —
+o00 and the RHS of (40) goes to 0 when R — 400, then || f| - . =0and f=0;

which proves that 14 £ is injective. The boundedness of 1/(1 + L) then follows
from (39). This concludes the proof of Theorem 3.1. O

In order to complete the proof of Theorem 3.1, we need to prove Lemmas 3.4
and 3.5.

Proof of Lemma 5.4. For simplicity, we use the shorthand notation xr = xr.r,
Nr = N1,r and Br = By g.
Step 1. Proof of (27). We have

Nrf * Y, =Y, x(nrf) =nr (*AerQ)_l f— (*A +m2)_1 Nrf
= |:77R, (—A + m2)_1] f

We now use that [B,(z — A)7'] = (z — A)~' [B,A] (z — A)~! and the fact that
e, Al = —(Ang + 2Vng - V). We thus obtain

NRf * Yo — Yo % (i f) = (=A +m2) " gy Al (~A+m?) 7' f
1

=—(=Aa+m?) " ((Ang) +2(Vir) - V) (A +m?) " . (41)

As Vg = —Vxgr and Anr = —Axg are supported in Byg \ Bg, then, by (26),

C -1
Inef * Yo = Yo s ), < 25 [Lmamimn (<2 +m2) 7 7|

c o —1
+ E HII'BQR\BRV (7A + m ) fH(LZ(Rd))d : (42)
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To bound the first term of the RHS of (42), we write
1
( A+m? / Yo (z — (y)1 (Rd\Bm)uBR/Z(?/) dy

Rd Yom(a = )f(y)]lBSR\BR/z (y) dy (43)

Thanks to the exponential decay of Y;,, and the fact that for any « € Bag \ Br and
y € R4\ Bsr)U Bgya, |v —y| > R/2, we get

-1
HﬂBzR\BR (=A+m*) " flenp,m08e.|

_mR
< (Ce™ 1 HY% * (f]l(]Rd\BBR)UBR/Q) L2

Controlling in the same way the second term of the RHS of (43), we deduce

_mR
< (Ce 4 Hf]l(]Rd\BgR)UBR/2 -2

HII-BQR\BR (7A +m? fH < Ce” Hﬂ(Rd\BsR)UBR/ZfH +C HllBsR\BRﬂfHHfz )

We proceed similarly for the second term of the RHS of (42) using that W,,, = VY,,,
the inverse Fourier transform of i }S d’l} —P— is exponentially decaying and
Ip|? +m?

satisfies |W, * gl|;2 < ||g|| g—1 for any g € H™!. We get

C _mr C
Inrf *Ym = Yo x (e f)llg, < 7¢ “H(Rd\Bza)UBR/Zf"H71+§ ‘’]lfzfgza\BR/szW1 :
(44)
We turn now to estimating ||[nr, £] f||, 2. We know that [ng, L] f is the density
associated with the operator

1 1 1 1 1
- - [ (——v, - Yo d
rQ1s + Quans = 5 C(ZHO *Orf) g — R *szO) ‘
1 1
S Y — rYm d
sim Jo =g ¥ (rf) =Y ) g d
1 1 1
R Yo dz. 45
% C{UR’,Z—HO] Sy (45)

We denote by r1 and ro the densities associated with the first and second terms of
the RHS of (45) respectively. For any W € L?(R%), we have

1 1
Tr Y, —nrY,
e [ (5= o o) = o ) =)
<O Yo (1 f) — naYo* Fll W (46)

where we have used (19) and (20). Therefore, in view of (44),

[r1llz < ClYm * (MR S) = nRYm * [l 12

T1W’

C _wmr C
£ ]y + Sl

It remains to estimate 2. For any A € Gy(L*(R?)) and W € L*(R?), the density
p associated with the operator (—A + 1) A (=A + 1)7"/? satisfies

2 —3 2 T2
(1 +1) *| lAle, || (1 +1)
L4 L4

<CIW Lz [Alls, -

et
Rd
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Therefore

ol L2 < CllAllg, - (48)

Applying (48) for A = (=A+ 1) [ng, (z — Ho) "] Yo # f(z— Ho) ™' (-A +1)'/2,

we obtain

IH Yoo f(~A+1)72

Irslls <€ § H(A 1) e A dz,  (49)
C 2 — o

[GP)

where we have used that C1(1 — A) < |z — Hy| < C2(1 — A), whose proof is
similar to the the one of Lemma 3.2. As the commutator [ng, A] has its support
in Bag \ Bgr, we consider separately f]lBSR\BR/2 and f]l(Rd\BSR)UBR/Z. Using the
same techniques as above, we obtain

1
2

N

e A (L) [

(CP)

<C H(—A +1)72 [UR,A]H Y * (133R\BR/2f)

Bllz— Hy S,
< C(IVnRl g + 18081 =) Yoo * (Lpamimasaf )|
< S tsumsnat], (50)
Far from the support of [nr, A], we have
H(—A + 1)_% [nr, A *1H0 Yo, * (]I(Rd\B3R)uBR/2f) (—A+ 1)_% o
2
1

¢ ”(7A + 1)7% (AnR -2V VUR)HB kZZd
€

_1
X HllrJrkYm * (]l(]Rd\BgR)UBR/Qf) (FA+1)"2 5

Upom\Br g e

(51)

In dimension d < 3, H*(R?) — L*(R?). Therefore
1

HllrJrkYm * (H(Rd\BgR)UBR/zf) (—A+1) 5

S C H]lr-i-kym * (]I(Rd\BSR)UBR/Zf) (—A + 1)—

< C HHFJrkYm * (II'(]Rd\BSR)UBR/Zf) H 4 < C HYm * (1(Rd\BSR)UBR/2f) H .

1
2

L HY(D+k)
(52)
Using the exponential decay of Y,,, we obtain
—md(k,(R*\B Br/s
HYm * (1(Rd\BSR)UBR/2f) HHl(FJrk) S Ce : ( ( \ BR)U / ) ll(Rd\BSR)UBR/szH71 .

(53)

In particular, for k € Z¢ N (B5R/2 \B33/4) (the pink part in Figure 3 below), the
distance between k and (R?\ Bsg) U Bg/s (the blue part in Figure 3) is greater
than or equal to R/4 and
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3R 5R
4 2

0 2 R 7R 3R

FIGURE 3. Schematic representation of R, used in the proof of Lemma 3.4.

_mR _ m d
HY ¥ ( (RN\B3r)UBR/2 )HHI (T+k) < Ce™is ¢~ T4 (ENBsr)UBR/2)

‘1(Rd\BsR)UBR/2fHH,1 :

(54)
Besides, using Lemma 3.6 with nn = 1 p,,\p, and x = Ir4g, we obtain

1 /
1 ——1 < Cem @ dk-Bar\Br)
‘ BZR\BRZ_HO I+k . > e
In particular for & € Z¢ \ (B5R/2\B3R/4), we have d(k, Bag \ Br) > % (see
< Cem 5 e~ Sk Bar\Br), (55)

Figure 3) and
i
(CP)

Combining (51), (52), (53), (54) and (55), we obtain

1
7 Yo * (1(Rd\BgR)UBR/2f) (A +1)

1
B — 17 MI'+k
2R\BR 2 — HO +

c' R

_1
2

(~A+1)72 [ng, A

&2
c o—C'R —C'lk
< E Z e ‘ ‘ Hl(Rd\BSR)UBR/ZfHHf
c
< &€ on H1(]Rcl\BSR)uBR/ZfH}Lr1 . (56)

This completes our estimate on 7. Indeed, in view of (49), (50) and (56), we
deduce that

)

C _conr
[rall2 < ik Hl(]Rd\BgR)uBR/ZfHHil +5 H]IBBR\BR/Qf ’H—l

which concludes the proof of (27).

Step 2. Proof of (28). The proof of (28) for functions in L2 ;; is similar to the
one of (27) for L? functions. We sketch here the main steps of the proof, and only
highlighting the differences. Let f € L2 .. (R?). Using (41), we have

NRYm % f =Y (rf) = > nrYm * (Irirf) = Yo x (nrlrisf)
kezd

= > (A +m*) 7 ((Anr) +2(Vnr) - V) (A +m?) g f
keza
=Y x (AnrY, * f +2Vng - VY, = f).

Therefore
Yo f =¥ (), < C =B+ ) (¥ = f = Yo O 3
S CANRY m * [ +2VnR - VYo * f 12

unif

C C
< R2 H]le\BRYm * fHLﬁn;f + R H]le\BRVYm(;;)HLﬁmf :
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To bound the first term of the RHS of (57), we use the exponential decay of Y,,,
the fact that Y,, € ¢1(L') and Lemma 3.3. We get

Vi % (fll(]Rd\BgR)UBRﬂ) ’

mR

||]IB2R\BRYW * fHLﬁn <e 4

if

e (1amone)
unif

Liie )

As VY, is also exponentially decaying and is in £*(L'), we proceed similarly for
the second term of the RHS of (57). Finally we obtain the stated inequality

7 )
Liie

H??RYm * f — Y, * (an)HHﬁnif <= (e—C " HfHLfmif + H]IBSR\BR/Qf‘
(58)

L2

_mR
< (P Wl + ot

R
We turn to estimating ||[ng, £] f]| ;2 L By (45), we have that

Mr, L] f =r1+712 =71 + 721 + 722

where r and ro are the densities associated with the first and seconds term of (45)
respectively, which are now locally trace class operators, and rs; is the density
associated with the operator

1 1 1
L Lot v (i) -
2ir [ [”R o HO] * Lpam\sapef ) S 47
By (23) and using that, in dimension d < 3, H2 ., (R?) — L>(R%), we find
Iralle =~ < ClYm s (RS) = 1RYm * fllpe < CYm * (RS) = 18Ym * fllg2

C )
unif

-’
< (Mg, + [tmrnesd
where we have used (58) in the last step. Similarly for roq, since ||Ang| - +
IVnrl - < C/R, we have

1
Il < i Al = Yo )|

0

IN

(@) +2(9m) - 9)

‘Ym * (]1BSR\BR/2f) H

[,

Z*HO B‘

A

C
= E HllBsR\BR/zf’ 12 (59)

unif

As to 799, it is actually in L?(R9) and

_1 1
Il < lroalle < -8+ 17 lom, 8] S Yo s (Lo o)

C

Sa
—C'R
<G (ot )

The proof of (60) is exactly the same than the proof of (56), except that in (53), we
use the inequality ||Yy, * fl o < C|fll 2 . instead of the inequality Vo # fllgn <
C|Ifl =1~ This concludes the proof of the lemma. O

We pass now to the proof of Lemma 3.5.

2
Lunif
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Proof of Lemma 3.5. We denote by y,, = z4» and b,, = Ca~"e %" forn € N and
a > ap = max {a,2}. By the assumption (29), T4n /q < Tan-1 = Yn—1, and we have

C C
Yn < bn:EO + nxa”/a < bnxO + nyn—l-
(6% (0%

Besides, there exists a continuous function C'(«) such that y, < C(a)zy, where z,, =
C”/a”("+1)/2z0 is a sequence defined by the induction relation z, = C/a"z,_1.
Going back to zg, we deduce that for any n € N\ 0 and R = o™, we have

v log(R)? 11 log(R) _ 1 log(R)?
zr < Cla)e” Tost@r T 0@ 1y < C(a)e™ 9 Toxtor zg. (61)

As (61) holds true for any « € [ao, a%}, we deduce that there exists C' > 0 inde-
pendent of «, but depending in general on a, such that for any R > 2,

’ 2
xR < Ceic log(R) To,

which concludes the proof of the lemma.

4. PROOF OF THEOREM 2.1 (EXISTENCE OF GROUND STATES)

Let us now establish the existence of a ground state for the perturbed crystal in
the rHF framework. The proof of Theorem 2.1 is a consequence of our results on
the operator £ stated in the last section, and of the properties of the higher-order
term in the expansion of Qy for a charge distribution f € L2 ., (R?).

To solve the self-consistent equation (11), we first formulate the system in terms
of the response electronic density p = py — p4, as follow

p=pq
Q =1n,1v,<0 — LHy<o (62)
—AV, +m?V, = ‘Sd_1| (p—v).
Indeed, if p is solution of (62), then v =1 (Ho + Yo, * (p — pyo — ) < 0) solves (11).
For a charge density f € L2 ;; (RY), we expand
Qr=1(Ho+Y,xf<0)—1(Hy<0)
as powers of f when f is small. For this purpose, we assume that

d(c’ J(HO)) 29,

where g = d(0,0(Hp)) and C is now a smooth curve in the complex plane enclosing
the whole spectrum of Hy below 0 and crossing the real line at 0 and at some point
c < inf o(Hp) — g (see Figure 2). Let us recall that for V€ L>®(R?), o (Hy + V) C
o (Ho) + [= IVl e s IVl ). Therefore if [|[V|, - < g, then Hy 4+ V has a gap
around 0 and o (H) C [inf o (Hp) — g, +00). For such a V', we have using Cauchy’s
residue formula,

Q=1(Hy+V <0)—1(Hy<0) 1]{;112 1% L.

T 2ir Joz—Ho—V '~ 2in Jo 2 — Hy

By the resolvent formula, we obtain

1 1 1 1 1 2 1
= 1% dz 4+ — 1% dz.
@ Qiﬂjécz—Ho z— Hy Z+2i7r]£<z—Ho > z—HO—VZ
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Therefore for f € L2 ; (R?) such that ||f * Vi, o < g,

unif
Q= Qu+Qay, (63)
where @)1, has been defined and studied in Section 3 and @27 ¢ is defined by
~ 1 1 2 1
_ L Y i f) ——————dz.
@25 = 572 . <z—H0 *f> 2 —Hy—Ymxf "

We give some properties of the second order term @2, ¢ in Lemma 4.1 below. Using
the decomposition (63), equation (62) becomes

P =@, trg,, = Llo=—v)+trg,, - (64)

Following ideas of [15], we recast (64) as

L 1

P= T T T £ A (65)

In Proposition 4.2 below, we show that for v small enough, the operator G, :
p—=LA+L) v+ 407" PG5, (p—v) admits a fixed point, which is controlled
in the L2 ., norm by the nuclear perturbation v. This will conclude the proof of
Theorem 2.1.

Lemma 4.1 (Properties of the second order term). There exists 6. > 0 and C > 0
such that for any f € L2 i (R?) satisfying || || .2 . < 0c, the operator Qy,5 is trace

unif

class, the density PG, is in L2 _.; (RY) and

unif

2
< C 2

if

Hp~ ‘
Q2,
! Linif

Proof. Since ||Yi, * fll ;00 < Co|If]l ;2 . (see (25)), we can choose §. = ¢/2Cy,
where, we recall that g = d(0,0(Hp)). In this case, (z — H — Y, x )71 (=A + 1)
and its inverse are uniformly bounded w.r.t z € C (see Lemma 3.2). Using the

exact same procedure as in the proof of (23), we obtain that Q2 ¢ is trace class,

06, , € L2 (RY) and
1 2 2
e, < C’ ﬁym Sy S| < O Sl < Cllf g,
which concludes the proof of the lemma. (Il

Proposition 4.2. There exists a., e > 0 such that if ||V 2 S o, then
(E) — BLZ

e ()

1
A v Ll v o N

gl, : BL2

is well-defined and contracting on Bz (€) = {f € L% (RY), ||fll2 L < e}. Thus,

unif

it admits a unique fized point p in the ball By N (¢). Moreover p satisfies

lollz < Cllpa . - (66)

if

for a constant C' independent of v.
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Proof. We want to use Lemma 4.1 to show that G is well-defined on a small ball of
L2 .. (R?). Here, the charge distribution is f = p — v. We thus need to choose a..

unif

and e such that [|p — vz~ <|lpllz ~+Ivl2 < et ac<de, where dc is given
by Lemma 4.1. Let A > 0,0 < e < d./(1+ A) and o, = Ae. Let v and p such that
IVl 2 . Sacand lloll 1.2 <€ By Lemma 4.1 and the fact that £ and 1/(1+ L)

are bounded on L2 .. (R?) (see Theorem 3.1), we have

unif
c 1
L+ Ll L+ Lz,

<Ol +Collo—vlia < (CiA+Ca(1+ A e (67)

16 ()2 <

if

iz, | Jr...

L2

nif

We choose A < 1/C such that for € < (1 — ACy)/(C2(1 + A)?), we have

16, (D)za,, < e

nif
To show that G, is contracting on Br2 (¢) for € small enough, we use the explicit
expression of ngyp,l,. Let p,p' € Brz (€) and denote by H = Hy + Yy, * (p — v)
and H' = Ho + Yy, * (p) — v). The function (1 + £) (G, (p) — G.(p)) is the density
associated with the operator

2 2
1 1 1 1 1
b Vr(p— - Yo 5 (0 — 1)) —— dz.
2in C(ZHO * (o ”)) C—H (ZHO % ”)) o ”

A straightforward calculation shows that this operator can be written as

2
1 1 1 1
- —Y, — —Y, —
% C(ZHO *(p ”)) - ARGl b=
1 1 1
Y, (p— Yo x (p— o/
M *(p ”)szO *(p =) —p
Yo % (p — o/ Yo # (o) — dz. 68
M *(p p)szO * (0 —v) e (68)

Using the same techniques as before, we deduce that

19(p) = Gz, < Cs (Iollz, +1lge, +IWllgz, ) o= #llzs,
<Cs 2+ Aellp=pllp2

if ’
Taking, in addition, € < 1/(C3(2+ A)), we have that G, is contracting on Bz _(e).

Let p be the unique fixed point of G, in Brz (€). It remains to prove (66). By‘(67)7
we have

<Gz, +Ca(t+ A (ol + Iz, )-

Therefore (1 — Ca(1 + A)e) ||pl| 2 L < (C1 4+ Ca(1+ Ae) ||V 12 - Using that e <
(1—AC1)/ (Co(1 4+ A)?), we have 1 — Ca(1 + A)e > 0 and we deduce that

C1+Ca(1+ A)e 1
. <A <
Ilzz,, < T gs e M, <5 M,

lell

if

= 16, (0) 2

if if

which concludes the proof of the proposition. O
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5. PROOFs OF THEOREM 2.3 AND PROPOSITION 2.5 (DECAY ESTIMATES)

We present in this section the proofs of Theorem 2.3 and Proposition 2.5. They
consist in decay estimates of the mean-field potential V,, and the mean-field density
pv. These estimates are used later on in the proofs of Theorems 2.2 and 2.7.

5.1. Proof of Theorem 2.3.

Proof of Theorem 2.3. Assume that ||v||;» < «, where «, is given in Theo-

nif

rem 2.1. We use the notation p to denote the mean-field density p, = p,, —,, the
solution of (65), and denote by V =V, = Y,,#(p—v). Recall the decomposition (64)
of p in a linear term and a higher order term

p=—Lp=v)+rg,, -

Using localizing functions, we will show that p decays far from the support of v.
To do so, let us introduce the set I = {k: € 74, supp(v) N B(0,1) + k # (Z)} and for
R > 1, the set Br = By r and the the function xr = xr,r defined in Lemma 3.4.
We denote by ngp =1 — xr. We thus have

nrp = —nrL(p —v) +nrpg, = —Lnrlp—v) +[L,0r] (p—v) +1rpg, -

As for R > 1, ngv = 0, it follows

1 1
NRP = a+20) [£,nr] (p—v) + mnRPQz,pw' (69)

We will successively bound each term of the RHS of (69). For the first term, we
have by Lemma 3.4 for R > 2,

‘Lamf ) > (70)

where we have used that Ipsp\Br, Y =0 for R > 2, that p is controlled by v in the
L2 . norm and that 1/(1+ £) is bounded on L2 ;; (R%). As to the second term of

uni

the RHS of (69), since 1ga\ p,mr = 1r, we have

IA
=l QA

1 v
Hm (Lonal (0 =) (e o = VHLﬁnif + HHBBR\BR/z (p— V)‘

LGif
C 7C,
1 Gl P [ PP

IN

1 1 1 1

Q. pv = =—— 1 v 14 d
Qv = 5 T eV ST Y ST B

1 1 1
— oy, V 1% d
2 Jo 2 — Hy 2\Pr {”R’Z—HJ c—H"

1 1
— 1% 1% d
w C|:77R7Z—HQ:| s Hy z—H

(71)

where H = Hg + V and C is as in the previous section. We recall that by the
assumption ||v|| 2 L Sac the operator H has a gap around 0, thus the operator
(z—H)~Y(=A+1) and its inverse are uniformly bounded on C and all the estimates
obtained in the previous sections hold when we replace Hy by H. We denote by
rg, r4 and r5 the densities associated with the three operators of the RHS of (71)
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respectively. Using an inequality similar to (23), involving H instead of Hy in the
resolvent in the right, we have

g, < [

By (28) in Lemma 3.4, and using that [[Yi = fll g2~ =|fll 2 , we have that for

R>2
. 72
) @

1
1Rd\BRV?%VnR

dz < C||Viga g, o Vgl L -
B

C v
I g, < Iollig,, + % (™ W, + [ Lmrmao

Therefore

73]l 2

unif

9 .
Lunif )

C _ C
<cC H]le\BRVHLco (C HnRPHLin + 5e R HV”Lim + E H]IBSR\BR/Qp

if R if

To bound r4 and rs5, we recall that we have shown in the proof of (28) (see (59)
and (60)) that for any f € L2 .. (R?)

unif
(A + 1)7% R, 4] L Yon * (L(re\ Byp)uBan /)
’ z— Hy 3R 2R s
A— v, (1 <G (econ 1

|| A) S Yo (Umamman )| < 7 (70 Wl + [ Emammaf ), )
Therefore, using again the equality [ng,(z — Ho) ™| = —(z — Ho) ™" [nr, A] (z —
Hp)™!, and an inequality similar to (23), we obtain that for any R > 2,

1 1
[rallz < C?i [z, V| o P R, A 7 de

L2, ) - ()

The last term of the RHS of (71) can be written Qi + Qout, where

1 1

1 1
in = 7= , Y., * (15. —
@ 2@#7{ [nR z—HO] * (Lpsm\Bor (= 7)) z—HOVz—H

In the same way we obtained (73), we get

c
< =
To estimate pq,,,, we recall that by (48), we have that for any A € Go(L*(R%))

C e
< G Manm Ve (O olig, + [Losirmr

dz.

”inn

v
‘Linif - R HVHLOo (e R HV”Lﬁnif + H]IBSR\BRmp

Hp(fAH)*%A(fAH)*% 2 = CllAllg, -
Therefore

_1 1

HpQOUt”LQ it = C% H(A * 1> i MR’A] H, Yim % (1(Rd\BSR)UBQR (p - V))
fini c . H, N
1 1
V(l-A)"z| d
X Z*HO ( ) 5 z

Linit )

c o
< G WVlam (O Wiy, + Lm0
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Now that we have found estimates on r3, r4 and 75 = pg,, + PQ..., We use that
[eansa V] < IVl < Cllo— vz <Cllvlls < Ca,

to estimate NRAG, , ., 38 follow

—C/RH

C C
< Cacllnrpllye,, +5e " IWla, + T |[Lum s

R

|mes.. g

unif

(74)

L3

nif

Using once more that 1/(1 + £) is bounded on L2

nif (RY), we deduce in view
of (69), (70) and (74)

—-C'R ”

C C
Ingollzz < Cooe oz + e 1 L

if R

We choose o/, < min {1/(2C)), a.}, and assume that ”VHLﬁn;f < ol. Tt follows

l/” 2 .
Linie L2 .
unif

C
Inellyz, < Fe "

P
Vg2 - || Bsr\Bg /2P
L2 . R srR\BRr/2 L2

We have a similar inequality for V. Indeed, by (72), we have

C _o C
InVilge,, < el +5e " il + 5 ||LBumsn.p| .
unif
C _o C
<Rl 5 [ Lsaan (75)
unif
Using Lemma 3.5 with xr to H]lRaz\BRpHL2 , we obtain
unif
’ 2
Inrolls . < CemC'0BR |, . (76)
Inserting (76) in (75), we get
InaVilg < Ce @ 0ER )|,
Finally, noticing that 1ga\ ¢, ) < Nr/2, we conclude the proof of (13).
(I

We now turn to the
5.2. Proof of Proposition 2.5.

Proof of Proposition 2.5. Assume that ||v]|;> < a., where o, is given in Theo-

i

rem 2.1. As p, and p,, are fixed points of the functionals G, and G, respectively,
then

1

(v —vL)+ 11 £P@a00=1)=Qs(puy —v1)’

pV—pVL:H—E

For R > 1, let xr = Xq0},r and Br = By} g as defined in Lemma 3.4. Since
1p, < Xr, then

an (o0 = Pz, < lIxR (o0 = o)l

1
= ‘ XRTT (‘C (v—ve)+ p@(w—u)—@é(%—m)

L‘Z

unif
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Besides, there exists C' > 0 such that for any f € L2 .. (R?) and any R > 1,

unif

1 C *C/R 1
— <= Ip,,—— . 7
H xr g 1 <% ( 1z +] sz | ) (77)
unif unif
Indeed, using that 1/(14-L) is bounded on L2 ;; (R%) and estimate (28) in Lemma 3.4
(notice that Lxr — xrL = nrL — Lng), we obtain
1 1 1
= ||—— L. yg] ——
H[XR’l—FE}sz H1+£[,XR]1+£fL2
unif
1
<C|L
<l 71|
unif
C( _onll 1 1
<= S 1p. —
=R <€ 1 +£f 12 +‘ BJR\BR/Zl +£f 12 )
unif unif
C{ _e 1
< R <€ R Hf“Lﬁnif + ‘ II'BSR\BR/2H_—£f Lo ) .
unif

Using (77) for f =L (v —vp) + G, we have

(pv—1)=Q2(puy, —v1)’

Ty pXRE )

1
xR (pv — PuL)HLfmif < H L + H—l JrEXRp@vz(pu—V)—@(puL—VL)
unif

C _ C
+ Fe R Wl + 5 W (00— P, - (78)

if

We first bound the first term of the RHS of (78). Using (28) in Lemma 3.4 and
that for R < L/4 it holds that xr(v — vr) = 0, we have for R < L/4

1
H XrL (v —vr)

< Ol —vi)lya

1+ L L2 if
C _ C
< Cllval—villga,, + e R vl + 5 Lo (v = )l
C _ C
<SR+ S - s, (79)

We turn to the second term of the RHS of (78). Using (28), a decomposition similar
to (68) and reasoning as in the proof of (74), we find for R < L/4

< Co (IVll.,

if

2
+ 3, )

1
H 1+ £ Q20 —0)=Qa(o —10) |||

unif

C
(el = )lsy,, + e "

Vi,

C
+ Sl )

We choose o, < a. such that Cy(al, + al.®) < 1/2. Thus, if ”V”Lﬁmf < a, then

Ix&(py = pus ) 12

unif

1
2, 2
C (R 1 80
+3le Wlipz 4 Mpsefrll ). (80)

1
H 14+ EXRP@(P'»*V)*@(PVL —vr)

unif
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In this case, combining (78), (79) and (80), we obtain for R < L/4

15n (o0 = poc)llsz < llxn (o = pos)ll sz,

if if

C /s
< 5 (TR IWls, +pan (00 = o)z, + 1m0 = v0)lz, )

Using a recursion argument, we easily see that for any 8 > 1, there exists C' > 0
such that

¢’ c
Wz, + 15 e (0 = pu)lle,

if

”py P HLinif (BL/4B) S ﬁe

if

C C
+ Sl =l < 5 e,

if
To conclude the proof of the proposition, it remains to prove the bound on the
potential. Using (28) and denoting by fr = p, — p,, — v + v, we have

IV, = Vo, ||H§nif (B 48) < ||XL/4BYm * fLHHEnif
C /[
< Cllxwsaoov = puullz , + 7 (e TR L)

C C/ o C C
< g5 lvllee,, + 7 (e Wlee,, + o=z Wilie,, ) < 75 Wllee,,, -

O

6. PROOF OF THEOREM 2.2 (THERMODYNAMIC LIMIT)

Proof of Theorem 2.2. Assume that ||v|| 2 . < ac, where ac is given by Proposi-
tion 2.5. By Cauchy’s formula, we have

1 / 1 1 d
v — Yvp = 3 - Z,
T T o cz—Hoy—=V, 2z—Hy-V,,

where the curve C is as in Section 4. We write the resolvent difference as

1 1 1 1
- - Vi # f1 s
Z—Ho—VV Z—Ho—VVL Z—Ho—VV Z_HO_VVL
where fr, = p, — v — p,, + vr. For a compact set B C R?, we have
Tr |1 1 Yo x f 1 1| <C|1 1 Yo xf
— YV, *x f—————————— < — Y.
B —Hy—V, Ye—Hy-Vv,, " B —Hy -V, e,

For L large enough, we have B C B(0, L/8) and, by Proposition 2.5,

1 1
lp—— 1 Y iy | Yos full
‘ BT H, v, oY i 62“ Bz—HO—VVH@ [to0zsm¥os fill,
< C
< Tz,

Besides, as d(B,R?\ By,)4) > L/8, we have using Lemma 3.6,

i

< Ce¢'L Hlle\B(o,L/4)Ym * fL||L°°
(SP

1
Bmﬂmd\B(o,Lm)Ym * fr

C
< 2wl

unif
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As C is a compact set and all the estimates are uniform on C, we conclude that

nif [, —o00

C
HllB (’vaf)/VL)ILBHGl < Z”V”Lﬁ — 0.

7. PROOF OF THEOREM 2.7 (EXPANSION OF THE DENSITY OF STATES)

The proof of Theorem 2.7 follows essentially the proof of [19, Theorem 1.1]. The
main difference is the proof of Proposition 7.1 below, which deals with self-consistent
potentials, while [19, Proposition 2.1| deals with linear potentials. Treating non-
linear potentials is done at the price of assuming that the defect y is small in
the L2 ..-norm, so that the potential decays fast enough. For the sake of self-
containment, we mention here the main steps of the proof; more details can be
found in [21].

Proof of Theorem 2.7 . Following [19], we first express the density of states of the
random operator H,(w) in terms of the resolvent (z — H,)~! for 2 € C. We
next find an asymptotic expansion of Tr ((z — H,)™') using a thermodynamic limit
procedure.
We recall the Helffer-Sjostrand formula [18, 11]. For a self-adjoint operator A
and ¢ € S(R), we have
1 [ 0p

1
p(d) = —— g 55 (A = de dy,

where ¢ : C — C is an appropriate complex extension of ¢ such that
(i) » € S({z € C, [Im(z)| < 1}),
(ii) for any n € N and a, 8 > 0, one has

_n O .
sup Na. 3 (Jc — (|y| 8_§($ —l—zy))) <Chap sup Na pg(p), (81)

lyl<1 B<ntpt2
a’'<a

048690

T 5zp

where N, 5(¢) = sup,cr
Hence, for ¢ € S(R),

(ny — o, ) = / (@) (dz) — / (@)no(dz) = Tr (p(Hy) — p(Ho))

1 0@ 1 1
_—;ﬂ ( (C%(z) (sz — ZHO) dxdy).

Besides, denoting by V}, =V, , we have
1 1 1 1
_ - v,
z2—H, =z—Hy =z—Hy "z-—H,
Therefore, using the Kato-Seiler-Simon inequality (19) and Lemma 3.2, we obtain

1 1 1
Tr - Vol oo
’_ (sz ZHO) zH0H3| ol (xR

< H]lr (—A+ 1)‘1‘

(—-A+1)

2

X

(-A+1)

|a+n 1

Z*Hp [GP)

B

1+ |z 2
<C Voll Lo (a0 .
B (|Im(z)|) V2l (2R
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By Fubini’s theorem, we get

1 [0p 1 1
<m,nmwﬂﬁagdﬂ<z_%z_HJdmm (52)

In the following, we find the asymptotic expansion of Tr ((z — H,)™* — (z — Ho) ')
asp — 0for z € {C\ R, |Im(z)| < 1}. To use a thermodynamic limit procedure, we
consider, for each realization w € ) and each box size L € 2N+ 1, the system with
defects only in the box I'z, that is, we consider the defect distribution v, () (z),
with K(w) = {k€Z'NTy, gu(w) =1}. For K C Z% we recall the notation
vk = Y hex XU — k), Vi = Ve = Yo * (pue — vi) and Hi = Ho + Vi . By the
proof of Theorem 2.2, we have, almost surely,

1 1
Tr (1 — 1 — 0.
( F<,2—Hp(w) z—HKL(w)> F) L—oo

Besides, from (12) and (25), it follows
(2)

1 1 1
Tr (1 — 1 <
r<F@—mw>z—Hmw>FN—C@
<o (LY L
SO\ mgayy) Illee

The dominated converge theorem thus gives

1 1
E(T (1 - 1
(= (v (- =) ) ) =20

1 1 1 1
T - = lm E(Tr (1 — 1 .
_r<z—Hp z—H0> ngo < r< F(z—HKL z—HO) F>) (83)

Let L € 2N+ 1 and N = L% As the random variable Tr (1r((z — Hg,) ! —
(2 — Hp)~')1r) depends only on the N independent Bernoulli random variables

(qk)kezinr, , we have

2(v (v (- =) )

= > P(Kp(w)=K)Tr (]lf (Z fHK T2 1H0) ]lr)

KCZeNI't
1 1
T 1 - 1 .
> w (e (= - =) 1)

Kczdnry,
|K|=n

+

2|

)IMWJWJMNW

Y B

N
=> p"1-p "
n=0



SHORT-RANGE QUANTUM CRYSTALS WITH DEFECTS 33

Expanding the term (1 —p)V =" as powers of p and rearranging the sums, we obtain

(o (e () )

N N-n 1 1
R () 5 ()
J=0 7;0 J—n KC;FL S HK S HO
[K|=n
J
Za] ij + R]L(Z p) (84)
=0

where we have denoted the ;'™ order term by

a;1(z) = z]: (j - n) > (-1 "I (h (Z leK - 1HO) nr)

Kczdnry,
|K|=n

> Y o (1 (- ) )

kczdnry, K'CK
[K|=j

and the remainder of the series by

J

1 1 ;

Rjr(z,p) = Zp (1-p Z Tr <1F<z—HKZ—HO>]lF)Zaj’LpJ'
=0

Kczdnry
|K|=n

The result will now follow from the next proposition, whose proof is postponed
until the end of the proof of the theorem.

Proposition 7.1 (Estimates on a; 1, and Ry ). There exists o > 0 such that
o for j < 2, there exists C > 0 such that for any x € L?(R?) satisfying supp(x) C T
and || x|/ ;2 < ac and any z € C\ R,

/ 1 1 1—|—|Z| JH+1+jd
(— DK Iy (]lr‘ ( - )h) < Ol ( ) :

gd KZC:K #-Hp 2=t "\ (@)

1K=

(85)
o for J < 2, there exists C > 0 such that for any x € L*(R?) satisfying supp(x) C T’
and || x|/ ;2 < ac, z€ C\R,pe[0,1] and L € 2N+ 1

. ( 1+ 2] ) (J+2)(d+1)
Tm(z)|

We deduce from Proposition 7.1 that for any j < 2, and z € C\ R, a; (%)
converges as L — 0o to

ai(z)= Y Y (I (ﬂr (leK - leo) np), (87)

Kczd K'CK
|K|=3

[Ryp(zp)| < Cllxll g2 ™" (86)

and that for any J < 2 and p € [0,1], Ry 1(z,p) converges, up to extraction, as
L — oo to Rj(z,p), which satisfies

1+ |Z| >(J+2)(d+1)

Ry(zp)| < Cllxll o o+ <
| L [T (z)|
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Passing to the limit as L — oo for this subsequence in (84) and in view of (83), we
obtain

1
T ] J+1
_r<z—Hp z—Ho) Za] T Razp).

j=1
Going back to (82), we thus have

1 K
wo=: ¥ ¥ Y o in (u

J ~
(np—no, @) :Z (—— gf( )aj(z)dxdy)pj—(%/cg—z( JR;(z, p)dmdy) T+
( 1
Kczd kezd K'CK+k

i=1
A simple calculation shows that
1
_ 1p
— HK/ zZ — HO
|K|=j, 0EK

_ K\K' 1 1
_; Z Z | |T (ZHK/_ZH())-

Kczd K'CK
|K|=j, 06K

—_

Therefore, by the dominated convergence theorem for series, we obtain

- gf()j(zf')dwdy=§ S0 ()T (p(H) — o(Ho))

Kczd K'CK
|K|=j, 0e K

= (1> )-
Moreover, using (81), (85) and (87) we see that p; is a distribution of order at

most j + 3 + jd. Finally, ¢ — —= |- 62( 2)Rj(z,p) dx dy defines a distribution of
order at most J + 4 + (J + 2)d and satisfies

0o
+ GO Rep)dwdy S Cp swp  Nas()
z BT +4+(J+2)d
a<(J+3)(d+1)
This concludes the proof of Theorem 2.7. [l

To complete the proof of Theorem 2.7, we need to prove Proposition 7.1. We
first state and prove Lemma 7.2 which will be useful in the proof of Proposition 7.1.

Lemma 7.2. Let H=—A+ W, with W € L? .. (R?). Then, for any 8 € N and
any Borel set B C R?, there exists C > 0 and C' > 0 such that for any z € C\ R
and any v,v' € L2(R?) satisfying ||v| 2 ||V 2 LS, R= d(supp(v),0) > 1,

unif

R’ = d(supp(+/),0) > 1, D = d(supp(v),supp(v/)) > 1, we have

1 1 + |Z| _C/ 1 2 '
Tr——V, <C ( (log R) c LZ(Z)R) , 28
‘ g, = e \° e e, o (88)
—1 ¢ —C'cs(z

Vorn s Vo =0 <y (77 Wi, (W, + 0, ).

(89)

Ir ! (Vu+u’ - Vu) C |Z| 1 +e —C'ea(2)D 4 e*C,(IOg R/)2 + efC/cQ(z)R’
z—H &s Im(2)| | D?

x (I, + 1702, ) (90)
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1

1r

and
1 + |Z| 1 —C/(l é 2 ' =4
<C - og ) C’ca(2)R
o, = m(2)| (Dﬁ (¢ Te )

< (I, + 105z, ) (91)

where R = min {R, R'}, ¢2(z) = d(z,0(H))/(1 + |2|) and where the constants C
and C" depend on W only through its L2 . -norm.

uni

Vl/ V’_VV_VV’
= (Vi )

Proof. Inequalities (88) - (91) follow from Lemmas 3.2 and 3.6, Theorem 2.3 and
Proposition 2.6. For instance, for (88), we first look at V, far from T'. Using
Lemma 3.6, we have

¢ e*C’CQ(Z)R ”

’ 1
= Tm()]

~ g lrn\BO.5)V
Near T', V,, decays as R gets large by Theorem 2.3. As d(B(0, &), supp(v)) > R/2,
then, by (13), we have

C

= tm(2)]

< e—C’cz(z)R ||VV||L°°
o

Ir

V”L2

unif

< Ce—C/(log R)? H

<O men v

H]IB(og)VV I H2 Yz, -

where we have used that in dimension d < 3, HZ ;; (R%) < L>*(R%). We next use
Lemma 3.2 and the Kato-Seiler-Simon inequality (19) to obtain

1 1 1
e = leonh -, SItrzaT s A+l —g ’5 HHB@?)V” Lo
1+ |Z| —C’(log R)?
= YTm)° iz, -
which concludes the proof of (88). The proofs of (89), (90) and (91) use the same
techniques; they can be found in [21]. O

We now prove Proposition 7.1.

Proof of Proposition 7.1. Let a. be the minimum of the constants o, defined in
Theorems 2.1 and 2.3 and Propositions 2.5 and 2.6. We assume that ||x||;. < ae.
Throughout the proof, 8 will denote an integer greater than d+1 whose value might
change from one line to another and C > 0 and C’ > 0 constants that depend, in
general, on 3. For z € C\ R, we denote by Ro(z) = (z — Hp)~! and for any
K C Z%, we set Rk (z) = (2 — Hg)~!. We omit the dependence on z when there is
no ambiguity. We also omit the ||x||;- in our estimates. Let L € 2N+ 1 and denote
by N = L.
For j =1 and K = {k}, with k € Z?, we have

[Tt (Lr (Rpky — Ro) Ir)| = |Tr (TrRoViky Ry Ir) | < [[1rRoViny ||, [ Rixy Ir|s, -

Therefore, using (88) in Lemma 7.2, we get

2
|Tr (]IFR{k}V{k}RO]lF)‘ S C (&II(LZ;“) (e—%(loglkl)Z + e—%CQ(Z)‘k‘) .
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Since the series >, ;a e Ml with A > 0, is equivalent to Jga e Meldy = 1/)%,
and for z € {z € C, [Im(z)| < 1}, it holds 1/ca(2) < (1 +|2|)/ |Im(2)] and 1 < (1 +
|2])/ [Im(2)|, we deduce that the series >, cza |Tr (LrRxy Vixy Rolr)| is convergent
and its sum satisfies

1+|z|)2+d
Tr (1rRyyy Vi Rolr)| < C .
k%;d! v (I Ry Vi Rolr)| < <|Im(z)|

For j =2 and K = {k,k'}, with k, k' € Z?, a straightforward calculation gives

> IV (1r (Ric — Ro) 1)
K'CK
=Tr (IrRo(Virey — Viky — Viwy) Rigwy Ir)
+Tr (IeRoViry Rery (Viewy = Vigy) RerayIr)
+Tr (IeRoViwy Rowy (Vikwy = Viey) Ry In) - (92)
Using the inequality (91), the first term of the RHS of (92) can be estimated by

e Ro(Vikwry = Viwy = Vi lls, [ Resn e,

1+M>2 C (o togmin{ W} o —Crentsymin{lL
< e ogmm{|k|,|k |}) te C cz(z)mm{\kwk |} )
< (T e )

As to bound the second term of the RHS of (92), it is bounded by
[1rRoVi e, 1Ry (Viwy = Vi)l [ Renpy e,

3
o ( 1+ 2] ) (e "0 1 e=Ceaab)
[T (z)|

using (88), and by
IrRolls, | Viey Rery (Viewry = Vi) | | Rpewy e o,

1+ 2| )3 1 ()|
<C e Clealz :
(IIm(Z)I |k — k|°

1+ 2] \?
[T (LeRoViky Reny (Viwwy = Viry) BesyIr)| < € (|Im(|zz)||)

1
o (e—C/(log\k\)2 +€—C/02(z)|k|)2 1 . 4 o—Clea@)|h-¥|
|k — K|

We have the same bound for the third term of the RHS of (92). Therefore, the
series Y xcza ZK/CK(—1)|K\K/|T1" (Ir (R’ — Ro) ]lr‘)} is convergent and its sum
| K|=2

satisfies

using (89). Therefore

3 ()T (1 (Rier — Ro) 1r)

K'CK

34+2d
SC<|z|+1> .
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We turn to the proof of the estimate on the remainder (86). Let J < 2 and
p € [0,1]. We first write Ry (z,p) in the form of the expectancy of a binomial
variable. Indeed, we have

N J
Ry(z,p) = an(l —p)n Z fr.x — Z aj,.(2)p’,
n=0 Kczdnr Jj=1

|K|=n
where f, k = Tr (1r (Rx — Ro) 1r). Rearranging all the terms (see [21] for details),
we obtain
Ryp(z,p) =p"'E(gsr (Yo +J +1,2)),

where Y7, is a random variable of binomial distribution of parameters p and N —J—1
and g;1(-,2) : {J+1,---,N} = R is defined by

o) = (07T S T e () - o) )
ke,

(]Z_f_f)_ Yoo > ()T (Ip Rk (2) = Ro) 1)

Kczdnry; K/'CK K'"CK'
IK|=n |K'|<J

In order to prove (86), it is therefore sufficient to show that there exists C' > 0 such
that for any L€ 2N+1and J+1<n <N,

14 z]
anatn2) < (

Tm(2)]
It is sufficient to prove the above inequality for J = 2. Let J+1 < n < N

and consider a configuration K C Z% N Ty, such that |K| = n. A straightforward
calculation shows that

) J+2+(J+1)d

N—J-—1\""
= Tr (1 P, g — P 1
gs..(n,2) (n 7 1) Z (IrRo (P1,x h 1) Ric 1)

Kczdnry,
|K|=n+J+1

where

Pie =V =3 Vin— > (Viewy = Vi = Viery)
keK k,k'€K
ktk!
and

Poc = Y Vi B (Vie = Vi) + > (Viewn Boewy (Vie = Vi)
keK {k,k'}CK
= Vi Ry (Vic = Vi) = Viey Ry (Vi = Vi) ).
Besides
P k= Z Iry P k.

reZd

For each r € Z%, we split 114, P; i into two r-dependent quantities: a part involving
the defect in kg = arginfrex |k — r| and the rest. We denote by

Ak ko = Vi — Vikey — Z (V{Imko} - V{ko})
ke K\{ko}
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and
Bir= > (Viewr = Vi —Viwy) -
{k, k" }CE\{ko}
Then
P = Z IrirAg k — Z Irir B k-
rezd rezd
We have thus split ¢ 1.(n, z) into three parts

N-—J-—1\""
gs0(n,z) = (n g 1> Z Tr | 1IrRo Z Ir4rAg ko Rilr

Kczdnry, reZzd
|K|=n

N—J-1\""
_(HJI) S T [ 3 IresBiog Riclr

Kczdnry, rezd
|K|=n

N—J-1\""
+ (n g 1) E Tr (P27KRK1F) (93)
KcCzdnry,
[K|=n

that we will bound successively. We start by the first term. Let r € Z¢ and denote
by ki = arginfyec g\ (xo3 d (K, {7, ko }). We introduce
EO(er):|T7k0|a gl(K,T):d(K\{ko},{T,ko})
and
EQ(K, T) =d (K \ {k/’o, kl} 5 {T, k/’o, kl}) .
When there is no ambiguity, we omit to note the dependence of these quantities on
K and r. By Theorem 2.3, we first have

J100r (Ve = Vi)l € Ipsr Vi + raVian e < —C—. 01)
(bp+1)

We now want to control ||1ri, (Vi — Viky) || o by 1/(61 +1)%. If bo < €1 /47 (see
Figure 4), then by Proposition 2.6, we have

C

1rsr (Vi = Vikoy) || oo SGrE

(95)

If £y > ¢1/4°, then (94) gives

FIGURE 4. A configuration of r, kg and k1 where £y < £1/4B used
in the proof of Lemma 7.2.
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C c
<

ey (Vi =V, - = N |
trer (Vi = Vi)l lo+1)° ~ (tLi+1)

(96)
Therefore, by (94), (95) and (96),

1 1
[1r4r (Vie = Vikoy) | e = 1o (Ve = Vieoy) | 700 X [ 1rsr (Vi = Vikoy) |7

C
< 5 5 (97)
(bo+1)2 (61 +1)2
We proceed similarly for the remaining term of Ag j,. First, as (97) holds for any

B >0 and any K 3 kg, then we have for any k € K \ {ko}

C
||1F+r (V{ko,k} - V{ko})HLw < (t1 +1)P(by + 1)F" (98)

Next, if £ < |k — ko| /47, then by Proposition 2.6, we have
[t Vit = Vit < =
ko — ki
Otherwise, by (98)

< c
(o +1)% = (lk — kol +1)5°

Therefore, reasoning as in (97), we have for 3 large enough

1rsr (Vikowy = Viko) | e <

1 2
Yo e (Vi = Vo)) < D0 (||1F+r (Vikoy = Viko}) IIZW)
keK\{ko} Loo  kEK\{ko}

C 1
(L +1)% (6 +1)
- C
ENCESIECERLS
As (99) and (97) holds for any 8 > 0, then by the definition of Ak k., we obtain
C

<

M|y

3
ke \{ko} ko — k|2

(99)

Ir4-A < . 100
rerdicrl < G730 717 (100)
To control Ak x, by 1/ (5, we rearrange the terms of Ak 1, as follows
AK,ko =Vk — V{’%Jﬁ} - Z (V{kka} B V{kO}) :
K\{ko,k1}
By Proposition 2.6, we thus have
c c c
rgrArpl <<+ Y, ——<— (101)
2 ke K\{ko,k1} |k - k0| £2

As (100) and (101) hold for any 5, then reasoning as in the proof of (97) we have
Tr ([IrRolryrAx ko B lr]) < [[IrRolris|ls, IMrerAx kol IRx1r ||,
—C’ca(2)|7|
<ot 1 . 1+ |z _
Tm(2)| (6o + 1)B(¢y + 1)805 [Tm(2)]|
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Therefore 3 ya Tr (|IrRolryr Ak r, Ri1r]) is a convergent series. By Fubini’s
Theorem, we thus have

Z TI‘ IFRO Z ]lFJrrAK,ko RKIF = Z Z TI“ (1FROII-F+TAK,]€0RK1F)'

Kczdnry, rezd reZd Kczdnry
|K|=n |K|=n

To perform the sum over the configurations K € {K CZinTy, |K|= n}, we
classify these configurations depending on the value of ¢;(r, K), i € {0,1,2}:

Z Tr | IrRo Z]IFJ,-TAK,I% Rilr

KcCzdnry, rezd
|K|=n

VdrL 14 || 2 1
< —C'ca(2)|7| )
<2 2 2 ce <|Im(z)|) I_o(Li +1)°

r€Zd Lo,L1,L2=0 Kczdnry, |K|=n
L;<t;(K,r)<L;+1

VdL )
< Z Z Ce_C/CZ(Z”T‘ I+ |Z| NL,n,T(LO, L1, L2)
[Tm(2)] 2_(Li +1)%
reZd Lo,L1,L2=0 i

where Ny, (Lo, L1, La) is the number of configurations K C 7% N T such that
|[K|=nand L; < {;(K,r) < L;+1 for i € {0,1,2}. This number can be estimated
by the asymptotic value C' (17\{:33) H?:o L‘ii_1 when N — oo. Therefore, taking 3
large enough, we obtain that the first term of the RHS of (93) is bounded by

Z i Ce=Ce2(2)Ir| ( 1+ || )2 1 <C (LM)QJFCI
Tm(2)] ) T_o(Li+ 1) = = \[Im(2)] '

r€Zd Lo,L1,La=1

With the same techniques, we find that the second and third terms of the RHS
of (93) are respectively bounded by

1 24d 1 4+4d
C (7+ 2l ) and C (7+ 2l ) ,
[Im(2)] [Im(2)]

which concludes the proof of the proposition.
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