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Abstract—This paper proposes a foot-mounted Zero Velocity 
Update (ZVU) aided Inertial Measurement Unit (IMU) filtering 
algorithm for pedestrian tracking in indoor environment. The 
algorithm outputs are the foot kinematic parameters, which 
include foot orientation, position, velocity, acceleration, and gait 
phase. The foot motion filtering algorithm incorporates methods 
for orientation estimation, gait detection, and position 
estimation. A novel Complementary Filter (CF) is introduced to 
better pre-process the sensor data from a foot-mounted IMU 
containing tri-axial angular rate sensors, accelerometers, and 
magnetometers and to estimate the foot orientation without 
resorting to GPS data. A gait detection is accomplished using a 
simple states detector that transitions between states based on 
acceleration measurements. Once foot orientation is computed, 
position estimates are obtained by using integrating 
acceleration and velocity data, which has been corrected at step 
stance phase for drift using an implemented ZVU algorithm, 
leading to a position accuracy improvement. We illustrate our 
findings experimentally by using of a commercial IMU during 
regular human walking trial in a typical public bui lding. 
Experiment results show that the positioning approach achieves 
approximately a position accuracy less than 1 m and improves 
the performance regarding a previous work of literature.  

I. INTRODUCTION 

edestrian navigation is useful for finding and guiding 
emergency first responders, blind persons, security 

personal and for a wide range of augmented reality 
applications [1-3]. Numerous applications requiring a self-
contained personal navigation system working in indoor and 
outdoor environments, does not need any infrastructure 
support, and is not susceptible to interference [4], [5]. 
Position tracking of human movement commonly requires an 
unrestricted line-of-sight to an installed infrastructure 
consisting of one or more transmitters and/or receivers. Such 
systems require extensive setup and calibration of the 
tracking volume, which may be of limited size and may 
suffer from occlusion. Examples of this type of tracking are 
generally based on radio frequency, such as GPS that is able 
to receive satellite signals in most indoor environments [6], 
[7], or may use optical-based systems, such as video 
tracking. An infrastructure-independent solution for this 
problem is a pedestrian dead reckoning system based on 
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shoe-mounted Inertial Measurements Units (IMUs). 
Applications using commercially available IMUs containing 
triads of orthogonally mounted accelerometers, angular rate 
sensors, and magnetometers have been successfully 
demonstrated [7-9]. Many researches have focused on using 
inertial sensors combined with magnetic ones to estimate the 
pedestrian’s location relative to a known starting position.  

Throughout the research, one of the main approaches to 
position tracking is an adaptation of the well-known 
strapdown navigation algorithm, which incorporates double 
integration of the measured acceleration to estimate distance 
and/or position. The growth in position uncertainty that 
arises from the integration of the acceleration error is 
mitigated by a technique that is commonly referred to as 
Zero Velocity Updating (ZVU). Most types of human 
movement, such as walking and running, have repeated 
recognizable periods during which the velocity and 
acceleration of the foot are zero. These brief periods occur 
before entering the swing phase of the gait cycle each time 
the foot contacts the ground during the stance phase, as 
shown in Fig. 1. The use of a foot-mounted IMU provides 
sensor data for recognition of these periods. This provides a 
means to determine the velocity drift error and to facilitate 
its correction in preparation for subsequent integration to 
derive position. Since this correction is applied at the end of 
every walking step, it provides a type of immediate 
recalibration of the sensor. 

�

Fig. 1. Key phases in a stride. During �T , all velocity components of point 
A in the sole of the boot are zero [10] 

Shoe-mounted navigation systems have been investigated 
before. Some previous works have exploited the ZVU 
technique. As a matter of fact, one of the first systems based 
on the above solution can be attributed to Foxlin [9]. Besides 
the ZVU, Foxlin’s system uses a tri-axial magnetometer 
sensor to compute a yaw measurement that is used as an 
input measurement to an Extended Kalman Filter (EKF). The 
step detector is based on thresholding the average value of 
the gyro and the accelerometer output signals during a period 
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of time. Experimental results showed a 0.3% error 
performance of the walked distance. In another work by 
Ojeda and Borenstein [10], 2% error of walked distance was 
reported. A combined GPS and shoe-mounted navigation 
system is proposed by Godha et al. in [11]. The system 
implements a standard 15-state error model and exploits GPS 
measurements to bound drift errors in outdoor scenarios. The 
step detection is carried out through the analysis of the 
magnitude of the accelerometer signals and its moving 
acceleration variance over a number of samples. According 
to the authors, the system performed quite well in indoor 
(with no GPS) and outdoor tests. Another pedestrian 
navigation system was proposed by Suh et al. in [12]. The 
system consists of a 15-state error model where attitude is 
represented by means of quaternion. A very sophisticated 
step detector based on force sensors, attached to the shoe’s 
sole, and hidden Markov model filtering is used to determine 
when to apply zero velocity measurements to the EKF. The 
system performance was tested with short paths of 14 meters 
long maximum. Therefore, no conclusions can be made 
about the advantage of using such a sophisticated step 
detector. Moreover, the need for additional sensors to detect 
a step may be a serious drawback. In a recent work by Bebek 
et al. [7], a position error of less than 1% was reported. This 
work incorporated an additional calibration based on the 
total drift accumulated during an initial walk. This 
information was used to correct subsequent walks to produce 
desirable results. Since these works were based on the ZVU, 
it was necessary to identify the time instants of swing phase 
and stance phase with a high degree of accuracy. Some 
researchers have developed specific electronic circuits to aid 
in the detection of the foot stance phase. For example, in [5], 
a shoe-mounted radar was developed to detect the instances 
of the foot zero velocity.  

In this paper, we propose a foot-mounted CF-aided IMU 
approach for pedestrian tracking in indoor environments 
without resorting to GPS data. The primary contributions of 
this paper are the following: 

1) The use of robust CF instead of the known EKF. 
Indeed, in attitude estimation, EKF presents some 
drawbacks such as the difficulty to guarantee the global 
convergence of the filter due to the linear approximation 
of the nonlinear process model [9]. In this paper, the 
overall CF design is greatly simplified to accurately pre-
process the sensors data from an IMU (accelerometer, 
magnetometer and gyroscope) and to estimate orientation 
in complementary way during both static and dynamic 
motion. Previous works in pedestrian navigation, for 
example [2], [4], [8-10], estimate the quaternion of 
attitude only by integrating the well-known quaternion 
kinematic differential equation. However, this solution 
would be prone to drifting over time due to the build-up of 
bias and drift errors in gyroscope. 
2) CF approach without the intermediate step of gyro bias 
estimation and correction. Previous attitude estimation 

approaches added this step, which increases the computing 
time [13], [14].  
3) A reliable gait detection method requiring only input 
from foot-mounted accelerometer sensors without adding 
a threshold on gyroscope measurements as it was used in 
previous literature works [10]. 
4) Real-world experimental results, which indicate that the 
aforementioned methods are accurate. 
5) A practical comparison with a previous famous work 
developed in [10].  
The remainder of this paper presents previous foot motion 

filtering algorithms and their drawbacks. Section II describes 
the proposed foot motion filtering algorithm and includes a 
separate section for each of the major components. 
Discussion and results pertaining to real-world experiments 
are presented in Section III with a comparison to previous 
work. The final section summarizes the conclusion that can 
be drawn from this paper. 

II.  FOOT MOTION ALGORITHM OVERVIEW 

This section presents the motion filtering algorithm based 
on the use of a foot-mounted IMU. A block diagram of the 
approach is shown in Fig. 2.  
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Fig. 2. Block diagram of the foot motion tracking algorithm that produces 
the foot orientation quaternion, foot position, foot velocity, and gait phase. 

The upper, middle, and lower portions of the diagram 
correspond to the three main components of the algorithm. 
The upper portion of the diagram depicts the quaternion-
based CF for estimating foot orientation represented by a 
quaternion nq̂  from the acceleration measurement f , the 

local magnetic field measurement h , and the angular rate 
measurement Gω . The middle portion of the diagram depicts 

the position and velocity estimation filter. The outputs are 
the foot velocity estimate ̂v  and the foot position estimate 
p̂ . The lower portion of the diagram shows the gait phase 

detection algorithm. At any given moment, the gait phase 
(gait is the pattern of movement of the limbs of humans 
during locomotion over a solid substrate), denoted by a 
detector d , will have one of two values, which correspond 
to the swing phase (encompasses the entire time the foot is in 
the air for limb advancement) or the stance phase 
(encompasses the entire period during which the foot is on 



 
 

 

the ground) of the normal walking cycle. Each of the main 
components of the filter algorithm is described in detail in 
the following sub-sections. 

A. Quaternion based CF for orientation estimation 

The upper portion of Fig. 2 shows a CF for estimating 
orientation of a foot to which an IMU is attached. This part 
represents one of the technical contributions of the paper. 
The input to this filter is nine components: three components 
of the accelerometer measurement f , three components of 

the local magnetic field measurement h , and three 
components of the angular rate measurement Gω . The output 

of the filter is the estimated foot orientation represented by a 
quaternion nq̂ . All measurements provided by the IMU are 

performed in the body-fixed frame ( ), ,B B BB X Y Z  with 

respect to the Earth-fixed frame ( ), ,N N NN X Y Z , which is 

tangent to the Earth’s surface (Local Tangent Plane, LTP). 
The NX -axis points true North. The NZ -axis points 

towards the interior of the Earth, perpendicular to the 
reference ellipsoid. The NY -axis completes the right-handed 

coordinate system, pointing East. 
As stated above, the objective of this section is to design a 

CF for tracking of foot orientation. To do so, it is necessary 
to establish a process model representing motion dynamics 
of the foot segment. For simplicity, we adopted the well-
known quaternion kinematic differential equation [15], [16]:  

1

2 Gq q ω= ⊗�              (1) 

where the product ⊗  between q  and gω  is quaternion 

multiplication. 0
� �= � �

TT
vectq q q  is the theoretical unit 

quaternion that denotes the mathematical representation of 
rigid body attitude between two frames 1) body-fixed frame 

B  and 2) Earth-fixed frame N . 1 2 3= � �� �
T

vectq q q q  

represents the vector part of q . More details about 

quaternion can be found in [17]. 0
TT

G gω ω� �= � �  is a pure 

vector quaternion with the scalar part equal to zero and the 

vector part 
T

g gx gy gzω ω ω ω� �= � � corresponding to the 

theoretical components of the angular rate, expressed in B . 

gω  is measured by a 3-axis gyroscope and can be often 

corrupted with noises and bias [18].  
Equation (1) describes the time rate of attitude variation as a 
result of rigid body angular rates measured by the gyroscope. 
Applying the quaternion multiplication in (1), we obtain: 
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where nq  is the real quaternion, ,
×� �

� �n vectq  represents the 

skew-symmetric matrix [16], [19]: 
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and 3 3×I  is the identity matrix of dimension 3. 

The process model ( )�  composed of (2) and the linear 

measurement model y  can be written such as:  
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where the output 6y ∈ ℜ  is built by stacking the 

accelerometer and magnetometer measurements. The relation 
between the outputs y  and the state of the system nq  will be 

mentioned later in equations (7) and (8). 
The algorithm designed for orientation estimation is a type of 
filter that blends two sources of data in a complementary 
manner. In this case, the filter blends the static low-
frequency information provided by accelerometers and 
magnetometers, and the dynamic high-frequency information 
provided by the angular rate sensors. The aim of the CF is to 
ensure a compromise between the accuracy provided by 
short-term integration of the gyroscope data and the long-
term measurements precision obtained by the accelerometer 
and the magnetometer [13]. To compensate for the drifts on 
the estimated quaternion that are observed during the 
integration of the differential equation in (4), a correction 
term T  is introduced in this equation based on a quaternion 
product ⊗ . We propose the following CF: 
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where ˆnq  denotes the estimated quaternion. The correction 

term T  is calculated from a fusion approach of 
accelerometer and magnetometer data. To calculate the 
correction term T , we consider the modeling error 

( ) ( )ˆ ˆn� q y y= − . The estimated output is given by ŷ : 

ˆ ˆ ˆ ˆ ˆ ˆˆ
T

x y z x y zy f f f h h h� �= � �        (6) 

Measurements of the estimated accelerations ˆ
xf , ˆ

yf  and ˆ
zf  

can be calculated assuming that there are no acceleration 
except gravity such as: 
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where [ ]0 0 0 9.8
T

qG =  is a pure vector quaternion 

with the scalar part equal to zero and the vector part 

[ ]0 0 9.81
T

G =  corresponding to the theoretical 

components of the gravity. ̂ nq∗  is the complementary 

quaternion of ̂ nq , i.e. ,0 ,1 ,2 ,3ˆ ˆ ˆ ˆ ˆ
T

n n n n nq q q q q∗ � �= − − −� � . 

Measurements of the estimated Earth’s magnetic field ˆ
xh , 

ˆ
yh  and ˆzh  can be calculated such as: 

ˆ ˆ ˆ ˆ ˆ ˆ0
T

x y z n q nh h h h q m q∗� �= = ⊗ ⊗� �        (8) 

where [ ]0 0
T

q x zm m m=  is a pure vector quaternion 

with the scalar part equal to zero and the vector part 

[ ]0
T

x zm m m=  corresponding to the theoretical 

components of the Earth’s magnetic field. Currently, the 
parameters of the theoretical model of the geomagnetic field 
m  closest to reality can be deduced from [20]. In our case, 
we considered that the magnetic disturbances are low and 
their impact is negligible on the attitude estimation. 

The minimization of the modeling error ( )ˆn� q  is performed 

from a regression method that minimizes the scalar squared 

error criterion function ( )ˆn� q  related to ( )ˆn� q : 

  ( ) ( ) ( )ˆ ˆ ˆT
n n n� q � q � q=        (9) 

The Levenberg Marquardt Algorithm is used to minimize the 

non-linear function ( )ˆn� q . The unique solution to this 

problem can be written in the following form: 

( ) ( )ˆ ˆn n� q K� q=            (10) 

where 
1

3 3
T TK k X X �I X

−
×� �= +� �  is the gain of the filter. 

6 3X ×∈ ℜ  is the Jacobian matrix defined by: 
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The positive constant �  is chosen to ensure the non-
singularity of the minimization problem. The positive 
constant k  combines low bandwidth accelerometer and 
magnetometer readings with high bandwidth gyroscope 

measurements. ( )ˆn� q  represents a part of the correction 

term T .  
To achieve the quaternion product in (5), the term T  must 
be of dimension 4 as: 
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1 6

3 1

11 0
ˆ0 n

T
� qK

×

×

� � � �
= � � � �
� � � �� �

      (12) 

The scalar part of quaternion error is fixed to 1 to force the 
error quaternion to represent small angles of rotation. 
Finally, the complementary filter can be written as follows: 
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B. Position and Velocity Estimation with ZVU 

The middle portion of Fig. 2 shows the position and 
velocity estimation approach. The input to this filter is the 
measured acceleration vector f  in the body coordinates and 

the estimated quaternion representing the orientation of the 

body ( )nq̂ t  generated by the complementary orientation 

filter, and the output is the estimated position ( )p̂ t  and 

velocity ( )v̂ t  relative to a fixed earth coordinate frame. 

( )nq̂ t  serves to transform the body coordinate acceleration 

into the earth coordinate system using the quaternion 
operator [17]: 

( ) ( )*
n nˆ ˆa q t f q t= ⊗ ⊗       (14) 

The acceleration vectors f  and a  are treated as pure vector 

quaternions, with the scalar part being equal to zero when 
performing quaternion multiplication [17]. After obtaining 

the acceleration vector 0
TT

ea a� �= � �  in the earth coordinate 

system, gravitational acceleration G  is subtracted from 
T

ex ey ezea a a a� �= � �  to derive the motion-induced 

acceleration [16]:  

 ( ) ( )eA t a t G= −           (15) 

The result of (15) is integrated to obtain the 3-D velocity 
vector in the earth coordinate system: 

� ( ) ( )
2

1

ˆ .

T

T

v t A t dt= � � � � � � � ��� (16) 

where [ ]1 2,T T  denotes the sampling period. Theoretically, 

the velocity vector resulting from (16) can be immediately 
integrated once again to obtain position. However, due to the 
presence of measurement noise and drift in the measured 
acceleration vector f  and the estimation errors in the 

estimated quaternion ( )nq̂ t , an immediate integration of 



 
 

 

( )v̂ t  results in unbounded error growth in position 

estimation in a relatively short time. An approach to reduce 
error growth in the position estimation is to apply a velocity 
correction method called the ZVU.  
This method is early introduced in [10]. The concept of the 
ZVU is based on the observation that human foot motions 
are cyclic, and when a foot is in the stance phase or in 
contact with the ground, its velocity is theoretically to be 
zero. Due to bias error in acceleration measurements, the 
estimated foot velocity obtained from (16) may not be zero 
while the foot is in the stance phase. In this paper, we 
propose to correct the velocity bias error by resetting the 
velocity to zero at these moments. This corrected velocity is 

integrated again to obtain the estimated position ( )p̂ t  such 

as: 

( ) ( )
2

1

ˆ ˆ .

T

T

p t v t dt= � � � � � � � ����(17) 

It is noted that all sensor measurements and position/velocity 
vectors are 3-D in this paper. 

C. Gait phase detection algorithm 

The use of the ZVU for correcting foot velocity needs to 
accurately detect the stance and swing phases of foot motion. 
The use of accelerometer data was examined for this 
purpose. The foot acceleration seemed to provide a means 
for the detection of the transitions between the stance phase 
and swing phase.  
The gait phase detection algorithm is essentially a state 
detector with two states Stance ( 0d = ) and Swing ( 1d = ). 
The operation of the state detector must be synchronized 
with the user’s foot motion. That is, when the user’s foot was 
in the stance phase, the state detector must be equal to 0. 
Conversely, when the user’s foot is in the swing phase, the 
state detector should be equal to 1. When walking, the gait 
cycle begins just after the foot strikes the ground, usually 
with heels first, causing a large peak acceleration followed 
by an oscillation, see Fig. 3.  

The foot remains stationary for approximately 0.5 s. 
During the stance phase the accelerometer should only 
measure the earth gravitational acceleration and the velocity 
is zero. In practice, this is not trivial, because the 
accelerometers suffer from drift, so they never show exactly 
gravity. To detect a walking event based on an accelerometer 
signal, we proceed as follows: 
We start by taking the squared Euclidean norm of the 

acceleration 
2

2i� f= : 

2 2 2 2
2i x y z� f f f f= = + +        (18) 

where xf , yf , zf  are the acceleration output of the IMU in 

three different axes. Eq. (18) can be altered to include 

several stationary properties of the system. We calculate 
after the variance of the squared norm from a sliding window 
using the following equation [8]: 

( ) ( )( )2
2

1

1

1

i j

e i i j
i j e

Var j � � e
e

=

= − +

= −
− �                (19) 

where i�  is the squared norm of the measured acceleration 

f  and ( )i j
� e  is the mean of i�  over e samples. Properly 

applied, the variance of the squared norm can be useful for 
detecting gait events where the signal changes suddenly, 
such as a heel strike and the stance phase initiation. If the 
variance of a manipulated signal is to be used for gait event 
detection, the sample size e must be chosen appropriately so 
that the variance test is adequately sensitive to slow signal 
changes and adequately responsive to fast ones. It was found 
that a threshold of five to ten was suitable for a gait event. 
This parameter was adjusted by trial-and-error until a 
satisfactory result was achieved. 

 
Fig. 3. The norm squared of a walking foot. The black arrow shows the 
stance, respective stride phase’s duration 

The variance should be limited during the stance phase 
below an experimental threshold L : 

( )2
eVar j L<                                      (20) 

The detector d , with two states Stance ( 1d = ) and Swing 
( 0d = ), which is introduced in this work uses the 
requirement reported in (20). If this requirement is satisfied, 
the detector 1d =  which mean that we belong to the stance 
phase, else we are in the Swing phase and 0d = . The 
threshold L  was adjusted by trial-and-error until a 
satisfactory result was achieved. It was found that a sample 
size of fifteen to twenty was suitable to better identify the 
stance and swing phases. 

III.  INDOOR EXPERIMENTS AND RESULTS 

A. Foot-mounted IMU 

To examine the effectiveness of the motion filtering 
algorithm based on the use of a foot-mounted IMU, several 



 
 

 

experiments have been performed for different walking 
scenarios.  
We used the MTi IMU module developed by Xsens 
Technologies [21] to collect data. The module is mounted on 
a foot as shown in Fig. 4. The module samples sensor data 
for a tri-axial accelerometer, a tri-axial gyroscope and a tri-
axial magnetometer at 100 Hz and transfers the raw data to a 
laptop over USB, which in turn timestamps and logs it. The 
collected data are processed offline using MATLAB. The 
software consists of the quaternion based CF, the position 
and velocity estimation with ZVU and the gait phase 
detection algorithm. 

�

Fig. 4. Foot-mounted MTi 

Experiments were preformed at an indoor location to 
collect walk data for different users. The set of experiments 
were performed in the corridors of CReSTIC laboratory at 
Reims Champagne Ardenne University. Data was collected 
for 3 volunteers at this location. In order to establish the 
ground truth trajectory, the subjects were made to walk on a 
manually surveyed path marked on the corridor laboratory. 
In the experiment the path starts and ends at the same 
position. The path includes rectangle shaped walking (length 
is 80 m) and had several straight stretches followed by sharp 
right-angle turns in clockwise and anti-clockwise directions 
to test the accuracy of our motion filtering algorithm (see 
Fig. 5). 

�

Fig. 5. Indoor walking path during a 80 m trajectory length 

In this paper, we choose to represent the results obtained 
from one volunteer. The same experiment was repeated four 
times to appropriately choose the sample size e and the 
threshold L . These parameters were adjusted by trial-and-
error until a satisfactory result was achieved so that the 
variance test is adequately sensitive to slow signal changes 

and adequately responsive to fast ones. It was found that a 
sample size 8e =  and the threshold 16L =  are suitable for a 
gait event. Fig. 6 depicts the squared norm of the measured 

acceleration i� , the mean ( )i j
mo � e=  of i�  over e 

samples, the variance ( )2
eVar j  of the squared norm and the 

states detector d . As we can see, the stance and swing 
phases are clearly identified.  
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Fig. 6. The squared norm of the measured acceleration i� , the average 

( )i j
mo � e= , the variance ( )2

eVar j  and the states detector d  

Fig. 7 shows the three-axis foot velocity v̂  prior to 
applying the ZVU. The presence of drift is evident in all 
three components of velocity. Moreover, the drift in the 
velocity appears to be linear, which confirms the assumption 
that the acceleration bias is constant over the short period of 
a swing phase. Fig. 7 shows also the same velocity v̂  after 
applying the ZVU. It is seen that the corrected foot velocity 
during the stance phase is now zero. 
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Fig. 7. Three-axis foot velocity v̂  prior and after applying the ZVU 

Fig. 8 shows the 3D view reconstruction result of the 
rectangle shaped walking by using the proposed motion 
filtering algorithm which follows the designed trajectory 
with high consistence. The difference between the starting 
and ending point is smaller than 0.3 m. Then, the position 



 
 

 

estimation error is less than 0.37 % of the total distance 
traveled.  
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Fig. 8. Walking experiment: The reconstruction of the rectangle trajectory 

B. Comparison with previous work 

In Fig. 9, we compare our reconstruction result of the 
walking trajectory with the one obtained from previous work 
developed by Ojeda and Borenstein [10].  

 

Fig. 9. Walking experiment: The reconstruction of the rectangle trajectory 
using method developed by Ojeda and Borenstein [10] 

In [10], the authors used only gyroscope measurements to 
estimate the quaternion of attitude by integrating the well-
known quaternion kinematic differential equation. However, 
this solution would be prone to drifting over time due to the 
build-up of bias and drift errors. In contrary, the approach 
herein proposed takes advantage of the precision near to zero 
( 1 °� ), given by the rate gyros integration in the short term 
( 1 sec≈ ) and the reliable long term accuracy provided by 
accelerometer and magnetometer measurements. The 
resulting structure of the proposed CF blends two frequency 
regions and is based on the complementary filtering theory: 
1) the accelerometer and magnetometer data are 

characterized by a low frequency region, where the attitude 
is usually more accurate, 2) the gyroscope data is located in 
the high frequency region, where the integration of the 
angular velocity yields better attitude estimates. 

It is obvious that the reconstruction result using the 
method in [10] is deviated from the designed trajectory 
further. Our proposed approach improves the performance 
greatly. 

IV.  CONCLUSION 

This paper presents an algorithm for estimating human 
foot position during normal walking based on estimates of 
foot orientation, velocity, acceleration, and gait phase using 
inertial/magnetic sensor measurements. The measurements 
are provided by an IMU attached to a foot. Orientation 
estimation is accomplished by a quaternion-based CF to 
blend the high frequency information provided by angular 
rate sensors and the low-frequency information provided by 
accelerometers and magnetometers. For this purpose, a foot 
gait phase detection algorithm based on the use of 
accelerometer measurements was presented. With foot 
orientation readily available as a result of the quaternion-
based CF, foot acceleration in the body coordinate frame is 
conveniently converted into the earth coordinate frame using 
the foot orientation quaternion. Foot velocity is obtained by 
numerically integrating corrected foot acceleration 
measurements obtained during the swing phase. Due to 
sensor noise, accelerometer measurements tend to drift. The 
drift is corrected using the ZVU technique. Experiments 
were conducted to evaluate the algorithm. The experimental 
results suggest that the achievable position accuracy of the 
algorithm is about 0.37 % of the total walked distance.  
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