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Position Estimation Approach by Complementary Filte-aided IMU
for Indoor Environment

H. Fourati, and N. Manamanimlember, IEEE

Abstract—This paper proposes a foot-mounted Zero Velocity
Update (ZVU) aided Inertial Measurement Unit (IMU) filtering
algorithm for pedestrian tracking in indoor environment. The
algorithm outputs are the foot kinematic parameters which
include foot orientation, position, velocity, accaration, and gait
phase. The foot motion filtering algorithm incorporates methods
for orientation estimation, gait detection, and pogion
estimation. A novel Complementary Filter (CF) is itroduced to
better pre-process the sensor data from a foot-moued IMU
containing tri-axial angular rate sensors, accelenmeters, and
magnetometers and to estimate the foot orientatiorwithout
resorting to GPS data. A gait detection is accomghed using a
simple states detector that transitions between dis based on
acceleration measurements. Once foot orientation isomputed,
position estimates are obtained by using integrato
acceleration and velocity data, which has been cacted at step
stance phase for drift using an implemented ZVU algrithm,
leading to a position accuracy improvement. We illstrate our
findings experimentally by using of a commercial IMJ during
regular human walking trial in a typical public building.
Experiment results show that the positioning approale achieves
approximately a position accuracy less than 1 m ananproves
the performance regarding a previous work of literdure.

I. INTRODUCTION
Pedestrian navigation is useful for finding and dyuid

shoe-mounted Inertial Measurements Units  (IMUS).
Applications using commercially available IMUs cainting
triads of orthogonally mounted accelerometers, Emgate
sensors, and magnetometers have been successfully
demonstrated [7-9]. Many researches have focusadsiog
inertial sensors combined with magnetic ones tiones¢ the
pedestrian’s location relative to a known starfdogition.
Throughout the research, one of the main approatthes
position tracking is an adaptation of the well-kmow
strapdown navigation algorithm, which incorporatisible
integration of the measured acceleration to estirdatance
and/or position. The growth in position uncertairthat
arises from the integration of the accelerationoreris
mitigated by a technique that is commonly refertedas
Zero Velocity Updating (ZVU). Most types of human
movement, such as walking and running, have regeate
recognizable periods during which the velocity and
acceleration of the foot are zero. These briefqusrioccur
before entering the swing phase of the gait cyaehdime
the foot contacts the ground during the stance gghas
shown in Fig. 1. The use of a foot-mounted IMU pdes
sensor data for recognition of these periods. Phiwides a
means to determine the velocity drift error andaalitate

emergency first responders, blind persons, securitig correction in preparation for subsequent irdgéign to
personal and for a wide range of augmented realitierive position. Since this correction is appli¢dhe® end of

applications [1-3]. Numerous applications requiriagself-
contained personal navigation system working iroordand

outdoor environments, does not need any infrastrect

support, and is not susceptible to interference [5].
Position tracking of human movement commonly rezgian
unrestricted line-of-sight to an installed infrasture
consisting of one or more transmitters and/or remsi Such
systems require extensive setup and calibrationthef
tracking volume, which may be of limited size andym
suffer from occlusion. Examples of this type ofckiag are
generally based on radio frequency, such as GRSsthhle
to receive satellite signals in most indoor envinents [6],

every walking step, it provides a type of immediate
recalibration of the sensor.

T=0.12sec T=024sec T=0.36sec T=048 sec T=0.60sec T=0.72sec
A ‘

~. .
/AT, T

Fig. 1. Key phases in a stride. Durid , all velocity components of point
A in the sole of the boot are zero [10]

[7], or may use optical-based systems, such asovide ghoe.mounted navigation systems have been investiga

tracking. An infrastructure-independent solutionr fthis

before. Some previous works have exploited the ZVU

problem is a pedestrian dead reckoning system based (echnique. As a matter of fact, one of the firsitegns based
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on the above solution can be attributed to Fo¥dinBesides
the ZVU, Foxlin’'s system uses a tri-axial magnettame
sensor to compute a yaw measurement that is useth as
input measurement to an Extended Kalman Filter (EKRe
step detector is based on thresholding the averalye of
the gyro and the accelerometer output signals duiperiod



of time. Experimental results showed a 0.3%
performance of the walked distance. In another woyk
Ojeda and Borenstein [10], 2% error of walked diseawas
reported. A combined GPS and shoe-mounted navigati
system is proposed by Godha et al. in [11]. Thaesys
implements a standard 15-state error model andisbPS
measurements to bound drift errors in outdoor s@enarl he
step detection is carried out through the analgdighe
magnitude of the accelerometer signals and its mgpvi
acceleration variance over a number of samplesordiang
to the authors, the system performed quite welinoioor

error approaches added this step, which increases thputmmg

time [13], [14].

3) A reliable gait detection method requiring oiput
from foot-mounted accelerometer sensors withouiradd
a threshold on gyroscope measurements as it walsimse
previous literature works [10].

4) Real-world experimental results, which indictitat the
aforementioned methods are accurate.

5) A practical comparison with a previous famouskvo
developed in [10].

The remainder of this paper presents previousrfamiton

(o]

(with no GPS) and outdoor tests. Another pedestridiitering algorithms and their drawbacks. Sectibdéscribes

navigation system was proposed by Suh et al. if [IBe
system consists of a 15-state error model whertidst is
represented by means of quaternion. A very sophisti
step detector based on force sensors, attachdt tehbe’s
sole, and hidden Markov model filtering is usediébermine
when to apply zero velocity measurements to the .EKfe
system performance was tested with short pathd ofdters

long maximum. Therefore, no conclusions can be made

about the advantage of using such a sophisticatepg s
detector. Moreover, the need for additional senspdetect
a step may be a serious drawback. In a recent yoBebek
et al. [7], a position error of less than 1% wagsoréed. This
work incorporated an additional calibration based the
total drift accumulated during an initial walk. TFhi
information was used to correct subsequent walksdduce
desirable results. Since these works were baseldeoAVU,

it was necessary to identify the time instantswihg phase

the proposed foot motion filtering algorithm andlides a
separate section for each of the major components.
Discussion and results pertaining to real-worldezikpents

are presented in Section Il with a comparison itevipus
work. The final section summarizes the conclusiuat tan

be drawn from this paper.

This section presents the motion filtering algaritbased
on the use of a foot-mounted IMU. A block diagrafrtte
approach is shown in Fig. 2.

FOOTMOTION ALGORITHM OVERVIEW

Wg
h
f

Complementary Filter
For Orientation
Estimation

and stance phase with a high degree of accuraaneSo
researchers have developed specific electroniaitsrto aid

in the detection of the foot stance phase. For gi@nn [5],

a shoe-mounted radar was developed to detect stenizes
of the foot zero velocity.

In this paper, we propose a foot-mounted CF-aidéd |
approach for pedestrian tracking in indoor envirenta
without resorting to GPS data. The primary contitns of
this paper are the following:

d,
. p
v
d

f Gait Phase
Detection Algorithm

Fig. 2. Block diagram of the foot motion trackinig@ithm that produces
the foot orientation quaternion, foot position, tfeelocity, and gait phase.

The upper, middle, and lower portions of the diagra

1) The use of robust CF instead of the known EKFEOrrespond to the three main components of therittign
Indeed, in attitude estimation, EKF presents somENe upper portion of the diagram depicts the quiéder
drawbacks such as the difficulty to guarantee tlobai based CF for estimating foot orientation represeriig a
convergence of the filter due to the linear appration quaterniond, from the acceleration measuremefit, the
of the nonlinear process model [9]. In this papg@e local magnetic field measuremeht, and the angular rate
overall CF design is greatly simplified to acculatere- measurementy; . The middle portion of the diagram depicts
process the sensors data from an IMU (accelerometme position and velocity estimation filter. Thetuts are

magnetometer and gyroscope) and to estimate oligmta the foot velocity estimaté/ and the foot position estimate

i I t during both stati dd . . .
N complementary way durnng both stafic an _ynamu:p. The lower portion of the diagram shows the ghiage
motion. Previous works in pedestrian navigations fo

example [2], [4], [8-10], estimate the quaterniof odetection algorithm. At any given moment, the gaibse
attitude only by integrating the well-known quaiem (gait is the pattern of movement of the limbs ofmams
kinematic differential equation. However, this smn during locomotion over a solid substrate), denobsda
would be prone to drifting over time due to thelthwip of detectord , will have one of two values, which correspond
bias and drift errors in gyroscope. to the swing phase (encompasses the entire timedhés in

2) CF approach without the intermediate step obdyas the air for limb advancement) or the stance phase
estimation and correction. Previous attitude edtoma (encompasses the entire period during which thé ifoon



the ground) of the normal walking cycle. Each & thain

where g, is the real quaternion,q; represents the
components of the filter algorithm is describedditail in " [ n’ved]

the following sub-sections. skew-symmetric matrix [16], [19]:

A. Quaternion based CF for orientation estimation Ona 0 —Gs G2

The upper portion of Fig. 2 shows a CF for estintti [q;,\,ect]= nz2 | =| dn3 0 -dyu (3)
orientation of a foot to which an IMU is attachd&this part Ona Oy O 0

represents one of the technical contributions ef plaper.
The input to this filter is nine components: thoeenponents  and | 5,5 is the identity matrix of dimension 3.

of the accelerometer measurement three components of The process mode(Z) composed of (2) and the linear
the local magnetic field measuremertt, and three
components of the angular rate measureragntThe output

of the filter is the estimated foot orientation regented by a 1 " eut
uaterniond, . All measurements provided by the IMU are a4 =7 o
d q.n . P y . (Z) . 2 |3><3qn,0 + I:qn,vect:l ?
performed in the body-fixed frameB(Xg,Ys, Zz) with .
= f f, f, h. h h
respect to the Earth-fixed framil ( Xy, Yy, Zy), which is y={t f . hohoh

tangent to the Earth’'s surface (Local Tangent RI&®). \yhere the output yO ® is built by stacking the
The Xy -axis points true North. TheZ -axis points

measurement mode} can be written such as:

(4)

accelerometer and magnetometer measurements. [atiene

towards the interior of the Earth, perpendicular tt® petween the outputy and the state of the systenp will be
reference ellipsoid. Thé), -axis completes the right-handedmentioned later in equations (7) and (8)

coordinate system, pointing East. The algorithm designed for orientation estimati®a itype of

As stated above, the Objective of this sectio |ddS|gn a filter that blends two sources of data in a Commery

CF for tracking of foot orientation. To do so,stnecessary manner. In this case, the filter blends the statio-
to establish a process model representing motiorarmics frequency information provided by accelerometersd an

of the foot segment. For simplicity, we adopted Well- magnetometers, and the dynamic high-frequencyrimdtion

known quaternion kinematic differential equatio][]16]:  provided by the angular rate sensors. The aimeoff is to
1 ensure a compromise between the accuracy proviged b

g==qUax (1) short-term integration of the gyroscope data ared ltimg-

2 term measurements precision obtained by the acceéter

where the productl] betweenq and &, is quaternion and the magnetometer [13]. To compensate for tlies dn
o oo ) _ the estimated quaternion that are observed durfrg t
multiplication. q:[q) q/ect:| is the theoretical unit jntegration of the differential equation in (4),carrection

quaternion that denotes the mathematical reprefemtaf t€rm T is introduced in this equation based on a quatarni
rigid body attitude between two frames 1) body-fieame Productt]. We propose the following CF:

B and 2) Earth-fixed frameN . Qe =[G4 @ G| 1 7
A n,vec
represents the vector part off. More details about %= 3 . x wy (UT (5)
|3><3qn,0+[qn,vect:|

T
uaternion can be found in [17¢} =| 0 is a pure N . . ,
g (174 [ ag] P where (], denotes the estimated quaternion. The correction

term T is calculated from a fusion approach of

T .
vector part a, :[%x @y %Z] corresponding to the accelerometer and magnetometer data. To calculee t

. ) correction term T, we consider the modeling error
theoretical components of the angular rate, exptegs B . A - . . -
5r(qn) =(y-9). The estimated output is given Ky

wy is measured by a 3-axis gyroscope and can be ofte

corrupted with noises and bias [18]. o[ 5 F 5 & &l"

Equation (1) describes the time rate of attitudeatian as a y [fx fy f2 by hy hz] 6)
result of rigid body angular rates measured bygghrescope.
Applying the quaternion multiplication in (1), wétain:

vector quaternion with the scalar part equal tao zerd the

Measurements of the estimated acceleratif;ns fy and fz

. can be calculated assuming that there are no aatiete
1 0, vect except gravity such as:

qn == x a)g (2)
201 + - A~ A oA
3x3Un,0 I:qn,vect:| ; :[0 £ fy fZT =QEDGQ A @



where G, =[0 0 0 9.£}T is a pure vector quaternion

with the scalar part equal to zero and the vectart p

G=[0 0 9.8:}T corresponding to the

12)

“[oil 0:6“6(;&

theoreticalThe scalar part of quaternion error is fixed ta¥drce the

components of the gravity.dE is the complementary €rror quaternion to represent small angles of iatat

. ~ . A N N - A T
quaternion ofq, , i.e. qq=[q10 01 G —qm] .
Measurements of the estimated Earth’s magnetid ﬂAgl,

ﬁy and ﬁz can be calculated such as:

h=[o A, R R] =®OMg 4 ©

Finally, the complementary filter can be writtenfaléows:

100000
Gol e O { 1 }
2 |3<3qn,0+|:€fr<1,vect:| L K gy
0

(13)

where m, :[o m 0 n}]T is a pure vector quaternion B. Position and Velocity Estimation with ZVU

with the scalar part equal to zero and the vectart p The middle portion of Fig. 2 shows the position and

m=[m, 0 m]" corresponding to the

components of the Earth’s magnetic field. Currentlye
parameters of the theoretical model of the geontagfield
m closest to reality can be deduced from [20]. In case,
we considered that the magnetic disturbances avealtd
their impact is negligible on the attitude estiroati

The minimization of the modeling err(a?r(dn) is performed

from a regression method that minimizes the scadaared
error criterion functions (g, related tos (g, ) :

&(8,)=0(6,)" 4(an) 9)

The Levenberg Marquardt Algorithm is used to mizienthe
non-linear function &(d,). The unique solution to this

problem can be written in the following form:

n(Gn) = K3(Gy) (10)

T AT . _ ,
where K :k[X X+/1I3x3] X ' is the gain of the filter.

X M ®2 is the Jacobian matrix defined by:

o -f, f, 0 -h, hJ
x=—z[[f*] [hxﬂTz— f 0 -f h 0 -h| A1)
-f, f, 0 -h, h O

The positive constant]
singularity of the minimization problem. The posdi

constant k combines low bandwidth accelerometer and
magnetometer readings with high bandwidth gyroscope
represents a part of the correction

measurementsz (G, )

termT.
To achieve the quaternion product in (5), the tarmmust
be of dimension 4 as:

theoretical

is chosen to ensure the non-

velocity estimation approach. The input to thisefilis the
measured acceleration vectér in the body coordinates and

the estimated quaternion representing the oriemtadf the
body an(t) generated by the complementary orientation

filter, and the output is the estimated positi@{t) and
velocity ¥(t) relative to a fixed earth coordinate frame.

G (t) serves to transform the body coordinate acceterati
into the earth coordinate system using the quaierni
operator [17]:

a=0,(1)0 0 g(1) (14)

The acceleration vectoré and a are treated as pure vector

guaternions, with the scalar part being equal t@ zehen
performing quaternion multiplication [17]. After tining

T
the acceleration vecta = [0 a J in the earth coordinate

system, gravitational acceleratio® is subtracted from

T
3 =[8 By 2
acceleration [16]:

to derive the motion-induced

Al)=a(1)-G
The result of (15) is integrated to obtain the 348locity
vector in the earth coordinate system:

(15)

T

[ A9).at

T

(16)

here [T;,T,] denotes the sampling period. Theoretically,

the velocity vector resulting from (16) can be intagely
integrated once again to obtain position. Howeslae to the
presence of measurement noise and drift in the umeds
acceleration vectorf and the estimation errors in the

estimated quaterniorfqn(t), an immediate integration of



U(t) results in unbounded error growth in positiorseveral stationary properties of the system. Weutate

estimation in a relatively short time. An approdchreduce
error growth in the position estimation is to applyelocity
correction method called the ZVU.

This method is early introduced in [10]. The coricefpthe
ZVU is based on the observation that human footianet
are cyclic, and when a foot is in the stance phasén
contact with the ground, its velocity is theorelicdo be
zero. Due to bias error in acceleration measuresnehe
estimated foot velocity obtained from (16) may betzero
while the foot is in the stance phase. In this papee
propose to correct the velocity bias error by tiasgtthe
velocity to zero at these moments. This correcedoity is

integrated again to obtain the estimated positfit) such
as:

T,
17)
T

It is noted that all sensor measurements and poAiglocity
vectors are 3-D in this paper.

C. Gait phase detection algorithm

The use of the ZVU for correcting foot velocity dseto
accurately detect the stance and swing phase®bfrfotion.

The use of accelerometer data was examined for th %

purpose. The foot acceleration seemed to provideeans
for the detection of the transitions between tleeat phase
and swing phase.
The gait phase detection algorithm is essentiallgtate
detector with two stateStance(d =0) andSwing(d =1).
The operation of the state detector must be synéred
with the user’s foot motion. That is, when the is@&yot was
in the stance phase, the state detector must kel &mW.
Conversely, when the user’s foot is in the swingggh the
state detector should be equal to 1. When walkimg,gait
cycle begins just after the foot strikes the grquasually
with heels first, causing a large peak acceleratidiowed
by an oscillation, see Fig. 3.

The foot remains stationary for approximately 0.5

S

after the variance of the squared norm from argfidvindow
using the following equation [8]:

Vafez(i):ei_1 i (Xi_()(i/e)j)z

i=j-e+l

(19)

where y; is the squared norm of the measured acceleration
f and ()(i/e)j is the mean ofy; over e samples. Properly

applied, the variance of the squared norm can b&ulutor
detecting gait events where the signal changesesiyld
such as a heel strike and the stance phase imitidti the
variance of a manipulated signal is to be usedyéir event
detection, the sample sizzmust be chosen appropriately so
that the variance test is adequately sensitivdaw signal
changes and adequately responsive to fast ongaslfound
that a threshold of five to ten was suitable fagadt event.
This parameter was adjusted by trial-and-error | uati
satisfactory result was achieved.

450
400+ "
350 “
300+ ‘
&
52501 ‘ |

200

>
Stance phase Swing phase
.

o] 015 % 1.5 é 2‘.5
[s]
Fig. 3. The norm squared of a walking foot. Thecklarrow shows the

stance, respective stride phase’s duration

The variance should be limited during the stancasph

below an experimental threshold:
varZ(j)<L (20)

The detectord , with two statesStance(d =1) and Swing

During the stance phase the accelerometer should ofd =0), which is introduced in this work uses the

measure the earth gravitational acceleration aad/¢hocity
is zero. In practice, this is not trivial, becausee
accelerometers suffer from drift, so they nevemsleaactly
gravity. To detect a walking event based on anlaoometer
signal, we proceed as follows:

requirement reported in (20). If this requiremensatisfied,
the detectord =1 which mean that we belong to the stance
phase, else we are in the Swing phase dmd0. The
threshold L was adjusted by trial-and-error until a
satisfactory result was achieved. It was found thaample

We start by taking the squared Euclidean norm & tisize of fifteen to twenty was suitable to betteentfy the

accelerationy; =|| f||§ ;

Xi = "f"; = fx2 + fy2 + fzz (18)

where f,, fy,

three different axes. Eq. (18) can be altered wude

f, are the acceleration output of the IMU in

stance and swing phases.

I1l.  INDOOREXPERIMENTS ANDRESULTS

A. Foot-mounted IMU

To examine the effectiveness of the motion filtgrin
algorithm based on the use of a foot-mounted IM&Vesal



experiments have been performed for different vmglki and adequately responsive to fast ones. It wasdfdoat a
scenarios. sample sizee=8 and the threshold. =16 are suitable for a
We used the MTi IMU module developed by Xsengait event. Fig. 6 depicts the squared norm ofnieasured
Technologies [21] to collect data. The module isimed on  gcceleration xi, the meanmo= ()(i /e) of x over e
a foot as shown in Fig. 4. The module samples settesia
for a tri-axial accelerometer, a tri-axial gyroseognd a tri- samples, the variancéar? ( j) of the squared norm and the
axial magnetometer at 100 Hz and transfers theda@/to a states detectord. As we can see, the stance and swing
laptop over USB, which in turn timestamps and lag3he phases are clearly identified.

collected data are processed offline using MATLARe

j

SO T T T T T T T T T

software consists of the quaternion based CF, twtipn  %oo- 1
and velocity estimation with ZVU and the gait phase™] 4H mmen, | l L H 1] i

detection algorithm.

mo (m/s?)?
(mis?yt
3
g
7
|

v (mls?)*
o v & o
i
L

Fig. 4. Foot-mounted MTi !

© 05 3

Experiments were preformed at an indoor location toﬂl L L L w - L L w w
collect walk data for different users. The set xperiments e
were performed in the corridors of CReSTIC labanatat  Fig. 6. The squared norm of the measured accedergyj , the average
Reims Champagne Ardenne University. Data was delec mo=(y, /e), . the variancevar? (j) and the states detectdr
for 3 volunteers at this location. In order to bli&h the
ground truth trajectory, the subjects were madedtk on a Fig. 7 shows the three-axis foot velocity prior to
manually surveyed path marked on the corridor latooy. applying the ZVU. The presence of drift is evidémtall
In the experiment the path starts and ends at #mees three components of velocity. Moreover, the driit the
position. The path includes rectangle shaped wglkiength velocity appears to be linear, which confirms thewemption
is 80 m) and had several straight stretches foliblsesharp that the acceleration bias is constant over thet giaviod of
right-angle turns in clockwise and anti-clockwiseedtions a swing phase. Fig. 7 shows also the same veldciafter
to test the accuracy of our motion filtering alglom (see applying the ZVU. It is seen that the correctedt feslocity
Fig. 5). during the stance phase is now zero.

— With correction step
=== Without correction stej

®  Starting position

@ Finishing position

— With correction step
En = Without correction stey

AR

R SSARAN AR NN A RN A NN R SN AN A N n Al
“v*v*HV!“b“Hrﬁrve‘,Jyurv’,

P

v, (mls)

A >

’ T.rﬁ,mv.v,‘r.xﬂ,nﬁu}.@&.ﬁ

) ‘ ‘ ) | 1 | | 0
0 10 2 . 7 g

e
1

50
Time (s)

Fig. 5. Indoor walking path during a 80 m trajegtlemgth

In this paper, we choose to represent the resbitired Fig. 7. Three-axis foot velocity prior and after applying the ZVU

from one volunteer. The same experiment was regdate Fig. 8 shows the 3D view reconstruction result loé t
times to appropriately choose the sample sizeand the rectangle shaped walking by using the proposed amoti
threshold L . These parameters were adjusted by trial-andittering algorithm which follows thedesigned trajectory
error until a satisfactory result was achieved lsat the with high consistence. The differenbetween the starting
variance test is adequately sensitive to slow $ighanges and ending point is smaller than 0.3 m. Then, tositjpn



estimation error is less than 0.37 % of the totatasce
traveled.

oA ———

Fig. 8. Walking experiment: The reconstructiont# tectangle trajectory
B. Comparison with previous work

In Fig. 9, we compare our reconstruction resulttrod
walking trajectory with the one obtained from prmws work
developed by Ojeda and Borenstein [10].

X (m)

¥ (m)

Fig. 9. Walking experiment: The reconstruction toé rectangle trajectory
using method developed by Ojeda and Borenstein [10]

In [10], the authors used only gyroscope measur&siten
estimate the quaternion of attitude by integrating well-
known quaternion kinematic differential equatiorovitver,
this solution would be prone to drifting over tirdae to the
build-up of bias and drift errors. In contrary, tApproach
herein proposed takes advantage of the precisiantaezero
(<1°), given by the rate gyros integration in the shertm

(=1sec) and the reliable long term accuracy provided by

e

accelerometer and magnetometer measurements.

resulting structure of the proposed CF blends teqgufency
regions and is based on the complementary filtettegpry:
1) the accelerometer and magnetometer

data are

characterized by a low frequency region, whereati¢ude
is usually more accurate, 2) the gyroscope dalaceted in
the high frequency region, where the integration thod
angular velocity yields better attitude estimates.

It is obvious that the reconstruction result usitng
method in [10] is deviated from the designed trmpc
further. Our proposed approach improves the pedona
greatly.

IV. CONCLUSION

This paper presents an algorithm for estimating drum
foot position during normal walking based on estasaof
foot orientation, velocity, acceleration, and gaitase using
inertial/magnetic sensor measurements. The measuatsm
are provided by an IMU attached to a foot. Origatat
estimation is accomplished by a quaternion-basedt&F
blend the high frequency information provided bygalar
rate sensors and the low-frequency information iplexy by
accelerometers and magnetometers. For this purpofemt
gait phase detection algorithm based on the use of
accelerometer measurements was presented. With foot
orientation readily available as a result of theatgtnion-
based CF, foot acceleration in the body coordifi@ee is
conveniently converted into the earth coordinaéent using
the foot orientation quaternion. Foot velocity tstained by
numerically integrating corrected foot acceleration
measurements obtained during the swing phase. Due t
sensor noise, accelerometer measurements tendttorte
drift is corrected using the ZVU technique. Expemts
were conducted to evaluate the algorithm. The éxpetal
results suggest that the achievable position acguoé the
algorithm is about 0.37 % of the total walked dis&
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