Reducing parasitic effects of actuation and sensing schemes for piezoelectric microelectromechanical resonators - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Microelectronic Engineering Année : 2013

Reducing parasitic effects of actuation and sensing schemes for piezoelectric microelectromechanical resonators

Fabrice Mathieu
Denis Dezest
  • Fonction : Auteur
  • PersonId : 937700
Liviu Nicu

Résumé

The co-integration of piezoelectric actuation and sensing capabilities on microelectromechanical system-based resonators can be a source of electrical cross-talk that, if not properly taken into account, may dramatically affect the interpretation of the device's output. In this paper, we identify three parasitic electrical effects pertaining to the most commonly used piezoelectric actuation and sensing schemes. To further investigate the impact of such parasitic effects, microcantilevers, bridges and membranes integrating a layer of sol-gel lead zirconate titanate (PZT) were fabricated and electrically characterized. Experimental results on the resonant characteristics were compared with simulations of the studied resonators' equivalent electrical models. Methods for reducing the design-dependent parasitic electrical effects such as mutual capacitances of less than 10fF, electrical wiring or static capacitance mismatches of less than 20% of the integrated piezoelectric films are discussed.
Fichier principal
Vignette du fichier
PiezoMEMS_article_final_Microelec_Eng_revised_version.pdf (1.41 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00797039 , version 1 (05-03-2013)

Identifiants

  • HAL Id : hal-00797039 , version 1

Citer

Fabrice Mathieu, Florian Larramendy, Denis Dezest, C. Huang, G. Lavallée, et al.. Reducing parasitic effects of actuation and sensing schemes for piezoelectric microelectromechanical resonators. Microelectronic Engineering, 2013, 111, pp. 68-76. ⟨hal-00797039⟩
134 Consultations
394 Téléchargements

Partager

Gmail Facebook X LinkedIn More