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AMENABILITY AND NON UNIFORM GROWTH OF SOME
DIRECTED AUTOMORPHISM GROUPS OF A ROOTED TREE

JÉRÉMIE BRIEUSSEL

Abstract. A result of amenability of some automorphism groups of a spherically
homogeneous rooted tree of bounded valency is given. It is used to construct
uncountably many amenable groups of non uniform exponential growth. Their
Cayley graphs can be made arbitrary close to that of some groups of intermediate
growth. Yet those groups are not in the class SG of subexponentially amenable
groups.

1. Introduction

Given a finitely generated group Γ endowed with a generating set S the growth
function, bΓ,S(r) is defined as the number of group elements which are products
of less than a given number r of generators and their inverses. The growth of Γ
is qualified exponential when the exponential growth rate hS(Γ) = lim r

√

bΓ,S(r)
strictly exceeds 1 for some, hence for all, generating set S. The growth is said
intermediate if hS(Γ) = 1 and the growth function is not polynomial, that is when
the group is not virtually nilpotent ([Gro1]). The growth is qualified uniform when
the infimum of the exponential growth rates over all generating sets strictly exceeds
1, non uniform when exponential but: infS hS(Γ) = 1.

The question of existence of groups of non uniform exponential growth was asked
by Gromov in 1981 in the little green book [Gro2]. It has been shown that such
groups do not occur in several classes such as hyperbolic groups (see [Kou]), linear
groups (see [EMO]), elementary amenable groups (see [Osi2]). A pleasant exposition
is given in [dlH]. The first examples of such groups have been provided by Wilson
in [Wil1] and [Wil2]. They contain free subgroups. Another example is due to
Bartholdi in [Bar]. The main object of this paper is the following:

Theorem 1.1. There exist uncountably many pairwise non isomorphic amenable
groups of non uniform exponential growth.

These groups will appear as subgroups of the group Aut(Td̄) of automorphisms of
a spherically homogeneous rooted tree, which is described. In Section 3 a subgroup of
Aut(Td̄) is proved to be amenable in case of bounded valency of the tree. This Main
Theorem 3.1 implies in particular that the group considered in [Bar] is amenable.
Sections 4 and 5 are devoted to the proof of this Main Theorem. In Section 6,
using specific generating sets of the alternate group of permutation, some groups
of intermediate growth are introduced. These groups are proved to be dense in
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the profinite group of alternate automorphism of the rooted tree. The groups of
Theorem 1.1 are constructed in Section 7, using results of Wilson ([Wil2]). Some
part of Wilson Theorem 7.1, namely the convergence to 1 of the exponential growth
rates associated to different generating sets, is reinterpreted as a convergence of the
Cayley graphs to Cayley graphs of the groups of intermediate growth introduced in
the previous section. The last Section 8 deals with the question of subexponential
amenability. The groups of non uniform exponential growth constructed are proved
not to be in the class SG.

2. Automorphisms of spherically homogeneous rooted trees

2.1. Spherically homogeneous rooted tree. Given a sequence d̄ = {dj}j≥0 of
integers dj ≥ 2, the associated spherically homogeneous rooted tree denoted Td̄ is
defined as follows: the vertices are indexed by all finite sequences v = (i1i2 . . . ik)
with ij in {1, 2, . . . , dj−1}, including the empty sequence ∅ called the root, and the
edges link the pairs {(i1i2 . . . ik), (i1i2 . . . ikik+1)}. Note that the sequence d̄ need not
be infinite in which case the tree is finite.

The distance (each edge has length 1) from a vertex to the root is called the
level of the vertex. The vertices of level l(v) = n form the nth layer (or level) of
cardinality d0d1 . . . dn−1.

Each vertex v of level n gives rise to a spherically homogeneous rooted subtree Tv

when restricting to vertices of the form (vinin+1 . . . in+k). The tree Tv is isomorphic
to the tree Tσnd̄ associated to the sequence σnd̄ = {dj}j≥n (with σ denoting the
usual shift σ : (d0d1d2 . . . ) 7→ (d1d2d3 . . . )).

2.2. Automorphism group. An automorphism of Td̄ is a graph automorphism,
that is a bijection of the set of vertices mapping edges to edges, which fixes the root.
These properties imply that the layers are preserved, and an automorphism acts
on a layer by permutation. The group of all such automorphisms will be denoted
Aut(Td̄). Spherical homogeneity ensures that Aut(Td̄) and Aut(Tσd̄) are related by
an isomorphism:

Aut(Td̄) ≃ Aut(Tσd̄) ≀ Sd0 . (2.1)

Recall that G ≀ Sd ≃ (G × · · · × G) ⋊ Sd where Sd (the group of permutation of
the set {1, 2, . . . , d}) acts on the d copies of G by permutation. This identification
will allow to write extensively f = (f1, f2, . . . , fd0)σ with f in Aut(Td̄), the fi in
Aut(Tσd̄) and σ in Sd0 . The product rule is fg = (f1, f2, . . . , fd0)σ(g1, g2, . . . , gd0)τ =
(f1gσ(1), . . . , fd0gσ(d0))στ . In particular, there is a projection p : Aut(Td̄)→ Sd0 called
restriction to the first level. The kernel of this projection is called the stabilizer of
the first level, denoted St1(Aut(Td̄)), easily checked to be isomorphic to the direct
product Aut(Tσd̄)× · · · × Aut(Tσd̄) with d0 factors.

More generally for each integer n, there is an isomorphism:

Aut(Td̄) ≃ Aut(Tσnd̄) ≀ Aut(Td0...dn−1), (2.2)

where Aut(Td0...dn−1) acts by permutation on d0 . . . dn−1 copies of Aut(Tσn d̄) the way
it acts on the set of leaves ∂Td0...dn−1 (the boundary) of the finite tree Td0...dn−1 . There
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Figure 1. Spherically homogeneous rooted tree, subtree.

is also a projection pn : Aut(Td̄) → Aut(Td0...dn−1), the kernel of which constitutes
the stabilizer Stn(Aut(Td̄)) of the nth level. This is a normal subgroup of Aut(Td̄)
isomorphic to the direct product Stn(Aut(Td̄)) ≃ Aut(Tσnd̄)× · · · × Aut(Tσnd̄), the
elements of which will occasionally be written g = (g1...1, . . . , gd0...dn−1)n.

The full group of automorphism can be viewed as a profinite group via:

Aut(Td̄) = lim←−
n→∞

Aut(Td0...dn−1) = lim←−
n→∞

(Sdn−1 ≀ Sdn−2 ≀ · · · ≀ Sd0). (2.3)

A basis of open sets for the profinite topology associated is {Stn(Aut(Td̄))}n≥0.
This topology can also be defined as associated to any of the following metrics δλ̄
on Aut(Td̄). Given a decreasing sequence λ̄ = {λn}n≥0 of positive numbers tending
to zero, set:

δλ̄(g, h) = inf{λn|g(v) = h(v) for all vertices v of level ≤ n}.

A nice description of automorphisms of a rooted tree is to draw portraits. A
portrait is a function g from the set of all vertices v of the tree Td̄ taking permutation
values g(v) ∈ Sdl(v) . A portrait gives rise to a unique automorphism via the formula:

g(i1i2i3 . . . ik) = (g(∅)i1)(g(i1)i2)(g(i1i2)i3) . . . (g(i1 . . . ik−1)ik).

Conversely, every automorphism has a unique portrait. The metrics δλ̄ are such that
two automorphisms are n-close if their portraits coincide on the n first layers.

An automorphism is said to be even (or alternate) if all the permutations g(v) ∈
Sdl(v) involved in the portrait are alternate permutations g(v) ∈ Adl(v). The group

of alternate automorphisms will be denoted Aute(Td̄). It satisfies:

Aute(Td̄) = lim←−
n→∞

Aute(Td0...dn−1) = lim←−
n→∞

Adn−1 ≀ Adn−2 ≀ · · · ≀ Ad0 , (2.4)

the profinite topology, the distances associated and the stabilizers of levels are de-
fined in the same way as for the full automorphism group. Note that if T2 is a
2-regular rooted tree, then Aute(T2) is the trivial group.
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σ2 σ3 . . . σd0

Figure 2. The ι-action of H̄.

2.3. Directed automorphism subgroups. This paper focuses on specific sub-
groups of Aut(Td̄), those directed by a given infinite geodesic of the tree Td̄ starting
from the root. Such a geodesic can always be chosen to be that passing at all ver-
tices indexed by 11 . . . 1 (the leftmost geodesic in the illustrations). First introduce
actions of some permutation groups on Td̄. The group Sd0 acts on the rooted tree
by permuting the subtrees of the first layer:

ι0 : Sd0 →֒ Aut(Td̄).

More precisely, ι0 is defined by ι0(σ)(i1i2 . . . ik) = σ(i1)i2 . . . ik. For simplicity of
notation, we will identify σ = ι0(σ) = (idTσd̄

, . . . , idTσd̄
)σ and call those rooted

automorphisms (their portrait is trivial outside of the root).

The infinite direct product H̄ = Sd1×· · ·×Sd1×Sd2×· · ·×Sd2×. . . of permutation
groups where Sdk appears dk−1−1 times also acts in a canonical way (once a geodesic
is chosen) on the rooted tree Td̄:

ι : H̄ →֒ Aut(Td̄).

Indeed, consider the vertices 1ki = 1 . . . 1i with k ones and i in {2, . . . , dk}. They
form the set P of vertices at distance exactly 1 of the leftmost geodesic 111 . . . .
Each permutation group Sdk acts on a subtree T1ki via the above homomorphism
ι0 (corresponding to the rooted tree Tσk d̄). More precisely, the action is recursively
defined through the wreath product by:

ι(σ2, . . . , σd0 , σ12, . . . , σ1d1 , . . . ) = (ι′(σ12, . . . , σ1d1 , . . . ), σ2, . . . , σd0),

where ι′(σ12, . . . , σ1d1 , . . . ) represents the action of the restriction H̄ ։ H̄1 via:

ι′ : H̄1 = Sd1−1
d2
× Sd2−1

d3
× . . . →֒ Aut(T1) ≃ Aut(Tσd̄)

The geometry of the set P ensures that the action of different factors commute,
thus ι is a well defined injection. This is best understood by Figure 2, showing the
portrait is non trivial only on P . The automorphisms obtained in ι(H̄) are said to
be directed by the geodesic 111 . . . .
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Given a subgroup A of Sd0 and a subgroup H of H̄, denote by G(A,H) the
subgroup of Aut(Td̄) generated by ι0(A) and ι(H). Such a group will be called a
directed group of automorphisms. Note that the group H might not be countable as
H̄ is not. The group G(Sd0 , H̄) will be called full group of directed automorphisms.
Note that the isomorphism (2.1) induces an isomorphism:

G(Sd0 , H̄) ≃ G(Sd1 , H̄1) ≀ Sd0 . (2.5)

The class of groups of the form G(A,H) has been considered in [Gri2]. It gathers
many famous examples such as the family of Aleshin-Grigorchuk groups known to
be torsion (see [Ale1]) and of intermediate growth (see [Gri1]). Other interesting
examples are some groups of non uniform growth constructed by Wilson ([Wil1],
[Wil2]) and Bartholdi ([Bar]), to which Section 7 is devoted.

3. The main theorem

In this section the Main theorem on full directed automorphism groups is stated
and its proof is reduced to the proof of the a priori weaker Theorem 3.2.

Theorem 3.1 (Main Theorem). Let d̄ = (di)i≥0 be a sequence of integers di ≥ 2,
let Sd0, H̄ and G(Sd0 , H̄) be the full directed subgroup of Aut(Td̄), then:

1) if the sequence d̄ is bounded, the group G(Sd0 , H̄) is amenable.

2) if the sequence d̄ is unbounded, the group G(Sd0 , H̄) contains a free group F2 on
two generators.

The proof of part 1) of the Main Theorem 3.1 reduces to proving the following,
which will be the object of Sections 4 and 5.

Theorem 3.2. Let d̄ = (di)i≥0 be a bounded sequence of integers 2 ≤ di ≤ D,
let H < H̄ be a finite saturated subgroup, then the directed subgroup G(Sd0 , H) of
Aut(Td̄) is amenable.

Proof of part 2). The second part of the Main Theorem is an immediate consequence
of the following lemma stated in [Wil2] (see also [TW]).

Lemma 3.3 ([Wil2]). Let F be the free product of two non-trivial finite groups
which are not both of order 2, and S be any infinite subset of N. Then the alternate
permutation group Ad is a homomorphic image of F for all sufficiently large d and
the intersection of the kernels of all epimorphisms from F to groups Ad with d ∈ S
is the trivial subgroup.

This implies that if d̄ is unbounded then the group H̄ already contains a free
group F2 on two generators. Indeed, let F = Z/2Z ⋆Z/3Z the free group generated
by elements x of order 2 and y of order 3. Let D be such that there is an onto
homomorphism ϕd : F → Ad when d ≥ D. Define:

h1 = (ϕd1(x), . . . , ϕd1(x), ϕd2(x), . . . , ϕd2(x), . . . ) ∈ H̄
h2 = (ϕd1(y), . . . , ϕd1(y), ϕd2(y), . . . , ϕd2(y), . . . ) ∈ H̄
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where ϕd(x) = ϕd(y) = 1 ∈ Ad ⊂ Sd if d < D. Then Lemma 3.3 ensures that the
subgroup 〈h1, h2〉 < H̄ is isomorphic to F which contains F2 as a subgroup of finite
index. �

If the sequence d̄ is bounded then the properties of the group H̄ are much different.

Fact 3.4. Let H̄ = T1 × T2 × . . . where the groups Ti belong to a finite family
F = {F1, . . . FD} of finite groups, then every finitely generated subgroup H ′ of H̄ is
finite.

Proof. Let h1, . . . , hk be generators of H ′, they are of the form hj = (h1
j , h

2
j , . . . )

with hi
j ∈ Ti. There are at most M = D.(max{#Fi})

k different k + 1-tuples

(hi
1, h

i
2, . . . , h

i
k, Fi). Let I be a subset of N of size less than M such that all different

(k + 1)-tuples appear when i describes I. Then the projection πI : H̄ → ×i∈ITi is
injective, so that H ′ is finite. �

Definition 3.5. A finite subgroup H of the group H̄ = T1 × T2 × . . . where the Ti

belong to a finite family F of finite group is said to be saturated if the equidistributed
probability measure qH on H projects on each coordinate i to the equidistributed
probability measure qTi

on Ti, that is if h = (h1, h2, . . . ) ∈ H then qH(hi = t) =
qTi

(t) = 1
#Ti

.

Fact 3.6. Every finite subgroup H ′ of H̄ is included in a finite saturated group H.

Proof. With the above notations set for each i in I:

Ji = {j ∈ N|(hj
1, h

j
2, . . . , h

j
k, Fj) = (hi

1, h
i
2, . . . , h

i
k, Fi)}.

There is a diagonal embedding Ti → ×j∈JiTj and as ∪i∈IJi = N we get a diagonal
injection:

×i∈ITi →֒ H̄

the image H of which contains H ′ and is saturated by construction, knowing a finite
direct product is always saturated. �

Proof that Theorem 3.2 implies the Main Theorem. To prove the groupG(Sd0 , H̄) is
amenable, it is sufficient to prove amenability for every finitely generated subgroup
Gf (Theorem 1.2.7. in [Gre]), which reduces, assuming Theorem 3.2, to show that
Gf is included in some G(Sd0 , H) for H finite saturated. Indeed, let s1, . . . , sk
be generators of Gf , each sj is of the form sj = a1jh

2
ja

3
j . . . h

nj

j , with aij ∈ Sd0

and 〈(hi
j)i,j〉 < H̄ finitely generate a subgroup H ′ which is included in some finite

saturated subgroup H by Facts 3.4 and 3.6. �

4. Scheme of the proof of Theorem 3.2

This section is devoted to the scheme of the proof of Theorem 3.2 which implies
the Main Theorem 3.1. The details are given in Section 5. Groups of the form
G(Sd0 , H) share similarities with the Basilica group defined by a three state au-
tomaton introduced by Grigorchuk and Zuk in [GZ]. The Basilica group was shown
to be amenable by Bartholdi and Virag (see [BV]) using selfsimilarity of some ran-
dom walks. This method, called the “Münchhausen trick”, has been used to show
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amenability of a few other groups (see [Kai] and [Muc]). We proceed with the same
methods, using Kesten’s criterion on symmetric random walks.

As H is a finite saturated subgroup of H̄ = Sd0−1
d1
×Sd1−1

d2
× . . . , let us denote Hk

its restriction to H̄k = Sdk−1
dk+1
×S

dk+1−1
dk+2

× . . . which is also a finite saturated subgroup

and it follows from (2.5) that G(Sd0 , H) →֒ G(Sd1 , H1) ≀ Sd0 , and more generally the
group G(Sdk , Hk) is a directed subgroup of Aut(Tσk d̄) satisfying the crucial:

G(Sdk , Hk) →֒ G(Sdk+1
, Hk+1) ≀ Sdk .

The word metric does not behave appropriately enough through this wreath product
embedding, rather use:

Proposition 4.1 (A fractal family of pseudo norms of exponential growth). There
exists a family of pseudo norms νk on G(Sdk , Hk) (which means symmetric positive
functions νk : G(Sdk , Hk)→ R+ satisfying the triangle inequality) such that:

a) if g belongs to G(Sdk , Hk) and has image g = (g1, . . . , gdk)σ in G(Sdk+1
, Hk+1) ≀Sdk ,

then νk(g) ≤ νk+1(g1) + · · ·+ νk+1(gdk), and

b) if Bνk(r) = {g ∈ G(Sdk , Hk)|ν
k(g) ≤ r}, then #Bνk(r) ≤ Cr where C is a constant

depending only on the bound D on the valencies of the tree and the size of the finite
group H (which contains Hk for every k).

Let p denote the symmetric probability measure on the finite generating set Sd0 ∪
H of G(Sd0, H) defined by p(a) = 1

2#Sd0
for a ∈ Sd0 and p(h) = 1

2#H
for h ∈ H .

The random walk associated is ZN = s1 . . . sN where the si are independent random
variables identically p-distributed. The set of random sequences (ZN)N∈N is endowed
with the product measure (defined on the sigma algebra generated by cylinders)
P = p⊗∞. The drift of this random walk with respect to the pseudo norm ν = ν0

vanishes:

Proposition 4.2. The random walk (ZN) satisfies:

ν(ZN )

N
−→

N→+∞
0, P a.s..

To prove this proposition, another (non symmetric) random walk is usefull. Let
us define Yn = t0t1t2 . . . tn where t2i are random variables equidistributed on Sd0

and t2i+1 are equidistributed on H and all the ti are independent. Denote Q =
(qSd0

⊗ qH)
⊗∞ the associated measure on the set of sequences (Yn)n∈N (with respect

to the cylindrical sigma algebra), then:

Proposition 4.3. The random walk (Yn) satisfies:

ν(Yn)

n
−→

n→+∞
0, Q a.s..

The key argument to prove Proposition 4.3 is the next Lemma 4.6 together with
Proposition 4.1 a).

Remark 4.4 (On the dependence on t0). The pseudo norm ν = ν0 satisfies ν(ah) =
ν(h) for every a in Sd0 and h in H (Proposition 5.2 (2)), which ensures ν(Yn) =
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ν(t−1
0 Yn) = ν(t1t2 . . . tn), showing that ν(Yn) is independent of t0. This will be of

importance and justifies the:

Definition 4.5. Two random variables U and V on G(Sd0 , H) are said ν-equivalent
if ν(U) and ν(V ) have the same distribution law on N, which will be denoted:

U ∼ν-law V.

Consider the random walk (Yn)n∈N and its image in the wreath product of the
form Yn = (Y 1

n , . . . , Y
d0
n )σn where σn is a random variable in Sd0 and the coordinates

Y t
n for t ∈ {1, . . . , d0} are random variables in G(Sd1 , H1). The point is that (Y t

n)n
follows the law of the similarly defined random walk (Y ′

m)m∈N on G(Sd1 , H1) (which
is taking independent equidistributed increments alternatively in Sd1 and H1), but
at a slower speed. More precisely:

Lemma 4.6 (Similarity of the random walks (Yn) and (Y ′
m)). Let (Yn)n∈N the ran-

dom walk defined above and Yn = (Y 1
n , . . . , Y

d0
n )σn its image in the wreath product.

For each coordinate (Y t
n)n the sequence (Yn)n defines a sequence of random integers

(mt(n))n and a random sequence (εt(n))n taking values in {0, 1} such that:

(1) For every integer n the values of mt(n) and εt(n) depend only on (Yn′)n′≤n.
(2) For every integer n the coordinate Y t

n belonging to G(Sd1 , H1) has the same
ν1-distribution law as the random variable Y ′

mt(n)+εt(n)
. More precisely the

conditional law:

(Y t
n|mt(n), εt(n)) ∼ν1-law Y ′

mt(n)+εt(n).

(3) The random sequence (mt(n))n satisfies:

mt(n) ∼n→+∞

(
d0 − 1

d0

)
n

d0
, Q a.s..

Propositions 4.1 and 4.2 are sufficient to apply the:

Theorem 4.7 (Kesten criterion of amenability [Kes]). Let Γ be a finitely generated
group and (ZN) a symmetric random walk on Γ. The group Γ is amenable if and
only if the sequence (P (Z2N = idΓ))N does not decay exponentially fast with N .

The following fact is also usefull:

Fact 4.8. Let (ZN) a symmetric random walk on a finitely generated group Γ, then
for any fixed integer N the function Γ → [0, 1] : g 7→ P (Z2N = g) is maximal for
g = idΓ.

Proof of the Fact 4.8. Let pk(x, y) denote the probability to go from x to y in k
steps, let δx denote the function on Γ taking values 1 on x and 0 elsewhere and M
the symmetric random walk operator on the space l2(Γ). Then Cauchy inequality
implies:

p2N (id, x)
2 = 〈M2Nδid, δx〉

2 = 〈MNδid,M
Nδx〉

2

≤ ||MNδid||.||M
Nδx|| = p2N (id, id).p2N(x, x) = p2N(id, id)

2.

�
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Note that Theorem 4.7 and Fact 4.8 only apply to symmetric random walks.

Proof of Theorem 3.2. Given an arbitrary positive ε the previous Fact 4.8 applied
to the symmetric random walk (ZN) constructed above raises:

P (ν(Z2N) ≤ ε2N) =
∑

ν(g)≤ε2N

P (Z2N = g) ≤ P (Z2N = idG(Sd0
,H))#Bν(ε2N),

and the Propositions 4.1 b) and 4.2 ensure:

P (Z2N = id) ≥ P

(
ν(Z2N)

2N
≤ ε

)

C−ε2N ∼N→∞ C−ε2N .

Thus P (Z2N = id) does not decrease exponentially fast and Kesten’s criterion proves
Theorem 3.2 and thus the Main Theorem. �

5. Details of the proof of Theorem 3.2

5.1. Fractal pseudo norms of exponential growth (proof of Proposition
4.1). To the symmetric generating set S = (Sd0 ∪H)\{1} of G(Sd0 , H) is associated
the word norm on G(Sd0 , H) by:

|g| = min{r|g = z1 . . . zr, zi ∈ S}.

Denote BS(r) the ball of radius r associated to this norm (that is the set of all g
such that |g| ≤ r), then #BS(r) ≤ (#S)r.

Note that since G(Sd0 , H) is a quotient of the free product Sd0 ∗H a word z1 . . . zr
is a minimal representative of g (that is r = |g|) only in the following cases: either
z2j ∈ Sd0\{1} and z2j+1 ∈ H\{1}, or conversely. This brings another definition:

||g||0 = min{r|g = a1h1a2h2 . . . hrar+1, ai ∈ Sd0 , hj ∈ H}. (5.1)

The following is straightforward:

Properties 5.1. The function ||.||0 is a norm when restricted to the stabilizer of
the first level St1(G(Sd0, H)), namely it satisfies:

(1) ||gh||0 ≤ ||g||0 + ||h||0 for all g, h in G(Sd0, H),
(2) ||g−1||0 = ||g||0 for all g in G(Sd0 , H),
(3) ||g||0 = 0 if and only if g ∈ Sd0,

This function ||.||0 is related to the usual word norm since for g in G(Sd0 , H):

2||g||0 − 1 ≤ |g| ≤ 2||g||0 + 1,

which implies that if B||.||0(r) is the ball of radius r associated to ||.||0 in G(Sd0 , H),
then:

#B||.||0(r) ≤ (#S)2r+1.

Following [BV], let us introduce a new function ν on G(Sd0 , H) which is to be
thought of as a fractal distance. For g ∈ G(Sd0 , H) and a vertex v on layer k = l(v)
of Td̄, denote by gv the action of g on the descendant subtree Tv ≃ Tσk d̄ of Td̄

and g(v) ∈ Sdk the action on the dk children of v. The automorphism gv of the
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rooted tree Tv belongs to the group G(Sdk , Hk). The function defined by (5.1) for
G(Sdk , Hk) will be denoted by ||.||k.

A subtree T of Td̄ is said to be rooted if it contains the root ∅ of Td̄. It is said
regular if for every vertex v ∈ T , either T contains the dl(n) descendant of v, either
it contains none of them.

Given a finite regular rooted subtree T of Td̄ with set of leaves ∂T , define a
function νT on G(Sd0 , H) by:

νT (g) =
∑

v∈∂T

(1 + ||gv||l(v)).

and a function ν : G(Sd0 , H)→ N as:

ν(g) = min{νT (g)|T is a finite regular rooted subtree of Td̄}. (5.2)

The construction (5.2) defines similarly a function νk : G(Sdk , Hk) → N for the
subgroup G(Sdk , Hk) < Aut(Tσkd̄) ≃ Aut(Tv) for any vertex v on the kth layer. Note
that ν = ν0 and that the following proposition is still true replacing ν by νk and ν1

by νk+1.

Proposition 5.2. The function ν satisfies:

(1) Let g in G(Sd0 , H) and g = (g1, . . . , gd0)σ be its embedded image in the wreath
product G(Sd0 , H) →֒ G(Sd1 , H1) ≀ Sd0, then:

ν(g) = min{ν1(g1) + · · ·+ ν1(gd0), 1 + ||g||0}.

(2) Let g in G(Sd0 , H), then ν(g) = ν(g−1).
(3) Let g, g′ be in G(Sd0 , H), then ν(gg′) ≤ ||g||0 + ν(g′).
(4) Let g, g′ be in G(Sd0 , H), then ν(gg′) ≤ ν(g) + ν(g′).

In particular, this function ν is a pseudo-norm on G(Sd0 , H).

The use of induction in the proof of Proposition 5.2 requires the:

Property 5.3. Let g in G(Sdk , Hk) have image g = (g1, . . . , gdk)σ in the wreath
product G(Sdk+1

, Hk+1) ≀ Sdk and assume ||g||k ≥ 2 then ||gt||k+1 < ||g||k for any
coordinate t.

Proof of Property 5.3. An element g admits a minimal representative of the form
g = hσ1

1 . . . hσr
r σr+1 with σi in Sdk and hi in Hk (remind xy = yxy−1). Moreover by

construction h = (h′, a2, . . . , adk) with h′ inHk+1 and ai in Sdk+1
and the conjugate hσ

is the same dk-tuple where the coordinates are σ permuted. This ensures ||g1||k+1+
· · · + ||gd0||k+1 ≤ ||g||k. It is sufficient to prove the property for ||g||k = 2, that
is g = hσ1

1 hσ2
2 . If σ1(1) 6= σ2(1) the property is obvious. If σ1(1) = σ2(1) then

||gi||k+1 = 0 if i 6= σ1(1) and ||gσ1(1)||k+1 = ||h′
1h

′
2||k+1 = 1 because h′

1h
′
2 is an

element of Hk+1. �

Proof of Proposition 5.2. Note that 1 + ||g||0 = ν{∅}(g) and assume the minimum
in definition (5.2) is obtained for a finite regular rooted tree T 6= {∅}. Clearly
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∂T = ∂T (1)∪· · ·∪∂T (d0) where T (v) denotes the intersection of T with the subtree
Tv of Td̄ hung on vertex v, thus:

νT (g) =
∑

v∈∂T

(1 + ||gv||l(v)) =
d0∑

t=1

∑

v∈∂T (t)

(1 + ||gv||l(v)) =
d0∑

t=1

νT (t)(gt),

which is minimal if and only if νT (t)(gt) = ν1(gt) is minimal for all t. This implies
part (1).

It follows that if ||g||0 = 1 then ν(g) = 2 = ν(g−1). Similarly if ||g||k = 1
for g ∈ G(Sdk , Hk) then νk(g) = 2 = νk(g−1). Assume by induction on r that
νk(g) = νk(g−1) if ||g||k ≤ r and this jointly for every level k, then the inverse
formula g−1 = σ−1(g−1

1 , . . . , g−1
d0
) and the induction hypothesis ensuring ν1((g−1)1)+

· · ·+ν1((g−1)d0) = ν1(g1)+· · ·+ν1(gd0) (as ||gt||k+1 < ||g||k by Property 5.3) together
with part (1) show part (2).

To prove part (3), note first that ν(ag) = ν(g) for all a ∈ Sd0 . Indeed, a only
permutes the subtrees of the first level and does not increase any of the ||gv||l(v). To
conclude, it is sufficient to show that when h is in H , we have νT (hg) ≤ 1+νT (g) for
any finite regular subtree T . Proceed by induction on the size of T . Indeed, this is
true for T = {∅} by Property 5.1 (1). More generally, denoting g = (g1, . . . , gd0)σ0

and h = (h1, a2, . . . , ad0) with gt in G(Sd1 , H1), h1 in H1 and at in Sd1 , we get
hg = (h1g1, a2g2, . . . , ad0gd0)σ0 and:

νT (hg) = νT (1)(h1g1) +

d0∑

t=2

νT (t)(atgt) ≤ 1 + νT (1)(g1) +

d0∑

t=2

νT (t)(gt) = 1 + νT (g)

using the induction hypothesis on T (1).

Part (4) is implied by part (3) in case ν(g) = 1 + ||g||0 or ν(g′) = 1 + ||g′||0.
Otherwise:

ν(gg′) ≤
d0∑

t=1

ν1((gg′)t) =

d0∑

t=1

ν1(gtg
′
σ(t)) ≤

d0∑

t=1

ν1(gt) + ν1(gσ(t)) = ν(g) + ν(g′),

where the second inequality comes by joint induction on ||g||k using Property 5.3. �

Let Bν(r) = {g ∈ G(Sd0, H)|ν(g) ≤ r} denote the ball of radius r associated to
the function ν. The next proposition is crucial for our purpose.

Proposition 5.4. Consider a spherically homogeneous rooted tree Td̄ of bounded
valency 2 ≤ di ≤ D, a finite subgroup H of H̄ and the function ν constructed above,
then the balls Bν(r) ⊂ G(Sd0 , H) grow at most exponentially fast. Namely, there
exists a constant C depending only on D and the size of H such that:

#Bν(r) ≤ (C)r, for all r sufficiently large.

In order to prove this proposition, recall classical estimates on the number of
rooted subtrees of a rooted tree. The formula below can be found in [PR], the
equivalent is derived from Stirling’s formula.
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Proposition 5.5. The number of (not necessarily regular) rooted subtrees of a D-
regular tree TD containing r vertices is:

s(D)
r =

1

r
Cr−1

Dr ∼r→+∞
1

D − 1

√

D

2(D − 1)π
r−

3
2

(
DD

(D − 1)(D−1)

)r

.

More precisely the following is sufficient:

Corollary 5.6. The number t
(D)
r of regular rooted subtrees of Td̄ (with d̄ bounded by

D) containing at most r leaves satisfies:

t(D)
r ≤ (KD)

r, for KD =
D2D

(D − 1)2(D−1)
,

provided r is sufficiently large.

Proof. It is well known that a subtree with at most r leaves contains at most 2r− 1

vertices and the asymptotic equivalent of s
(D)
r gives the corollary. �

Proof of Proposition 5.4. If ν(g) ≤ r then there exists a regular rooted subtree T
such that νT (g) ≤ r. In particular, such a subtree has less than r leaves so that
there are at most (KD)

r choices for T (corollary 5.6). Given T , the element g is

described by all g(v) ∈ Sdl(v) where v ∈ T̊ , which allow at most (D!)#T̊ ≤ (D!)r

choices, and all gv ∈ G(Sdl(v) , Hl(v)) with v ∈ ∂T , which satisfy:

∑

v∈∂T

||gv||l(v) ≤ r.

The number of possibilities for this last choice is less than (M + 1)2r where M =
max{#B||.||k(1)} (finite because the size of the generating set Sdk ∪ Hk on layer k
depends only on dk ≤ D and #Hk ≤ #H) bounds the number of symbols which
represent an automorphism of norm 1 on a given leaf. An extra symbol (a coma)
is added to denote passing to the next leaf. All in all, taking C = KDD!(M + 1)2

gives the desired result. �

5.2. Similarity of random walks (proof of Lemma 4.6). First recall elemen-
tary probabilistic facts which will be usefull.

Fact 5.7. Let (zi)i≥1 be independent random variables equidistributed on a finite
group F . Then the sequence (Xk)k≥1 of products Xk = z1 . . . zk is a family of inde-
pendent random variables equidistributed on F .

Proof of Fact 5.7. Denote by qF the equidistribution measure on the finite group F .
It is sufficient to prove by induction that:

q⊗∞
F (Xi = fi, i ≤ k) =

k∏

i=1

q⊗∞
F (Xi = fi) =

k∏

i=1

qF (Xi = fi),
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for arbitrary f1, . . . , fk in F , which comes from:

q⊗∞
F (Xi = fi, i ≤ k) = q⊗∞

F (Xk = fk|Xi = fi, i ≤ k − 1)q⊗∞
F (Xi = fi, i ≤ k − 1)

= q⊗∞
F (zk = f−1

k−1fk)

k−1∏

j=1

q⊗∞
F (Xj = fj)

= qF (zk = f−1
k−1fk)

k−1∏

j=1

qF (Xj = fj).

�

Fact 5.8. Let z be a random variable equidistributed on a finite group F acting
transitively on a finite set A, then qF (z(t) = t′) = 1

#A
for all t, t′ in A.

Proof of Fact 5.8. The quotient F/StabF (t) is of size #A. If z0(t) = t′ (transitivity)
then z0StabF (t) = {z|z(t) = t′} has the same size as StabF (t) by injectivity of left
translation in F . �

Fact 5.9. Let (ui)i∈N be independent random Bernoulli variables on {0, 1} (say
p(ui = 0) = p and p(ui = 1) = 1− p for some p in ]0, 1[). Let f(wN) be the number
of alternations in the subsequence wN = u1 . . . uN , that is the number of indexes i
such that ui 6= ui+1. Equivalently, 1 + f(wN) is the number of maximal packs of
constant successive terms. Then:

f(wN) ∼N→+∞ 2p(1− p)N, P = p⊗∞ a.s..

Proof of Fact 5.9. Apply the law of large numbers to f(wN) =
∑N−1

i=1 1{ui 6=ui+1}

knowing that E(1{ui 6=ui+1}) = 2p(1− p) and that the terms are independent. �

Proof of Lemma 4.6. Consider the random walk Yn at step n as:

Yn = t0t1 . . . tn = a1h1a2h2 . . . ashsas+1

with s = [n
2
] (as+1 empty if n even), where the terms ai (resp. hi) are random

variables equidistributed in Sd0 (resp. in H), all being independent. This can be
rewritten Yn = hσ1

1 . . . hσs
s σs+1 (remind the conjugate notation hσ = σhσ−1) where

the σi = a1a2 . . . ai are independent random variables equidistributed in Sd0 by
Fact 5.7.

Using coordinates in the wreath product an element h of H has the form h =
(h1, a2, . . . , ad0) with h1 in H1 and ai in Sd1 and each of them is equidistributed for h
equidistributed in H by saturation (note that the coordinates are not independent).
Conjugating by a rooted automorphism σ raises hσ = (aσ(1), . . . , aσ(d0)) with h1 in
position σ(1).

Consider now the random walk Yn = (Y 1
n , . . . , Y

d0
n )σn at time n and focus on

coordinate t, which is a product Y t
n = u1 . . . us of s independent terms such that ui

belongs to and is equidistributed in Sd1 (resp. H1) if σi(t) belongs to {2, . . . , d0}
(resp. σi(t) = 1). Since the σi are equidistributed in Sd0 the probability that ui is
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in Sd1 (resp. H1) for a given i is d0−1
d0

(resp. 1
d0
) by Fact 5.8. This is summarized in:

Q(ui = g) =

{ d0−1
d0

1
#Sd1

if g ∈ Sd1 ,
1
d0

1
#H1

if g ∈ H1,

and the terms ui are independent. Define mt(n) to be the number of maximal packs
of successive ui belonging either to Sd1 , or to H1 in the sequence Y t

n = u1 . . . us. Fact
5.9 ensures that:

mt(n) ∼n→+∞ 2
1

d0

(

1−
1

d0

)

s ∼n→+∞

(
d0 − 1

d0

)
n

d0
.

Given an integer n, assume we know the distribution D of which terms ui are in Sd1

and H1, then the kth pack of terms vk = uikuik+1 . . . ujk of constant belonging is a
product of equidistributed independent elements in the finite group Sd1 or H1 hence
is equidistributed. In this situation Y t

n = v0v1 . . . vmt(n) where two cases are possible:
either u1 belongs to Sd1 (set εt(n) = 0), the terms v2k+1 are equidistributed in H1

and v2k are equidistributed in Sd1 , which is of the form Y ′
mt(n)

; or u1 belongs to H1

(set εt(n) = 1), then re index the vi as Y
t
n = idSd1

v1 . . . vmt(n)+1 which is of the form
Y ′
mt(n)+1 except for v0 which follows the Dirac law on idSd1

; this has no influence on

the ν-distribution of the sequences (Remark 4.4). In both cases:

(Y t
n|D) ∼ν-law Y ′

mt(n)+εt(n),

where the condition depends only on the number of alternations mt(n) and the
starting condition εt(n) of the distribution D. �

5.3. Zero drift of (Yn) (proof of Proposition 4.3). First note that the Kol-

mogorov 01-law implies almost sure constance of lim sup ν(Yn)
n

.

Lemma 5.10. For every integer k denote (Y
(k)
n )n the random walk on G(Sdk , Hk)

which is taking independent equidistributed increments alternatively in Sdk and Hk,

in particular (Yn) = (Y
(0)
n ) and (Y ′

n) = (Y
(1)
n ). Then there exists lk in [0, 1

2
] such

that:

lim sup
n→+∞

νk(Y
(k)
n )

n
= lk, Qk = (qSdk

⊗ qHk
)⊗∞ a.s..

Proof. Proposition 5.2 (1) implies νk(Y
(k)
n ) ≤ 1 + ||Y

(k)
n ||k ≤

n+1
2

so that the lim sup

is ≤ 1
2
. Given l in [0, 1

2
] the event El = {lim sup νk(Y

(k)
n )
n

≤ l} is a tail event,

that is an event which is independent of any finite subsequence (Y
(k)
n )n≤N , hence

has probability 0 or 1 by the 01-Kolmogorov law. The function l 7→ Qk(El) is
increasing, right continuous and takes values in {0, 1}, so that there exists lk such
that Qk(El) = 0 for l < lk and Qk(El) = 1 for l ≥ lk. Then:

Qk

(

{lim sup
νk(Y

(k)
n )

n
= lk}

)

= Qk(Elk \ ∪n≥1Elk−
1
n
) = 1.

�
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Proof of Proposition 4.3. To show l0 = 0, prove lk ≤
(D−1)

D
lk+1 where D is the bound

on the valencies of the spherically homogeneous rooted tree Td̄. This is sufficient
as lk ≤

1
2
for every k. To ease notations, compute for k = 0. Proposition 4.1 (a)

ensures:

lim sup
n→+∞

ν(Yn)

n
≤ lim sup

n→+∞

d0∑

t=1

ν1(Y t
n)

n
≤

d0∑

t=1

lim sup
n→+∞

ν1(Y t
n)

n
. (5.3)

To compute the right side introduce the condition (mt(n)):

lim sup
n→+∞

ν1(Y t
n)

n
= lim sup

n→+∞

ν1(Y t
n)

mt(n)

mt(n)

n
≤ lim sup

n→+∞

ν1(Y t
n)

mt(n)
lim sup
n→+∞

mt(n)

n
,

where Lemma 4.6 gives lim sup mt(n)
n

= (d0−1
d0

) 1
d0
, Q a.s. and

lim sup
ν1(Y t

n)

mt(n)
= lim sup

ν1(Y ′
mt(n)+εtn

)

mt(n)
= l1, Q a.s.

because mt(n) → +∞ Q a.s.. The last estimates gathered together on a Q proba-
bility one event show that:

l0 ≤
d0∑

t=1

l1

(
d0 − 1

d0

)
1

d0
=

(
d0 − 1

d0

)

l1 ≤

(
D − 1

D

)

l1.

�

5.4. Zero drift of (ZN) (proof of Proposition 4.2). Recall the:

Fact 5.11. Let (ai)i∈N be a random sequence in {0, 1}N endowed with a probability
measure µ. Assume that there exists an infinite subset I of N such that µ(ai = 1) ≥
δ > 0 for all i ∈ I, then µ(ai = 1 for infinitely many i) ≥ δ.

Proof of Fact 5.11. Let E = {(ai)|ai = 1 infinitely often} and assume by contradic-
tion µ(E) = δ′ < δ, this implies µ(Ec ∩ {ai = 1}) ≥ δ − δ′ for all i in I. However
the complement of E is the infinite increasing union:

Ec = ∪n∈N{(ai)|ai = 0 for i ≥ n} = ∪n∈NFn,

so that µ(FN) ≥ 1− δ+δ′

2
for some N . But the case i ≥ N raises the contradiction:

µ(Ec ∩ {ai = 1}) = µ((Ec \ FN) ∩ {ai = 1}) ≤ µ(Ec \ FN) ≤
δ + δ′

2
− δ′ =

δ − δ′

2
.

�

Proposition 4.3 will be used in the (a priori) weaker form:

Corollary 5.12. For every positive ε and α, there exists N0 such that for n ≥ N0:

Q

(
ν(Yn)

n
≤ ε

)

≥ 1− α.

Proof. Assume the statement does not hold, then there exists ε0, α0 and infinitely

many integers nk with Q
(

ν(Ynk
)

nk
≥ ε0

)

≥ α0 and then Q
(

lim sup ν(Yn)
n
≥ ε0

)

≥ α0

by Fact 5.11, contradicting Proposition 4.3. �
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The random walks (ZN) and (Yn) are closely related by:

Fact 5.13. Let N be a fixed integer. To each walk ZN = s1 . . . sN is associated the
number of alternations a(N) from si in Sd0 to si+1 in H or vice versa. Then the
conditional law of ZN satisfies:

(ZN |a(N)) ∼ν−law Ya(N).

Proof. Conditioning by the distribution D of which terms si are in Sd0 and in H ,
the walk is rewritten: ZN = s1 . . . si0si0+1 . . . si1 . . . sia(N)

= t0t1 . . . ta(N) where t2j =
si2j−1

. . . si2j are equidistributed in Sd0 (except maybe t0 which could be empty) and
t2j+1 = si2j . . . si2j+1

are equidistributed in H , all factors being independent, which
is the definition of the random walk Ya(N). The condition matters only on a(N) and
not D. �

This Fact 5.13 allows us to show a weak form:

Lemma 5.14. For every positive ε and α, there exists M such that for N ≥M :

P

(
ν(ZN )

N
≤ ε

)

≥ 1− α.

Proof. Fact 5.9 ensures that the conditioning term a(N) satisfies limN→∞
a(N)
N

= 1
2
,

P almost surely. In particular for every positive α there exists an integer N1 such
that P (a(N) ≥ N

3
) ≥ 1− α for all N ≥ N1.

Now compute under the condition a(N):

P

(
ν(ZN)

N
≤ ε

)

=
∑

a(N)

P

(
ν(ZN )

N
≤ ε|a(N)

)

P (a(N)),

but if N ≥ N1 then P (a(N) ≤ N
3
) ≤ α. Moreover for N ≥ 3N0 (defined by Corollary

5.12) the condition a(N) ≥ N
3
≥ N0 ensures via Fact 5.13:

P

(
ν(ZN)

N
≤ ε|a(N)

)

= Q

(
ν(Ya(N))

a(N)

a(N)

N
≤ ε

)

≥ 1− α,

because a(N)
N
≤ 1. All in all, when N ≥ max{N1, 3N0}:

P

(
ν(ZN)

N
≤ ε

)

≥
∑

a(N)≥N
3

(1− α)P (a(N)) ≥ (1− α)2,

which proves Lemma 5.14. �

The previous Lemma ensures that P almost surely: lim inf ν(ZN )
N

= 0 (Fact 5.11).
To get Proposition 4.2 use:

Theorem 5.15 (Kingman subadditive Theorem ([Kal] 9.14)). Let (Xm,n) be random
variables such that:

(1) X0,n ≤ X0,m +Xm,n for all 0 < m < n,
(2) (Xm+1,n+1) has the same law as (Xm,n),
(3) E(X+

0,1) < +∞,
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then the random sequence (
X0,n

n
) converges almost surely.

Applying this to Xn,m = ν(Z−1
m Zn) shows that the inferior limit is in fact a limit,

proving Proposition 4.2. The interested reader will remark that Lemma 5.14 is
sufficient for our purpose and thus the Main Theorem does not rely on Kingman’s
Theorem.

6. Groups of intermediate growth

6.1. Generating pairs for alternate groups. In his paper [Wil2] (Proposition
2.1), Wilson constructs interesting generating pairs of alternate groups Ad:

Proposition 6.1 (Wilson [Wil2]). Let d ≥ 29, then the alternate group of per-
mutation Ad of the finite set {1, . . . , d} contains an eligible (see [Wil2] for the full
definition) pair of elements xd, yd. In particular:

1) the pair is generating: 〈xd, yd〉 = Ad, the elements have order 2 and 3: x2
d =

y3d = 1, and a fixed point property that there exists α and β in {1, . . . , d} such that:
xd(α) = ydxdy

−1
d (α) = α and yd(β) = β (up to re index we assume α = 1 and

β = 2).

2) let x̂ = (u, 1, . . . , 1)xd0 and ŷ = (1, v, 1, . . . , 1)yd0 belong to Aut(Td̄) with d0 ≥ 29
and u, v in Aut(Tσd̄) with u2 = v3 = 1, then the group generated by x̂ and ŷ contains
the whole group of alternate rooted automorphisms Ad0. More precisely:

〈x̂, ŷ〉 ≃ 〈u, v〉 ≀ Ad0 .

Given a (not necessarily bounded) sequence d̄ of integers ≥ 29, the above Propo-
sition 6.1 allows to define recursively the following pair of automorphisms of the
spherically homogeneous rooted tree Td̄ (remind the assumption on fixed points
α = 1 and β = 2):

xd̄ = (xσd̄, 1, . . . , 1)xd0 ,
yd̄ = (1, yσd̄, 1, . . . , 1)yd0.

(6.1)

This definition is best understood by looking at the portraits on Figure 3. The
automorphism subgroup generated is denoted Hd̄ = 〈xd̄, yd̄〉. Note that in the case
d̄ = σd̄ is a constant sequence the group Hd̄ is generated by a two (non trivial) state
automaton.

Property 6.2. The alternate automorphism xd̄ has order 2, and yd̄ has order 3.

Proof. Show by joint (on xσid̄ for i in N) induction on k that x2
σid̄

acts trivially on
the k first levels of Tσid̄. This implies it acts trivially on the whole tree hence is
trivial automorphism. Proposition 6.1 1) ensures:

x2
σid̄ = (x2

σid̄, 1, . . . , 1)x
2
di
= (x2

σid̄, 1, . . . , 1),

which initiates the induction. Moreover x2
σid̄

acts trivially on the subtrees T2, . . . , Tdi

of Tσid̄ and as x2
σi+1d̄

on T1 which acts trivially on the k first level of T1 by induction
hypothesis. This proves x2

σid̄
acts trivially on the k + 1 first levels of Tσid̄. �
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xd0

xd1

xd2

... 1 . . . 1

1 . . . 1

1 . . . 1

yd0

1 yd1

1 yd2

1 ... 1 . . . 1

1 . . . 1

1 . . . 1

Figure 3. Portraits of the elements xd̄ and yd̄.

6.2. Density properties.

Proposition 6.3. The subgroup Hd̄ = 〈xd̄, yd̄〉 < Aute(Td̄) is dense in Aute(Td̄)
endowed with the profinite topology from (2.4).

Proof. It is sufficient to show that the subgroup Adk ≀· · ·≀Ad0 < Aute(Td̄) of alternate
automorphisms of portrait supported on the k firsts levels is included in Hd̄ for
arbitrary k. Proceed by joint (on Hσid̄ for i ∈ N) induction on k to show:

Hσid̄ ≃ Hσi+kd̄ ≀ Adi−1
≀ · · · ≀ Adi , (6.2)

which will be sufficient taking i = 0 and the trivial subgroup of Hσk d̄. The case
k = 0 follows from Proposition 6.1 2):

Hσid̄ = 〈xσid̄, yσid̄〉 ≃ 〈xσi+1d̄, yσi+1d̄〉 ≀ Adi = Hσi+1d̄ ≀ Adi. (6.3)

Assuming isomorphism (6.2) then isomorphism (6.3) for i+ k proves step k + 1:

Hσid̄ ≃ Hσi+kd̄ ≀ Adi+k−1
≀ · · · ≀ Adi ≃ Hσi+k+1d̄ ≀ Adi+k

≀ Adi+k−1
≀ · · · ≀ Adi .

�

This density property is in contrast with the case of the full (non alternate)
automorphism group of a rooted tree:

Proposition 6.4. The group Aut(Td̄) endowed with the profinite topology from (2.3)
admits no finitely generated dense subgroup.

Proof. Denote sgn : Sd → Z/2Z the signature morphism of permutations. Given
an element g in Aut(Td̄), recall that g(v) is the permutation in Sdl(v) associated to
vertex v in the portrait of g.

(Recall g = (g1...1, . . . , gv, . . . , gd0...dl(v)−1
)τl(v)−1 with gv in Aut(Tv) ≃ Aut(Tσl(v)d̄)

and τl(v)−1 ∈ Aut(Td0...dl(v)−1
), then gv has image gv = (gv1, . . . , gvdl(v))g(v) via the

isomorphism Aut(Tσl(v)d̄) ≃ Aut(Tσl(v)+1d̄) ≀ Sdl(v) .)
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Similarly to Lemma 1. in [Ale2], define for each integer k the following morphism
(of products of signatures of permutations on level k in the portraits):

Rk : Aut(Td̄) → Z/2Z
g 7→ Rk(g) =

∏

v∈Level(k) sgn(g(v)).

The computations via the isomorphism (2.2) show this is a group morphism. The
product morphism ϕ : Aut(Td̄) → (Z/2Z)∞ defined as ϕ(g) = (R0(g), R1(g), . . . ) is
then a surjective group morphism continuous for the profinite topologies. Assume
now there exists a finitely generated dense subgroup G of Aut(Td̄), then ϕ(G) is a
finitely generated dense subgroup of (Z/2Z)∞. This is impossible since any finitely
generated subgroup of (Z/2Z)∞ is finite thanks to Fact 3.4. �

Density in Aute(Td̄) of a finitely generated subgroup implies superpolynomial
growth:

Proposition 6.5. Let d̄ = (di)i∈N a sequence of integers di ≥ 3, then any dense
finitely generated subgroup of Aute(Td̄) has superpolynomial growth.

Proof. Let G be such a group and k an arbitrary integer, then the level k stabilizer
Stk(G) ≃ G1...1 × · · · × Gd0...dk−1

is a direct product of d0 . . . dk−1 subgroups of
Aute(Tσk d̄) each of which inherits the property to be dense and finitely generated.
In particular each of the groups Gv is infinite (di ≥ 3) and thus has at least linear
growth, so that the subgroup Stk(G) of finite index and thus G have growth function
at least b(r) % rd0...dk−1 , hence superpolynomial. �

6.3. Intermediate growth.

Proposition 6.6. The group Hd̄ < Aut(Td̄) has intermediate growth.

Proof of Proposition 6.6. Superpolynomial growth follows from Propositions 6.3 and
6.5, so there remains to prove subexponential growth. Proceed as in [Gri1]. De-
note Bk(r) the ball of radius r in Hσk d̄ for the word metric |.|k associated with

the generating set 〈xσk d̄, yσkd̄〉, denote bk(r) its cardinal and ck = lim r
√

bk(r) =
h{x

σkd̄
,y

σkd̄
}(Hσkd̄) its exponential growth rate. The fixed point condition on eligible

pairs ensures:

xd̄yd̄xd̄y
−1
d̄
xd̄ = (xσd̄, 1, . . . , yσd̄, y

−1
σd̄
, . . . , 1)xd0yd0xd0y

−1
d0
xd0 , (6.4)

with yσd̄ in positions xd0(2) and xd0yd0xd0(2) and the second and third xσd̄ cancel
out. As the generators are of order 2 and 3 every element g = (g1, . . . , gd0)σ in B0(r)
admits a minimal representative word of the form g = xd̄y

ε1
d̄
xd̄y

ε2
d̄
. . . xd̄y

εn
d̄
xd̄, with

εi in {−1, 1}. Given g (more precisely given a fixed minimal representative word),
denote a(g) the number of alternations in the sequence (εi), equality (6.4) implies:

|g1|1 + · · ·+ |gd0 |1 ≤ |g|0 − a(g). (6.5)

Given any parameter t ≥ 2, split the ball B0(r) into:

B+
0 (r) = {g ∈ B0(r)|a(g) ≥

r
t
},

B−
0 (r) = {g ∈ B0(r)|a(g) ≤

r
t
}.
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The size of the first part of the ball is bounded by:

b+0 (r) ≤ #Ad0

∑

r1+···+rd0≤(1− 1
t
)r

b1(r1) . . . b1(rd0). (6.6)

Indeed, each element g = (g1, . . . , gd0)σ of B0(r) is injectively described by the
permutation σ in Ad0 and the coordinates g1, . . . , gd0 the sum of the |.|1 length is
bounded by r−a(g) ≤ (1− 1

t
)r thanks to computation (6.5). The size of the second

part of the ball is bounded by (recall notation Ck
n for the number of subsets of size

k in {1, . . . , n}):

b−0 (r) ≤ 4
∑

s≤ r
t

Cs
r ≤ 4

r

t
C

r
t
r . (6.7)

Indeed the term 4 corresponds to choosing the start of the representative word (y,
y−1, xy or xy−1), s represents the number of alternation a(g) and Cs

r the number of
choice for the positions of such alternations.

The size is estimated by b0(r) ≤ b+0 (r)+b−0 (r) ≤ max{2b+0 (r), 2b
−
0 (r)}, and taking

limits of r-roots raises c0 ≤ max{c
1− 1

t

1 , t
1
t (1− 1

t
)(

1
t
−1)}, since Stirling formula ensures:

(4
r

t
C

r
t
r )

1
r ∼r→∞



4
r

t

√

(2πr)
√

2π r
t

√

2π(1− 1
t
)r





1
r

r
e

( r
et
)
1
t ((1− 1

t
) r
e
)1−

1
t

∼r→∞ t
1
t (1−

1

t
)
1
t
−1.

The estimate is valid for any level k so that for all parameter t ≥ 2:

ck ≤ max{c
1− 1

t

k+1 , t
1
t (1−

1

t
)
1
t
−1}.

In particular, this shows the sequence (ck)k increases (note t
1
t (1 − 1

t
)
1
t
−1 → 1 for

t → ∞). Moreover the sequence is bounded by 2 (the groups are quotients of
Z/2Z ∗ Z/3Z), hence admits a limit c∞, which satisfies by continuity:

c∞ ≤ max{c
1− 1

t
∞ , t

1
t (1−

1

t
)
1
t
−1}

for any parameter t ≥ 2, which is impossible unless c∞ = 1 (otherwise take t large
enough). This shows subexponential growth of the groups Hσk d̄. �

Remark 6.7. When the tree has bounded valency, set f(r) = max{bk(r)|k ∈ N} the
estimate (6.6) can be made homogeneous on dk ≤ D. This together with estimate
(6.7) applied for a parameter t of the form t = K

log(r)
raises inequality:

f(r) ≤ K






∑

r1+···+rD≤(1− K
log(r)

)r

D∏

i=1

f(ri)




+KC

K
log(r)
r .

A computation due to Erschler (Lemma 6.4 in [Ers]) gives the explicit upper bound
on the growth:

b0(r) ≤ f(r) ≤ exp

(
K log(log(r))r

log(r)

)

.
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7. Groups of non uniform growth

7.1. A Theorem of Wilson. The first examples of groups of non uniform expo-
nential growth have been constructed by Wilson in [Wil1]. The following Theorem
from [Wil2] is a generalization.

Theorem 7.1 (Wilson [Wil2]). Let k be a positive integer and χk a class of groups
with the two properties:

(1) each group G in χk is perfect (that is G = [G,G]) and can be generated by k
involutions;

(2) each group G in χk is isomorphic to a permutational wreath product G1 ≀ Ad

with G1 ∈ χk and d ≥ 29.

Then each group G in χk contains two sequences of elements (a(n)), (b(n)) such that:

(a) (a(n))2 = (b(n))3 = 1 and 〈a(n), b(n)〉 = G for each n and,
(b) h{a(n) ,b(n)}(G)→ 1 as n→∞.

In section 4. of [Wil2], Wilson constructs subgroups of Aute(Td̄) for unbounded
sequences d̄ = (di)i in the classes χk. Unboundedness of the sequence permits to
construct such groups with a subgroup isomorphic to the free group F2 on two
generators. This ensures exponential growth, but prevents amenability.

In the next section groups in the class χk are constructed similarly but acting on
bounded valency rooted tree. The Main Theorem 3.1 will apply to show amenability.
Exponential growth is due to the presence of free semigroups. Note however that in
[Wil1] Wilson constructs groups of automorphism of a regular (in particular bounded
valency) rooted tree which have non uniform growth and contain a free group.

7.2. Amenable groups of non uniform growth. Let d̄ = (di)i be a bounded
sequence of integers 5 ≤ di ≤ D, define a subgroup of the group H̄ (constructed
in section 2.3) as Ā < H̄ = Sd0−1

d1
× Sd1−1

d2
× . . . where Ā = Ad1 × Ad2 × . . . as an

abstract group and each group Adk is acting as a rooted automorphism on T1k−12;
this is best understood by Figure 4.

Now for each integer d in {5, . . . , D}, denote Ed = {i ≥ 1|di = d}. There is a
diagonal injection:

jd : Ad →֒
∏

i∈Ed

Adi < Ā,

and the diagonal product of those injections:

j : Ad̄ =

D∏

d=5

Ad →֒ Ā.

To ease notation the image subgroup of Ad̄ is still denoted Ad̄. It is a finite saturated
subgroup of Ā. The subgroup of Aute(Td̄) generated by alternate rooted automor-
phisms Ad0 and Ad̄ is denoted G0 = G(Ad0, Ad̄) < Aute(Td̄). Note that when d̄ = σd̄
is a constant sequence, the group G(Ad, Ad̄) is generated by a finite automaton.
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... a3 1 . . . 1

a2 1 . . . 1

a1 1 . . . 1

Figure 4. The group Ā.

Proposition 7.2. Let d̄ = (di)i a bounded sequence of integers 29 ≤ di ≤ D, the
group G0 = G(Ad0 , Ad̄) belongs to the class χk where k depends only on D.

Proof. Show this Proposition simultaneously for all groups Gi = G(Adi, Aσid̄) <
Aute(Tσid̄). The group Gi is perfect because generated by copies of the groups Adi,
Ad, d ∈ {5, . . . , D} which are perfect (even simple). Moreover, those groups (hence
Gi) are generated by double transpositions, in particular by involutions the number
of which depends only on D, so that the condition (1) of definition of groups in the
class χk is satisfied for some k depending only on D.

To check condition (2), note first that the injection in the wreath product (2.1)
has image in:

Gi = G(Adi, Aσid̄) →֒ G(Adi+1
, Aσi+1d̄) ≀ Adi = Gi+1 ≀ Adi. (7.1)

This is clear for the generators in Adi and the generators b in Aσid̄ have image
b = (b′, a, 1, . . . , 1) where a belongs to Adi+1

and b′ to Aσi+1d̄ by construction. Now
remains to prove this injection is onto hence an isomorphism.

Given any two elements a1, a2 in Adi+1
there exists b1 = (b′1, a1, 1, . . . , 1) and

b2 = (b′2, a2, 1, . . . , 1) in Aσid̄. Moreover the double transposition σ = (13)(45)
belongs to Adi, so that Gi contains b

σ
2 = σb2σ

−1 = (1, a2, b
′
2, 1, . . . , 1), hence [b1, b

σ
2 ] =

(1, [a1, a2], 1, . . . , 1) and then 1 × Adi+1
× · · · × 1 by perfection. Similarly given

any two b′1, b
′
2 in Aσi+1 d̄, the group Gi contains [b1, b

τ
2] = ([b′1, b

′
2], 1, . . . , 1) where

τ = (23)(45), hence Aσi+1d̄ × 1× · · · × 1. Since Adi acts transitively by conjugation
on the coordinates, this proves injection (7.1) is onto. �

Proposition 7.3. Let d̄ = (di)i a bounded sequence of integers 5 ≤ di ≤ D, the
group G0 = G(Ad0 , Ad̄) has exponential growth.

Proof. Each group Ad contains the double transpositions u = (12)(34) and v =
(12)(35). Moreover each of the groups Aσi d̄ ≃ Adi×Adi+1

×. . . contains the diagonal
elements ū = (u, u, u, . . . ) and v̄ = (v, v, v, . . . ). The following Lemma due to
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Bartholdi (Proposition 2.3 in [Bar]) ensures that 〈ūu, v̄v〉 ≃ S2 is a free semigroup.
More precisely:

Lemma 7.4 (Bartholdi [Bar]). The quotient semigroup

〈ūu, ūv, v̄u, v̄v〉/(ūu = ūv, v̄u = v̄v) ≃ S2

is freely generated by {ūu, v̄v}.

This ensures exponential growth of the group G0. �

Corollary 7.5 (Theorem 1.1). The groups G(Ad0, Ad̄) associated to sequences d̄ =
(di)i of integers 29 ≤ di ≤ D are (uncountably many pairwise non isomorphic)
amenable groups of non uniform exponential growth.

Proof. This follows from the Main Theorem 3.1, Wilson’s Theorem 7.1, Proposition
7.2 and Proposition 7.3. The bracketted part follows from Corollary 8.2. �

7.3. Convergence of the Cayley graphs. This section is devoted to give another
proof of some part of Wilson Theorem 7.1. Namely the convergence to 1 of the
exponential growth rate of the generating sets {a(n), b(n)} can be understood as the
convergence of the associated Cayley graphs of the group to the Cayley graph of a
group Hd̄ of intermediate growth introduced in section 6.

More precisely, let G = G0 belong to some class χk, then by definition of the class
there exists a sequence of groups Gi in χk and integers di ≥ 29 such that Gi ≃ Gi+1 ≀
Adi. The Theorem 7.1 of Wilson ensures in particular that for each integer i there

exists a generating pair of elements 〈a
(0)
i , b

(0)
i 〉 = Gi such that (a

(0)
i )2 = (b

(0)
i )3 = 1.

Out of this first generating pair, Wilson constructs a sequence of generating pairs
for Gi, defined inductively as (also see Figure 5 and compare with Figure 3):

a
(n+1)
i = (a

(n)
i+1, 1, . . . , 1)xdi ,

b
(n+1)
i = (1, b

(n+1)
i+1 , 1, . . . , 1)ydi.

(7.2)

The fact that a
(n)
i and b

(n)
i have order 2 and 3 and that they generate Gi is a

direct consequence of the properties of the generating pairs xdi , ydi of the alternate
group Adi (see Proposition 6.1).

Definition 7.6 (Distance between Cayley graphs). Let (Γ, S) and (∆, T ) be two
groups with generating sets, denote BΓ,S(R) the restriction of the Cayley graph of
Γ relatively to the generating set S to vertices at distance less than R of the neutral
element (for the word distance in S). The distance between (Γ, S) and (∆, T ) is
defined as:

d((Γ, S), (∆, T )) = inf{
1

R
|BΓ,S(R) ∼G B∆,T (R)},

where Gr1 ∼G Gr2 if Gr1 and Gr2 are isometric as colored graphs.

Non uniform growth of the group G0 comes from the two next propositions, since
intermediate growth of Hd̄ implies h{xd̄,yd̄}

(Hd̄) = 1.
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xd0

xd1

xd2

xdn−1

a
(0)
n 1 . . . 1

1 . . . 1

1 . . . 1

yd0

1 yd1

1 yd2

ydn−1

1 b
(0)
n 1 . . . 1

1 . . . 1

1 . . . 1

Figure 5. Portraits of the elements a
(n)
0 and b

(n)
0 .

Proposition 7.7. With the notations above:

d((G0, {a
(n)
0 , b

(n)
0 }), (Hd̄, {xd̄, yd̄})) −→

n→+∞
0.

Note that this Proposition is true independently of the amenability or not of the
group G0 in a class χk. In particular, such a convergence is also true for the non
amenable groups constructed by Wilson in [Wil1], [Wil2].

Proposition 7.8. If d((Γ, Sn), (∆, T ))→ 0, then:

lim sup
n→∞

hSn
(Γ) ≤ hT (∆).

Proof of Proposition 7.8. Given a positive ε the definition of hT (∆) ensures that for
R ≥ R0 large enough the ball B∆,T (R) has size #B∆,T (R) ≤ (hT (∆) + ε)R. Now
the convergence of Cayley graphs shows that for n ≥ N large enough #BΓ,Sn

(R) ≤
(hT (∆)+ ε)R, and by subadditivity #BΓ,Sn

(kR) ≤ #BΓ,Sn
(R)k ≤ (hT (∆)+ ε)kR, so

that:

hSn
(Γ) = lim kR

√

#BΓ,Sn
(kR) ≤ hT (∆) + ε,

which was required. �

The proof of Proposition 7.7 uses the following:

Lemma 7.9 (of contraction). If x̂ = (u, 1, . . . , 1)xd and ŷ = (1, v, 1, . . . , 1)yd are
as in Proposition 6.1, then for elements g = (g1, . . . , gd)σ in the wreath product
isomorphism 〈x̂, ŷ〉 ≃ 〈u, v〉 ≀ Ad, one has for each coordinate t:

|gt|{u,v} ≤
1

2
(|g|{x̂,ŷ} + 1),
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where |.|S denotes the word norm associated to the generating set S (inverses of
elements of S have length 1).

Proof. It is sufficient to check that x̂ŷε = (u, 1, . . . , vε, 1, . . . , 1)xdyd with vε on co-
ordinate xd(2) 6= 1. �

Proof of Proposition 7.7. Introduce other relations depending on integer l ≥ 1 on
groups with generating sets: (Γ, S) ∼l (∆, T ) if for every free word w of length less
than l in S (elements and inverses) one has w(S) = idΓ if and only if w(T ) = id∆
(for l = 1 the relation ∼1 just means S ∪ S−1 and T ∪ T−1 have the same size).
If the relation (Γ, S) ∼2l+1 (∆, T ) is satisfied then d((Γ, S), (∆, T )) ≤ 1

l
because to

describe BΓ,S(R) it is sufficient to know when g′g−1 = s for every g, g′ in BΓ,S(R)
and s in S ∪ S−1.

To ease notations set S
(n)
i = {a

(n)
i , b

(n)
i } and Ti = {xσid̄, yσid̄}. It is sufficient to

show for all integers i: (Gi, S
(n)
i ) ∼ln (Hσid̄, Ti) with a sequence ln → ∞. Proceed

by induction on n, using:

w(S
(n+1)
i ) = (w1(S

(n)
i+1), . . . , wdi(S

(n)
i+1))w(xdi, ydi),

w(Ti) = (w1(Ti+1), . . . , wdi(Ti+1))w(xdi, ydi),

where for each coordinate t the elements wt(S
(n)
i+1) and wt(Ti+1) involve the same word

wt because the permutations on the first level are the same for generators in S
(n+1)
i

or in Ti (namely xdi and ydi). Lemma 7.9 ensures that |wt(Ti+1)| ≤
1
2
(|w(Ti)| + 1)

(and |wt(S
(n)
i+1)| ≤

1
2
(|w(S

(n+1)
i )|+1)) so that if w has length less than ln+1 = 2ln− 1

one has w(S
(n+1)
i ) = idGi

if and only if w(Ti) = idH
σid̄

. The result follows since the
sequence (ln) starts with l0 = 1 and l1 = 2. �

Corollary 7.10 (of Proposition 7.7). The group Hd̄ of intermediate growth is not
finitely presented.

Proof. Assume the contrary Hd̄ = 〈xd̄, yd̄|r1, . . . , rk〉. Let R be bigger than the
maximal length of the relations r1, . . . , rk, and n large enough so that:

d((G0, {a
(n)
0 , b

(n)
0 }), (Hd̄, {xd̄, yd̄})) ≤

1

R
.

Then the automorphisms a
(n)
0 and b

(n)
0 satisfy all relation r1, . . . , rk. In particular,

G0 is a quotient of Hd̄ hence has subexponential growth. This contradicts Proposi-
tion 7.3. �

8. Non subexponential amenability

8.1. Description of normal subgroups. The normal subgroups of finite index of
groups in a class χk are completely described by the:

Proposition 8.1 (Neumann [Neu]). Let (Gi)i∈N be a sequence of finitely generated
perfect groups such that for each i there exists an integer di ≥ 5 such that Gi ≃



26 BRIEUSSEL

Gi+1 ≀ Adi. Consider the isomorphisms:

G0 ≃ Gi ≀ Adi−1
≀ · · · ≀ Ad0 ≃ (Gi × · · · ×Gi)

︸ ︷︷ ︸

d0...di−1times

⋊Aute(Td0...di−1
),

then the subgroups Ki = (Gi × · · · ×Gi) for i ∈ N are the only normal subgroups of
G0 of finite index. Moreover if one (hence all) of the groups Gi is residually finite,
then (Ki)i∈N are the only non trivial normal subgroups of G0; in particular G0 is
just infinite.

Proposition 8.1 (as well as Lemma 8.3) is a slight generalization of Theorem 5.1.
in [Neu]. The proof is given here for the sake of completeness and to avoid the reader
multiple references and notations. The second part is also similar to Theorem 4. in
[Gri2]. Note that all examples in this paper are groups of automorphism of a rooted
tree. In particular they satisfy the assumption of residual finiteness.

Corollary 8.2. Two groups G0 and H0 satisfying the hypothesis of Proposition 8.1
(in particular groups in a class χk) for two different sequences of integers (di)i and
(ei)i are non isomorphic.

Proof. The index of Ki in G0 has value:

[G0 : Ki] = #Aute(Td0...di−1
) = #(Adi−1

≀ · · · ≀ Ad0) = a(di−1)
di−2...d0 . . . a(d1)

d0a(d0),

where a(d) = d!
2
= #Ad. In particular the sequence of index of subgroups ([G0 : Ki])i

is an isomorphism invariant from which the sequence (di)i can be recovered. �

Lemma 8.3. Under the hypothesis of Proposition 8.1, the only normal subgroups of
G0 containing Km are K0, K1, . . . , Km.

The proof of this lemma will use the:

Fact 8.4. Given a finite group Γ, assume ∆ ⊳ Γ is a minimal normal subgroup
(minimal means the only normal subgroup of Γ strictly contained in ∆ is trivial)
and that the centralizer CentΓ(∆) of ∆ is trivial. Then ∆ is the unique minimal
normal subgroup of Γ.

Proof. Assume ∆′ is another such subgroup, then ∆∩∆′ is trivial by minimality. In
particular, for every δ ∈ ∆ and δ′ ∈ ∆′ the commutator ∆ ∩∆′ ∋ [δ, δ′] = 1, which
ensures ∆′ ⊂ CentΓ(∆) = {1}, contradiction. �

Proof of Lemma 8.3. By induction on m and using Fact 8.4, it is sufficient to prove
that:

A(1...1)
dm−1

× · · · × A(d0...dm−2)
dm−1

≃ Km−1/Km ⊳G0/Km ≃ Aute(Td0...dm−1)

is minimal and has trivial centralizer, which shows Km−1 is the only minimal sub-
group of G0 containing Km.

Let U a non trivial subgroup normal in G0/Km and included in Km−1/Km. Then
1 6= y ∈ U can be written y = (y1...1, . . . , yd0...dm−1) in the wreath product G0/Km ≃

Adm−1 ≀ Aut
e(Td0...dm−2), with some coordinate 1 6= yv ∈ A

(v)
dm−1

. By simplicity,

the normal closure of yv is the full alternate group 〈yv〉Adm−1
= Adm−1 . Moreover
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the group Aute(Td0...dm−2) acts by conjugation transitively on the coordinates, so

that U > 〈y〉G0/Km
= A

(1...1)
dm−1

× · · · × A
(d0...dm−2)
dm−1

= Km−1/Km, proving minimality.

Transitivity also shows that the centralizer CentG0/Km
(Km−1/Km) is included in

Stm−1(G0/Km) = Km−1/Km, which has trivial center, hence the centralizer is trivial.
�

Proof of Proposition 8.1. Let X be a finite group and f : G0 → X a homomorphism.

Restricting to factors of the subgroups Km = G
(1...1)
m × · · · ×G

(v)
m × · · · ×G

(d0...dm−1)
m ,

it appears that for m large enough there exists v 6= v′ such that the associated

factors have the same image f(G
(v)
m ) = f(G

(v′)
m ) = Y , which must be abelian because

[G
(v)
m , G

(v′)
m ] = 1, hence Y = {1} because G

(v)
m ≃ Gm is perfect. This shows G

(v)
m ⊂

Ker(f).

Moreover for each coordinate v′ there exists ϕ ∈ Aute(Td0...dm−1) such that ϕ(v) =

v′, so that ϕG
(v)
m ϕ−1 = G

(v′)
m ⊂ Ker(f) and consequently Km lies in the kernel of

f . Applying Lemma 8.3 shows Ker(f) = Ki for some i ≤ m, which proves the first
part.

Now assume G0 is residually finite, and N ⊳G0 is an arbitrary normal subgroup.
The description of the first part ensures that ∩m≥0Km = {1}, and as the sequence of
subgroups (Km)m is strictly decreasing there exists an integer n such that N ≤ Kn

and N � Kn+1. To get the second part, it is sufficient to prove N ≥ Kn+1 since the
first part will force Kn = N .

Consider x ∈ N \ Kn+1 and its image x = (x1...1, . . . xd0...dn−1)n in the factor
decomposition of Kn. There exists v such that:

xv = (xv1, . . . , xvdn)σv ∈ G(v)
n ≃ Gn+1 ≀ Adn ,

with a non trivial permutation σv, and in particular there are s 6= t in {1, . . . dn}
with σv(s) = t. Now given any two elements ξ, η in Gn+1, define f, g in Kn =
(Gn × · · · ×Gn) as:

f = (1, . . . , 1, fv, 1 . . . , 1)n, fv = (1, . . . , 1, ξ, 1, . . . , 1) ∈ Gn+1 ≀ Adn ,
g = (1, . . . , 1, gv, 1 . . . , 1)n, gv = (1, . . . , 1, η, 1, . . . , 1) ∈ Gn+1 ≀ Adn,

with ξ, η on coordinate s. The normal subgroup N contains the commutator [f, x] =
fxf−1x−1 = (1, . . . , 1, [fv, xv], 1, . . . , 1)n, where:

[fv, xv] = (1, . . . , ξ, . . . , 1)(xv1, . . . , xvdn)σv(1, . . . , ξ
−1, . . . , 1)σ−1

v (x−1
v1 , . . . , x

−1
vdn

)

= (1, . . . , 1, ξ, 1, . . . , 1, xvtξ
−1x−1

vt , 1, . . . , 1),

with ξ in coordinate s and xvtξ
−1x−1

vt in coordinate t. Taking another commutator,
the subgroup N contains [g, [f, x]] = (1, . . . , 1, [gv, [fv, xv]], 1, . . . , 1)n with:

[gv, [fv, xv]] = (1, . . . , 1, [η, ξ], 1, . . . , 1),

and this for ξ, η in Gn+1 arbitrary, which can be rewritten:

N ∋ (1, . . . , 1, [η, ξ], 1, . . . , 1)n+1 ∈ Gn+1 ≀ Aut
e(Td0...dn),

with [η, ξ] in position vs. As this group is perfect, the subgroup N contains 1 ×

· · ·×G
(vs)
n+1×· · ·× 1. The transitivity of the action of Aute(Td0...dn) on level n+1 by

conjugation ensures that N contains (Gn+1 × · · · ×Gn+1) = Kn+1 as required. �
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8.2. Non subexponential amenability. Denote SG0 (respectively EG0) the class
of groups such that all finitely generated subgroups have subexponential growth
(respectively are abelian). Assume that for an ordinal α > 0 the classes SGβ

and EGβ are defined for every ordinal β < α. When α is a limit ordinal, set
SGα = ∪β<αSGβ (respectively EGα = ∪β<αEGβ). When α is a successor ordinal,
define SGα (respectively EGα) to be the class of groups that can be obtained from
groups in the class SGα−1 (respectively EGα−1) either by taking direct limits, or by
taking extension by a group from the class SG0 (respectively EG0).

Each class SGα (respectively EGα) is closed under taking quotients and sub-
groups. Moreover, the class SG = ∪αSGα (respectively EG = ∪αEGα) where the
union runs over all ordinals α, is the smallest class of groups containing SG0 (re-
spectively EG0) which is closed under the operations of taking subgroups, quotients,
extensions and direct limits. As these operations preserve amenability, which is sat-
isfied in SG0 (respectively EG0), the class SG (respectively EG) is called class of
subexponentially (respectively elementary) amenable groups.

This construction of classes of groups is detailled in [Osi1]. It is obvious that
EGα is a subclass of SGα for each ordinal α and that the class SG contains the
class EG. This inclusion is strict (see [Gri1]) and the Basilica group introduced in
[GZ] was the first example of an amenable group out of SG. Osin has shown in [Osi2]
that the class EG contains no group of non uniform growth. In particular, groups
in the class χ such as the groups G(Ad0, Ad̄) of non uniform exponential growth
introduced in section 7.2 are not in EG. The following Proposition shows these
groups are not even in SG, providing uncountably many pairwise non isomorphic
examples of amenable groups outside SG.

Proposition 8.5. Consider a residually finite group G belonging to a class χk (see
section 7), then one of the two following holds:

1) either G belongs to the class SG0 of groups of subexponential growth,

2) or G does not belong to the class SG of subexponentially amenable groups.

In particular, residually finite groups of exponential growth in a class χk are not
in SG.

Recall an elementary property of ordinals:

Fact 8.6 (Theorem 7.3 (5) in [Kun]). Let C be a non empty set of ordinals, then
there exists x ∈ C such that for every y ∈ C, one has x ≤ y. In other words, C has
a minimum.

Proof of Proposition 8.5. The proof is similar to that in [GZ]. Let G a group in a
class χk having exponential growth, in particular not in the class SG0. Denote Gi

the group in the class χk such that G = G0 ≃ Gi ≀ Adi−1
≀ · · · ≀ Ad0 . In particular

all groups Gi have exponential growth. Assume G0 lies in the class SG, then all
the groups Gi (which are subgroups of G0) lie in SG. For each integer i define αi

to be the minimal ordinal for which Gi belongs to SGαi
(exists by Fact 8.6). The

family {αi}i∈N admits a minimum αi0 . Now the ordinal αi0 is not a limit ordinal
otherwise Gi0 would belong to SGβ for some β < αi0 . Moreover, the group Gi0 is
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not a direct limit of a strictly increasing infinite sequence of groups because it is
finitely generated. This forces the existence of N and H in SGαi0

−1 such that the
sequence 1 → N → Gi0 → H → 1 is exact. But as G hence Gi0 is residually finite,
Proposition 8.1 implies that N = Gi0+m for some integer m, so that αi0+m ≤ αi0−1
which contradicts minimality of αi0 , proving G is not in SG. �
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