N

N

Evolutive design of car silhouettes using an interactive
genetic algorithm

Francois Cluzel, Bernard Yannou, Markus Dihlmann

» To cite this version:

Frangois Cluzel, Bernard Yannou, Markus Dihlmann. Evolutive design of car silhouettes using an
interactive genetic algorithm. 2010. hal-00797020

HAL Id: hal-00797020
https://hal.science/hal-00797020
Submitted on 5 Mar 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00797020
https://hal.archives-ouvertes.fr

Technical Report

Evolutive design of car silhouettes using an
interactive genetic Algorithm

Francois Cluzel, Bernard Yannou, Markus Dihimann

Laboratoire Génie Industriel, Ecole Centrale Paris
Chatenay-Malabry, France
Tel: +33 141 13 15 21 (Bernard Yannou)
E-mail: francois.cluzel@ecp.fr, bernard.yannou@ecp.fr

November 2010

Abstract

So as to create innovative car silhouettes, we propose in this technical report a model based
on an Interactive Genetic Algorithm using an encoding of a design solution by a Fourier
analysis approach. This model permits the designer to browse through generations of car
profiles from an initial population of existing silhouettes. By qualitatively assessing each
individual, the user converge towards solutions complying with his/her requirements and so
potentially create novelty. We describe here tests for assessing the efficiency of this
innovative design platform. These tests are based on a similarity matrix, a similarity
measure being the perceived distance between two cars silhouettes. The results show a
really satisfactory behavior of the model and open perspectives thanks to its flexible and
extensible aspects.

Key-words: interactive genetic algorithm, evolutionary design, shape design, subjective
evaluation, user tests, car profile.
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1. Introduction

Design is an engineering activity for creating new and innovative structures and shapes.
Finding a new shape and style for an object can be seen as a profound human and
sometimes artistic refinement process. Indeed, starting from an initial idea, the style
designers continuously refine it through multiple sketches and drawings using their intuition
and perception of their own production in a reflexive manner. Is it possible to help such
style designers in their refinement process? Such an aiding tool should help him or her to
explore more easily and systematically a large space of possible styles or shapes, and also
to converge towards an ideal shape the designers could have more or less represented in
their mind.

In the field of implementing this creative design process, Evolutionary Computation (EC) has
become one of the primary approaches. A method in EC uses basically genetic algorithms
(GA) [1,2], which were originally used to find solutions for complex optimization problems.
For example, Poirson use Gas to optimize the design of brass musical instruments
considering mathematical and perceptual objectives [3]. Taking the evolution in nature as
paradigm, the GAs work on the basis of a population of individuals, where each individual
represents a possible solution for the initial problem. The structure and the qualities of each
individual are encoded in their genomes. Through recombination of these genomes the
individuals can reproduce themselves and produce new individuals (solutions), while by a
sort of natural selection the individuals who are not adapted to the environment (what is
expected of their properties) are not selected for procreation. In this way, the individuals
display better and better qualities over the generations. Interactive Genetic Algorithms (IGA,
see [4,5]) represent a special class of GAs where a human (here, the style designer) is a
key player embedded within the task of selection of individuals of a generation. IGAs are
then particularly adapted to situations where it is impossible to explicitly express a
preference function (the fitting function) on individuals or even when it is hard to qualify
expected properties. This is typically the case with style designers.

A major difficulty when using GAs in automatic design systems is the encoding of the
genome (see [4]), which means the way of coding the phenotype (physical structure) of the
individual into the genotype (genome). Most systems use a direct encoding where
geometrical dimensions and structures of the design object are directly represented in the
genome (see for example [5]). When designing a bottle for example [6,7] or finding a
design for cylinder shapes [8] the phenotype is represented in the genome by a sequence of
geometrical parameters like radii, lengths and part locations. Consequently, the encoding is
context dependent. Other works use tree structures [9] or shape grammars [10] to encode
the genome. Kim and Cho [11] have used a set of predefined parts of clothes to find new
designs in fashion by recombining these parts. But here the space of possible solutions is
limited and we wonder, for all these methods, if an actual innovation results of these design
processes.

In addition, all these systems are conceived for a given design domain. Implementing these
methods in new fields of design is a difficult and time consuming process. However, a good
design method should be applicable, as much as possible, on a large spectrum of situations.

In this paper, we first propose a method of encoding a 2D-closed-curve which is supposed to
meet a desired style. This method can be applied to all possible objects represented by their
2D-silhouettes. For instance a car silhouette or profile is a primordial style feature of a car.
Indeed, Cheutet [12] has shown that the character of a car profile is primarily expressed
through a series of about ten lines (see Figure 1). Five of them: hood line, windshield line,
roof line, wheelbase line and wheel arch, may be merged into a silhouette closed line. These
lines, and especially the silhouette have been proved to have a strong determining influence
on the car perception while embedding perceptual attributes such as: sportiveness,
aggressivity or peacefulness, etc. In addition, it has been proved that the aesthetic aspects
of a car amounts for 70% of purchase intents for customers [12].
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Figure 1. The main style lines of a Citroén car (from [12])

We propose in this technical report to detail a principle for encoding the genes of a car
silhouette after a Fourier decomposition. Next, an Interactive GA (IGA) has been developed
in defining a crossing-over operation between genes. The interactivity consists in letting a
style designer qualitatively assessing individuals at each generation. In this manner, new
innovative designs are expected to emerge by a balanced collaboration between an
automatic process of design space exploration and the interaction of a designer. Finally, we
provide measures and user tests for proving that innovation and surprise may emerge from
this process. Indeed, we show that the initial population of individuals contains a sufficient
richness of genes so as to be able to quickly converge towards a desired silhouette which is
not an individual of this initial population.

In this way, innovative and new concepts are expected from the collaboration between an
automatic process of design space exploration and the interaction of a designer. But
validations are necessary. That is why we have proposed to use a similarity index. Whereas
Petiot and Dagher use a manual similarity assessment method [13], the aim of this indicator
is to automatically quantify the perceived distance between 2 individuals. We want to
answer to the following questions:

+ Are the users satisfied by our model?

« Are the results better with our model than without?

+ Does our model really create novelty?

« Are the results different from a user to another?

We first propose an automatic test to ensure the ability of our algorithm to converge. But
user tests are also essential to prove that innovation and surprise may emerge from this
process. Thus we performed a subjective evaluation workshop to collect user data. Then the
results of 2 main tests and 4 post-processing tests using the similarity index have been
established. They show a very satisfactory behavior of the model in terms of convergence,
diversity, dependence to the initial population, but they also show interesting results about
the user perception.

The paper presents in section 2 the process of the Interactive Genetic Algorithm with the
different operations required for encoding a car profile, generating an initial population and
combining the genomes. In section 3, a similarity index is proposed to measure the
perceived distance between two individuals. Section 4 deals with user and post-processing
tests to ensure the validation of the model, whereas some reflections on the mutation
operator are proposed in section 5. Finally, section 6 concludes on some forthcoming
perspectives.
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2. Model description

2.1. 2D closed curves modeling
In this project, we have decided to represent a car by a 2D « side-view » closed curve.
Mathematically, we define M, the set of closed curves in R?. We define the quotient set
M\R where R is the following equivalence relation : « Two curves of M are equivalent with

respect to R if and only if they are similar through rotations, homotheties and translations
>,

Numerically, there are different ways to describe an equivalence class (resampled curve,
Fourier spectrum, wavelet coefficients...). The book [14] gives a quite exhaustive
introduction to this field. One must keep in mind that the different representations are
complementary and designate a unique object.
They could be especially useful for:

» Avoiding the apparition of « degenerated individuals » (aberrations are likely to be

invisible for frequential representation) (improving « consistency »),
+ The cross-over operations,
» The mutation operations.

Finding a way to efficiently represent the cars is an essential point in our study. This issue is
closely related to the notion of ontology. Indeed, we need a formal representation of our
knowledge in order to decide how to manipulate our objects while staying in the restricted
field of car design. Thus we have to ensure that, for example, crossing two vehicles will
create a new object that will still be an « acceptable vehicle ». The main principles of
designing an efficient ontology have already been deeply investigated by a few researchers
like Tom Gruber [15]. Gruber gives some important dimensions that one shall take into
consideration when designing a new ontology:

* Clarity: In our case, this implies that our representation must be objective and does
not depend on the context.

« Consistency: A very consistent ontology shouldn’t be able to create « monsters »
from valid rules. However in our case, too much consistency will constrain creativity.

« Extensibility: One should keep in mind that extensions are likely to be added in the
future.

« Weak coding distortion: When we are representing a real object like a car, there’s
always some « distortion » due to the fact that our ontology cannot represent all
sides of the object. An essential drawbacks of 2D descriptive methods (cf. infra) is
their strong distortion.

* Ontological complexity: Our representation shouldn’t be « over-elaborate ».

One should keep in mind that the main goal of ontologies is above all to conceptualize a
« fixed » field of knowledge. A trade-off between the « quality » of the ontology and
potential creativity is essential in our work. Table 1 gives some example of such ontologies.

Completeness Robustness Capacity to Restrictivity (to Adaptivity to

create one particular genetic

“monsters” application area) algorithms
Shape grammars ++ ++ ++ - _
Spatial contour -- -- -- ++ ++
Fourier harmonics -- ++ -- ++ ++
Wavelets -- ++ - ++ ++

Table 1. Comparison of different encoding methods
Many ontologies today are based on taxonomic relationships: entities like cars are classified

in different families organized in a global hierarchical structure. Thus, a car can be described
as a special realization of some taxonomic scheme. This method leads to generative models.
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In this study, we decided to use a quite simplistic ontology that we will describe in the next
part and that we can call « purely descriptive model ».

2.2, The genome

Concerning the encoding of a 2D-closed-curve, McGarva [16] has proposed its development
into a Fourier series as a method for coding its phenotype. We have personally already used
this theory in [17] for encoding a 2D-closed-curves into the five first Fourier harmonics of
this decomposition. In that way, we have been able to build an Artificial Neural Network for
synthesizing four-bar linkage mechanisms following targeted trajectories. This approach is
not as rigid as the approach of parameterization for multiple reasons:

+ This encoding is supposed to embrace a much vaster space of possible 2D-closed-
curves - or 2D-silhouettes — than by a parameterization approach;

« All kind of shapes may be represented even with small details, that can be of the
highest importance for provoking feelings and emotions;

« The encoding may be performed through a constant length of genotype, which
simplifies a lot crucial GA stages such as the cross-over operation between parent
individuals;

+ Finally, the genes in our solution have proved to be narrowly associated to apparent
characteristics which are primordial to converge after several generations to the ideal
2D shapes.

The Mac Garva’s theory of Fourier decomposition of a closed curve [16] considers that the
position of each point belonging to this curve can be expressed by a complex function in the
complex plane:

z(t) = x(t) + {y(D)z(t) = x(t) + iy(t) (1)

As z(t) is a closed curve, its function is periodic. The period is normalized with: z(t+1) =
z(t). This function z(t) can be developed into a Fourier series:

z(t) = Xm=-co m €xp (21imt) (2)

where the complex Fourier coefficients can be calculated by this formula:
Ay, = folz(t) exp(—2mimt) dt (3)

Coefficient ay is called fundamental, a; and a.; represent the first harmonic, a, and a., the
second harmonic, etc.

As we will see later, the function z(t) is not known as an explicit function from the
beginning. Instead, we assume that the curve has been initially defined by a set of
successive points z, (k=0,..,N) which belong to the curve. So, in order to calculate the a,,
coefficients (3) we need a numeric approximation. We obtain this approximation by dividing
the curve into N segments connecting each point with its successor. We call £, the length of
the curve between the first point zo and the point z,. Under these conditions the integral can
be calculated by the trapezium formula:

@ = T o (B (Zye 4y exp(=2mimtys) + 2, exp(—2mimty)) (4)
while z is a periodic function, (zy+; = Zp).

The value of t; is the ratio of the length of the curve to the point k and the total length of
the curve.

L
te = Tk L= YN0 — x401)% + (i — yis1)? and
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Ly = 250 v G — xi41)? + i — Yie1)? (5)

where the total length L is the sum of the lengths of all segments, L, is length from the
origin to the current point, xy.; = Xp and yn+: = Vo.

To construct the genome of an object, we develop its silhouette into a Fourier series and
define the fundamental (the coefficient ay) as gene number zero. The first harmonic (a;, a.;)
will be called the first gene, the second harmonic the second gene, etc.

‘ / f L )
H-\._\__\_\_ e o r; fi —_— ] e o’
=1 p=2
I I
o~ E g A‘ —-\'\
C A s -
— | T 5 s ./,
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Figure 2. Decoding of a genome of a Smart car with different precisions

On the basis of the genome, the original shape of the individual can be reconstructed. Every
point P, with the coordinates (xx, y«x) on the curve z* which approximates the silhouette of
the car, can be calculated by formula (6).

2(6) = X+ i = T Amexp (2mimiy) (6)

where &, (0=¢t<1) is the position on the curve and p fixes the number of harmonics used for
the decoding. When p equals 1 for example, we use one harmonic to reconstruct the
silhouette of the car. The more harmonics used for the decoding the more precise will be the
approximation to the original curve (as seen in figure 2). We call p the “precision” of
decoding.

It can be easily proved that the first harmonic (the sole complex coefficient ay) represents
the coordinates of the centre of gravity of the curve in a complex plane. The second gene
(a; and a.;) contains the information defining an ellipse. The influence of the other genes
cannot be illustrated easily. But we can say that the first genes influence the very basic
structure and shape of the silhouette while the higher genes bring in the details of the
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2.3. The process of the interactive genetic algorithm

The process of finding new design solutions can be divided into two phases (see Figure 3).
During Phase 1 an initial population of individuals is created. Phase 2 consists of a loop
where the user evaluates the current population and a genetic algorithm evolves the
population respecting the evaluation of the user.

Phase 1: Phase 2:
Creating an initial population Evolution of the population

ey T
|
|
|
|

] o[

Evaluation of
individuals by the user

Interpolation by Splines

|

Coding into genome ]

y

Normalisation ] e "

Adding individual to initial ] Evolution of the
Population

L " population by genetic
algorithm

Enough
individuals?

Figure 3. Diagrammatic plan of the IGA process

2.3.1. Phase 1: Creating an initial population

The genetic algorithm needs an initial population of individuals and their genetic code to
start working. This initial population consists of silhouettes of 30 already existing car bodies.
In order to easily sketch these silhouettes we programmed an interface in Java which allows
drawing curves on a plain and coding them into a genome. To border a silhouette we display
the image of an existing car in the background of the screen and draw a contour-chart
around the car on the image by clicking on the screen. The result is a closed curve
representing the silhouette of an existing car-body (see Figure 4). During bordering, a
sufficient amount of points should be used to represent as many details as possible. When
using a number M of 60 to 80 points per silhouette the result is satisfactory.

However this amount M of 60 to 80 points is not sufficient to calculate a genome which is
precise enough to allow a highly detailed decoding into the phenotype. Consequently we
need to augment the number of points on the curve by smooth interpolations. The curve
produced by interpolation should be very close to the original curve and should be
continuously derivable in each point. If the curve is not continuously derivable, the decoding
from the genotype into the phenotype produces high-frequency oscillations and is therefore
useless. We chose to solve this problem with bicubic splines linking three successive points
(see Figure 5), because this method provides a curve which is very close to the original
curve without producing oscillations (as it is the case when using polynomial interpolations
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like Lagrange’s interpolation formula). Within each spline, a given number of points are
interpolated, leading to a total number of N points with N>M.

E g X
i L I T

e
m.

Figure 4. After bordering we obtain a closed curve representing the car silhouette of an
existing car

Tangentin pointi

X

hd 1
N

Figure 5. The tangent of the spline at point i is parallel to the line passing by points /-1 and
i+1

Taking care of the quality of the encoding amounts to find a satisfactory balance between
the number N of points on the curve used for coding and the number p of harmonics used
when decoding the genome into a curve. The number p of harmonics used for decoding has
an influence on the production of details. The more harmonics used for the decoding the
more precise will be the approximation to the original curve. The number N of points on the
curve used for coding the genome has an influence on the precision of the Fourier
coefficients. This is due to the fact that we use the trapezium formula in (4) to approximate
the integral during the calculation of the coefficients. We achieved numerous trials of (1)
bordering a silhouette, (2) interpolating with N points, (3) encoding with p harmonics, (4)
decoding, for finally comparing the initial and the resulting silhouettes (see Figure 6). A
qualitative design of experiments has been carried out (see Figure 7) with p varying from 80
to 2000 and N varying from 5 to 200. We clearly noticed that if p is too low, the coding-
decoding sequence - visually - fails to accurately represent the initial silhouette. In addition,
for a given number p, there is a minimal number of points N beyond which the reconstructed
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curve displays strong oscillations (see such oscillations in Figure 6). In definitive, we found
out that a satisfactory choice was achieved with a genome size of 71 and a number N of
approximately 1500 points for the interpolation since both initial and resulting silhouettes
were visually identical.

G fmins
eoding using i i decoding using
N points —_— p harmaonics
— — | - % Result
i |
N=TT
p=2 p=3 p=10 p=20

p=1l p=d
N=130

p=i5 pads
N=200

p=40 p=70

Figure 6. Comparison of silhouettes after interpolation with N points, encoding with p
harmonics and decoding

A last operation of normalization is necessary to the genomes so that the phenotypes -
silhouettes - be independent of a particular location, size or rotation but be compared
uniquely in terms of their shape. The coefficient a, is simply set to 0 to fix the centre of
gravity of all individuals at the origin of the representation plane. The invariance by rotation
is useless because car silhouettes of the initial population are sketched horizontally and the
next generations turn out to stay horizontal. McGarva [16] proposes to normalize the size of
the curve in setting to 1 the small axis of the ellipse defined by harmonics 2. It would
amount in our case to fix to a constant height the car silhouettes which is not fair for short
cars. We prefer to have a surface area invariance instead. The calculus is then a bit more
sophisticated but simply consists in dividing all coefficients a,, by a value function of | a;|
and | a.;| (formula not detailed here).

p\N | 80 | 100 | 200 | 500 | 700 | 1000 | 1200 | 1500 | 2000
5 I I I I I I I I I

7 I I I I I I I I I

10 SO | I I I I I I I I

15 SO | I I I I I I I I

20 SO | O G G G G G G G

30 SO | O G G G G G G G

40 SO|SO | O (0) GG | GG GG GG GG
50 SO|SO | O (0) GG | GG GG GG GG
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55 SO | SO SO (0] (0] GG GG GG GG
60 SO | SO SO SO (0] 0 GG GG GG
70 SO | SO SO SO (6] 0 0 GGG | GG
80 SO | SO SO SO 0 0 0 GG GG
90 SO | SO SO SO SO 0 0 (0] GG
100 [ SO | SO SO SO SO 0 0 (6] GG
120 [ SO | SO SO SO SO 0 0 (6] GG
140 [ SO | SO SO SO SO 0 0 (0] GG
170 (6] GG
200 (0] GG

Table 2. The design of experiments carried out for finding an ideal (p, N). Initial and
reconstructed silhouettes are visually compared to result in subjective assessments: I -
inaccurate, O - oscillations, SO - strong oscillations, G - Good result, GG - very good result

2.3.2. Phase 2: Evolution of the population

We use an interactive genetic algorithm to evolve the population and create innovation. As
Kelly says, “by using IGAs we hope to allow designers to enhance their creativity through
design space exploration” [5]. The individuals can reproduce among themselves and
produce in this way new solutions.

iy, Ay, N
Y vy iy Y

Ay, B, ity Y
Ay, Ay, A,

Figure 7. Example of IGA interface applied on car silhouettes, taken from [5]

In our case the genetic algorithm handles a population of individuals where each individual
represents a possible design for a car body silhouette. A fithess value is assigned to each

individual by the user. Consequently the fitness value [ is a number between 0 and 6
according to the grade given by the user via an interface. The interface developed (see
Figure 8) displays six individuals at a time and the user can browse through all the
individuals of a population. The user is supposed to evaluate all the individuals of a
population on a scale from 0 to 6, where 0 is the worst and six the best evaluation. This
fitness decides if an individual has a good chance to reproduce and create children.
Furthermore it influences the chance of an individual to survive and to live on in the next
generation. This development is reached by applying the following genetic operators to the
population:

« Selection: decides which individuals will reproduce and create children.

« Crossover: builds a child’s genome from two parent genomes.

« Mutation: changes in a random way a genome after the crossover.

* Killing: decides which individuals from the parents’ population will survive in the new

generation.

We decided to adopt some conventional choices in term of selection and killing operators
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and to propose an original crossover operator. First, apart the initial population of 30
individuals, we have fixed the number of individuals to 100 at each generation. We chose a
turnover rate of 0.7, meaning that, for a coming generation, 30 individuals are kept from
the previous one and 70 children are generated. In this way we do not lose potential good
design solutions. The probability for an individual to be selected to be a parent is
proportional to its fitness value (between 0 and 6). After choosing two individuals from the
parents’ population, their genomes are combined into the genome of a child by applying the
crossover and the mutation operators. Afterwards the two individuals are re-put into the
parents’ population. Indeed, an individual can be selected more than once by the selection
operator.

We envisaged several possibilities to crossover the two genomes of parents into the one of
the child. For instance, we envisaged a “Two-Part-Crossover”-method which seemed
promising at the beginning. It consisted in choosing randomly a crossover point X, where X
is @ number between 2 and 69. The child’s genome was built by the first X genes from the
genome of parent A and the last (70-X) genes from the genome of parent B. This method
produced innovative designs for car silhouettes and few useless forms. However the method
didn’t produce stable results over the generations. This means that after some generations
the car silhouettes were useless because they lost the tires or began to oscillate.

| 2| Evolutionary Design Interface e )
Population Analyse

I0:0 age0 1D: 1 age:0 D: 2 age:0

~ ol A & A

ID: 3 age:d 1D: 4 age:0 ID: 5 age:0

~ ~af A AN

@0 1 D2 O3 G4 O5 OT6 @0 1 02 O3 O4 05 06 ®0 1 02 G3 04 O5 06
Population created with 6 Indniduals. Begin with evaluation.

population info

Figure 8. The User Interface for the designer evaluation showing 6 individuals of a larger
population. The designer can browse the individuals by clicking on the arrow buttons

The good idea is to operate a weighted average between the gene values of the two parents
to build the genome of the child. A crossover weight W is chosen randomly between 0 and
100. A new gene g* is formed by calculating the weighted average of the genes g, ; and
Jdm,2 Of the parents after formula (7).

x _ WGm1+(100-W)gp
G = — (7)

In function of the weight W we obtain different new design solutions which continuously
interpolate a silhouette between the two parents’ silhouettes (see Figure 10). The advantage
of this method is the fact that a child resembles a lot to its parents and that it produces
almost no useless car solutions (the tires keep their rounded shapes). The disadvantage is
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the relatively small explored space of possible solutions. In consequence, the population of
design solutions has a tendency to converge rapidly. To enlarge the space of possible
solutions we must apply a mutation operator (not detailed here).

The Kkilling operator is applied to the original population and kills at first all the individuals
who have a fitness of 0. These individuals are considered totally useless or totally non-
satisfactory and shall no more contribute to the evolution of the population. All the other
individuals have a chance to survive. The individuals to be killed are chosen by an inverse
roulette wheel method. That means that the probability pk; for an individual to be killed can
be expressed by formula (8).

(7=f1)
ki = —2 I 8
PrL= SV ) (&)

where f; is the fitness of individual i and N* is the number of individuals in the population
who have not been evaluated with a fitness of 0.

Parent po 1 - Mercedes CL3

Parent no 2 - Smart

Figure 9. Two parent individuals
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Figure 10. Results of a weighted average crossover between the genes of the two parents of
Figure 9, using different weights W
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3. Similarity index

Is our system really capable to produce innovation and novelty? Is it possible for a user to
design with the help of our system a new car body silhouette which was not part of the
initial population?

To answer these questions, it could be useful to have a tool that permits to automatically
measure the perceived difference between two car silhouettes and to prove that two car
silhouettes are really close or not. So we propose to create a similarity index. Based on user
assessments, it would permit to easily measure the difference between two car profiles. It
would be a helpful tool to realize tests and prove results. The similarity index is an essential
point in this study. We can quote two important criteria for the design of the index:

+ It must be mathematically founded.

» The calibration process must be stable and user-friendly.

The objectiveness issue is not a basic criterion: each designer can have its own conception
of distance but it must in all cases remain consistent (that what we mean by the stability of
the calibration process).

We propose here a description of the process to get this similarity index. Two different ways
have been tested. The first is based on an exponential formula, and the second uses weights
associated to genes.

3.1. Mathematic definition

We first define D(k,l) the distance between two genomes G, and G,. As the modifications on
the ten first genes only are significant (modifications on other genes do not change anything
on the car profile visual perception), the sum only consider those ten genes. And D(k,/) is:

D(k' l) = Z}r?:la(m) “ gk,‘m - gl,m ”2 (8)

The factor a(m) is a weighting factor which should give more importance to some genes
according to their participation in the modification of the silhouettes. Here g, is gene
number m from genome k and g, is gene number m from genome /. One gene consists of
two harmonics, called a,, and a.,,, which are complex numbers. So they can be written as:
am =Un+ i.Vy.

Then we define:

2 2
(uk,m—ul,m) (uk.—m—ul,—m)

2
I Jrem — Jim II*= 7t Z
(umax,m_umin,m) (umax.—m—umin,—m)
2 2
(Vk,m_vl,m) (vk,—m_vl,—m) (9)
2 2
(Vmax,m_vmin,m) (vmax,—m_vmin,—m)

where Upmaxk and Umin i (respectively Vmaxx and Vmink) are the maximal and the minimal
values of u, and v, on the whole initial population.

And we finally define the similarity index between two genomes k and / as:

Simind (k1) = —2 o 199

14D(kD) T 1430 am)lgrm—gimll?

% (10)

So with this definition, the similarity index in included between 0 and 100%, where 100%
means that the two individuals are identical.

We now have to define the factor series a(m).

3.2. Exponential form
In this section we assume that a(m) can be written as an exponential expression which gives
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more importance to the first genes than to higher order genes, because a modification of
the first genes impacts more the car silhouette than a modification of the last ones. So a(m)
is expressed as:

a(m) = aeb™ (11)
where a and b are two constant terms. So D(k,/) becomes:
D(k' l) = Z}-r?:la ebm I Jkm — Gim ”2 =aX 2711?:1 ebm I Ikm — 9im ”2 (12)
But now we need to find significant values of a and b.
We propose the following process to measure b:
+ Choose a genome, which is copied 3 times: GO, G1, G2.
« Choose a geneiin G1 (better with a low weight to be significant): g1,.
+ Choose a gene j (i # j) in G2 (better with a low weight to be significant): g2;.
+ Modify the gene g1, of G1 in an arbitrary way.
* Modify the gene g2; of G2 in such a way that there is an iso-similarity (defined below)
between GO and G1 on the one hand, and GO and G2 on the other hand.

We define the iso-similarity in this way:

Two couples of car silhouettes are iso-similar if the perceived level of similarity is the same
for the two couples. For example, it would mean here that the level of similarity is the same
between GO and G1, and between GO and G2. Practically, it means that the user has to
modify the gene g2; until the level of perceived similarity becomes the same between GO
and G1 as between GO and G2. In that way, G2 and G1 are not identical, but their level of
similarity according to GO is the same.

Then we can write the following equality:

a(@) xIl g0; — g1; 1= a() xI g0; — g2; II? (13)
And b is:
_ 1 lg0i—g1il?
b= G-9 *In lgo;-g2;lI? (14)

By making n times this tests with different car profiles and different users, we get n different
b values. The final value of b adopted is the average.

Level of similarity Value of similarity index

0 5%

1 30%
2 50%
3 65%
4 80%
5 90%
6 100%

Table 3. Scale of similarity for user assessments

The next step consists in measuring a. We propose the following process: for each of the
previous comparison (between GO, G1 and G2), the user defines the level of similarity (“the
similarity between GO and G1 on the one hand and GO and G2 on the other hand is 70%" for
example). As it is very hard to express such a value, we propose to work with a 7 degrees
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scale; the user just chooses the level of similarity in Table 3.
So then it is possible to write:

X% = 100 (15)

1+ax370_, eb™|go,,—g1ml2

where b is the average value of the previous tests. And a is:

a ! x (1°° - 1) (16)

701 eb™gom—g1mll? x%

We also obtain 2n different a. The average value is acceptable if the standard deviation is
low. The calculation of the similarity index is now completed.

Practically, we use a Java interface (see Figure 11) that permits to follow the processes
described above by loading a population.

|2/ Comparison window to find Simindex g@

Start

Reference Individual:
Modified Individual 1: Modified Individual 2:

HTR Y T

‘ Submit ‘

Modify Gene nr.: ‘5 ‘ Modify Gene nr.: !3 |

U J00% BT )
Instruction 3: Modify a high weight gene (from 0to 10) on Modified Individual 1.
Instruction 4: Modify a different gene on Individual 2 in order to get an iso-similarity with Reference Indivi
Instruction 5: Click on 'Submit’ and repeat Instructions 2 to 4 for each individual of the population.

Figure 11. Java interface to calculate the parameters a and b

3.3. Weighted form

In the previous section, we assumed that a(m) should give more importance to the first
genes that to the last ones and can be written as an exponential expression. But some
experiments showed us that this assessment could be wrong when using the ten first genes
only: the importance of these genes is not necessarily relative to their rank. Each a(m) is
now associated to a given weight p,.

So D(k,l) becomes:
D(k' l) = Z7l'r?=1pm I Ikm — 9im ”2 (17)

To obtain the weights values, we follow the same process as with the exponential form. And
we finally obtain the following expression:

llg0;—g2I?
i = 1.2t (18)
lg0;=g1;ll
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By performing this test n times (n>10) with different values for j and j (to cover all the ten
first genes), we have a system of n equations, that can easily be resolved with the
logarithmic least square method.

The tests are performed with a modified version of the Java interface described in the
previous section.

3.4. Performance comparison and choice of the index

To find out the best version of the similarity index, we perform the tests described in Figure
12. The same 30 car silhouettes are used to build the two similarity indexes. After that, the
same 10 car silhouettes are used to validate it and permit to choose the best one. We obtain
2 similarity matrices, and we ask the users to assess the same 20 profiles in a third matrix,
according to the scale of the table. These three matrices permit to calculate the RMSE (Root
Mean Squared Error) associated to the two cases.

Exponential form Discrete weights form
30 car silhouettes 30 car silhouettes
Index construction ¢ ¢
Parameters (a,b) Weights p;... pio
\ 4 \ 4
10 car silhouettes 10 car silhouettes 10 car silhouettes
Calculated v Calculated
similarity matrix 1 User similarity similarity matrix 2
Index validation | ] matrix ] |

Choice of the
similarity index

Figure 12. Choice of the similarity index type
We obtain with the exponential form of the index an average RMSE of 7.04, and the value is

31.82 with the discrete weights form. So we choose the exponential form for the similarity
index. We can now perform user tests to validate our model thanks to this similarity index.
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4. Validation tests

To validate our model we first performed simple user tests without the similarity index,
based on Kim and Cho works [11].

4.1. First tests

4.1.1. Tests construction

Kim and Cho worked in 2000 on fashion design with an Interactive Genetic Algorithm [11].
They proposed a model to create innovative dresses from a catalogue of components
(predefined necklines, sleeves, skirts... See Figure 13). The main difference between our
model and Kim’s one is the space of possible solutions. As Kim worked with a set of
predefined parts, which is a finite and discrete set, this space is limited, whereas our
possible solution space if infinite and continuous.

T ,
/ { ] /
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k}? - \< fh
| 1 |
[0 bishop {01 china 0010 flare (0011 french
—
\ e =4
/< A /A /‘P
Yo &/) /)
i « I
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N0 mandarin ;{J_l_{]] melon 0110 mutton 0111 pagoda

T @

(e |
Vo
\ ,!:\' - -~ Vol
L W
L000 poncho 1001 tight 1010 tucked 1011 NO sleeves

Figure 13. Examples of possible choices for arms and sleeves in Kim’s fashion design model

(taken from [11]).

To validate his model, Kim performed two different tests.

The first test is called convergence test. It permits to ensure that the average fitness
value according to each generation of the Genetic Algorithm increases with the
generations. He made the test along 10 generations composed of 8 dresses. He used
a panel of 10 users, working on two semantic attributes (splendid and cool-looking),
that means that he asked the users to evaluate 10 generations of dresses according
to the first attribute, and then to do the same process with the second attribute. The
results showed a significant increase of the fitness.

The second test is called subjective test. Its goal is to show that the results obtained
with the model are better than without. Kim asked 3 users to find the 10 best
dresses according to the two semantic attributes (sp/lendid and cool-looking) among
500 individuals randomly created from the catalogue of permitted combinations (i.e.
without his IGA). Then he asked the 10 previous users to find the best dress of the
10"™" generation of the previous convergence test, according to the two attributes. The
last stage was to compare for each attribute and for each user their own best dress
obtained with the model with the 10 best dresses obtained without. The comparisons
were made by pairwise comparisons, on a 7 degrees scale (from -3 to 3). Finally, the
results showed that the individuals obtained with the algorithm reached on average a
degree of about 2, compared to the individuals obtained without algorithm. So the
model was really satisfactory.

But two main criticisms can be formulated on these two tests:

Are the evaluations hedonistic or not? A hedonistic evaluation includes the preference
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of the user (for example "Please rate these individuals according to your preferences
in terms of sportiveness”, the user maybe likes sportive individuals, but not too
much), whereas a non-hedonistic evaluation does not (for example "Please rate these
individuals according to their apparent degree of sportiveness”).

+ What is the meaning given by Kim on the pairwise comparisons? He asked the users
to compare their own best dress (from the algorithm) with the 10 best dresses found
by 3 other people. So it seems logical that the first one (found by the user himself) is
better than the others (found by other people).

We built our test according to these criticisms.

4.1.2. Workshop realization

We have chosen to work for the two tests with a non-hedonistic evaluation ("Please rate
these individuals according to their apparent degree of sportiveness”). We have also chosen
two semantic attributes: friendly and sportive (half of the users work with the first one, the
others with the second one).

The first test that we have defined is the same that the convergence test defined by Kim.
We called it test of “designer satisfaction”. We have worked with 10 generations composed
of 20 individuals, and with a mutation probability of 0.05 and a selection rate of 0.7.

We have defined the second test (that we called test of “satisfaction superiority of the IGA
model”) with regard to the problem of the pairwise comparisons (expressed in Section 4.1).
The process is the following:

« 400 car silhouettes are created randomly from an initial population of 20 real
individuals. To clarify the notations in the next parts of the paper, these 400
individuals are called paper individuals. Each user has to find the 3 bests individuals
according to his/her semantic attribute. Practically, these individuals are printed on
paper and numbered, and the users record their evaluation in an Excel according to
the following process:

+ Each user evaluates the 400 paper individuals on the same scale as in the IGA (from
0 to 6). The best car silhouettes in his/her mind have to receive a 6.

* Only the individuals which receive a 6 are selected for the next evaluation. An Excel
macro sorts out these individuals and a new evaluation table is presented to each
user.

+ The two first stages are repeated until each user finds the 3 best individuals. That
means that the users must be more and more selective (to always have scores
between 0 and 6 in order to progress).

« Then each user has to find the 3 best individuals of the 10" generation of the test of
“designer satisfaction”.

« Then a pairwise comparison [18] matrix permits to each user to compare pair to pair
his/her own 3 best individuals of the algorithm with his/her own 3 best individuals
obtained without the algorithm. The scale used has 7 degrees (from -3 to 3). This
stage can be compared to the process followed by Kelly to validate his IGA [7].

Best paper individuals

Begt A0 >> >>> >

individuals - > >SS —
from the

IGA > >>> =

Figure 14. Example of pairwise comparison matrix used for the tests.
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Pairwise comparisons are explained in more details in [18]. They permit to evaluate simply a
set of individuals without any absolute scale. An example of such a matrix is given on Figure
14. The comparisons have a direction to follow: here the individuals in lines are compared to
the individuals in columns.

The evaluation scale for these comparisons is given in Table 4. The users work with the
mathematic symbols (>, >>, =...), which are then replaced by numbers to analyze the data
(see section 4.1.3.2).

-3 <<< highly inferior
-2 << inferior
-1 < slightly inferior

0 = equal

1 slightly superior
2 >>  superior

3 >>> highly superior

Table 4. Pairwise comparison scale.

The tests were realized during a short workshop. The panel of users was composed of 7
students (6 men and a woman) and a professor. 4 users received the semantic attribute
friendly and the 4 others the attribute sportive.

About 2 hours were necessary to complete the three stages (time for presentation of the
tests included):

« Evaluation of the 400 random printed individuals: 1 hour.

» Use of the Interactive Genetic Algorithm: 30 minutes.

* Pairwise comparisons: 15 minutes.

4.1.3. Results

4.1.3.1. Test of “designer satisfaction”

Figure 15. Examples of best “sportive” car silhouettes (one from each user).

Figure 16. Examples of best “friendly” car silhouettes (one from each user).

The analysis of the car silhouettes obtained by the users during the first test shows
interesting results.

For the two semantic attributes, the users reach in their own last generation the same type
of car silhouettes. Moreover, those profiles are nearly the same for the semantic attribute
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sportive, whereas they are really different from a user to another with the attribute friendly.
Figure 15 and Figure 16 illustrate this phenomenon. The displayed silhouettes are chosen
from the 3 best ones of each user. It is also interesting to notice that the car silhouettes
from the 6 generation are almost the same for each user, which means that the diversity
of the populations is weak from the 6% generation. In other words, the IGA seems to
converge very quickly.

Fitness

g SpOrtive

Friendly

Generation
Figure 17. Fitness evolution for the convergence test.

It could be interesting to know if this quick convergence is wanted or not. This observation
is not tackled is this paper. However, a way to change this speed is the mutation operator.
For the tests, a really low mutation rate has been chosen. With a high mutation rate, the
convergence speed would probably be lower, because a lot of novelty would appear at each
generation.

Finally, the curves presented on Figure 17 can be drawn. In spite of local minima, the
average fitness increases for the two semantic attributes, that shows a good global behavior
of the model: the user satisfaction increases on average from 3.0 to 5.0 for the attribute
friendly, and from 2.3 to 3.9 for the attribute sportive. So it is an increase of about 70%.

III

4.1.3.2. Test of “satisfaction superiority of the IGA mode
Table 5 shows the results of the test for each user and for each semantic attribute.

User 1 +1,78
User 2 +1,67
Sportive User 3 +1,56
User 4 +1,00
Average +1,50
User 5 -0,33
User 6 +0,67
Friendly User 7 +0,78
User 8 +1,22
Average +0,58
Total Average +1,04

Table 5. Average values of the results of the subjectivity test (for the evaluation scale, see
Table 4).

Some details have to be explained to understand the meaning of Table 5. The pairwise
comparisons are made according to the following scheme: the best individuals from the IGA
are compared to the best paper individuals. User 4 has for example an average evaluation of
+1.00. According to Table 4, it means that user 4 found the best individuals from the IGA
slightly superior to the best paper individuals. Thus positive numbers prove that the results
obtained with our model are better than without.

The results show a good behavior for the semantic attribute sportive: the average score is

Evolutive design 21/41



Francois Cluzel, Bernard Yannou & Markus Dilhmann
Ecole Centrale Paris November 2010

+1.50, so the best IGA individuals are between "“slightly superior” and “superior” to the best
paper individuals.

For the attribute friendly, the results show a good behavior too, even if the difference is
slightly less perceptible. All the users prefer the individuals from the IGA except user 5, who
prefers the individuals without the model. Globally, the results for this attribute are not
really homogenous, which can be explained by a more subjective comprehension (and so
characteristic to each user) of the word friendly than the word sportive (this observation will
be highlighted in other tests presented after).

4.1.4. Synthesis

Those first two tests show a satisfactory behavior of our model. The user satisfaction
increases with the generations, and the results are globally better with the IGA than
without.

However, some major differences can be noticed between the two semantic attributes.
Indeed the user perception is really different from a user to another: sportive seems to be
perceived in the same way by everyone, whereas each user has a different perception of
friendly. So to confirm these observations we have proceeded to more sophisticated post-
processing analysis, using the similarity index described in section 3. We propose here five
user tests that use the similarity index to process the same data (except the first one) as
those used for the previous tests.

4.2, Tests based on the similarity index

4.2.1. Test of “"novelty emergence”

The goal of this test is to show that it is possible to reach a defined individual which is not
part of the initial population.

To answer this question we can execute a simple test. A subject draws on a sheet of paper a
car body silhouette which comes spontaneously to his mind and which is not part of the
initial population. This car body silhouette is taken as “reference individual”. By working with
our system he should try to obtain in the end the silhouette he had drawn before on the
paper. To cope with this, he is supposed to evaluate the car solutions which look close to the
reference individual with higher grades and those who look different with lower grades. By
counting the number of generations he needs to reach the reference individual, we can
estimate the quality of our design system.

Alternatively the target car silhouette may be an individual of the initial population that is
removed from this initial population.

We have preferred to make abstraction of the designer subjectivity in automating the ability
of the system to converge towards an ideal car silhouette, so as to measure the sole quality
of the method. The role of the designer is played by an algorithm, which automatically
evaluates the individuals of a generation in terms of their similarity to the target individual,
thanks to the similarity index previously defined.

For the test we used the car in figure Figure 18.a as reference individual. The parameters for
the genetic algorithm were the following: population of 100 individuals, turnover rate of 0.7
and mutation probability of 0.3. The mutation could change a gene in a range of £(50%-
200%). After 10 generations our system reached the car body silhouette in Figure 18.b
which has a similarity index of 92%, which can be considered as a much satisfactory result.

The average fitness of the population converges over the generations to a high value (see

Figure 19), whereas the value of the best similarity index in the population (the fithess of
the fittest individual) raises rapidly from relative low 44% to 92%.
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Figure 18. Comparison between the reference silhouette (a) and the final resulting
silhouette (b)

Evolution of the average fitness of the population
Fitness

F,m‘-c-‘;s e FFBTAQE EvaluALON

80 —a 8 ..,.

10 .

- . .
5 10
Generations

Figure 19. The average fitness of all individuals in the population over the generations

4.2.2. Test of “diversity lowering”

The aim of this test, called test of “diversity lowering” is to study:
« The evolution of the similarity index for each user along the ten generations.
+ The similarities that could exist between the individuals of the last generation of each
designer.

The idea consists simply to calculate the similarity index between all the individuals of all the
users and for all the generations of the previous workshop, and to group together the data
to observe potential correlations.

A high value of similarity for the last generation would mean that the IGA converges
towards a single individuals family, and so that there is a diversity lowering.

These results concern the evolution of the similarity index of each user. The curves are
shown on Figure 20. The initial population has an average of 6.5% of similarity. In all the
cases and for the two semantic attributes, the values increase quickly. At the 6™ generation
(Generation #5 on the graph), the averages of all the users are above 40% similarity, and
at about 75% for the last generation. The averages of each user (in italic in tables 4 and 5)
are all included between 60 and 90% of similarity, which correspond to a level of very
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strong similarities.

It shows that for each user, the model converges towards a single family of car silhouettes,
which are very close in terms of visual aspect. But it means too that there is a real diversity
lowering.
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Figure 20. Evolution of the similarity index along the generations for the two semantic
attributes

4.2.3. Test of “inter-designer convergence”

The goal of this test, called test of “inter-designer convergence” is to study the similarities
that could exist between the last generations of all the users.

As in the previous test, the idea consists simply to calculate the similarity index between all
the individuals of all the users and for all the generations of the previous workshop, and to
group together the data to observe potential correlations.

The results are displayed on Table 6 and Table 7. These matrices represent the averages of
the similarity index for the two semantic attributes:

+ Between all the users (in bold).

« For each user (in italic). These values are treated in the previous test.

The values are really consistent with the visual aspect of the individuals. For the semantic
attribute friendly, the values inter-designer (in bold) are not high, and the total average is
only 9.21% similarity, whereas this total average is 50.83% for the attribute sportive. It
means that the similarity between the last population of the users with the attribute sportive
is very strong, and that there is no connection between those with the attribute friendly

User 5 User 6 User 7 User 8
User 5 79,07 6,91 4,02 2,89
User 6 89,65 20,65 8,81
User 7 61,02 11,97
User 8 74,16
Total average 9,21

Table 6. Similarity values between users for the semantic attribute friendly (in %)
These results confirm rigorously that the perception of the word sportive is the same for all

users (they all came to the same type of profiles), whereas each user has its own perception
of the word friendly (they all have a different kind of car silhouettes at the end of the
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User 1 User 2 User 3 User 4

User 1 79,95 47,87 63,09 36,20

User 2 72,34 74,14 42,62

User 3 89,61 41,04

User 4 74,74

Total average 50,83

Table 7. Similarity values between users for the semantic attribute sportive (in %).

4.2.4. Test of “superiority of the IGA model”

This test is called test of “superiority of the IGA model”. Its goal is to show that our model
obtains better results than without, in particular in terms of time and number of individuals.
It consists in comparing for each user the 3 best individuals of the IGA with the 3 best
individuals obtained without the IGA (printed on paper) with the similarity index.

The maxima of similarity are shown in Table 8. For 5 users out of 8, the maximum is above
70% of similarity. For 2 users, the maximum is included between 20 and 30%. For the last
one, it is only 2.67% of similarity.

These values mean that it is possible to obtain the same results with and without our model.
5 users have found with the IGA at least one individual that is common or very close to one
of the paper individuals.

400 individuals were proposed on paper. It took about 45 minutes for the user to evaluate
them. Less than 200 individuals were used with the IGA (10 generations of 20 individuals,
minus those who survive from one generation to the next one), during about 20 minutes. So
we can say that our system seems to be able to bring the same results as without the
model, more quickly and with fewer individuals.

User 1 84,49
User 2 21,26
Sportive User 3 80,92
User 4 97,93
Average 71,15
User 5 2,67
User 6 98,09
Friendly User 7 71,32
User 8 26,94
Average 49,75
Total Average 60,45

Table 8. Maxima of similarity values between best individuals of the IGA and paper
individuals (in %).

4.2.5. Test of ‘attraction in the surroundings of initial individuals”

The last test proposed in this paper is called test of “attraction in the surroundings of initial
individuals”. It tries to answer the following question: is the user really able to design
his/her own car silhouette, or are the final individuals influenced by the initial individuals
and close to their genotypes?

Our solution to this problem is to compare the best individuals of the IGA with the 20 car
silhouettes of the initial population.
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User 2
Best Individual 1 Best Individual 2 Best Individual 3

Indo |l 2,04 | 1,93 i 1,84

ind1_ I 2,95 i 2,77 i 2,65

ind2 [ 10,02 i 9,02 I 8,80

Ind3 | 0,91 | 0,88 B 0,90

Ind4 I 3,45 | 3,24 i 3,35

Ind5 I 204 I 194 I 19

Indé I 1,42 i 1,36 i 1,36

Ind7 | 1,78 ] 1,74 i 1,52

Inds Wl 139 W 1373 B 1075

nitial  Ind9 Il 6,62 il 617 il 653
Population ind10 I 276 I 260 B 247
Ind11 |} 3,28 ] 341 i 2,91

Ind12 |l 2,08 | 1,97 N 1,97

Ind 13 [IIIIINGS)65 I 60,89 M 53,01

Ind14 Il 350 Il 33 I 346

Ind 15 [ 7,15 Il 7,23 W 1083

Ind 16 | 2,07 i 1,97 1 1,93

Ind17 | 3,05 | 2,88 i 2,87

Ind 18 |l 1,65 | 1,58 N 1,47

Ind 19 | 1,99 i 1,93 i 1,69

Table 9. Example of similarity values for the comparison between the best individuals of the
IGA and the initial population (in %).

The results of this test are very interesting, but too sizeable to be displayed here. That is
why only the case of user 2 is presented on Table 9.

This table shows that the best individuals of user 2 are very close to Individual #13 of the
initial population (more than 50% of similarity). Individual #13 represents the silhouette of
a Porsche 911. Two other minor influences can be noticed (with Individuals #2 and #8), but
the values are below 20%, which is not significant. User 2 worked with the semantic
attribute sportive, and it is important to notice that the same results are obtained with the 3
other users who worked with this attribute.

That means that they all came to the same type of profile which is very close to a Porsche
911. In other words, all the users perceived a sportive car as a Porsche 911.

For the semantic attribute friendly, the results are totally different. No car that influences all
the users can be identified. In 2 cases out of 4, no significant influence of an initial individual
is noticed. In the two other cases, such a car can be identified, with the scores of 40% of
similarity, but this car is different for the two users (Porsche 911 for the one, Chevrolet
Corvette C4 for the other). It shows again that this attribute is differently perceived.

4.2.6. Synthesis

Those five tests based on the similarity index permit to prove rigorously some results.
Indeed in all cases the system turns out to converge towards a uniformized population. For
the semantic attribute sportive, this profile is the same for any of the four users and is close
to a Porsche 911. For the semantic attribute friendly, no similar influence from the initial
population is identified, and the results really depend on the user. The perception of the
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attributes is really different from a user to another.

Moreover, our model converges quickly and with less individuals than without the model,
which is really satisfactory.

However, some remarks can be formulated:

+ The model always converges towards one profile family. Is it not possible to converge
towards at least two different families?

+ What happens if the Porsche 911 or the other influencing cars are not in the initial
population? Do the users even find them?

« Why are there so many differences in the perception of the semantic attributes?
Some concepts of Emotional Design could be introduced to develop a more powerful
model.

4.3. Additional tests

In this work, we have investigated two sides of the interactive genetic algorithm application,
related to user preference identification: convergence and bias of the procedure. Can the
user always reach his or her preferred shape through successive generations, i.e. can we
ensure convergence? Can different users with unique personalities reach different result sets
when looking for the same attribute, i.e. are the end results, in this case, biased by each
designers’ preferences? Since the algorithm takes an input set of shapes for the first
generation, for a given designer, are his choices and selections influenced by this initial,
starting set of shapes? We will especially look at the case where there is a hypothetical
implicit attraction of the user to one of the elements in the initial set.

We have compared the responses of the users to two different initial sets of the algorithms.
The first one being the ‘reference’ test set (see test in section 4.2.5), and sporting the
digitized shapes of real-life cars; the second set being a copy of the first one, except for the
thirteenth element, which is in the first set a "Porsche 911" and in the second set a copy of
the first element (Audi 44). These two initial sets, or “generations zero” are composed of
twenty-one elements each. At each generation of the IGA, the set of possible user choices
changes and is composed of either P=21 individuals (there are as many choices as elements
in the initial set) or P=6 individuals: in the latter case, there are less possible choices, but
they can all be displayed on the same screen and avoid user fatigue while browsing through
them. Also, a lower value of P lets the user access a higher number of assessed generations
N; N is typically in the range [10;30]. It may however reduce the field of possibilities, but it
is shown later that the convergence of the results make this reduction irrelevant after just a
few generations.

We say that the algorithm has "converged" if the individuals composing the set at the final
generation are similar (in the sense given by the similarity index, see below) between
themselves. A similarity matrix is constructed through pairwise comparisons with the best
individuals a user got for his/her final generation compared to the twenty-one individuals
composing the initial set. Another variable, the "subjectivity" of the assessment is visible
with an inter-user comparison of the results. A similarity matrix is shown in order to
compare the best individuals of each user between the other best individuals of another
user. Finally, the “similarity index” is a simple transformation of the mathematical distance
on the "genome" space, which is defined by the family of seventy gene-vectors. With this
method, the index is expressed as a percentage value, thus being greater when individuals
are “closer” i.e. more similar to each other according to the user. A significant value for this
similarity index is 20%: this is the upper limit, below which no user could spot differences
between cars. 100% means exact mathematical equality, and is accordingly never reached
in practice.

For reference, in the tests, the mutation parameter of the genetic algorithm was always
chosen equal to 30%, and the population selection rate set to 70%.

Having made test runs for different users and analyzed the results, we draw three main
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conclusions with respect to user behavior within the context of the IGA.

4.3.1. Cross-over of two "mutants”
The cross-over of two mutants can lead to a sportive and acceptable individual.

For this, we have taken two "mutants" from one of the tests, i.e. two individuals which do
not look like cars anymore, but nonetheless generated from an initial set of cars. These
shapes are usually excluded right away by the user (marked ‘one’ or ‘zero’). Their
combination or cross-over can still generate an individual that looks like a proper car.

Our recommendation would then be that mutants are not to be excluded from the set of
possible choices, since they can lead to innovative cars with the right cross-over (in other
words, keep the algorithm like it is now and do not try to remove mutant cars). However,
there are a few drawbacks: first and foremost, a user would typically exclude a mutant car
as soon as it appears, since it does not look like a real car. When this happens, the global
convergence curve shows “bumps”, since the average mark given to the generation
containing mutant cars drops for that very reason. The second limitation is that such
acceptable cross-over of mutants may not often happen, since the cross-over which is used
here is a based on a mere linear combination of "genes" (Fourier coefficients), which means
the cross-over has an average effect on the curves. Another method of cross-over would
then perhaps be more appropriate in order to make the most of *mutant” shapes.

4.3.2. Convergence of individual users’ choices

The tests have shown that convergence always happens for each user. Even with an
initial set without Porsche 911, the users who are mostly influenced by the Porsche 911
were able to get an individual similar to the one they got with the complete initial set.

The Porsche 911 notably influenced two of the four users, for whom the results are
comparable. The results for the other users are really different. Without the Porsche 911,
some individuals were more influenced by the Lamborghini element. However, there is no
real attractor, other than the Porsche 911: no similarity index is higher than 20%.The inter-
user comparison shows that individuals are not similar, which means each user was able to
express his/her own preference. Also, the results are more stable: tests can be conducted
again and give similar results for each user.

4.3.3. Capacity of a computer algorithm to generate surprise

We have witnessed that the genetic algorithms can indeed create surprising shapes, and
more specifically, that mutation is a key to creativity.

Figure 21. The "octopus" individual
A specific test was conducted with the semantic attribute "mutant" instead of "sportivity", in
order to test the ability of IGA to create elements as far as possible from the initial set of
car-like elements. The mutation parameter is fixed to 1. The number of generations is 100.
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We were able to get an "octopus" element, which shows less than a 1% similarity index to
any of the cars of the initial set which was used to create this "mutant" element
(documented in the attached technical report) closely resembling an octopus. However, the
gene which was the most mutated was the gene n°6, which was already known as the gene
whose variations affected the appearance of generated silhouettes the most.

But beyond the perceived distance of the shape from the initial set (of cars!), it actually
shows that the use of mutation in the genetic algorithms empowers the designer with a real
potential for creativity. Hence, for all its aforementioned disadvantages, it can still be useful
to one of the main goals of the IGA: to create surprise.
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5. Mutation operator

5.1. Some reflections

The mutation is the phenomenon that changes the genome of an individual randomly,
without taking into account the genome of the parents. In this respect, it adds innovation to
the evolution process. And like Kelly, we see the mutation as “a way of introducing new
variable values into the population, as well as exposing potential exciting design spaces” [5].

But it is crucial, however, that the mutation is carefully tuned, or “managed”. In order to
attain all the possible children from the modification of a genome, and hence show
maximum creativity and surprise to the designer the mutation, should ideally be free, and
unconstrained; in that sense, it is able to achieve all the opportunities offered by a genome
representation.

But this freedom has to be counterbalanced by the need for “reliability”: we in fact try to
avoid “degenerate” individuals arising from mutation that do not resemble the original class
of objects. As much as we would like to introduce variety and originality, it still has to be
constrained within some acceptable bounds, so that the generated shape will still attract the
eye of the designer, and not clutter him/her with shapes that could be automatically
rejected.

Genetic algorithms commonly implement mutation relatively freely, because they often
dispose of significant computing resources and run on a large number of generations; it is
not impossible with today’s computing powers for an algorithm running on a typical home
computer to evaluate thousands of individuals per generation. However, our work is focused
on an interactive genetic algorithm. The fact that the algorithm involves user interaction,
since a human designer evaluates the individuals generated, necessarily limits the number
of individuals that can be proposed for evaluation at each iteration, and also the number of
generations that can be processed in a reasonable time. The designer being at the heart of
the process, we must then limit the number of unacceptable shapes that will always be
rejected, at the expense of freedom.

The mutation, as it is currently implemented, is based on the fact that “key” genes
numbered 2 to 10 are the most influential figure of the vehicle. The reason stems from the
Fourier series decomposition coefficients, which are used to encode the genome of the
shape. Thus, the degree of mutation change, which is adjustable by using the user interface,
is actually the probability that each individual mutates. In such a case, then a gene will be
drawn randomly from the 9 key genes (with equal probability), then its value will be
multiplied by an element of the set [-2, -1.5] u [1.5, 2] (with a uniform probability
distribution).

The current Fourier method for encoding the genome of a shape is such that changing one
and only one gene when an individual mutates causes an often not very pleasant geometric
transformation. For example, as a result, ripples appear in the mutated shape that
transform a "healthy” original individual in a mutated shape no longer has the minimum
visual clues that the user would use to identify a car silhouette: the car floor may not be flat
anymore, or the wheels will lose their circular shape, resulting in a car that may not be
functional anymore. Whereas such alterations may be acceptable in the case of an
automated genetic algorithm, this phenomenon makes the implementation of mutation in an
interactive genetic algorithm prohibitive, because the designer will not accept any deformity,
and eliminate the mutant individual from the current population, even though it exhibit
other interesting features and innovation, or could transmitting its special features to other
generations, which may have been wanted by the designer.

5.2. Conclusions and ideas for future work
The current method implemented needs to be revised and corrected. A proposed solution
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that stems directly from the aforementioned remarks could be to identify the main features
that the user usually recognizes in a class of shapes (e.g. for a car, the location of the
wheels, or the flat shape of the floor), and then reconstruct (post-mutation) these features
automatically.

However, such a method may prove complex to implement in practice, given the choice of
the genome representation. From our work (presented in the technical reports), other
methods of mutation are possible and seem more interesting:

+ A first method could be a combination of genes; since the mutation of a single gene
causes most of the time a very noticeable geometric distortion, a combination of
several genes in a single mutation step could reduce the number of unacceptable
mutations.

+ A second method could be to gather dynamic statistics about the designer’s choices:
the mutation algorithm could collect the history of the changes it has carried out in
all the generations before the current one, and the evaluation of these changes given
by the user. Hence, we would statistically favor mutations that please the user, to
the detriment of mutations that would never have been accepted in the first place.
Although it would seem attractive in the first place, this method would have two main
drawbacks. Firstly, it would discard any chance of “invisible” mutations happening,
i.e. mutant individuals included in a generation’s population but not shown to the
user, even though these individuals could be subsequently combined in perfectly
viable shapes; and secondly, it requires a large number of samples (records of
changes and corresponding evaluation) to be able to provide relevant statistics.
However, an interactive genetic algorithm is commonly evaluated on only a few
generations, while the user is making his or her choices. A solution could be that
statistics be built on a common database, enriched by different users. But besides
the technical difficulty of such an implementation, we may “dilute” the specific
preference of each user which may vary depending on what he/she is looking for at a
particular moment in time.
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6. Conclusions and perspectives

We have presented in this paper an innovative car silhouettes design model. Based on an
encoding method of the genomes by Fourier decomposition, it offers to the car designers the
possibility to create new car silhouettes from an initial population according to their
preferences.

Several user tests have been carried out to study the convergence of the model in terms of
user satisfaction, but also in terms of perceived distance, using a similarity index. The
results show very satisfactory results. They permit to answer the four questions defined in
the introduction:

* Are the users satisfied by our model? Yes, the satisfaction increases along the
generations of the IGA, and the users prefer to work with our model rather than
without.

» Are the results better with our model than without? Yes, in terms of user satisfaction,
but also in terms of time and numbers of processed individuals.

« Does our model really create novelty? Potentially. It highly depends on the chosen
semantic attribute. But individuals than are far from the initial population in terms of
similarity can be created.

» Are the results different from a user to another? Potentially. It depends on the
chosen semantic attribute too.

In consequence, our system should allow style designers to converge towards intuitive ideas
and to make emerging surprise in exploring large spaces of potential silhouettes.

Further tests with a larger panel of user could be done to validate the statements described
in this paper and dealing with Emotional Design. The large difference of results between the
simple semantic attributes sportive and friendly open a very interesting field of study for the
future with the objective of creating CAD tools that really meet the user perception.

The real role of the mutation operator has to be studied too. So the identification of the
optimal parameters would permit to develop a more reliable model.

Finally these first results are very promising and numerous research perspectives appear
now:

+ Allowing a step of “direct modification by the designer” within an intermediary
generation, i.e. modifying some details of a silhouette curve or even adding new
individuals to the population. We must acknowledge here that all our 20 initial
silhouettes are silhouettes of existing commercial cars. Then, the experiment in this
paper has just consisted in morphing between known solutions. For really creating

surprise and innovating, we must also test our system in a more creative way.
+ Combining several series of closed curves to better define the important lines of a car
(see [12]).

+ Making more complex the interactive assessment of individuals by the style designer
through multicriteria assessments under several perceptual attributes (see [19]).

+ Exploring a new product field: the encoding method that we use is very flexible and
applicable to many design objects. We think that excellent results could be obtained
with simple shapes. The ideal form would be a simple 2D-closed-curve from a solid of
revolution (which permits to describe the whole product with a single closed curve),
like stemmed glasses or vases.

« Finally, a way to improve the model could be to develop a function for introducing car
silhouettes drawn by the designer himself. For instance, a new form appears in
his/her mind during the IGA process, so he/she can draw this form on the screen (or
with some graphic tool) and introduce the new individual in the current population.
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8. Appendixes

8.1. Screenshots of the Java interfaces
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Figure 23. The user interface to run the IGA
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8.3. Example of individuals printed on paper

Evaluate the car profiles according to their apparent
degree of spotivity

Figure 26. Extract of the 400 random "paper individuals" used for the user tests
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8.4. Process to choose the 3 best individuals printed on paper
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Figure 27. Process to choose the 3 best individuals printed on paper among the 400
proposed individuals
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8.5. A perspective : direct modification of a car silhouette by the
user

N

Figure 28. Direct modification of a car silhouette by the user

We can imagine the following scenario:

1. The user drives the IGA through several generations.

2. At the generation n, he remarks an interesting profile that but he would like to
change a detail in particular.

3. He extracts the profile from the population towards a graphical editor.

4. He modifies the curves by pulling it in the graphical editor.

5. The silhouette is reinstated to the population (at the generation n) and the IGA
process continues.
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