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Abstract. We describe the structure of geometric quotients for proper locally triangulable Ga-actions on
locally trivial A

3-bundles over a nœtherian normal base scheme X defined over a field of characteristic 0. In
the case where dimX = 1, we show in particular that every such action is a translation with geometric quotient
isomorphic to the total space of a vector bundle of rank 2 over X. As a consequence, every proper triangulable
Ga-action on the affine four space A

4
k over a field of characteristic 0 is a translation with geometric quotient

isomorphic to A
3
k.

Introduction

The study of algebraic actions of the additive group Ga = Ga,C on complex affine spaces A
n = A

n
C has a long

history which began in 1968 with a pioneering result of Rentschler [20] who established that every such action
on the plane A

2 is triangular in a suitable polynomial coordinate system. Consequently, every fixed point free
Ga-action on A

2 is a translation, in the sense that the geometric quotient A2/Ga is isomorphic to A
1 and that A

2

is equivariantly isomorphic to A
2/Ga ×Ga where Ga acts by translations on the second factor.

Arbitrary Ga-actions turn out to be no longer triangulable in higher dimensions [2]. But the question whether
a fixed point free Ga-action on A

3 is a translation or not was settled affirmatively, first for triangulable actions
by Snow [23] in 1988, then by Deveney and the second author [8] in 1994 under the additional assumption that
the action is proper and then in general by Kaliman [16] in 2004. The argument for triangulable actions depends
on their explicit form in an appropriate coordinate system which is used to check that the algebraic quotient
π : A3 → A

3//Ga = Spec(Γ(A3,OA3)Ga) is a geometric quotient and that A
3//Ga is isomorphic to A

2. For proper
actions, the properness implies that the geometric quotient A

3/Ga, which a priori only exists as an algebraic
space, is separated whence a scheme by virtue of Chow’s Lemma. This means equivalently that the Ga-action
is not only locally equivariantly trivial in the étale topology but in fact locally trivial in the Zariski topology,
i.e. that A

3 is covered by invariant Zariski affine open subsets of the from Vi = Ui × Ga on which Ga acts by
translations on the second factor. Since A

3 is factorial, the open subsets Vi can even be chosen to be principal,
which implies in turn that A

3/Ga is a quasi-affine scheme, in fact an open subset of A
3//Ga ≃ A

2 with at
most finite complement. The equality A

3/Ga = A
3//Ga ultimately follows by comparing Euler characteristics.

Kaliman’s general proof proceeds along a completely different approach, drawing on topological arguments to
show directly that the algebraic quotient morphism π : A3 → A

3//Ga is a locally trivial A1-bundle.
Kaliman’s result can be reinterpreted as the striking fact that the topological contractiblity of A3 is a strong

enough constraint to guarantee that a fixed point free Ga-action on it is automatically proper. This implication
fails completely in higher dimensions where non proper fixed point free Ga-actions abound, even in the case
of triangular actions on A

4 as illustrated by Deveney-Finston-Gehrke in [7]. Starting from dimension 5, it is
known that properness and triangulability are no longer enough to imply global equivariant triviality or at least
local equivariant triviality in the Zariski topology, as shown by examples of triangular actions on A

5 with either
strictly quasi-affine geometric quotients or with geometric quotients existing only as separated algebraic spaces
constructed respectively by Winkelmann [24] and Deveney-Finston [9].

But the question whether a proper Ga-action on A
4 is a translation or is at least locally equivariantly trivial

in the Zariski topology remains open. Very little progress had been made in the study of these actions during the
last decades, and the only existing partial results so far concern triangular actions: Deveney, van Rossum and
the second author [11] established in 2004 that a Zariski locally equivariantly trivial triangular Ga-action on A

4

is a translation. The proof depends on the finite generation of the ring of invariants for such actions established
by Daigle-Freudenburg [6] and exploits the very particular structure of these rings. Incidentally, it is known in
general that local triviality for a proper action on A

n follows from the finite generation and regularity of the ring of
invariants. But even knowing the former for triangular actions on A

4, a direct proof of the latter condition remains
elusive. The second positive result concerns a special type of triangular Ga-actions generated by derivations of
C[x, y, z, u] of the form r(x)∂y + q(x, y)∂z + p(x, y)∂u where r(x) ∈ C[x] and p(x, y), q(x, y) ∈ C[x, y, ]. To insist
on the fact that p(x, y) belongs to C[x, y] and not only to C[x, y, z] as it would be the case for a general triangular
situation, these derivations (and the Ga-actions they generate) were named twin-triangular in [10]. The case
where r(x) has simple roots was first settled in 2002 by Deveney and the second author in loc. cit. by explicitly
computing the invariant ring C[x, y, z, u]Ga and investigating the structure of the algebraic quotient morphism
A

4 → A
4//Ga = Spec(C[x, y, z1, z2]

Ga). The simplicity of the roots of r(x) was crucial to achieve the computation,
and the generalization of the result to arbitrary twin-triangular actions obtained in 2012 by the first two authors
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[12] required completely different methods which focused more on the nature of the corresponding geometric
quotients A

4
C/Ga. The latter a priori exist only as separated algebraic spaces and the crucial step in loc. cit.

was to show that for twin-triangular actions they are in fact schemes, or, equivalently that proper twin-triangular
Ga-actions on A

4 are not only locally equivariantly trivial in the étale topology but also in the Zariski topology.
This enabled in turn the use of the aforementioned result of Deveney-Finston-van Rossum to conclude that such
actions are indeed translations.

One of the main obstacles to extend the above results to arbitrary triangular actions comes from the fact that
in contrast with fixed point freeness, the property for a triangular Ga-action on A

4 to be proper is in general
subtle to characterize effectively in terms of its associated locally nilpotent derivation. A good illustration of these
difficulties is given by the following family of fixed point free Ga-actions

σr : Ga × A
4 → A

4, (t, (x, y, z, u)) 7→ (x, y + tx2, z + 2yt+ x2t2, u+ (1 + xrz)t+ xryt2 +
1

3
xr+1t3) r ≥ 1,

generated by the triangular derivations δr = x2∂y+2y∂z+(1+xrz)∂u of C[x, y, z, u], which are either non proper
if r = 1, 2 or translations otherwise. The fact that σr is a translation for every r ≥ 4 follows immediately from the
observation that δr admits the variable s = u−xr−2yz+ 2

3
xr−4y3 as a global slice. The case r = 3 is slightly more

complicated: one can first observe that δ3 is conjugated via the triangular change of variable ũ = u− xr−2yz to
the twin-triangular derivation x2∂y+2y∂z+(1−2xy2)∂ũ of C[x, y, z, ũ]. The projection prx,y,ũ : A4 → A

3 is then

equivariant for the fixed point free Ga-action on A
3 generated by the triangular derivation x2∂y +(1− 2xy2)∂ũ of

C[x, y, ũ] and it descends to a locally trivial A1-bundle ρ : A4/Ga → A
3/Ga ≃ A

2 between the respective geometric
quotients. Since A

2 is affine and factorial, ρ is a trivial A1-bundle and hence the Ga-action generated by δ3 is
a translation. On the other hand, the non properness of σ2 can be seen quickly via the invariant hypersurface
method outlined in [12], namely, one checks in this case by a direct computation that the induced Ga-action on
the invariant hypersurface H =

{

x2z = y2 − 3
2

}

⊂ A
4 is not proper, with non separated geometric quotient H/Ga

isomorphic to the product of the affine line A
1 with the affine line with a double origin. The failure of properness

in the case where r = 1 is even more subtle to analyze since in contrast with the previous case, the induced action
on every invariant hypersurface of the form Hλ =

{

x2z = y2 − λ
}

, λ ∈ C, turns out to be proper. Going back to

the definition of the properness for the action σ1, which says that the morphism Φ = (pr2, σ1) : Ga×A
4 → A

4×A
4

is proper, one can argue that the union of the following sequence of points

(pn, qn) = (pn;µ1(
√
n3, pn)) = ((

3
√
6

n
,−

3
√
36

2
√
n
,

1
3
√
6
√
n
, 0); (

3
√
6

n
,

3
√
36

2
√
n
,

1
3
√
6
√
n
, 1)) ∈ A

4 × A
4, n ∈ N

and its limit (p∞; q∞) = (p∞, µ1(1, p∞)) = ((0, 0, 0, 0); (0, 0, 0, 1)) is a compact subset of A4 × A
4 equipped with

the analytic topology whose inverse image by Φ is unbounded. So Φ is not proper as an analytic map between
the corresponding varieties equipped with their respective underlying structures of analytic manifolds and hence
is not proper in the algebraic category either.

In this article, we reconsider proper triangular actions on A
4 in broader framework and we develop new

techniques to overcome the above difficulties. These enable in turn to completely solve the question of global
equivariant triviality for such actions. Since a triangular Ga-action on A

4 = Spec(C[x, y, z, u]) preserves the
variable x, it can be considered as an action of the additive group scheme Ga,C[x] = Ga ×Spec(C) Spec(C[x]) on

the affine 3-space A
3
C[x] over Spec(C[x]) so that the setup is in fact 3-dimensional over a parameter space. The

properties for a Ga,C[x]-action on A
3
C[x] to be proper or triangulable being both local on the parameter space, a

cost free generalization is obtained by replacing Spec(C[x]) by an arbitrary nœtherian normal scheme X defined
over a field of characteristic zero and the trivial A3-bundle prx : A3

C[x] → Spec(C[x]) of Spec(C[x]) by a Zariski

locally trivial A3-bundle π : E → X. Our main result then reads as follows:

Theorem. Let X be a nœtherian normal scheme defined over a field of characteristic zero, let π : E → X be a
Zariski locally trivial A3-bundle equipped with a proper locally triangulable Ga,X-action and let p : X = E/Ga,X →
X be the geometric quotient taken in the category of algebraic X-spaces. Then there exists an open sub-scheme U
of X with codimX(X \U) ≥ 2 such that XU = p−1(U) → U has the structure of a Zariski locally trivial A2-bundle.

Note in particular that since in the original problem, the base X = Spec(C[x]) is 1-dimensional, this The-
orem and an appeal to the aforementioned result [11] are enough to settle the question for A

4
C. The conclu-

sion of the above Theorem is essentially optimal. Indeed, in the example due to Winkelmann [24], one has
X = Spec(C[x, y]), π = prx,y : A3

X = Spec(C[x, y][u, v, w]) → X equipped with the proper triangular Ga,X -action
generated by the C[x, y]-derivation ∂ = x∂u + y∂v + (1 + xv − yu)∂w of C[x, y][u, v, w], and the geometric quo-
tient p : X = A

3
X/Ga,X → X is the strictly quasi-affine complement of the closed subset {x = y = z = 0} in

the 4-dimensional smooth affine quadric Q ⊂ A
3
X with equation xt2 + yt1 = z(z + 1). The structure morphism

p : X → X is easily seen to be an A
2-fibration, which restricts to a locally trivial A2-bundle over the open subset

U = X \ {(0, 0)}. However, there is no Zariski or étale open neighborhood of the origin (0, 0) ∈ X over which
p : X → X restricts to a trivial A

2-bundle for otherwise p : X → X would be an affine morphism and so X

would be an affine scheme. The situation for the C[x, y]-derivation ∂ = x∂u+ y∂v +(1+ xv2)∂w of C[x, y][u, v, w]
constructed by Deveney-Finston [9] is very similar: here the geometric quotient X = A

3
X/Ga,X is a separated

algebraic space which is not a scheme and the structure morphism p : X → X is again an A
2-fibration restricting
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to a Zariski locally trivial A
2-bundle over U = X \ {(0, 0)} but whose restriction to any Zariski or étale open

neighborhood of the origin (0, 0) ∈ X is nontrivial.

In contrast, in the case of a 1-dimensional affine base, we can immediately derive the following Corollaries:

Corollary. Let π : E → S be a rank 3 vector bundle over an affine Dedekind scheme S = Spec(A) defined over
a field k of characteristic 0. Then every proper locally triangulable Ga,S-action on E is equivariantly trivial with
geometric quotient E/Ga,S isomorphic to a vector bundle of rank 2 over S, stably isomorphic to E.

Proof. By the previous Theorem, the geometric quotient p : E/Ga,S → S has the structure of a Zariski locally
trivial A2-bundle, hence is a vector bundle of rank 2 by [3]. In particular, E/Ga,S is affine which implies in turn
that ρ : E → E/Ga,S is a trivial Ga,S-bundle. So E ≃ E/Ga,S ×S A

1
S as vector bundles over S. �

Corollary. Let S = Spec(A) be an affine Dedekind scheme defined over a field of characteristic 0. Then every
proper triangular Ga,S-action on A

3
S is a translation.

Proof. By the previous Corollary, A3
S/Ga,S is a stably trivial vector bundle of rank 2 over S, whence is isomorphic

to the trivial bundle A
2
S over S by virtue of [1, IV 3.5]. �

Coming back to the original problem for triangular Ga,k-actions on A
4
k, the previous Corollary does in fact

eliminate the need for [11] hence the dependency on the fact that the corresponding rings of invariants are finitely
generated:

Corollary. If k is a field of characteristic 0, then every proper triangular Ga,k-action on A
4
k is a translation.

Proof. Letting A
4
k = Spec(k[x, y, z, u]), we may assume that the action is generated by a k-derivation of the

form ∂ = r(x)∂y + q(x, y)∂z + p(x, y, z)∂u. As explained above, the latter can be considered as a triangular
k[x]-derivation of k[x][y, z, u] generating a proper Ga,k[x]-action on A

4
k = A

3
k[x] which is, by the previous Corollary,

a trivial Ga-bundle over its geometric quotient A
4
k/Ga,k ≃ A

3
k[x]/Ga,k[x] ≃ A

2
k[x] ≃ A

3
k. �

Let us now briefly explain the general philosophy behind the proof. After localizing at codimension 1 points
of X, the Main Theorem reduces to the statement that a proper Ga,S-action σ : Ga,S ×S A

3
S → A

3
S on the

affine affine space A
3
S = Spec(A[y, z, u]) over the spectrum of a discrete valuation ring, generated by a triangular

A-derivation ∂ = a∂y + q(y)∂z + p(y, z)∂u of A[y, z, u], where a ∈ A \ {0}, q(y) ∈ A[y] and p(y, z) ∈ A[y, z], is a
translation. Triangularity immediately implies that the restriction of σ to the generic fiber of prS : A3

S → S is a
translation with a−1y as a global slice. This reduces the problem to the study of neighborhoods of points of the
geometric quotient X = A

3
S/Ga,S supported on the closed fiber of the structure morphism p : X → S. A second

feature of triangularity is that σ commutes with the action τ : Ga,S ×S A
3
S → A

3
S generated by the A-derivation

∂u which therefore descends to a Ga,S-action τ on the geometric quotient X = A
3
S/Ga,S. On the other hand, σ

descends via the projection pry,z : A
3
S → A

2
S = Spec(A[y, z]) to the action σ on A

2
S generated by the A-derivation

∂ = a∂y+ q(y)∂z of A[y, z]. Even though σ and τ are no longer fixed point free in general, if we take the quotient
of A2

S by the action σ as an algebraic stack [A2
S/Ga,S ] we obtain a cartesian square

A
3
S

pry,z

��

// X = A
3
S/Ga,S

��

A
2
S

// [A2
S/Ga,S]

which simultaneously identifies the quotient stacks [A2
S/Ga,S] for the action σ and [X/Ga,S ] for the action τ with

the quotient stack of A3
S for the G

2
a,S-action defined by the commuting actions σ and τ . In this setting, the global

equivariant triviality of the action σ becomes equivalent to the statement that a separated algebraic S-space X

admitting a Ga,S-action whose algebraic stack quotient [X/Ga,S] is isomorphic to that of a triangular Ga,S-action
on A

2
S is an affine scheme.

While a direct proof of this reformulation seems totally out of reach with existing methods, it turns out that
its conclusion holds over a certain Ga,S-invariant principal open subset V of A

2
S which dominates S and for

which the algebraic stack quotient [V/Ga,S] is in fact represented by a locally separated algebraic sub-space of
[A2
S/Ga,S ]. This provides at least an affine open subscheme V ×S A

1
S/Ga,S of X dominating S, and leaves us

with a closed subset of codimension at most 2 of X, supported on the closed fiber of p : X → S, in a neigh-
borhood of which no further information is a priori available to decide even the schemeness of X. But similar
to the argument in [12], this situation can be rescued for twin-triangular actions: the fact that for such actions
∂u = p(y, z) is actually a polynomial in y only enables the same reasoning with respect to the other projection
pry,u : A3

S → A
2
S = Spec(A[y, u]), yielding a second affine open sub-scheme V ′ ×S A

1
S/Ga,S of X dominating S.

This implies at least the schemeness of X, provided that the open subsets V and V ′ can be chosen so that the
union of the corresponding open subschemes of X covers the closed fiber of p : X → S.

The scheme of the article is the following. The first two sections recall basic notions and discuss a couple
of preliminary technical reductions. The third section is devoted to establishing an effective criterion for non



PROPER TRIANGULAR Ga-ACTIONS ON A
4

ARE TRANSLATIONS 4

properness of fixed point free triangular actions from which we deduce the intermediate fact that every proper
triangular action is twin-triangulable. Then in the next section, we establish that proper twin-triangular actions
are indeed translations. Here, in contrast with the proof for the complex case given in [12], our argument
is independent of finite generation of rings of invariants and reduces the systematic study of algebraic spaces
quotients to a minimum thanks to an appropriate Sheshadri cover trick [22].

1. Recollection on proper, fixed point free and locally triangulable Ga-actions

1.1. Proper versus fixed point free actions.

Recall that an action σ : Ga,S ×S E → E of the additive group scheme Ga,S = SpecS(OS [t]) = S ×Z Spec(Z[t])
on an S-scheme E is called proper if the morphism Φ = (pr2, σ) : Ga,S ×S E → E ×S E is proper.

1.1.1. If S is moreover defined over a field k of characteristic zero, then the fact that Ga,k is affine and has no
nontrivial algebraic subgroups implies that properness is equivalent to Φ being a closed immersion. In particular,
a proper Ga,S-action is in this case fixed point free and as such, is equivariantly locally trivial in the étale topology
on E. That is, there exists an affine S-scheme U and a surjective étale morphism f : V = U ×S Ga,S → E which
is equivariant for the action of Ga,S on U ×S Ga,S by translations on the second factor. This implies in turn the
existence of a geometric quotient ρ : E → X = E/Ga,S in the form of an étale locally trivial principal Ga,S-bundle
over an algebraic S-space p : X → S (see e.g. [18, 10.4]). Informally, X is the quotient of U by the étale equivalence
relation which identifies two points u, u′ ∈ U whenever there exists t, t′ ∈ Ga,S such that f(u, t) = f(u′, t′).

1.1.2. Conversely, a fixed point free Ga,S-action is proper if and only if the geometric quotient X = E/Ga,S
is a separated S-space. Indeed, by definition p : X → S is separated if and only if the diagonal morphism
∆ : X → X ×S X is a closed immersion, a property which is local on the target with respect to the fpqc
topology [17, II.3.8] and [15, VIII.5.5]. Since ρ : E → X is a Ga,S-bundle, taking the fpqc base change by
ρ× ρ : E ×S E → X×S X yields a cartesian square

Ga,S ×S E Φ //

ρ◦pr2

��

E ×S E

ρ×ρ

��

X
∆ // X×S X

from which we see that ∆ is a closed immersion if and only if Φ is.

1.2. Locally triangulable actions.

Given an affine scheme S = Spec(A) defined over a field of characteristic zero, an action σ : Ga,S ×S A
n
S → A

n
S

generated by a locally nilpotent A-derivation ∂ of Γ(AnS,OAn
S
) is called triangulable if there exists an isomorphism

of A-algebras τ : Γ(AnA,OAn
A
)

∼→ A[x1, · · · , xn] such that the conjugate δ = τ ◦ ∂ ◦ τ−1 of ∂ is triangular with

respect to the ordered coordinate system (x1, . . . , xn), i.e. has the form

δ = p0
∂

∂x1
+

n
∑

i=1

pi−1(x1, . . . , xi−1)
∂

∂xi

where p0 ∈ A and where for every i = 1, . . . , n, pi−1(x1, . . . , xi−1) ∈ A[x1, . . . , xi−1] ⊂ A[x1, . . . , xn]. By localizing
this notion over the base S, we arrive at the following definition:

Definition 1.1. Let X be a scheme defined over a field of characteristic zero and let π : E → X be a Zariski
locally trivial A

n-bundle over X. An action σ : Ga,X ×X E → E of Ga,X on E is called locally triangulable if
there exists a covering of Spec(A) by affine open sub-schemes Si = Spec(Ai), i ∈ I , such that E |Si≃ A

n
Si

and
such that the Ga,Si -action σi : Ga,Si ×Si A

n
Si

→ A
n
Si

on A
n
Si

induced by σ is triangulable.

A Zariski locally trivial A
1-bundle π : E → X equipped with a fixed point free Ga,X -action is nothing but

a principal Ga,X -bundle. As mentioned in the introduction, the nature of fixed point free locally triangulable
Ga,X-actions on Zariski locally trivial A2-bundles π : E → X is classically known. Namely, we have the following
generalization of the main theorem of [23]:

Proposition 1.2. Let X be a nœtherian normal scheme defined over a field of characteristic 0 and let π : E → X
be a Zariski locally trivial A2-bundle equipped with a fixed point free locally triangulable Ga,X-action. Then the
geometric quotient p : E/Ga,X → X has the structure of a Zariski locally trivial A1-bundle over X.

Proof. The assertion being local on the base X, we may assume that X = Spec(A) is the spectrum of a normal
local domain containing a field of characteristic 0 and that E = A

2
X = Spec(A[y, z]) is equipped with the Ga,X-

action generated by a triangular derivation ∂ = a∂y + q(y)∂z of A[y, z], where a ∈ A and q(y) ∈ A[y]. The
fixed point freeness hypothesis is equivalent to the property that a and q(y) generate the unit ideal in A[y, z]. So

q(y) has the form q(y) = b + cq̃(y) where b ∈ A is relatively prime with a, c ∈
√
aA and q̃(y) ∈ A[y]. Letting

Q(y) =
´ y

0
q(τ )dτ = by + c

´ y

0
q̃(τ )dτ , the polynomial v = az − Q(y) ∈ A[y, z] belongs to the kernel Ker∂ of ∂

hence defines a Ga,X-invariant morphism v : E → A
1
X = Spec(A[t]). Since a and b generate the unit ideal in

A, it follows from the Jacobian criterion that v : E → A
1
X is a smooth morphism. Furthermore, the fibers of

v coincide precisely with the Ga,X -orbits on E. Indeed, over the principal open subset Xa = Spec(Aa) of X, ∂



PROPER TRIANGULAR Ga-ACTIONS ON A
4

ARE TRANSLATIONS 5

admits a−1y as a slice and we have an equivariant isomorphism E |Xa≃ Spec(A[a−1v, a−1y]) ≃ A
1
Xa

×X Ga,X

where Ga,X acts by translations on the second factor. On the other hand, the restriction E |Z of E over the closed

subset Z ⊂ X with defining ideal
√
aA ⊂ A is equivariantly isomorphic to A

2
Z equipped with the Ga,Z-action

generated by the derivation ∂ = b∂z of (A/
√
aA)[y, z], where b ∈ (A/

√
aA)∗ denotes the residue class of b. The

restriction of v to E |Z coincides via this isomorphism to the morphism A
2
Z → A

1
Z defined by the polynomial

v = by ∈ (A/
√
aA)[y, z] which is obviously a geometric quotient. The above properties imply that the morphism

ṽ : E/Ga,X → A
1
X induced by v is smooth and bijective. Since it admits étale quasi-sections, ṽ is then an

isomorphism locally in the étale topology on A
1
X whence an isomorphism. �

2. preliminary reductions

2.1. Reduction to a local base. The statement of the Main Theorem can be rephrased equivalently as the fact
that a proper locally triangulable Ga,S-action on a Zariski locally trivial A3-bundle π : E → S is a translation in
codimension 1. This means that for every point s ∈ S of codimension 1 with local ring OS,s, the fiber product
E ×S S′ ≃ A

3
S′ of E → S with the canonical immersion S′ = Spec(OS,s) →֒ S equiped with the induced proper

triangular action of Ga,S′ = Ga,S ×S S′ is equivariantly isomorphic to the trivial bundle A
2
S′ ×S′ Ga,S′ over S′

equipped with the action of Ga,S′ by translations on the second factor.

2.1.1. So we are reduced to the case where S is the spectrum of a discrete valuation ring A containing a field
of characteristic 0, say with maximal ideal m and residue field κ = A/m, and where π = prS : E = A

3
S =

Spec(A[y, z, u]) → S = Spec(A) is equipped with a proper triangulable Ga,S-action σ : Ga,S ×S A
3
S → A

3
S .

Letting x ∈ m be uniformizing parameter, every such action is equivalent to one generated by an A-derivation ∂
of A[y, z, u] of the form

∂ = xn∂y + q(y)∂z + p(y, z)∂u

where n ≥ 0, q(y) ∈ A[y] and p(y, z) =
∑ℓ
r=0 pr(y)z

r ∈ A[y, z], the fixed point freeness of σ being equivalent to
the property that xn, q(y) and p(y, z) generate the unit ideal in A[y, z, u].

2.2. Reduction to proving the affineness of the geometric quotient. With the notation of §2.1.1, we
can already observe that if n = 0 then y is an obvious global slice for ∂ and hence that the action is globally
equivariantly trivial with geometric quotient X = A

3
S/Ga,S ≃ A

2
S . Similarly, if the residue class of q(y) in κ[y] is

a non zero constant then the action σ is a translation. Indeed, in this case, the Ga,S-action σ : Ga,S ×S A
2
S → A

2
S

on A
2
S = Spec(A[y, z]) generated by the A-derivation ∂ = xn∂y + q(y)∂z of A[y, z] is fixed point free hence

globally equivariantly trivial with geometric quotient A
2
S/Ga,S ≃ A

1
S by virtue of Proposition 1.2. On the other

hand, the Ga,S-equivariant projection pry,z : A
3
S → A

2
S descends to a locally trivial A

1-bundle between the

geometric quotients A
3
S/Ga,S and A

2
S/Ga,S , and since A

2
S/Ga,S ≃ A

1
S is affine and factorial, it follows that

A
3
S/Ga,S ≃ A

2
S/Ga,S×SA1

S ≃ A
2
S. The affineness of A2

S implies in turn that the quotient morphism A
3
S → A

3
S/Ga,S

is the trivial Ga,S-bundle whence that σ : Ga,S ×S A
3
S → A

3
S is a translation. Alternatively, one can observe that

a global slice s ∈ A[y, z] for the action σ is also a global slice for σ via the inclusion A[y, z] ⊂ A[y, z, u]
More generally, the following Lemma reduces the question of global equivariant triviality with geometric

quotient X = A
3
S/Ga,S isomorphic to A

2
S to showing that X, which a priori only exists as an algebraic S-space, is

an affine S-scheme:

Lemma 2.1. A fixed point free triangular action σ : Ga,S×SA3
S → A

3
S is a translation if and only if its geometric

quotient X = A
3
S/Ga,S is an affine S-scheme.

Proof. One direction is clear, so assume that X is an affine S-scheme. It suffices to show that the structure
morphism p : X → S is an A

2-fibration, i.e. a faithfully flat morphism with all its fibers isomorphic to affine
planes over the corresponding residue fields. Indeed, if so, the affineness of X implies on the one hand that X is
isomorphic to the trivial A2-bundle A2

S by virtue of [21] and on the other hand that ρ : A3
S → X is isomorphic to the

trivial Ga,S-bundle X×SGa,S over S, which yields Ga,S-equivariant isomorphisms A
3
S ≃ X×SGa,S ≃ A

2
S×SGa,S.

To see that p : X → S is an A
2-fibration, recall that prS : A3

S → S and the quotient morphism ρ : A3
S → X =

A
3
S/Ga,S are both faithfully flat, so that p : X → S is faithfully flat too ([17, II.3.2] and [14, Corollaire 2.2.13(iii)]).

Letting m and ξ be the closed and generic points of S respectively, the fibers pr−1
S (m) ≃ A

3
κ and pr−1

S (ξ) ≃ A
3
κ(ξ)

coincide with the total spaces of the restriction of the Ga,S-bundle ρ : A3
S → X over the fibers Xm = p−1(m) and

Xξ = p−1(ξ) respectively. Since the Ga,κ(ξ)-action induced by σ on pr−1
S (ξ) admits x−ny as a global slice, it is a

translation with geometric quotient A3
κ(ξ)/Ga,κ(ξ) ≃ A

2
κ(ξ) and so Xξ ≃ A

2
κ(ξ). On the other hand, we may assume

in view of the above discussion that n ≥ 1 so that the Ga,κ-action on pr−1
S (m) ≃ A

3
κ induced by σ coincides

with the fixed point free action generated by the κ[y]-derivation ∂ = q(y)∂z + p(y, z)∂u of κ[y][z, u], where q(y)
and p(y, z) denote the respective residue classes of q(y) and p(y, z) modulo x. By virtue of Proposition 1.2, the
geometric quotient A

3
κ/Ga,κ has the structure of a Zariski locally trivial A1-bundle over A

1
κ = Spec(κ[y]) hence is

isomorphic to A
2
κ. This implies that Xm ≃ A

3
κ/Ga,κ ≃ A

2
κ as desired. �

Remark 2.2. By exploiting the fact that arbitrary Ga,S-actions on the affine 3-space A
3
S over the spectrum S

of a discrete valuation ring A containing a field of characteristic 0 have finitely generated rings of invariants [4],
one can derive the following stronger characterization: a fixed point free action σ : Ga,S ×S A

3
S → A

3
S is either a

translation or its geometric quotient X = A
3
S/Ga,S is an algebraic space which is not a scheme.
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Indeed, the quotient morphism ρ : A3
S → X is again an A

2-fibration thanks to [5, Theorem 3.2] which asserts
that for every field κ of characteristic 0 a fixed point free action of Ga,κ-action on A

3
κ is a translation, and so

the assertion is equivalent to the fact that a Zariski locally equivariantly trivial action σ has affine geometric
quotient X. This can be seen in a similar way as in the proof of Theorem 2.1 in [11]. Namely, by hypothesis
we can find an open covering of A

3
S by finitely many invariant affine open subsets Ui on which the induced

Ga,S-action is a translation with affine geometric quotient Ui/Ga,S , i = 1, . . . , n. Since Ui and A
3
S are affine,

A
3
S \ Ui is a Ga,S-invariant Weil divisor on A

3
S which is in fact principal as A, whence A[y, z, u], is factorial. It

follows that there exists invariant regular functions fi ∈ A[y, z, u]Ga ≃ Γ(X,OX) such that Ui = Spec(A[x, y, z]fi)
coincides with the inverse image by the quotient morphism ρ : A3

S → X of the principal open subset Xfi of X,
i = 1, . . . , n. Since ρ : A3

S → X is a Ga,S-bundle and Ui ≃ Ui/Ga,S ×S Ga,S by assumption, we conclude that
X is covered by the principal affine open subsets Xfi ≃ Ui/Ga,S, i = 1, . . . , n, whence is quasi-affine. Now since

by the aforementioned result [4], A[y, z, u]Ga is an integrally closed finitely generated A-algebra, it is enough
to check that the canonical open immersion j : X → X = Spec(Γ(X,OX)) ≃ Spec(A[y, z, u]Ga) is surjective.
The surjectivity over the generic point of S follows immediately from the fact the kernel of a locally nilpotent
derivation derivation of a polynomial ring in three variables over a field K of characteristic 0 is isomorphic to a
polynomial ring in two variables over K (see e.g. [19]). So it remains to show that the induced open immersion
jm : Xm ≃ A

2
κ →֒ Xm = Spec(A[y, z, u]Ga ⊗A A/m) between the corresponding fibers over the closed point m of S

is surjective, in fact, an isomorphism. Since x ∈ A[y, z, u]Ga is prime, Xm ≃ Spec(A[y, z, u]Ga/(x)) is an integral
κ-scheme of finite type and Corollary 4.10 in [4] can be interpreted more precisely as the fact that Xm ≃ C×κ A1

κ

for a certain 1-dimensional affine κ-scheme C. This implies in turn that jm is an isomorphism. Indeed, since C
is dominated via jm by a general affine line A

1
κ ⊂ A

2
κ, its normalization C̃ is isomorphic to A

1
κ and so jm factors

through an open immersion j̃m : A2
κ →֒ C̃ ×κ A

1
κ ≃ A

2
κ. The latter is surjective for otherwise the complement of

its image would be of pure codimension 1 hence a principal divisor div(f) for a non constant regular function f

on C̃ ×κ A1
κ. But then f would restrict to a non constant invertible function on the image of A2

κ which is absurd.
Thus j̃m : A2

κ →֒ C̃ ×κ A1
κ ≃ A

2
κ is an isomorphism and since the normalization morphism C̃ ×κ A1

κ → C ×κ A1
κ is

finite whence closed it follows that jm : A2
κ →֒ C ×κ A

1
κ is an open and closed immersion hence an isomorphism.

2.3. Reduction to extensions of irreducible derivations. In view of the discussion at the beginning of
subsection 2.2, we may assume for the A-derivation

∂ = xn∂y + q(y)∂z + p(y, z)∂u

that n > 0 and that the residue class of q(y) in κ[y] is either zero or not constant. In the first case, q(y) ∈ mA[y]
has the form q(y) = xµq0(y) where µ > 0 and where q0(y) ∈ A[y] has non zero residue class modulo m, so that

the derivation ∂ = xn∂y + q(y)∂z induced by ∂ on the sub-ring A[y, z] is reducible. On the other hand, the fixed
point freeness of the Ga,S-action σ generated by ∂ implies that up to multiplying u by an invertible element in
A, one has p(y, z) = 1 + xνp0(y, z) for some ν > 0 and p0(y, z) ∈ A[y, z].

If µ ≥ n, then letting Q0(y) =
´ y

0
q0(τ )dτ ∈ A[y], the Ga,S-invariant polynomial z1 = z − xµ−nQ0(y) is a

variable of A[y, z, u] over A[y, u], and so ∂ is conjugate to the derivation xn∂y + p(y, z1 + xµ−nQ0(y))∂u of the
polynomial ring in two variables A[z1][y, u] over A[z1]. Since σ is fixed point free, Proposition 1.2 implies that
it is equivariantly trivial with geometric quotient isomorphic to the total space of the trivial A

1-bundle over
A

1
S = Spec(A[z1]) whence to A

2
S.

Otherwise, if µ < n, then the Ga,S-action σ̃ : Ga,S ×S A
3
S → A

3
S on A

3
S = Spec(A[ỹ, z̃, ũ]) generated by the

A-derivation

∂̃ = xn−µ∂ỹ + q0(ỹ)∂z̃ + (1 + xνp0(ỹ, z̃))∂ũ

is again fixed point free, hence admits a geometric quotient ρ̃ : A3
S → X̃ = A

3
S/Ga,S in the form of an étale locally

trivial Ga,S-bundle over a certain algebraic S-space X̃.

Lemma 2.3. The quotient spaces X = A
3
S/Ga,S and X̃ = A

3
S/Ga,S for the Ga,S-actions σ and σ̃ on A

3
S generated

by ∂ and ∂̃ respectively are isomorphic. In particular σ is proper (resp. equivariantly trivial) if and only if σ̃ is
proper (resp. equivariantly trivial).

Proof. Letting ρ̃i : Vi = A
3
S → X̃i = Vi/Ga,S, i = 0, . . . , µ, denote the geometric quotient of Vi = Spec(A[ỹi, z̃i, ũi])

for the fixed point free Ga,S-action σ̃i generated by the A-derivation

∂̃i = (1 + xνp0(ỹi, z̃i)) ∂ũi + xµ−iq0(ỹi)∂z̃i + xn−i∂ỹi ,

the first assertion will follow from the more general fact that X̃i ≃ X̃i+1 for every i = 0, . . . , µ−1. Indeed, we first
observe that since ũi is a slice for ∂̃i modulo x, X̃i,m = X̃i ×S Spec(κ) is isomorphic to A

2
κ = Spec((A/m)[ỹi, z̃i])

and the restriction of ρ̃i over X̃i,m is isomorphic to the trivial bundle pr1 : X̃i,m ×κ Spec(κ[ũi]) → X̃i,m. Now let

βi : Vi+1 → Vi be the affine modification of the total space of ρ̃i : A
3
S → X̃i with center at the zero section of the

induced bundle pr1 : X̃i,m ×κ Spec(κ[ũi]) → X̃i,m and with principal divisor x. In view of the previous description,
βi : Vi+1 → Vi coincides with the affine modification of Spec(A[ỹi, z̃i, ũi]) with center at the ideal (x, ũi) and
principal divisor x, that is, with the birational S-morphism induced by the homomorphism of A-algebra

β∗
i : A[ỹi+1, z̃i+1, ũi+1] → A[ỹi, z̃i, ũi], (ỹi+1, z̃i+1, ũi+1) 7→ (ỹi, z̃i, xũi).
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By construction, βi is equivariant for the Ga,S-actions σ̃i+1 and σi generated respectively by the locally nilpotent

A-derivations ∂̃i+1 of A[ỹi+1, z̃i+1, ũi+1] and ∂i = x∂̃i of A[ỹi, z̃i, ũi]. Furthermore, since ρ̃i : Vi → X̃i is also Ga,S-

invariant for the action σi, the morphism ρ̃i ◦ βi : Vi+1 → X̃i is Ga,S-invariant, whence descends to a morphism

β̃i : X̃i+1 → X̃i. Since the latter restricts to an isomorphism over the generic point of S, it remains to check
that it is also an isomorphism in a neighborhood of every point p ∈ X̃i lying over the closed point m of S. Let
f : U = Spec(B) → X̃i be an affine étale neighborhood of such a point p ∈ X̃i over which ρ̃i : Vi → X̃i becomes

trivial, say Vi ×X̃i
U ≃ A

1
U = Spec(B[ṽi]). The Ga,S-action on Vi generated by ∂i lifts to the Ga,U -action on A

1
U

generated by the locally nilpotent B-derivation x∂ṽi and since βi : Vi+1 → Vi is the affine modification of Vi with

center at the zero section of the restriction of ρ̃i : Vi → X̃i over the closed point of S, we have a commutative
diagram

Vi+1

ρ̃i+1

��

βi

}}{{
{
{
{

A
1
U

oo

prU

��

δi

~~}}
}
}

Vi

ρ̃i

��

A
1
U

oo

prU

��

X̃i+1
β̃i

}}{{
{
{
{

U

}
}
}
}
}

}
}
}
}
}

oo

X̃i U
f

oo

in which the top and front squares are cartesian, and where the morphism δi : A1
U = Spec(B[ṽi+1]) → A

1
U =

Spec(B[ṽi]) is defined by the B-algebras homomorphism B[ṽi] → B[ṽi+1], ṽi 7→ xṽi+1. The latter is equivariant
for the action on Spec(B[ṽi+1]) generated by the locally nilpotent B-derivation ∂ṽi+1 and we conclude that

pr2 : A1
U ≃ A

1
U ×Vi Vi+1 → Vi+1 is an étale trivialization of the Ga,S-action induced by σ̃i+1 on the open sub-

scheme (ρ̃i ◦ βi)−1(f(U)) of Vi+1. This implies in turn that U ×
X̃i

X̃i+1 ≃ U , whence that β̃i : X̃i+1 → X̃i is an

isomorphism in a neighborhood of p ∈ X̃i as desired.
The second assertion is a direct consequence of the fact that properness and global equivariant triviality of σ

and σ̃ are respectively equivalent to the separatedness and the affineness of the geometric quotients X ≃ X̃. �

2.3.1. Summing up, we are now reduced to proving that a proper Ga,S-action on A
3
S generated by an A-derivation

∂ = xn∂y + q(y)∂z + p(y, z)∂u

of A[y, z, u], such that n > 0 and q(y) ∈ A[y] has non constant residue class in κ[y], has affine geometric quotient
X = A

3
S/Ga,S . This will be done in two steps in the next sections: we will first establish that a proper Ga,S-action

as above is conjugate to one generated by a special type of A-derivation called twin-triangular. Then we will
prove in section 4 that proper twin-triangular Ga,S-actions on A

3
S do indeed have affine geometric quotients.

3. Reduction to twin-triangular actions

We keep the same notation as in §2.1.1 above, namely A is a discrete valuation ring containing a field of
characteristic 0, with maximal ideal m, residue field κ = A/m, and uniformizing parameter x ∈ m. We let again
S = Spec(A).

We call an A-derivation ∂ of A[y, z, u] twin-triangulable if there exists a coordinate system (y, z+, z−) of A[y, z, u]
overA[y] in which the conjugate of ∂ is twin-triangular, that is, has the form xn∂y+p+(y)∂z++p−(y)∂z− for certain
polynomials p±(y) ∈ A[y]. This section is devoted to the proof of the following intermediate characterization of
proper triangular Ga,S-actions:

Proposition 3.1. With the notation above, let ∂ by an A-derivation of A[y, z, u] of the form

∂ = xn∂y + q(y)∂z + p(y, z)∂u

where n > 0 and where q(y) ∈ A[y] has non constant residue class in κ[y]. If the Ga,S-action on A
3
S =

Spec(A[y, z, u]) generated by ∂ is proper, then ∂ is twin-triangulable.

The proof given below proceeds in two steps: we first construct a coordinate ũ of A[y, z, u] over A[y, z] with the
property that ∂ũ = p̃(y, z) is either a polynomial in y only or its leading term p̃ℓ(y) as a polynomial in z has a
very particular form. In the second case, we exploit the properties of p̃ℓ(y) to show that the Ga,S-action generated
by ∂ is not proper.

3.1. The ♯-reduction of a triangular A-derivation. The conjugate of an A-derivation ∂ = xn∂y + q(y)∂z +

p(y, z)∂u of A[y, z, u] as in Proposition 3.1 by an isomorphism of A[y, z]-algebras ψ : A[y, z][ũ]
∼→ A[y, z][u] is

again triangular of the form

ψ−1∂ψ = xn∂y + q(y)∂z + p̃(y, z)∂ũ

for some polynomial p̃(y, z) ∈ A[y, z]. In particular, we may choose from the very beginning a coordinate system
of A[y, z, u] over A[y, z] with the property that the degree of ∂u ∈ A[y, z] with respect to z is minimal among
all possible conjugates ψ−1∂ψ of ∂ as above. In what follows, we will say for short that such a derivation ∂ is
♯-reduced with respect to the coordinate system (y, z, u). Letting Q(y) =

´ y

0
q(τ )dτ ∈ A[y], this property can be

characterized effectively as follows:
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Lemma 3.2. Let ∂ = xn∂y + q(y)∂z + p(y, z)∂u be a ♯-reduced derivation of A[y, z, u] as in Proposition 3.1. If ∂
is not twin-triangular (i.e. p(y, z) = p0(y) ∈ A[y]) then the leading term pℓ(y), ℓ ≥ 1, of p(y, z) as a polynomial
in z is not congruent modulo xn to a polynomial of the form q(y)f(Q(y)) for some f(τ ) ∈ A[τ ].

Proof. Suppose that p(y, z) =
∑ℓ

r=0 pr(y)z
r with ℓ ≥ 1 and that pℓ(y) = q(y)f(Q(y)) + xng(y) for some polyno-

mials f(τ ), g(τ ) ∈ A[τ ]. Then letting G(y) =
´ y

0
g(τ )dτ and

ũ = u−G(y)zℓ −
deg f
∑

k=0

(−1)k
∏k
j=0(ℓ+ 1 + j)

f (k)(Q(y))xknzℓ+1+k,

one checks by direct computation that

∂ũ =
ℓ−2
∑

r=0

pr(y)z
r + (pℓ−1(y)−G(y)q(y)) zℓ−1.

Thus (y, z, ũ) is a coordinate system of A[y, z, u] over A[y, z] in which the image of ũ by the conjugate of ∂ has
degree ≤ ℓ− 1, a contradiction to the ♯-reducedness of ∂. �

To prove Proposition 3.1, it remains to show that a proper Ga,S-action on A
3
S generated by ♯-reduced A-derivation

of A[y, z, u] is twin-triangular. This is done in the next sub-section.

3.2. A non-valuative criterion for non-properness.

To disprove the properness of an algebraic action σ : Ga,S ×S E → E of Ga,S on an S-scheme E, it suffices in
principle to check that the image of Φ = (pr2, σ) : Ga ×S E → E ×S E is not closed. However, this image turns
out to be complicated to determine in general, and it is more convenient for our purpose to consider the following
auxiliary construction: letting j : Ga,S ≃ Spec(OS[t]) →֒ P

1
S = Proj(OS [w0, w1]), t 7→ [t : 1] be the natural open

immersion, the properness of the projection prE×SE
: P1

S ×S E ×S E → E ×S E implies that (p2, σ) is proper if

and only if ϕ = (j ◦ pr1,pr2, σ) : Ga,S ×S E → P
1
S ×S E ×S E is proper, hence a closed immersion. Therefore the

non properness of σ is equivalent to the fact that the closure of Im(ϕ) in P
1
S ×S E×S E intersects the “boundary”

{w1 = 0} in a nontrivial way.

3.2.1. Now let σ : Ga,S×SA3
S → A

3
S be the Ga,S-action generated by a non twin-triangular ♯-reduced A-derivation

∂ = xn∂y + q(y)∂z + p(y, z)∂u of A[y, z, u] and let

ϕ = (j ◦ pr1,pr2, µ) : Ga,S ×S A
3
S = Spec(A[t][y, z, u]) → P

1
S ×S A

3
S ×S A

3
S

be the corresponding immersion. To disprove the properness of σ, it is enough to check that the image by ϕ of
the closed sub-scheme H = {z = 0} ≃ Spec(A[t][y, u]) of Ga,S ×S A

3
S is not closed in P

1
S ×S A

3
S ×S A

3
S . After

identifying A[y, z, u]⊗AA[y, z, u] with the polynomial ring A[y1, y2, z1, z2, u1, u2] in the obvious way, the image ofH
by (pr1,pr2, σ) : Ga,S×SA3

S → A
1
S×SA3

S×SA3
S is equal to the closed sub-scheme of Spec(A[t][y1, y2, z1, z2, u1, u2])

defined by the following system of equations


















y2 = y1 + xnt

z1 = 0

z2 = x−n(Q(y1 + xnt)−Q(y1)) = (y1 − y2)
−1(Q(y2)−Q(y1))t

u2 = u1 + x−n
´ t

0
p(y1 + xnτ )(Q(y1 + xnτ )−Q(y1)))dτ.

Letting p(y, z) =
∑ℓ
r=0 pr(y)z

r with ℓ ≥ 1 and

Γr(y1, y2) =

ˆ y2

y1

pr(ξ)(Q(ξ)−Q(y1))
rdξ ∈ A[y1, y2], r = 0, . . . , ℓ,

the last equality can be re-written modulo the first ones in the form

u2 = u1 +
ℓ

∑

r=0

x−nr

ˆ t

0

pr(y1 + xnτ )(Q(y1 + xnτ )−Q(y1))
rdτ

= u1 + t(y2 − y1)
−1

ℓ
∑

r=0

x−nr

ˆ y2

y1

pr(ξ)(Q(ξ)−Q(y1))
rdξ

= u1 +
ℓ

∑

r=0

(

(y2 − y1)
−r−1Γr(y1, y2)

)

tr+1.

It follows that the closure V of ϕ(H) is contained in the closed sub-scheme W of P1
S ×S A

3
S ×S A

3
S defined by the

equations z1 = 0 and










(y2 − y1)w1 − xnw0 = 0

w1z2 − (y2 − y1)
−1(Q(y2)−Q(y1))w0 = 0

wℓ+1
1 (u2 − u1)−

∑ℓ
r=0

(

(y2 − y1)
−r−1Γr(y1, y2)

)

wr+1
0 wℓ−r1 = 0.
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We further observe that W is irreducible, whence equal to V , provided that Γℓ(y1, y2) ∈ A[y1, y2] does not belong
to the ideal generated by xn and Q(y2)−Q(y1). If so, then W = V intersects {w1 = 0} along a closed sub-scheme
Z isomorphic to the spectrum of the following algebra:

(

A[y1, y2]/(x
n, (y2 − y1)

−1(Q(y2)−Q(y1)), (y2 − y1)
−ℓ−1Γℓ(y1, y2))

)

[z2, u1, u2].

Since by virtue of the ♯-reducedness assumption pℓ(y) is not of the form q(y)f(Q(y))+xng(y), the non properness
of σ : Ga,S×SA3

S → A
3
S is then a consequence of the following Lemma which guarantees precisely that Γℓ(y1, y2) 6∈

(xn, Q(y2)−Q(y1))A[y1, y2] and that Z is not empty.

Lemma 3.3. Let q(y) ∈ A[y] be a polynomial with non constant residue class in κ[y] and let Q(y) =
´ y

0
q(τ )dτ .

For a polynomial p(y) ∈ A[y] and an integer ℓ ≥ 1, the following holds:

a) The polynomial Γℓ(y1, y2) =
´ y2
y1
p(y)(Q(y)−Q(y1))

ℓdy belongs to the ideal (xn, Q(y2)−Q(y1)) if and only

if p(y) can be written in the form q(y)f(Q(y)) + xng(y) for certain polynomials f(τ ), g(τ ) ∈ A[τ ].
b) The polynomial (y2 − y1)

−ℓ−1Γℓ(y1, y2) is not invertible modulo the ideal (xn, (y2 − y1)
−1(Q(y2)−Q(y1))).

Proof. For the first assertion, a sequence of ℓ successive integrations by parts shows that

Γℓ(y1, y2) =
[

E1(y)(Q(y)−Q(y1))
ℓ
]y2

y1

− ℓ

ˆ y2

y1

E1(y)q(y)(Q(y)−Q(y1))
ℓ−1dy

= S(y1, y2) + (−1)ℓℓ!

ˆ y2

y1

Eℓ(y)q(y)dy

= S(y1, y2) + (−1)ℓℓ!(Eℓ+1(y2)− Eℓ+1(y1))

where Ek is defined recursively by E1(y) =
´ y

0
p(τ )dτ and Ek+1(y) =

´ y

0
Ek(τ )q(τ )dτ , and where S(y1, y2) ∈

(Q(y2) − Q(y1))A[y1, y2]. So
´ y2
y1
p(y)(Q(y) − Q(y1))

rdy belongs to (xn, Q(y2) − Q(y1))A[y1, y2] if and only if

Eℓ+1(y2)− Eℓ+1(y1) belongs to this ideal.
Since the residue class of Q(y) ∈ A[y] in κ[y] is not constant, it follows from the local criterion for flatness that

A[y] is a faithfully flat algebra over A[Q(y)]. By faithfully flat descent, this implies in turn that the sequence

A[Q(y)] →֒ A[y]
·⊗1−1⊗·−→ A[y]⊗A[τ ] A[y]

is exact whence, using the natural identification A[y]⊗A[τ ] A[y] ≃ A[y1, y2]/(Q(y2) − Q(y1)), that a polynomial
F ∈ A[y] with F (y2) − F (y1) belonging to the ideal (Q(y2) − Q(y1))A[y1, y2] has the form F (y) = G(Q(y))
for a certain polynomial G(τ ) ∈ A[τ ]. Thus Eℓ+1(y2) − Eℓ+1(y1) belongs to (xn, Q(y2) − Q(y1))A[y1, y2], if
and only if Eℓ+1(y) is of the form G(Q(y)) + xnRℓ+1(y) for some G(τ ), Rℓ+1(τ ) ∈ A[τ ]. This implies in turn
that Eℓ(y)q(y) = G′(Q(y))q(y) + xnR′

ℓ+1(y) whence, since q(y) ∈ A[y] \ mA[y] is not a zero divisor modulo
xn, that Eℓ(y) = G′(Q(y)) + xnRℓ(y) for a certain Rℓ(τ ) ∈ A[τ ]. We conclude by induction that E1(y) =

G(ℓ+1)(Q(y))+xnR1(y) and finally that p(y) = G(ℓ+2)(Q(y))q(y)+xnR(y) for a certain R(τ ) ∈ A[τ ]. This proves
a).

The second assertion is clear in the case where p(y) ∈ mA[y]. Otherwise, if p(y) ∈ A[y] \ mA[y] then reducing
modulo x and passing to the algebraic closure κ of κ, it is enough to show that if q(y) ∈ κ[y] is not constant
and p(y) ∈ κ[y] is a nonzero polynomial then for every ℓ ≥ 1, the affine curves C and D in A

2
κ = Spec(κ[y1, y2])

defined by the vanishing of the polynomials Θ(y1, y2) = (y2 − y1)
−ℓ−1

´ y2
y1
p(y)(Q(y)−Q(y1))

ℓdy and R(y1, y2) =

(y2 − y1)
−1
´ y2
y1
q(y)dy respectively always intersect each other. Suppose on the contrary that C ∩D = ∅ and let

m = deg q ≥ 1 and d = deg p ≥ 0. Then the closures C and D of C and D respectively in P
2
κ = Proj(κ[y1, y2, y3])

intersect each others along a closed sub-scheme Y of length degC · degD = m(d + ℓm) supported on the line
{y3 = 0} ≃ Proj(κ[y1, y2]). By definition, up to multiplication by a nonzero scalar, the top homogeneous
components of R and Θ have the form

∏m
i=1(y2 − ζiy1), where ζ ∈ κ is a primitive (m+ 1)-th root of unity, and

(y2 − y1)
ℓ−1
´ y2
y1
yd(ym+1 − ym+1

1 )ℓdy respectively. But on the other hand, we have for every i = 1, . . . ,m

κ[y2]/(y2 − ζi, (y2 − 1)−r−1

ˆ y2

1

yd(ym+1 − 1)rdy) ≃ κ[y2]/(y2 − ζi, (ζi − 1)−r−1

ˆ ζi

1

τd(τm+1 − 1)rdτ ),

and hence the length of the above algebra is either 1 or 0 depending on whether
´ ζi

1
τd(τm+1 − 1)dτ ∈ κ is zero

or not. This implies that the length of Y is at most equal to m and so the only possibility would be that d = 0

and ℓ = m = 1, i.e. C and D are parallel lines in A
2
κ. But since

´ −1

1
(τ 2 − 1)dτ 6= 0, this last possibility is also

excluded. �

4. Global equivariant triviality of twin-triangular actions

By virtue of Proposition 3.1, every proper triangular Ga,S-action on σ:Ga,S ×S A
3
S → A

3
S on A

3
S is conjugate

to one generated by a twin-triangular A-derivation ∂ of A[y, z+, z−] of the form

∂ = xn∂y + p+(y)∂z+ + p−(y)∂z−

for certain polynomials p±(y) ∈ A[y]. So to complete the proof of the Main Theorem, it remains to show the
following generalization of the main result in [12]:
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Proposition 4.1. Let S be the spectrum of discrete valuation A containing a field of characteristic 0. Then a
proper twin-triangular Ga,S-action on A

3
S has affine geometric quotient X = A

3
S/Ga,S .

4.0.2. The principle of the proof given below is the following: we exploit the twin triangularity to construct two
Ga,S-invariant principal open subsets WΓ+ and WΓ−

in A
3
S with the property that the union of corresponding

principal open subspaces XΓ±
=WΓ±

/Ga,S of X covers the closed fiber of the structure morphism p : X → S. We

then show that XΓ+ and XΓ−
are in fact affine sub-schemes of X. On the other hand, since ∂ admits x−ny as a

global slice over Ax, the generic fiber of p is isomorphic to the affine plane over the function field Ax of S. So it
follows that X is covered by three principal affine open sub-schemes XΓ+ , XΓ−

and Xx corresponding to regular

functions x, Γ+, Γ− which generate the unit ideal in Γ(X,OX) ≃ A[y, z+, z−]
Ga,S ⊂ A[y, z+, z−], whence is an

affine scheme.

4.0.3. The fact that the affineness of p : X = A
3
S/Ga,S → S = Spec(A) is a local property with respect to the

fpqc topology on S [15, VIII.5.6] enables a reduction to the case where the discrete valuation ring A is Henselian
or complete. Since it contains a field of characteristic zero, an elementary application of Hensel’s Lemma implies
that a maximal subfield of such a local ring A is a field of representatives, i.e. a subfield which is mapped
isomorphically by the quotient projection A 7→ A/m onto the residue field κ = A/m. This is in fact the only
property of A that we will use in the sequel. So from now on, (A,m, κ) is a discrete valuation ring containing a
field κ of characteristic 0 and with residue field A/m ≃ κ.

4.1. Twin-triangular actions in general position and associated invariant covering. Here we construct
a pair of principal Ga,S-invariant open subsets W± = WΓ±

of A3
S associated with a twin-triangular A-derivation

of A[y, z+, z−] whose geometric quotients will be studied in the next sub-section. We begin with a technical
condition which will be used to guarantee that the union of W+ and W− covers the closed fiber of the projection
prS : A3

S → S.

Definition 4.2. Let (A,m, κ) be a discrete valuation valuation ring containing a field of characteristic 0 and
let x ∈ m be a uniformizing parameter. A twin-triangular A-derivation ∂ = xn∂y + p+(y)∂z+ + p−(y)∂z− of
A[y, z+, z−] is said to be in general position if it satisfies the following properties:

a) The residue classes p± ∈ κ[y] of the polynomials p± ∈ A[y] modulo m are both non zero and relatively
prime,

b) There exist integrals P± ∈ A[y] of p± with respect to y for which the inverse images of the branch loci of

the morphisms P+ : A1
κ → A

1
κ and P− : A1

κ → A
1
κ are disjoint.

Lemma 4.3. With the notation above, every twin-triangular A-derivation ∂ of A[y, z+, z−] generating a fixed
point free Ga,S-action on A

3
S is conjugate to one in general position.

Proof. A twin-triangular derivation ∂ = xn∂y + p+(y)∂z+ + p−(y)∂z− generates a fixed point free Ga,S-action if
and only if xn, p+(y) and p−(y) generate the unit ideal in A[y, z+, z−]. So the residue classes p+ and p− of p+
and p− are relatively prime and at least one of them, say p−, is nonzero. If p+ = 0 then p− is necessarily of the
form p−(y) = c + xp̃−(y) for some c ∈ A∗ and so changing z+ for z+ + z− yields a twin-triangular derivation
conjugate to ∂ for which the corresponding polynomials p±(y) both have non zero residue classes modulo x. More
generally, changing z− for az− + bz+ for general a ∈ A∗ and b ∈ A yields a twin-triangular derivation conjugate
to ∂ and still satisfying condition a) in Definition 4.2. So it remains to show that up to such a coordinate change,
condition b) in the Definition can be achieved.

This can be seen as follows : we consider A
2
κ embedded in P

2
κ = Proj(κ[u, v, w]) as the complement of the line

L∞ = {w = 0} so that the coordinate system (u, v) on A
2 is induced by the projections from the κ-rational points

[0 : 1 : 0] and [1 : 0 : 0] respectively. We let C be the closure in P
2 of the image of the morphism j = (P+, P−) :

A
1
κ = Spec(κ[y]) → A

2
κ defined by the residue classes P+ and P− in κ[y] of integrals P±(y) ∈ A[y] of p±(y),

and we denote by Z ⊂ C the image by j of the inverse image of the branch locus of P+ : A1
κ → A

1
κ. Note that

Z is a finite subset of C defined over κ. Since the condition that a line through a fixed point in P
2
κ intersects

transversally a fixed curve is Zariski open, the set of lines in P
2
κ passing through a point of Z and tangent to a

local analytic branch of C at some point is finite. Therefore, the complement of the finitely many intersection
points of these lines with L∞ is a Zariski open subset U of L∞ with the property that for every q ∈ U , the line
through q and every arbitrary point of Z intersects every local analytic branch of C transversally at every point.
By construction, the rational projections from [0 : 1 : 0] and an arbitrary κ-rational point in U \{[0 : 1 : 0]} induce
a new coordinate system on A

2
κ of the form (u, av + bu), a 6= 0, with the property that Z is not contained in the

inverse image of the branch locus of the morphism aP− + bP+ : A1
κ → A

1
κ. Changing z− for az− + bz+ for a pair

(a, b) ∈ κ∗ × κ ⊂ A∗ ×A corresponding to a general point in U yields a twin-triangular derivation conjugate to ∂
and satisfying simultaneously conditions a) and b) in Definition 4.2. �

4.1.1. Now let ∂ = xn∂y + p+(y)∂z+ + p−(y)∂z− be a twin-triangular A-derivation of A[y, z+, z−] generating a

proper whence fixed point free Ga,S-action σ : Ga,S ×S A
3
S → A

3
S. By virtue of Lemma 4.3 above, we may assume

up to a coordinate change preserving twin-triangularity that ∂ is in general position. Property a) in Definition 4.2
then guarantees in particular that the triangular derivations ∂± = xn∂y+p±(y)∂z± of A[y, z±] are both irreducible.

Furthermore, given any integral P±(y) ∈ A[y] of p±(y), the morphism P± : A1
κ → A

1
κ obtained by restricting

P± : A1
S = Spec(A[y]) → A

1
S = Spec(A[t]) to the closed fiber of prS : A3

S → S is not constant. The branch locus
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of P± is then a principal divisor div(α±(t)) for a certain polynomial α±(t) ∈ κ[t] ⊂ A[t] generating the kernel of
the homomorphism κ[t] → κ[y]/(p±(y)), t 7→ P±(y) + (p±(y)). Property b) in Definition 4.2 guarantees that we

can choose P+ and P− in such a way that the polynomial α+(P+(y)) and α−(P−(y)) generate the unit ideal in
κ[y]. Up to a diagonal change of coordinates on A[y, z+, z−], we may further assume without loss of generality

that P+ and P− are monic.

4.1.2. We let R± = A[t]α±
and we let U± = Spec(R±) be the principal open subset of A1

S = Spec(A[t]) where
α± does not vanish. The polynomial Φ± = −xnz± +P±(y) ∈ A[y, z+, z−] belongs to the kernel of ∂ hence defines
a Ga,S-invariant morphism Φ± : A3

S = Spec(A[y, z+, z−]) → A
1
S = Spec(A[t]). We let

W± = Φ−1
± (U±) ≃ Spec(R±[y, z+, z−]/(−xnz± + P±(y)− t))

Note that W± is a Ga,S-invariant open subset of A3
S which can be identified with the principal open subset where

the Ga,S-invariant regular function Γ± = α± ◦Φ± does not vanish. Since α+(P+(y)) and α−(P−(y)) generate the
unit ideal in κ[y], it follows that the union of W+ and W− covers the closed fiber of the projection prS : A3

S → S.

4.2. Affineness of geometric quotients. With the notation of §4.1.2 above, the geometric quotient X± =
W±/Ga,S for the action induced by σ : Ga,S×S A3

S → A
3
S can be identified with the principal open sub-space XΓ±

of X = A
3
S/Ga,S where the invariant function Γ± ∈ A[y, z+, z−]

Ga,S ≃ Γ(X,OX) does not vanish. The properness
of σ implies that X, whence X+ and X−, are separated algebraic spaces, and the construction of W+ and W−

guarantees that the closed fiber of the structure morphism p : X → S is contained in the union of X+ and X−. So
to complete the proof of Proposition 4.1, it remains to show that X± is an affine scheme. In fact, since X± is by
construction an algebraic space over the affine scheme U± = Spec(R±), its affineness is equivalent to that of the
structure morphism q± : X± → U±, a property which can be checked locally with respect to the étale topology
on U±.

4.2.1. In our situation, there is a natural finite étale base change ϕ± : Ũ± → U± which is obtained as follows: By
construction, see §4.1.1 above, the morphism P± : A1

κ = Spec(κ[y]) → Spec(κ[t]), restricts to a finite étale covering

h0,± : C1,± = Spec(κ[y]α±(P±(y))) → C± = Spec(κ[t]α±(t)) of degree r± = degy(P±(y)). Letting C̃± = Spec(B±)

be the normalization of C± in the Galois closure L± of the field extension i± : κ(t) →֒ κ(y), the induced morphism

h± : C̃± → C± is an étale Galois cover with Galois group G± = Gal(L±/κ(t)), which factors as

h± : C̃± = Spec(B±)
h1,±−→ C1,± = Spec(κ[y]α±(P±(y)))

h0,±−→ C± = Spec(κ[t]α±(t))

where h1,± : C̃± → C1,± is an étale Galois cover for a certain subgroup H± of G± of index r±. Letting

R̃± = A⊗κB± ≃ A[t]α±(t) ⊗κ[t]α±(t)
B± and Ũ± = Spec(R̃±), the morphism ϕ± = pr1 : Ũ± ≃ U± ×C±

C̃± → U±

is an étale Galois cover with Galois group G±, in particular a finite morphism. Since X± is separated, the algebraic
space X̃± = X± ×U±

Ũ± is separated and, by construction, isomorphic to the geometric quotient of the scheme

W̃± =W± ×U±
Ũ± ≃ Spec(R̃±[y, z+, z−]/(−xnz± + P±(y)− t))

by the proper Ga,Ũ±
-action generated by the locally nilpotent R̃±-derivation xn∂y + p+(y)∂z+ + p−(y)∂z− of

R̃±[y, z+, z−]//(−xnz± + P±(y) − t), which commutes with the action of G±. The following Lemma completes
the proof of Proposition 4.1 whence of the Main Theorem.

Lemma 4.4. The geometric quotient X̃± = W̃±/Ga,Ũ±
is an affine Ũ±-scheme.

Proof. Since Ũ± is affine, the assertion is equivalent to the affineness of X̃±. From now on, we only consider the
case of X̃+ = W̃+/Ga,Ũ+

, the case of X̃− being similar. To simplify the notation, we drop the corresponding

subscript “+”, writing simply W̃ = Spec(R̃[y, z, z−]/(−xnz+P (y)− t)). We denote x⊗ 1 ∈ R̃ = A⊗κB by x and

we further identify B with a sub-κ-algebra of R̃ via the homomorphism 1⊗ idB : B → R̃ and with the quotient
R̃/xR̃ via the composition 1⊗ idB : B → A⊗κ B → A⊗κ B/((x⊗ 1)A⊗κ B) = κ⊗κ B ≃ B.

By construction of B, the monic polynomial P (y)− t ∈ B [y] splits as P (y)− t =
∏

g∈G/H(y − tg) for certain

elements tg ∈ B, g ∈ G/H , on which the Galois group G acts by permutation g′ · tg = t
(g′)−1·g

. Furthermore,

since h0 : C1 → C is étale, it follows that for distinct g, g′ ∈ G/H , tg − tg′ ∈ B is an invertible regular function

on C̃ whence on Ũ = S ×Spec(κ) C̃ via the identifications made above. This implies in turn that there exists a

collection of elements σg ∈ R̃ with respective residue classes tg ∈ B = R̃/xR̃ modulo x, g ∈ G/H , on which G

acts by permutation, a G-invariant polynomial S1 ∈ R̃ [y] with invertible residue class modulo x and a G-invariant

polynomial S2 ∈ R̃ [y] such that in R̃ [y] one can write

P (y)− t = S1(y)
∏

g∈G/H

(y − σg) + xnS2(y).

Concretely, the elements σg = σg,n−1 ∈ R̃, g ∈ G/H , can be constructed by induction via a sequence of elements

σg,m ∈ R̃, g ∈ G/H , m = 0, . . . , n − 1, starting with σg,0 = tg ∈ B ⊂ R̃ and culminating in σg,n−1 = σg, and

characterized by the property that for every m = 0, . . . , n − 1, there exists µg,m ∈ R̃ such that P (σg,m) − t =

xm+1µg,m, g ∈ G/H . Indeed, writing P (y)− t = ∏

g∈G/H(y− tg)+xP̃ (y) for a certain P̃ (y) ∈ R̃[y] and assuming
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that the σg,m, g ∈ G/H , have been constructed up to a certain index m < n−1, we look for elements σg,m+1 ∈ R̃

written in the form σg,m + xm+1λg for some λg ∈ R̃. For a fixed g0 ∈ G/H , the conditions impose that

P (σg0,m+1)− t =
∏

g∈G/H

(σg0,m + xm+1λg0 − tg) + xP̃ (σg0,m + xm+1λg0)

= xm+1λg0
∏

g∈(G/H)\{g0}

(tg0 − tg) + P (σg0,m)− t+ xm+2νg0,m

= xm+1λg0
∏

g∈(G/H)\{g0}

(tg0 − tg) + xm+1µg0,m + xm+2νg0,m

for some νg0,m ∈ R̃, and since
∏

g∈(G/H)\{g0}
(tg0 − tg) ∈ R̃∗, we conclude that

λg0 =
µg0,m

∏

g∈(G/H)\{g0}
(tg0 − tg)

and µg0,m+1 = νg0,m.

A direct computation shows further that g′ ·σg,m+1 = σ
(g′)−1·g,m+1

and that g′ ·µg,m+1 = µ
(g′)−1·g,m+1

. Iterating

this procedure n−1 times yields the desired collection of elements σg = σg,n−1 ∈ R̃. By construction,
∏

g∈G/H(y−
σg) ∈ R̃[y] is then an invariant polynomial which divides P (y)−t modulo xnR̃, which implies in turn the existence

of the G-invariant polynomials S1(y), S2(y) ∈ R̃[y].

The closed fiber of the induced morphism W̃ → S consists of a disjoint union of closed sub-schemes Dg ≃
Spec(R̃[z, z−]) ≃ A

2
C̃

with defining ideals (x, y−σg), g ∈ G/H . The open sub-scheme W̃g = W̃ \⋃g′∈(G/H)\{g}Dg′

of W̃ is Ga,Ũ -invariant and one checks using the above expression for P (y)− t that the rational map

W̃ 99K Spec(R̃[ug, z−]), (y, z, z−) 7→ (ug, z−) = (
y − σg
xn

=
z − S2(y)

S1(y)
∏

g′∈(G/H)\{g}(y − σg′)
, z−)

induces a Ga,Ũ -equivariant isomorphism τg : W̃g
∼→ A

2
Ũ

= Spec(R̃[ug , z−]) for the Ga,Ũ -action on A
2
Ũ

generated

by the locally nilpotent R̃-derivation ∂ug + p−(x
nug + σg)∂z− of R̃[ug , z−]. The latter is a translation with ug as

a global slice and with geometric quotient W̃g/Ga,Ũ isomorphic to Spec(R̃[vg ]) where

vg = z− − x−n(P−(x
nug + σg)− P−(σg)) ∈ R̃[ug , z−]

G
a,Ũ .

By construction, for distinct g, g′ ∈ G/H , the rational functions τ∗g vg and τ∗g′vg′ on W̃ differ by the addition of
the element

fg,g′ = x−n(P−(σg)− P−(σg′)) ∈ R̃x ∈ Γ(W̃g ∩ W̃g′ ,OW̃ ).

This implies that X̃ = W̃/Ga,Ũ is isomorphic to the Ũ -scheme obtained by gluing r copies X̃g = Spec(R̃[vg ])

of A
1
Ũ

along the principal open subsets X̃g,x ≃ Spec(R̃x[vg ]) via the isomorphisms induced by the R̃x-algebra
isomorphisms

ξ∗g,g′ : R̃x[vg ] → R̃x[vg′ ], vg 7→ vg′ + fg,g′ , g, g′ ∈ G/H, g 6= g′.

Since by assumption X̃ is separated, it follows from [13, I.5.5.6] that for every pair of distinct elements g, g′ ∈ G/H ,

the sub-ring R̃[vg′ , fg,g′ ] of R̃x[vg′ ] generated by the union of R̃[vg′ ] and ξ∗g,g′(R̃[vg ]) is equal to R̃x[vg′ ]. This

holds if and only if R̃[fg,g′ ] = R̃x whence if and only if fg,g′ ∈ R̃x has the form fg,g′ = x−mg,g′Fg,g′ for a certain

mg,g′ > 1 and an element Fg,g′ ∈ R̃ with invertible residue class modulo x.

This additional information enables a proof of the affineness of X̃ by induction on r as follows: given a pair of
distinct elements g, g′ ∈ G/H such that mg,g′ = m > 0 is maximal, we let θg = 0 and θg′′ = xm−mg,g′′Fg,g′′ ∈ R̃

for every g′′ ∈ (G/H) \ {g}. The choice of the elements θg′′ ∈ R̃ guarantees that the local sections

ψg′′ = xmvg′′ + θg′′ ∈ Γ(X̃g′′ ,OX̃
), g′′ ∈ G/H

glue to a global regular function ψ ∈ Γ(X̃,O
X̃
). Since θg′ = Fg,g′ is invertible modulo x, the regular functions x,

ψ and ψ − θg′ generate the unit ideal in Γ(X̃,O
X̃
). The principal open subset X̃x of X̃ is isomorphic to X̃g,x ≃

Spec(R̃x[vg ]) for every g ∈ G/H , hence is affine. On the other hand, X̃ψ and X̃ψ−θg′
are contained respectively

in the open sub-schemes X̃(g) and X̃(g′) obtained by gluing only the r− 1 open subsets X̃g′′ corresponding to the
elements g′′ in (G/H) \ {g} and (G/H) \ {g′} respectively. By the induction hypothesis, the latter are both affine

and hence X̃ψ and X̃ψ−θg′
are affine as well. This shows that X̃ is an affine scheme and completes the proof. �
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