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PROPER TRIANGULAR Ga-ACTIONS ON A 4 ARE TRANSLATIONS

We describe the structure of geometric quotients for proper locally triangulable Ga-actions on locally trivial A 3 -bundles over a noetherian normal base scheme X defined over a field of characteristic 0. In the case where dim X = 1, we show in particular that every such action is a translation with geometric quotient isomorphic to the total space of a vector bundle of rank 2 over X. As a consequence, every proper triangulable Ga-action on the affine four space A 4 k over a field of characteristic 0 is a translation with geometric quotient isomorphic to A 3 k .

Introduction

The study of algebraic actions of the additive group Ga = G a,C on complex affine spaces A n = A n C has a long history which began in 1968 with a pioneering result of Rentschler [START_REF] Rentschler | Opérations du groupe additif sur le plane affine[END_REF] who established that every such action on the plane A 2 is triangular in a suitable polynomial coordinate system. Consequently, every fixed point free Ga-action on A 2 is a translation, in the sense that the geometric quotient A 2 /Ga is isomorphic to A 1 and that A 2 is equivariantly isomorphic to A 2 /Ga × Ga where Ga acts by translations on the second factor.

Arbitrary Ga-actions turn out to be no longer triangulable in higher dimensions [START_REF] Bass | A nontriangular action of Ga on A 3[END_REF]. But the question whether a fixed point free Ga-action on A 3 is a translation or not was settled affirmatively, first for triangulable actions by Snow [START_REF] Snow | Triangular actions on C 3[END_REF] in 1988, then by Deveney and the second author [START_REF] Deveney | 3 and C 7[END_REF] in 1994 under the additional assumption that the action is proper and then in general by Kaliman [START_REF] Kaliman | Free C+-actions on C 3 are translations[END_REF] in 2004. The argument for triangulable actions depends on their explicit form in an appropriate coordinate system which is used to check that the algebraic quotient π : A 3 → A 3 //Ga = Spec(Γ(A 3 , O A 3 ) Ga ) is a geometric quotient and that A 3 //Ga is isomorphic to A 2 . For proper actions, the properness implies that the geometric quotient A 3 /Ga, which a priori only exists as an algebraic space, is separated whence a scheme by virtue of Chow's Lemma. This means equivalently that the Ga-action is not only locally equivariantly trivial in the étale topology but in fact locally trivial in the Zariski topology, i.e. that A 3 is covered by invariant Zariski affine open subsets of the from Vi = Ui × Ga on which Ga acts by translations on the second factor. Since A 3 is factorial, the open subsets Vi can even be chosen to be principal, which implies in turn that A 3 /Ga is a quasi-affine scheme, in fact an open subset of A 3 //Ga ≃ A 2 with at most finite complement. The equality A 3 /Ga = A 3 //Ga ultimately follows by comparing Euler characteristics. Kaliman's general proof proceeds along a completely different approach, drawing on topological arguments to show directly that the algebraic quotient morphism π : A 3 → A 3 //Ga is a locally trivial A 1 -bundle.

Kaliman's result can be reinterpreted as the striking fact that the topological contractiblity of A 3 is a strong enough constraint to guarantee that a fixed point free Ga-action on it is automatically proper. This implication fails completely in higher dimensions where non proper fixed point free Ga-actions abound, even in the case of triangular actions on A 4 as illustrated by Deveney-Finston-Gehrke in [7]. Starting from dimension 5, it is known that properness and triangulability are no longer enough to imply global equivariant triviality or at least local equivariant triviality in the Zariski topology, as shown by examples of triangular actions on A 5 with either strictly quasi-affine geometric quotients or with geometric quotients existing only as separated algebraic spaces constructed respectively by Winkelmann [START_REF] Winkelmann | On free holomorphic C-actions on C n and homogeneous Stein manifolds[END_REF] and Deveney-Finston [START_REF] Deveney | A proper Ga-action on C 5 which is not locally trivial[END_REF].

But the question whether a proper Ga-action on A 4 is a translation or is at least locally equivariantly trivial in the Zariski topology remains open. Very little progress had been made in the study of these actions during the last decades, and the only existing partial results so far concern triangular actions: Deveney, van Rossum and the second author [START_REF] Deveney | Triangular Ga-actions on C 4[END_REF] established in 2004 that a Zariski locally equivariantly trivial triangular Ga-action on A 4 is a translation. The proof depends on the finite generation of the ring of invariants for such actions established by Daigle-Freudenburg [START_REF] Daigle | Triangular derivations of k[X1, X2, X3, X4[END_REF] and exploits the very particular structure of these rings. Incidentally, it is known in general that local triviality for a proper action on A n follows from the finite generation and regularity of the ring of invariants. But even knowing the former for triangular actions on A 4 , a direct proof of the latter condition remains elusive. The second positive result concerns a special type of triangular Ga-actions generated by derivations of C[x, y, z, u] of the form r(x)∂y + q(x, y)∂z + p(x, y)∂u where r(x) ∈ C[x] and p(x, y), q(x, y) ∈ C[x, y, ]. To insist on the fact that p(x, y) belongs to C[x, y] and not only to C[x, y, z] as it would be the case for a general triangular situation, these derivations (and the Ga-actions they generate) were named twin-triangular in [START_REF] Deveney | Twin triangular derivations[END_REF]. The case where r(x) has simple roots was first settled in 2002 by Deveney and the second author in loc. cit. by explicitly computing the invariant ring C[x, y, z, u] Ga and investigating the structure of the algebraic quotient morphism A 4 → A 4 //Ga = Spec(C[x, y, z1, z2] Ga ). The simplicity of the roots of r(x) was crucial to achieve the computation, and the generalization of the result to arbitrary twin-triangular actions obtained in 2012 by the first two authors [START_REF] Dubouloz | Proper twin triangular Ga-actions on A 4 are translations[END_REF] required completely different methods which focused more on the nature of the corresponding geometric quotients A 4 C /Ga. The latter a priori exist only as separated algebraic spaces and the crucial step in loc. cit. was to show that for twin-triangular actions they are in fact schemes, or, equivalently that proper twin-triangular Ga-actions on A 4 are not only locally equivariantly trivial in the étale topology but also in the Zariski topology. This enabled in turn the use of the aforementioned result of Deveney-Finston-van Rossum to conclude that such actions are indeed translations.

One of the main obstacles to extend the above results to arbitrary triangular actions comes from the fact that in contrast with fixed point freeness, the property for a triangular Ga-action on A 4 to be proper is in general subtle to characterize effectively in terms of its associated locally nilpotent derivation. A good illustration of these difficulties is given by the following family of fixed point free Ga-actions

σr : Ga × A 4 → A 4 , (t, (x, y, z, u)) → (x, y + tx 2 , z + 2yt + x 2 t 2 , u + (1 + x r z)t + x r yt 2 + 1 3 x r+1 t 3 ) r ≥ 1,
generated by the triangular derivations δr = x 2 ∂y + 2y∂z + (1 + x r z)∂u of C[x, y, z, u], which are either non proper if r = 1, 2 or translations otherwise. The fact that σr is a translation for every r ≥ 4 follows immediately from the observation that δr admits the variable s = ux r-2 yz + 2 3 x r-4 y 3 as a global slice. The case r = 3 is slightly more complicated: one can first observe that δ3 is conjugated via the triangular change of variable ũ = ux r-2 yz to the twin-triangular derivation x 2 ∂y + 2y∂z + (1 -2xy 2 )∂ũ of C[x, y, z, ũ]. The projection pr x,y, ũ : A 4 → A 3 is then equivariant for the fixed point free Ga-action on A 3 generated by the triangular derivation x 2 ∂y + (1 -2xy 2 )∂ũ of C[x, y, ũ] and it descends to a locally trivial A 1 -bundle ρ : A 4 /Ga → A 3 /Ga ≃ A 2 between the respective geometric quotients. Since A 2 is affine and factorial, ρ is a trivial A 1 -bundle and hence the Ga-action generated by δ3 is a translation. On the other hand, the non properness of σ2 can be seen quickly via the invariant hypersurface method outlined in [START_REF] Dubouloz | Proper twin triangular Ga-actions on A 4 are translations[END_REF], namely, one checks in this case by a direct computation that the induced Ga-action on the invariant hypersurface H = x 2 z = y 2 -3 2 ⊂ A 4 is not proper, with non separated geometric quotient H/Ga isomorphic to the product of the affine line A 1 with the affine line with a double origin. The failure of properness in the case where r = 1 is even more subtle to analyze since in contrast with the previous case, the induced action on every invariant hypersurface of the form H λ = x 2 z = y 2λ , λ ∈ C, turns out to be proper. Going back to the definition of the properness for the action σ1, which says that the morphism Φ = (pr 2 , σ1) : Ga ×A 4 → A 4 ×A 4 is proper, one can argue that the union of the following sequence of points

(pn, qn) = (pn; µ1( √ n 3 , pn)) = (( 3 √ 6 n , - 3 √ 36 2 √ n , 1 3 √ 6 √ n , 0); ( 3 √ 6 n , 3 √ 36 2 √ n , 1 3 √ 6 √ n , 1)) ∈ A 4 × A 4 , n ∈ N
and its limit (p∞; q∞) = (p∞, µ1(1, p∞)) = ((0, 0, 0, 0); (0, 0, 0, 1)) is a compact subset of A 4 × A 4 equipped with the analytic topology whose inverse image by Φ is unbounded. So Φ is not proper as an analytic map between the corresponding varieties equipped with their respective underlying structures of analytic manifolds and hence is not proper in the algebraic category either.

In this article, we reconsider proper triangular actions on A 4 in broader framework and we develop new techniques to overcome the above difficulties. These enable in turn to completely solve the question of global equivariant triviality for such actions. Since a triangular Ga-action on A 4 = Spec(C[x, y, z, u]) preserves the variable x, it can be considered as an action of the additive group scheme G a,C

[x] = Ga × Spec(C) Spec(C[x]) on the affine 3-space A 3 C[x] over Spec(C[x]
) so that the setup is in fact 3-dimensional over a parameter space. The properties for a G a,C[x] -action on A 3 C[x] to be proper or triangulable being both local on the parameter space, a cost free generalization is obtained by replacing Spec(C[x]) by an arbitrary noetherian normal scheme X defined over a field of characteristic zero and the trivial A 3 -bundle pr x :

A 3 C[x] → Spec(C[x]) of Spec(C[x]
) by a Zariski locally trivial A 3 -bundle π : E → X. Our main result then reads as follows:

Theorem. Let X be a noetherian normal scheme defined over a field of characteristic zero, let π : E → X be a Zariski locally trivial A 3 -bundle equipped with a proper locally triangulable Ga,X-action and let p : X = E/Ga,X → X be the geometric quotient taken in the category of algebraic X-spaces. Then there exists an open sub-scheme U of X with codimX (X \ U ) ≥ 2 such that XU = p -1 (U ) → U has the structure of a Zariski locally trivial A 2 -bundle.

Note in particular that since in the original problem, the base X = Spec(C[x]) is 1-dimensional, this Theorem and an appeal to the aforementioned result [START_REF] Deveney | Triangular Ga-actions on C 4[END_REF] are enough to settle the question for A 4 C . The conclusion of the above Theorem is essentially optimal. Indeed, in the example due to Winkelmann [START_REF] Winkelmann | On free holomorphic C-actions on C n and homogeneous Stein manifolds[END_REF], one has

X = Spec(C[x, y]), π = pr x,y : A 3 X = Spec(C[x, y][u, v, w]) → X equipped with the proper triangular Ga,X -action generated by the C[x, y]-derivation ∂ = x∂u + y∂v + (1 + xv -yu)∂w of C[x, y][u, v, w],
and the geometric quotient p : X = A 3 X /Ga,X → X is the strictly quasi-affine complement of the closed subset {x = y = z = 0} in the 4-dimensional smooth affine quadric Q ⊂ A 3 X with equation xt2 + yt1 = z(z + 1). The structure morphism p : X → X is easily seen to be an A 2 -fibration, which restricts to a locally trivial A 2 -bundle over the open subset U = X \ {(0, 0)}. However, there is no Zariski or étale open neighborhood of the origin (0, 0) ∈ X over which p : X → X restricts to a trivial A 2 -bundle for otherwise p : X → X would be an affine morphism and so X would be an affine scheme. The situation for the C[x, y]-derivation ∂ = x∂u is very similar: here the geometric quotient X = A 3 X /Ga,X is a separated algebraic space which is not a scheme and the structure morphism p : X → X is again an A 2 -fibration restricting to a Zariski locally trivial A 2 -bundle over U = X \ {(0, 0)} but whose restriction to any Zariski or étale open neighborhood of the origin (0, 0) ∈ X is nontrivial.

+ y∂v + (1 + xv 2 )∂w of C[x, y][u, v, w] constructed by
In contrast, in the case of a 1-dimensional affine base, we can immediately derive the following Corollaries:

Corollary. Let π : E → S be a rank 3 vector bundle over an affine Dedekind scheme S = Spec(A) defined over a field k of characteristic 0. Then every proper locally triangulable Ga,S-action on E is equivariantly trivial with geometric quotient E/Ga,S isomorphic to a vector bundle of rank 2 over S, stably isomorphic to E.

Proof. By the previous Theorem, the geometric quotient p : E/Ga,S → S has the structure of a Zariski locally trivial A 2 -bundle, hence is a vector bundle of rank 2 by [START_REF] Bass | Locally polynomial algebras are symmetric algebras[END_REF]. In particular, E/Ga,S is affine which implies in turn that ρ : E → E/Ga,S is a trivial Ga,S-bundle. So E ≃ E/Ga,S ×S A 1 S as vector bundles over S.

Corollary. Let S = Spec(A) be an affine Dedekind scheme defined over a field of characteristic 0. Then every proper triangular Ga,S-action on A 3 S is a translation.

Proof. By the previous Corollary, A 3 S /Ga,S is a stably trivial vector bundle of rank 2 over S, whence is isomorphic to the trivial bundle A 2 S over S by virtue of [START_REF] Bass | Algebraic K-theory[END_REF]IV 3.5].

Coming back to the original problem for triangular G a,k -actions on A 4 k , the previous Corollary does in fact eliminate the need for [START_REF] Deveney | Triangular Ga-actions on C 4[END_REF] hence the dependency on the fact that the corresponding rings of invariants are finitely generated:

Corollary. If k is a field of characteristic 0, then every proper triangular G a,k -action on A 4 k is a translation.

Proof. Letting A 4 k = Spec(k[x, y, z, u]), we may assume that the action is generated by a k-derivation of the form ∂ = r(x)∂y + q(x, y)∂z + p(x, y, z)∂u. As explained above, the latter can be considered as a triangular k

[x]-derivation of k[x][y, z, u] generating a proper G a,k[x] -action on A 4 k = A 3 k[x]
which is, by the previous Corollary, a trivial Ga-bundle over its geometric quotient

A 4 k /G a,k ≃ A 3 k[x] /G a,k[x] ≃ A 2 k[x] ≃ A 3 k .
Let us now briefly explain the general philosophy behind the proof. After localizing at codimension 1 points of X, the Main Theorem reduces to the statement that a proper Ga,S-action σ : Ga,S ×S A 3 S → A 3 S on the affine affine space A 3 S = Spec(A[y, z, u]) over the spectrum of a discrete valuation ring, generated by a triangular A-derivation ∂ = a∂y + q(y)∂z + p(y, z)∂u of A[y, z, u], where a ∈ A \ {0}, q(y) ∈ A[y] and p(y, z) ∈ A[y, z], is a translation. Triangularity immediately implies that the restriction of σ to the generic fiber of pr S : A 3 S → S is a translation with a -1 y as a global slice. This reduces the problem to the study of neighborhoods of points of the geometric quotient X = A 3 S /Ga,S supported on the closed fiber of the structure morphism p : X → S. A second feature of triangularity is that σ commutes with the action τ : Ga,S ×S A 3 S → A 3 S generated by the A-derivation ∂u which therefore descends to a Ga,S-action τ on the geometric quotient X = A 3 S /Ga,S. On the other hand, σ descends via the projection pr y,z : A 3 S → A 2 S = Spec(A[y, z]) to the action σ on A 2 S generated by the A-derivation ∂ = a∂y + q(y)∂z of A[y, z]. Even though σ and τ are no longer fixed point free in general, if we take the quotient of A 2 S by the action σ as an algebraic stack [A 2 S /Ga,S] we obtain a cartesian square

A 3 S pr y,z / / X = A 3 S /Ga,S A 2 S / / [A 2 S /Ga,S]
which simultaneously identifies the quotient stacks [A 2 S /Ga,S] for the action σ and [X/Ga,S] for the action τ with the quotient stack of A 3 S for the G 2 a,S -action defined by the commuting actions σ and τ . In this setting, the global equivariant triviality of the action σ becomes equivalent to the statement that a separated algebraic S-space X admitting a Ga,S-action whose algebraic stack quotient [X/Ga,S] is isomorphic to that of a triangular Ga,S-action on A 2 S is an affine scheme. While a direct proof of this reformulation seems totally out of reach with existing methods, it turns out that its conclusion holds over a certain Ga,S-invariant principal open subset V of A 2 S which dominates S and for which the algebraic stack quotient [V /Ga,S] is in fact represented by a locally separated algebraic sub-space of [A 2 S /Ga,S]. This provides at least an affine open subscheme V ×S A 1 S /Ga,S of X dominating S, and leaves us with a closed subset of codimension at most 2 of X, supported on the closed fiber of p : X → S, in a neighborhood of which no further information is a priori available to decide even the schemeness of X. But similar to the argument in [START_REF] Dubouloz | Proper twin triangular Ga-actions on A 4 are translations[END_REF], this situation can be rescued for twin-triangular actions: the fact that for such actions ∂u = p(y, z) is actually a polynomial in y only enables the same reasoning with respect to the other projection pr y,u :

A 3 S → A 2 S = Spec(A[y, u]
), yielding a second affine open sub-scheme V ′ ×S A 1 S /Ga,S of X dominating S. This implies at least the schemeness of X, provided that the open subsets V and V ′ can be chosen so that the union of the corresponding open subschemes of X covers the closed fiber of p : X → S.

The scheme of the article is the following. The first two sections recall basic notions and discuss a couple of preliminary technical reductions. The third section is devoted to establishing an effective criterion for non properness of fixed point free triangular actions from which we deduce the intermediate fact that every proper triangular action is twin-triangulable. Then in the next section, we establish that proper twin-triangular actions are indeed translations. Here, in contrast with the proof for the complex case given in [START_REF] Dubouloz | Proper twin triangular Ga-actions on A 4 are translations[END_REF], our argument is independent of finite generation of rings of invariants and reduces the systematic study of algebraic spaces quotients to a minimum thanks to an appropriate Sheshadri cover trick [START_REF] Seshadri | Quotient spaces modulo reductive algebraic groups[END_REF].

1. Recollection on proper, fixed point free and locally triangulable Ga-actions 1.1. Proper versus fixed point free actions.

Recall that an action σ : Ga,S ×S E → E of the additive group scheme Ga,S = Spec S (OS

[t]) = S × Z Spec(Z[t]) on an S-scheme E is called proper if the morphism Φ = (pr 2 , σ) : Ga,S ×S E → E ×S E is proper. 1.1.1.
If S is moreover defined over a field k of characteristic zero, then the fact that G a,k is affine and has no nontrivial algebraic subgroups implies that properness is equivalent to Φ being a closed immersion. In particular, a proper Ga,S-action is in this case fixed point free and as such, is equivariantly locally trivial in the étale topology on E. That is, there exists an affine S-scheme U and a surjective étale morphism f : V = U ×S Ga,S → E which is equivariant for the action of Ga,S on U ×S Ga,S by translations on the second factor. This implies in turn the existence of a geometric quotient ρ : E → X = E/Ga,S in the form of an étale locally trivial principal Ga,S-bundle over an algebraic S-space p : X → S (see e.g. [18, 10.4]). Informally, X is the quotient of U by the étale equivalence relation which identifies two points u, u ′ ∈ U whenever there exists t, t ′ ∈ Ga,S such that f (u, t) = f (u ′ , t ′ ).

1.1.2. Conversely, a fixed point free Ga,S-action is proper if and only if the geometric quotient X = E/Ga,S is a separated S-space. Indeed, by definition p : X → S is separated if and only if the diagonal morphism ∆ : X → X ×S X is a closed immersion, a property which is local on the target with respect to the fpqc topology [START_REF] Knutson | Algebraic spaces[END_REF]II.3.8] and [START_REF] Grothendieck | SGA1. Revêtements étales et Groupe Fondamental[END_REF]VIII.5.5]. Since ρ : E → X is a Ga,S-bundle, taking the fpqc base change by

ρ × ρ : E ×S E → X ×S X yields a cartesian square Ga,S ×S E Φ / / ρ•pr 2 E ×S E ρ×ρ X ∆ / / X ×S X from which we see that ∆ is a closed immersion if and only if Φ is.

Locally triangulable actions.

Given an affine scheme S = Spec(A) defined over a field of characteristic zero, an action σ : Definition 1.1. Let X be a scheme defined over a field of characteristic zero and let π : E → X be a Zariski locally trivial A n -bundle over X. An action σ : Ga,X ×X E → E of Ga,X on E is called locally triangulable if there exists a covering of Spec(A) by affine open sub-schemes Si = Spec(Ai), i ∈ I, such that

Ga,S ×S A n S → A n S generated by a locally nilpotent A-derivation ∂ of Γ(A n S , O A n S ) is called triangulable if there exists an isomorphism of A-algebras τ : Γ(A n A , O A n A ) ∼ → A[x1, • • • , xn] such that the conjugate δ = τ • ∂ • τ -1 of ∂ is
E |S i ≃ A n S i and such that the Ga,S i -action σi : Ga,S i ×S i A n S i → A n S i on A n S i induced by σ is triangulable. A Zariski locally trivial A 1 -bundle π : E → X equipped
with a fixed point free Ga,X -action is nothing but a principal Ga,X -bundle. As mentioned in the introduction, the nature of fixed point free locally triangulable Ga,X-actions on Zariski locally trivial A 2 -bundles π : E → X is classically known. Namely, we have the following generalization of the main theorem of [START_REF] Snow | Triangular actions on C 3[END_REF]: Proposition 1.2. Let X be a noetherian normal scheme defined over a field of characteristic 0 and let π : E → X be a Zariski locally trivial A 2 -bundle equipped with a fixed point free locally triangulable Ga,X -action. Then the geometric quotient p : E/Ga,X → X has the structure of a Zariski locally trivial A 1 -bundle over X.

Proof. The assertion being local on the base X, we may assume that X = Spec(A) is the spectrum of a normal local domain containing a field of characteristic 0 and that E = A 2 X = Spec(A[y, z]) is equipped with the Ga,Xaction generated by a triangular derivation ∂ = a∂y + q(y)∂z of A[y, z], where a ∈ A and q(y) ∈ A[y]. The fixed point freeness hypothesis is equivalent to the property that a and q(y) generate the unit ideal in A[y, z]. So q(y) has the form q(y) = b + cq(y) where b ∈ A is relatively prime with a, c ∈ √ aA and q(y)

∈ A[y]. Letting Q(y) = ´y 0 q(τ )dτ = by + c ´y 0 q(τ )dτ , the polynomial v = az -Q(y) ∈ A[y, z] belongs to the kernel Ker∂ of ∂ hence defines a Ga,X-invariant morphism v : E → A 1 X = Spec(A[t]
). Since a and b generate the unit ideal in A, it follows from the Jacobian criterion that v : E → A 1 X is a smooth morphism. Furthermore, the fibers of v coincide precisely with the Ga,X -orbits on E. Indeed, over the principal open subset Xa = Spec(Aa) of X, ∂ admits a -1 y as a slice and we have an equivariant isomorphism

E |X a ≃ Spec(A[a -1 v, a -1 y]) ≃ A 1
Xa ×X Ga,X where Ga,X acts by translations on the second factor. On the other hand, the restriction E |Z of E over the closed subset Z ⊂ X with defining ideal √ aA ⊂ A is equivariantly isomorphic to A 2 Z equipped with the Ga,Z-action generated by the derivation ∂ = b∂z of (A/ √ aA)[y, z], where b ∈ (A/ √ aA) * denotes the residue class of b. The restriction of v to E |Z coincides via this isomorphism to the morphism A 2 Z → A 1 Z defined by the polynomial v = by ∈ (A/ √ aA)[y, z] which is obviously a geometric quotient. The above properties imply that the morphism ṽ : E/Ga,X → A 1 X induced by v is smooth and bijective. Since it admits étale quasi-sections, ṽ is then an isomorphism locally in the étale topology on A 1

X whence an isomorphism.

preliminary reductions

2.1. Reduction to a local base. The statement of the Main Theorem can be rephrased equivalently as the fact that a proper locally triangulable Ga,S-action on a Zariski locally trivial A 3 -bundle π : E → S is a translation in codimension 1. This means that for every point s ∈ S of codimension 1 with local ring OS,s, the fiber product E ×S S ′ ≃ A 3 S ′ of E → S with the canonical immersion S ′ = Spec(OS,s) ֒→ S equiped with the induced proper triangular action of G a,S ′ = Ga,S ×S S ′ is equivariantly isomorphic to the trivial bundle A 2 S ′ × S ′ G a,S ′ over S ′ equipped with the action of G a,S ′ by translations on the second factor.

2.1.1. So we are reduced to the case where S is the spectrum of a discrete valuation ring A containing a field of characteristic 0, say with maximal ideal m and residue field κ = A/m, and where π = pr S : E = A 3 S = Spec(A[y, z, u]) → S = Spec(A) is equipped with a proper triangulable Ga,S-action σ : Ga,S ×S A 3 S → A 3 S . Letting x ∈ m be uniformizing parameter, every such action is equivalent to one generated by an A-derivation ∂ of A[y, z, u] of the form ∂ = x n ∂y + q(y)∂z + p(y, z)∂u

where n ≥ 0, q(y) ∈ A[y] and p(y, z) = ℓ r=0 pr(y)z r ∈ A[y, z], the fixed point freeness of σ being equivalent to the property that x n , q(y) and p(y, z) generate the unit ideal in A[y, z, u].

2.2.

Reduction to proving the affineness of the geometric quotient. With the notation of §2.1.1, we can already observe that if n = 0 then y is an obvious global slice for ∂ and hence that the action is globally equivariantly trivial with geometric quotient

X = A 3 S /Ga,S ≃ A 2 S .
Similarly, if the residue class of q(y) in κ[y] is a non zero constant then the action σ is a translation. Indeed, in this case, the Ga,S-action σ :

Ga,S ×S A 2 S → A 2 S on A 2 S = Spec(A[y, z]
) generated by the A-derivation ∂ = x n ∂y + q(y)∂z of A[y, z] is fixed point free hence globally equivariantly trivial with geometric quotient A 2 S /Ga,S ≃ A 1 S by virtue of Proposition 1.2. On the other hand, the Ga,S-equivariant projection pr y,z : A 3 S → A 2 S descends to a locally trivial A 1 -bundle between the geometric quotients A 3 S /Ga,S and A 2 S /Ga,S, and since A 2 S /Ga,S ≃ A 1 S is affine and factorial, it follows that

A 3 S /Ga,S ≃ A 2 S /Ga,S ×S A 1 S ≃ A 2 S .
The affineness of A 2 S implies in turn that the quotient morphism A 3 S → A 3 S /Ga,S is the trivial Ga,S-bundle whence that σ : Ga,S ×S A 3 S → A 3 S is a translation. Alternatively, one can observe that a global slice s ∈ A[y, z] for the action σ is also a global slice for σ via the inclusion A[y, z] ⊂ A[y, z, u] More generally, the following Lemma reduces the question of global equivariant triviality with geometric quotient X = A 3 S /Ga,S isomorphic to A 2 S to showing that X, which a priori only exists as an algebraic S-space, is an affine S-scheme: Lemma 2.1. A fixed point free triangular action σ : Ga,S ×S A 3 S → A 3 S is a translation if and only if its geometric quotient X = A 3 S /Ga,S is an affine S-scheme. Proof. One direction is clear, so assume that X is an affine S-scheme. It suffices to show that the structure morphism p : X → S is an A 2 -fibration, i.e. a faithfully flat morphism with all its fibers isomorphic to affine planes over the corresponding residue fields. Indeed, if so, the affineness of X implies on the one hand that X is isomorphic to the trivial A 2 -bundle A 2 S by virtue of [START_REF] Sathaye | Polynomial rings in two variables over a d.v.r.: A criterion[END_REF] and on the other hand that ρ : A 3 S → X is isomorphic to the trivial Ga,S-bundle X ×S Ga,S over S, which yields Ga,S-equivariant isomorphisms A 3 S ≃ X ×S Ga,S ≃ A 2 S ×S Ga,S. To see that p : X → S is an A 2 -fibration, recall that pr S : A 3 S → S and the quotient morphism ρ :

A 3 S → X = A 3
S /Ga,S are both faithfully flat, so that p : X → S is faithfully flat too ([17, II.3.2] and [14, Corollaire 2.2.13(iii)]). Letting m and ξ be the closed and generic points of S respectively, the fibers pr -1 S (m) ≃ A 3 κ and pr -1

S (ξ) ≃ A 3 κ(ξ)
coincide with the total spaces of the restriction of the Ga,S-bundle ρ : A 3 S → X over the fibers Xm = p -1 (m) and X ξ = p -1 (ξ) respectively. Since the G a,κ(ξ) -action induced by σ on pr -1 S (ξ) admits x -n y as a global slice, it is a translation with geometric quotient A 3 κ(ξ) /G a,κ(ξ) ≃ A 2 κ(ξ) and so X ξ ≃ A 2 κ(ξ) . On the other hand, we may assume in view of the above discussion that n ≥ 1 so that the Ga,κ-action on pr -1 S (m) ≃ A 3 κ induced by σ coincides with the fixed point free action generated by the κ[y]-derivation ∂ = q(y)∂z + p(y, z)∂u of κ[y][z, u], where q(y) and p(y, z) denote the respective residue classes of q(y) and p(y, z) modulo x. By virtue of Proposition 1.2, the geometric quotient A 3 κ /Ga,κ has the structure of a Zariski locally trivial A 1 -bundle over

A 1 κ = Spec(κ[y]) hence is isomorphic to A 2
κ . This implies that Xm ≃ A 3 κ /Ga,κ ≃ A 2 κ as desired.

Remark 2.2. By exploiting the fact that arbitrary Ga,S-actions on the affine 3-space A 3 S over the spectrum S of a discrete valuation ring A containing a field of characteristic 0 have finitely generated rings of invariants [START_REF] Bhatwadekar | On finite generation of kernels of locally nilpotent R-derivations of R[X, Y, Z[END_REF], one can derive the following stronger characterization: a fixed point free action σ : Ga,S ×S A 3 S → A 3 S is either a translation or its geometric quotient X = A 3 S /Ga,S is an algebraic space which is not a scheme.

Indeed, the quotient morphism ρ : A 3 S → X is again an A 2 -fibration thanks to [5, Theorem 3.2] which asserts that for every field κ of characteristic 0 a fixed point free action of Ga,κ-action on A 3 κ is a translation, and so the assertion is equivalent to the fact that a Zariski locally equivariantly trivial action σ has affine geometric quotient X. This can be seen in a similar way as in the proof of Theorem 2.1 in [START_REF] Deveney | Triangular Ga-actions on C 4[END_REF]. Namely, by hypothesis we can find an open covering of A 3 S by finitely many invariant affine open subsets Ui on which the induced Ga,S-action is a translation with affine geometric quotient Ui/Ga,S, i = 1, . . . , n. Since Ui and A 3 S are affine, A 3 S \ Ui is a Ga,S-invariant Weil divisor on A 3 S which is in fact principal as A, whence A[y, z, u], is factorial. It follows that there exists invariant regular functions fi ∈ A[y, z, u] Ga ≃ Γ(X, O X ) such that Ui = Spec(A[x, y, z] f i ) coincides with the inverse image by the quotient morphism ρ : A 3 S → X of the principal open subset X f i of X, i = 1, . . . , n. Since ρ : A 3 S → X is a Ga,S-bundle and Ui ≃ Ui/Ga,S ×S Ga,S by assumption, we conclude that X is covered by the principal affine open subsets X f i ≃ Ui/Ga,S, i = 1, . . . , n, whence is quasi-affine. Now since by the aforementioned result [START_REF] Bhatwadekar | On finite generation of kernels of locally nilpotent R-derivations of R[X, Y, Z[END_REF], A[y, z, u] Ga is an integrally closed finitely generated A-algebra, it is enough to check that the canonical open immersion j : X → X = Spec(Γ(X, O X )) ≃ Spec(A[y, z, u] Ga ) is surjective. The surjectivity over the generic point of S follows immediately from the fact the kernel of a locally nilpotent derivation derivation of a polynomial ring in three variables over a field K of characteristic 0 is isomorphic to a polynomial ring in two variables over K (see e.g. [START_REF] Miyanishi | Normal affine subalgebras of a polynomial ring, Algebraic and topological Theories -To the memory of Dr[END_REF]). So it remains to show that the induced open immersion jm : Xm ≃ A 2 κ ֒→ Xm = Spec(A[y, z, u] Ga ⊗A A/m) between the corresponding fibers over the closed point m of S is surjective, in fact, an isomorphism. Since x ∈ A[y, z, u] Ga is prime, Xm ≃ Spec(A[y, z, u] Ga /(x)) is an integral κ-scheme of finite type and Corollary 4.10 in [START_REF] Bhatwadekar | On finite generation of kernels of locally nilpotent R-derivations of R[X, Y, Z[END_REF] can be interpreted more precisely as the fact that Xm ≃ C ×κ A 1 κ for a certain 1-dimensional affine κ-scheme C. This implies in turn that jm is an isomorphism. Indeed, since C is dominated via jm by a general affine line A 1 κ ⊂ A 2 κ , its normalization C is isomorphic to A 1 κ and so jm factors through an open immersion jm :

A 2 κ ֒→ C ×κ A 1 κ ≃ A 2 κ .
The latter is surjective for otherwise the complement of its image would be of pure codimension 1 hence a principal divisor div(f ) for a non constant regular function f on C ×κ A 1 κ . But then f would restrict to a non constant invertible function on the image of A 2 κ which is absurd. Thus jm :

A 2 κ ֒→ C ×κ A 1 κ ≃ A 2
κ is an isomorphism and since the normalization morphism

C ×κ A 1 κ → C ×κ A 1 κ is finite whence closed it follows that jm : A 2 κ ֒→ C ×κ A 1
κ is an open and closed immersion hence an isomorphism.

2.3. Reduction to extensions of irreducible derivations. In view of the discussion at the beginning of subsection 2.2, we may assume for the A-derivation ∂ = x n ∂y + q(y)∂z + p(y, z)∂u that n > 0 and that the residue class of q(y) in κ[y] is either zero or not constant. In the first case, q(y) ∈ mA[y] has the form q(y) = x µ q0(y) where µ > 0 and where q0(y) ∈ A[y] has non zero residue class modulo m, so that the derivation ∂ = x n ∂y + q(y)∂z induced by ∂ on the sub-ring A[y, z] is reducible. On the other hand, the fixed point freeness of the Ga,S-action σ generated by ∂ implies that up to multiplying u by an invertible element in A, one has p(y, z) = 1 + x ν p0(y, z) for some ν > 0 and p0(y, z) ∈ A[y, z].

If µ ≥ n, then letting Q0(y) = ´y 0 q0(τ )dτ ∈ A[y], the Ga,S-invariant polynomial z1 = zx µ-n Q0(y) is a variable of A[y, z, u] over A[y, u], and so ∂ is conjugate to the derivation x n ∂y + p(y, z1 + x µ-n Q0(y))∂u of the polynomial ring in two variables A[z1][y, u] over A[z1]. Since σ is fixed point free, Proposition 1.2 implies that it is equivariantly trivial with geometric quotient isomorphic to the total space of the trivial A 1 -bundle over A 1 S = Spec(A[z1]) whence to A 2 S . Otherwise, if µ < n, then the Ga,S-action σ : Ga,S ×S A 3

S → A 3 S on A 3 S = Spec(A[ỹ, z, ũ]) generated by the A-derivation ∂ = x n-µ ∂ỹ + q0(ỹ)∂z + (1 + x ν p0(ỹ, z))∂ũ
is again fixed point free, hence admits a geometric quotient ρ : A 3 S → X = A 3 S /Ga,S in the form of an étale locally trivial Ga,S-bundle over a certain algebraic S-space X.

Lemma 2.3. The quotient spaces X = A 3 S /Ga,S and X = A 3 S /Ga,S for the Ga,S-actions σ and σ on A 3 S generated by ∂ and ∂ respectively are isomorphic. In particular σ is proper (resp. equivariantly trivial) if and only if σ is proper (resp. equivariantly trivial).

Proof. Letting ρi : Vi = A 3 S → Xi = Vi/Ga,S, i = 0, . . . , µ, denote the geometric quotient of Vi = Spec(A[ỹi, zi, ũi]) for the fixed point free Ga,S-action σi generated by the A-derivation ∂i = (1 + x ν p0(ỹi, zi)) ∂ũ i + x µ-i q0(ỹi)∂z i + x n-i ∂ỹ i , the first assertion will follow from the more general fact that Xi ≃ Xi+1 for every i = 0, . . . , µ -1. Indeed, we first observe that since ũi is a slice for ∂i modulo x, Xi,m = Xi ×S Spec(κ) is isomorphic to A 2 κ = Spec((A/m)[ỹi, zi]) and the restriction of ρi over Xi,m is isomorphic to the trivial bundle pr 1 : Xi,m ×κ Spec(κ[ũi]) → Xi,m. Now let βi : Vi+1 → Vi be the affine modification of the total space of ρi : A 3 S → Xi with center at the zero section of the induced bundle pr 1 : Xi,m ×κ Spec(κ[ũi]) → Xi,m and with principal divisor x. In view of the previous description, βi : Vi+1 → Vi coincides with the affine modification of Spec(A[ỹi, zi, ũi]) with center at the ideal (x, ũi) and principal divisor x, that is, with the birational S-morphism induced by the homomorphism of A-algebra

β * i : A[ỹi+1, zi+1, ũi+1] → A[ỹi, zi, ũi], (ỹi+1, zi+1, ũi+1) → (ỹi, zi, xũi).
By construction, βi is equivariant for the Ga,S-actions σi+1 and σi generated respectively by the locally nilpotent A-derivations ∂i+1 of A[ỹi+1, zi+1, ũi+1] and ∂i = x ∂i of A[ỹi, zi, ũi]. Furthermore, since ρi : Vi → Xi is also Ga,Sinvariant for the action σi, the morphism ρi • βi : Vi+1 → Xi is Ga,S-invariant, whence descends to a morphism βi : Xi+1 → Xi. Since the latter restricts to an isomorphism over the generic point of S, it remains to check that it is also an isomorphism in a neighborhood of every point p ∈ Xi lying over the closed point m of S. Let f : U = Spec(B) → Xi be an affine étale neighborhood of such a point p ∈ Xi over which ρi : Vi → Xi becomes trivial, say Vi ×X

i U ≃ A 1 U = Spec(B[ṽi]
). The Ga,S-action on Vi generated by ∂i lifts to the Ga,U -action on A 1 U generated by the locally nilpotent B-derivation x∂ṽ i and since βi : Vi+1 → Vi is the affine modification of Vi with center at the zero section of the restriction of ρi : Vi → Xi over the closed point of S, we have a commutative diagram Vi+1

ρi+1 β i } } { { { { { A 1 U o o pr U δ i }} } } Vi ρi A 1 U o o pr U Xi+1 βi } } { { { { { U } } } } } } } } } } o o Xi U f o o
in which the top and front squares are cartesian, and where the morphism δi :

A 1 U = Spec(B[ṽi+1]) → A 1 U = Spec(B[ṽi]) is defined by the B-algebras homomorphism B[ṽi] → B[ṽi+1], ṽi → xṽi+1.
The latter is equivariant for the action on Spec(B[ṽi+1]) generated by the locally nilpotent B-derivation ∂ṽ i+1 and we conclude that

pr 2 : A 1 U ≃ A 1 U ×V i Vi+1 →
Vi+1 is an étale trivialization of the Ga,S-action induced by σi+1 on the open subscheme (ρi • βi) -1 (f (U )) of Vi+1. This implies in turn that U ×X i Xi+1 ≃ U , whence that βi : Xi+1 → Xi is an isomorphism in a neighborhood of p ∈ Xi as desired.

The second assertion is a direct consequence of the fact that properness and global equivariant triviality of σ and σ are respectively equivalent to the separatedness and the affineness of the geometric quotients X ≃ X.

2.3.1.

Summing up, we are now reduced to proving that a proper Ga,S-action on A 3 S generated by an A-derivation ∂ = x n ∂y + q(y)∂z + p(y, z)∂u of A[y, z, u], such that n > 0 and q(y) ∈ A[y] has non constant residue class in κ[y], has affine geometric quotient X = A 3 S /Ga,S. This will be done in two steps in the next sections: we will first establish that a proper Ga,S-action as above is conjugate to one generated by a special type of A-derivation called twin-triangular. Then we will prove in section 4 that proper twin-triangular Ga,S-actions on A 3 S do indeed have affine geometric quotients.

Reduction to twin-triangular actions

We keep the same notation as in §2.1.1 above, namely A is a discrete valuation ring containing a field of characteristic 0, with maximal ideal m, residue field κ = A/m, and uniformizing parameter x ∈ m. We let again S = Spec(A).

We call an A-derivation ∂ of A[y, z, u] twin-triangulable if there exists a coordinate system (y, z+, z-) of A[y, z, u] over A[y] in which the conjugate of ∂ is twin-triangular, that is, has the form x n ∂y+p+(y)∂z + +p-(y)∂z -for certain polynomials p±(y) ∈ A[y]. This section is devoted to the proof of the following intermediate characterization of proper triangular Ga,S-actions: The proof given below proceeds in two steps: we first construct a coordinate ũ of A[y, z, u] over A[y, z] with the property that ∂ ũ = p(y, z) is either a polynomial in y only or its leading term pℓ (y) as a polynomial in z has a very particular form. In the second case, we exploit the properties of pℓ (y) to show that the Ga,S-action generated by ∂ is not proper. ψ -1 ∂ψ = x n ∂y + q(y)∂z + p(y, z)∂ũ for some polynomial p(y, z) ∈ A[y, z]. In particular, we may choose from the very beginning a coordinate system of A[y, z, u] over A[y, z] with the property that the degree of ∂u ∈ A[y, z] with respect to z is minimal among all possible conjugates ψ -1 ∂ψ of ∂ as above. In what follows, we will say for short that such a derivation ∂ is ♯-reduced with respect to the coordinate system (y, z, u). Letting Q(y) = ´y 0 q(τ )dτ ∈ A[y], this property can be characterized effectively as follows: Lemma 3.2. Let ∂ = x n ∂y + q(y)∂z + p(y, z)∂u be a ♯-reduced derivation of A[y, z, u] as in Proposition 3.1. If ∂ is not twin-triangular (i.e. p(y, z) = p0(y) ∈ A[y]) then the leading term p ℓ (y), ℓ ≥ 1, of p(y, z) as a polynomial in z is not congruent modulo x n to a polynomial of the form q(y)f (Q(y)) for some f (τ ) ∈ A[τ ].

Proof. Suppose that p(y, z) = ℓ r=0 pr(y)z r with ℓ ≥ 1 and that p ℓ (y) = q(y)f (Q(y)) + x n g(y) for some polynomials f (τ ), g(τ ) ∈ A[τ ]. Then letting G(y) = ´y 0 g(τ )dτ and

ũ = u -G(y)z ℓ - deg f k=0 (-1) k k j=0 (ℓ + 1 + j) f (k) (Q(y))x kn z ℓ+1+k , one checks by direct computation that ∂ ũ = ℓ-2 r=0 pr(y)z r + (p ℓ-1 (y) -G(y)q(y)) z ℓ-1 .
Thus (y, z, ũ) is a coordinate system of A[y, z, u] over A[y, z] in which the image of ũ by the conjugate of ∂ has degree ≤ ℓ -1, a contradiction to the ♯-reducedness of ∂.

To prove Proposition 3.1, it remains to show that a proper Ga,S-action on A 3 S generated by ♯-reduced A-derivation of A[y, z, u] is twin-triangular. This is done in the next sub-section.

A non-valuative criterion for non-properness.

To disprove the properness of an algebraic action σ : Ga,S ×S E → E of Ga,S on an S-scheme E, it suffices in principle to check that the image of Φ = (pr 2 , σ) : Ga ×S E → E ×S E is not closed. However, this image turns out to be complicated to determine in general, and it is more convenient for our purpose to consider the following auxiliary construction: letting j : Ga,S ≃ Spec(OS[t]) ֒→ P 1 S = Proj(OS[w0, w1]), t → [t : 1] be the natural open immersion, the properness of the projection pr E× S E :

P 1 S ×S E ×S E → E ×S E implies that (p2, σ) is proper if and only if ϕ = (j • pr 1 , pr 2 , σ) : Ga,S ×S E → P 1
S ×S E ×S E is proper, hence a closed immersion. Therefore the non properness of σ is equivalent to the fact that the closure of Im(ϕ) in P 1

S ×S E ×S E intersects the "boundary" {w1 = 0} in a nontrivial way.

Now let σ : Ga,S ×S A 3

S → A 3 S be the Ga,S-action generated by a non twin-triangular ♯-reduced A-derivation ∂ = x n ∂y + q(y)∂z + p(y, z)∂u of A[y, z, u] and let

ϕ = (j • pr 1 , pr 2 , µ) : Ga,S ×S A 3 S = Spec(A[t][y, z, u]) → P 1 S ×S A 3 S ×S A 3 S
be the corresponding immersion. To disprove the properness of σ, it is enough to check that the image by ϕ of the closed sub-scheme

H = {z = 0} ≃ Spec(A[t][y, u]) of Ga,S ×S A 3 S is not closed in P 1 S ×S A 3 S ×S A 3 S .
After identifying A[y, z, u]⊗AA[y, z, u] with the polynomial ring A[y1, y2, z1, z2, u1, u2] in the obvious way, the image of H by (pr 1 , pr 2 , σ) : Ga,S ×S A 3 S → A 1 S ×S A 3 S ×S A 3 S is equal to the closed sub-scheme of Spec(A[t][y1, y2, z1, z2, u1, u2]) defined by the following system of equations

         y2 = y1 + x n t z1 = 0 z2 = x -n (Q(y1 + x n t) -Q(y1)) = (y1 -y2) -1 (Q(y2) -Q(y1))t u2 = u1 + x -n ´t 0 p(y1 + x n τ )(Q(y1 + x n τ ) -Q(y1)))dτ.
Letting p(y, z) = ℓ r=0 pr(y)z r with ℓ ≥ 1 and

Γr(y1, y2) = ˆy2 y 1 pr(ξ)(Q(ξ) -Q(y1)) r dξ ∈ A[y1, y2], r = 0, . . . , ℓ,
the last equality can be re-written modulo the first ones in the form

u2 = u1 + ℓ r=0 x -nr ˆt 0 pr(y1 + x n τ )(Q(y1 + x n τ ) -Q(y1)) r dτ = u1 + t(y2 -y1) -1 ℓ r=0 x -nr ˆy2 y 1 pr(ξ)(Q(ξ) -Q(y1)) r dξ = u1 + ℓ r=0 (y2 -y1) -r-1 Γr(y1, y2) t r+1 .
It follows that the closure V of ϕ(H) is contained in the closed sub-scheme W of P 1 S ×S A 3 S ×S A 3 S defined by the equations z1 = 0 and

     (y2 -y1)w1 -x n w0 = 0 w1z2 -(y2 -y1) -1 (Q(y2) -Q(y1))w0 = 0 w ℓ+1 1 (u2 -u1) -ℓ r=0 (y2 -y1) -r-1 Γr(y1, y2) w r+1 0 w ℓ-r 1 = 0.
We further observe that W is irreducible, whence equal to V , provided that Γ ℓ (y1, y2) ∈ A[y1, y2] does not belong to the ideal generated by x n and Q(y2) -Q(y1). If so, then W = V intersects {w1 = 0} along a closed sub-scheme Z isomorphic to the spectrum of the following algebra:

A[y1, y2]/(x n , (y2 -y1) -1 (Q(y2) -Q(y1)), (y2 -y1) -ℓ-1 Γ ℓ (y1, y2)) [z2, u1, u2].
Since by virtue of the ♯-reducedness assumption p ℓ (y) is not of the form q(y)f (Q(y)) + x n g(y), the non properness of σ : Ga,S ×S A 3 S → A 3 S is then a consequence of the following Lemma which guarantees precisely that Γ ℓ (y1, y2) ∈ (x n , Q(y2) -Q(y1))A[y1, y2] and that Z is not empty. Lemma 3.3. Let q(y) ∈ A[y] be a polynomial with non constant residue class in κ[y] and let Q(y) = ´y 0 q(τ )dτ . For a polynomial p(y) ∈ A[y] and an integer ℓ ≥ 1, the following holds:

a) The polynomial Γ ℓ (y1, y2) = ´y2 y 1 p(y)(Q(y) -Q(y1)) ℓ dy belongs to the ideal (x n , Q(y2) -Q(y1)) if and only if p(y) can be written in the form q(y)f (Q(y)) + x n g(y) for certain polynomials f (τ ), g(τ

) ∈ A[τ ]. b) The polynomial (y2 -y1) -ℓ-1 Γ ℓ (y1, y2) is not invertible modulo the ideal (x n , (y2 -y1) -1 (Q(y2) -Q(y1))).
Proof. For the first assertion, a sequence of ℓ successive integrations by parts shows that

Γ ℓ (y1, y2) = E1(y)(Q(y) -Q(y1)) ℓ y 2 y 1 -ℓ ˆy2 y 1 E1(y)q(y)(Q(y) -Q(y1)) ℓ-1 dy = S(y1, y2) + (-1) ℓ ℓ! ˆy2 y 1 E ℓ (y)q(y)dy = S(y1, y2) + (-1) ℓ ℓ!(E ℓ+1 (y2) -E ℓ+1 (y1))
where E k is defined recursively by E1(y) = ´y 0 p(τ )dτ and E k+1 (y) = ´y 0 E k (τ )q(τ )dτ , and where S(y1, y2)

∈ (Q(y2) -Q(y1))A[y1, y2]. So ´y2 y 1 p(y)(Q(y) -Q(y1)) r dy belongs to (x n , Q(y2) -Q(y1))A[y1, y2] if and only if E ℓ+1 (y2) -E ℓ+1 (y1) belongs to this ideal. Since the residue class of Q(y) ∈ A[y] in κ[y]
is not constant, it follows from the local criterion for flatness that A[y] is a faithfully flat algebra over A[Q(y)]. By faithfully flat descent, this implies in turn that the sequence

A[Q(y)] ֒→ A[y] •⊗1-1⊗• -→ A[y] ⊗ A[τ ] A[y] is exact whence, using the natural identification A[y] ⊗ A[τ ] A[y] ≃ A[y1, y2]/(Q(y2) -Q(y1)), that a polynomial F ∈ A[y] with F (y2) -F (y1) belonging to the ideal (Q(y2) -Q(y1))A[y1, y2] has the form F (y) = G(Q(y)) for a certain polynomial G(τ ) ∈ A[τ ]. Thus E ℓ+1 (y2) -E ℓ+1 (y1) belongs to (x n , Q(y2) -Q(y1))A[y1, y2], if and only if E ℓ+1 (y) is of the form G(Q(y)) + x n R ℓ+1 (y) for some G(τ ), R ℓ+1 (τ ) ∈ A[τ ]. This implies in turn that E ℓ (y)q(y) = G ′ (Q(y))q(y) + x n R ′ ℓ+1 (y) whence, since q(y) ∈ A[y] \ mA[y] is not a zero divisor modulo x n , that E ℓ (y) = G ′ (Q(y)) + x n R ℓ (y) for a certain R ℓ (τ ) ∈ A[τ ].
We conclude by induction that E1(y) = G (ℓ+1) (Q(y)) + x n R1(y) and finally that p(y) = G (ℓ+2) (Q(y))q(y) + x n R(y) for a certain R(τ

) ∈ A[τ ]. This proves a).
The second assertion is clear in the case where p(y) ∈ mA[y]. Otherwise, if p(y) ∈ A[y] \ mA[y] then reducing modulo x and passing to the algebraic closure κ of κ, it is enough to show that if q(y) ∈ κ[y] is not constant and p(y) ∈ κ[y] is a nonzero polynomial then for every ℓ ≥ 1, the affine curves C and D in A 2 κ = Spec(κ[y1, y2]) defined by the vanishing of the polynomials Θ(y1, y2) = (y2 -y1) -ℓ-1 ´y2 

y 1 p(y)(Q(y) -Q(y1)) ℓ dy and R(y1, y2) = (y2 -y1) -1 ´y2 y 1 q(y)
(y2 -y1) ℓ-1 ´y2 y 1 y d (y m+1 -y m+1 1 
) ℓ dy respectively. But on the other hand, we have for every

i = 1, . . . , m κ[y2]/(y2 -ζ i , (y2 -1) -r-1 ˆy2 1 y d (y m+1 -1) r dy) ≃ κ[y2]/(y2 -ζ i , (ζ i -1) -r-1 ˆζi 1 τ d (τ m+1 -1) r dτ ),
and hence the length of the above algebra is either 1 or 0 depending on whether ´ζi 1 τ d (τ m+1 -1)dτ ∈ κ is zero or not. This implies that the length of Y is at most equal to m and so the only possibility would be that d = 0 and ℓ = m = 1, i.e. C and D are parallel lines in A 2 κ . But since

´-1 1 (τ 2 -1)dτ = 0, this last possibility is also excluded.

Global equivariant triviality of twin-triangular actions

By virtue of Proposition 3.1, every proper triangular Ga,S-action on σ:Ga,S ×S A 3 S → A 3 S on A 3 S is conjugate to one generated by a twin-triangular A-derivation ∂ of A[y, z+, z-] of the form ∂ = x n ∂y + p+(y)∂z + + p-(y)∂z - for certain polynomials p±(y) ∈ A[y]. So to complete the proof of the Main Theorem, it remains to show the following generalization of the main result in [START_REF] Dubouloz | Proper twin triangular Ga-actions on A 4 are translations[END_REF]: Proposition 4.1. Let S be the spectrum of discrete valuation A containing a field of characteristic 0. Then a proper twin-triangular Ga,S-action on A 3 S has affine geometric quotient X = A 3 S /Ga,S. 4.0.2. The principle of the proof given below is the following: we exploit the twin triangularity to construct two Ga,S-invariant principal open subsets WΓ + and WΓ -in A 3

S with the property that the union of corresponding principal open subspaces XΓ ± = WΓ ± /Ga,S of X covers the closed fiber of the structure morphism p : X → S. We then show that XΓ + and XΓ -are in fact affine sub-schemes of X. On the other hand, since ∂ admits x -n y as a global slice over Ax, the generic fiber of p is isomorphic to the affine plane over the function field Ax of S. So it follows that X is covered by three principal affine open sub-schemes XΓ + , XΓ -and Xx corresponding to regular functions x, Γ+, Γ-which generate the unit ideal in Γ(X, O X ) ≃ A[y, z+, z-] G a,S ⊂ A[y, z+, z-], whence is an affine scheme. 4.0.3. The fact that the affineness of p : X = A 3 S /Ga,S → S = Spec(A) is a local property with respect to the fpqc topology on S [15, VIII.5.6] enables a reduction to the case where the discrete valuation ring A is Henselian or complete. Since it contains a field of characteristic zero, an elementary application of Hensel's Lemma implies that a maximal subfield of such a local ring A is a field of representatives, i.e. a subfield which is mapped isomorphically by the quotient projection A → A/m onto the residue field κ = A/m. This is in fact the only property of A that we will use in the sequel. So from now on, (A, m, κ) is a discrete valuation ring containing a field κ of characteristic 0 and with residue field A/m ≃ κ. S associated with a twin-triangular A-derivation of A[y, z+, z-] whose geometric quotients will be studied in the next sub-section. We begin with a technical condition which will be used to guarantee that the union of W+ and W-covers the closed fiber of the projection pr S : A 3 S → S. This can be seen as follows : we consider A 2 κ embedded in P 2 κ = Proj(κ[u, v, w]) as the complement of the line L∞ = {w = 0} so that the coordinate system (u, v) on A 2 is induced by the projections from the κ-rational points [0 : 1 : 0] and [1 : 0 : 0] respectively. We let C be the closure in P 2 of the image of the morphism j = (P +, P -) :

A 1 κ = Spec(κ[y]) → A 2
κ defined by the residue classes P + and P -in κ[y] of integrals P±(y) ∈ A[y] of p±(y), and we denote by Z ⊂ C the image by j of the inverse image of the branch locus of P + : A 1 κ → A 1 κ . Note that Z is a finite subset of C defined over κ. Since the condition that a line through a fixed point in P 2 κ intersects transversally a fixed curve is Zariski open, the set of lines in P 2 κ passing through a point of Z and tangent to a local analytic branch of C at some point is finite. Therefore, the complement of the finitely many intersection points of these lines with L∞ is a Zariski open subset U of L∞ with the property that for every q ∈ U , the line through q and every arbitrary point of Z intersects every local analytic branch of C transversally at every point. By construction, the rational projections from [0 : 1 : 0] and an arbitrary κ-rational point in U \ {[0 : 1 : 0]} induce a new coordinate system on A 2 κ of the form (u, av + bu), a = 0, with the property that Z is not contained in the inverse image of the branch locus of the morphism aP -+ bP + : A ) where α± does not vanish. The polynomial Φ± = -x n z± + P±(y) ∈ A[y, z+, z-] belongs to the kernel of ∂ hence defines a Ga,S-invariant morphism Φ± :

A 3 S = Spec(A[y, z+, z-]) → A 1 S = Spec(A[t]). We let W± = Φ -1 ± (U±) ≃ Spec(R±[y, z+, z-]/(-x n z± + P±(y) -t)) Note that W± is a Ga,S-invariant open subset of A 3
S which can be identified with the principal open subset where the Ga,S-invariant regular function Γ± = α± • Φ± does not vanish. Since α+(P +(y)) and α-(P -(y)) generate the unit ideal in κ[y], it follows that the union of W+ and W-covers the closed fiber of the projection pr S : A 3 S → S. 4.2. Affineness of geometric quotients. With the notation of §4.1.2 above, the geometric quotient X± = W±/Ga,S for the action induced by σ : Ga,S ×S A 3 S → A 3 S can be identified with the principal open sub-space XΓ ± of X = A 3 S /Ga,S where the invariant function Γ± ∈ A[y, z+, z-] G a,S ≃ Γ(X, O X ) does not vanish. The properness of σ implies that X, whence X+ and X-, are separated algebraic spaces, and the construction of W+ and Wguarantees that the closed fiber of the structure morphism p : X → S is contained in the union of X+ and X-. So to complete the proof of Proposition 4.1, it remains to show that X± is an affine scheme. In fact, since X± is by construction an algebraic space over the affine scheme U± = Spec(R±), its affineness is equivalent to that of the structure morphism q± : X± → U±, a property which can be checked locally with respect to the étale topology on U±.

4.2.1.

In our situation, there is a natural finite étale base change ϕ± : Ũ± → U± which is obtained as follows: By construction, see §4.1.1 above, the morphism P

± : A 1 κ = Spec(κ[y]) → Spec(κ[t]
), restricts to a finite étale covering h0,± : C1,± = Spec(κ[y] α ± (P ± (y)) ) → C± = Spec(κ[t] α ± (t) ) of degree r± = deg y (P ±(y)). Letting C± = Spec(B±) be the normalization of C± in the Galois closure L± of the field extension i± : κ(t) ֒→ κ(y), the induced morphism h± : C± → C± is an étale Galois cover with Galois group G± = Gal(L±/κ(t)), which factors as

h± : C± = Spec(B±) h 1,± -→ C1,± = Spec(κ[y] α ± (P ± (y)) ) h 0,± -→ C± = Spec(κ[t] α ± (t) )
where h1,± : C± → C1,± is an étale Galois cover for a certain subgroup H± of G± of index r±. Letting R± = A ⊗κ B± ≃ A[t] α ± (t) ⊗ κ[t] α ± (t) B± and Ũ± = Spec( R±), the morphism ϕ± = pr 1 : Ũ± ≃ U± ×C ± C± → U± is an étale Galois cover with Galois group G±, in particular a finite morphism. Since X± is separated, the algebraic space X± = X± ×U ± Ũ± is separated and, by construction, isomorphic to the geometric quotient of the scheme W± = W± ×U ± Ũ± ≃ Spec( R±[y, z+, z-]/(-x n z± + P±(y)t))

by the proper G a, Ũ± -action generated by the locally nilpotent R±-derivation x n ∂y + p+(y)∂z + + p-(y)∂z -of R±[y, z+, z-]//(-x n z± + P±(y)t), which commutes with the action of G±. The following Lemma completes the proof of Proposition 4.1 whence of the Main Theorem.

Lemma 4.4. The geometric quotient X± = W±/G a, Ũ± is an affine Ũ±-scheme.

Proof. Since Ũ± is affine, the assertion is equivalent to the affineness of X±. From now on, we only consider the case of X+ = W+/G a, Ũ+ , the case of Xbeing similar. To simplify the notation, we drop the corresponding subscript "+", writing simply W = Spec( R[y, z, z-]/(-x n z + P (y)t)). We denote x ⊗ 1 ∈ R = A ⊗κ B by x and we further identify B with a sub-κ-algebra of R via the homomorphism 1 ⊗ idB : B → R and with the quotient R/x R via the composition 1 ⊗ idB : B → A ⊗κ B → A ⊗κ B/((x ⊗ 1)A ⊗κ B) = κ ⊗κ B ≃ B.

By construction of B, the monic polynomial P (y)t ∈ B [y] splits as P (y)t = g∈G/H (ytg) for certain elements tg ∈ B, g ∈ G/H, on which the Galois group G acts by permutation g ′ • tg = t (g ′ ) -1 •g . Furthermore, since h0 : C1 → C is étale, it follows that for distinct g, g ′ ∈ G/H, t gt g ′ ∈ B is an invertible regular function on C whence on Ũ = S × Spec(κ) C via the identifications made above. This implies in turn that there exists a collection of elements σ g ∈ R with respective residue classes t g ∈ B = R/x R modulo x, g ∈ G/H, on which G acts by permutation, a G-invariant polynomial S1 ∈ R Concretely, the elements σg = σg,n-1 ∈ R, g ∈ G/H, can be constructed by induction via a sequence of elements σ g,m ∈ R, g ∈ G/H, m = 0, . . . , n -1, starting with σ g,0 = t g ∈ B ⊂ R and culminating in σ g,n-1 = σ g , and characterized by the property that for every m = 0, . . . , n -1, there exists µ g,m ∈ R such that P (σ g,m )t = x m+1 µg,m, g ∈ G/H. Indeed, writing P (y)t = g∈G/H (ytg) + x P (y) for a certain P (y) ∈ R[y] and assuming that the σg,m, g ∈ G/H, have been constructed up to a certain index m < n -1, we look for elements σg,m+1 ∈ R written in the form σ g,m + x m+1 λ g for some λ g ∈ R. For a fixed g 0 ∈ G/H, the conditions impose that P (σg 0 ,m+1)t = g∈G/H (σg 0 ,m + x m+1 λg 0tg) + x P (σg 0 ,m + x m+1 λg 0 ) = x m+1 λg 0 g∈(G/H)\{g 0 } (tg 0tg) + P (σg 0 ,m)t + x m+2 νg 0 ,m = x m+1 λg 0 g∈(G/H)\{g 0 } (tg 0tg) + x m+1 µg 0, m + x m+2 νg 0 ,m for some ν g 0 ,m ∈ R, and since g∈(G/H)\{g 0 } (t g 0t g ) ∈ R * , we conclude that λg 0 = µg 0 ,m g∈(G/H)\{g 0 } (tg 0tg)

and µg 0 ,m+1 = νg 0 ,m.

A direct computation shows further that g ′ • σg,m+1 = σ (g ′ ) -1 •g,m+1 and that g ′ • µg,m+1 = µ By construction, for distinct g, g ′ ∈ G/H, the rational functions τ * g vg and τ * g ′ v g ′ on W differ by the addition of the element f g,g ′ = x -n (P-(σg) -P-(σ g ′ )) ∈ Rx ∈ Γ( Wg ∩ Wg ′ , O W ).

This implies that X = W /G a, Ũ is isomorphic to the Ũ -scheme obtained by gluing r copies Xg = Spec( R[vg]) of A 1 Ũ along the principal open subsets Xg,x ≃ Spec( Rx[vg]) via the isomorphisms induced by the Rx-algebra isomorphisms ξ * g,g ′ : Rx[vg] → Rx[vg ′ ], v g → v g ′ + f g,g ′ , g, g ′ ∈ G/H, g = g ′ . Since by assumption X is separated, it follows from [13, I.5.5.6] that for every pair of distinct elements g, g ′ ∈ G/H, the sub-ring R[v g ′ , f g,g ′ ] of Rx[vg ′ ] generated by the union of R[v g ′ ] and ξ * g,g ′ ( R[v g ]) is equal to Rx[vg ′ ]. This holds if and only if R[f g,g ′ ] = Rx whence if and only if f g,g ′ ∈ Rx has the form f g,g ′ = x -m g,g ′ F g,g ′ for a certain m g,g ′ > 1 and an element F g,g ′ ∈ R with invertible residue class modulo x.

This additional information enables a proof of the affineness of X by induction on r as follows: given a pair of distinct elements g, g ′ ∈ G/H such that m g,g ′ = m > 0 is maximal, we let θg = 0 and θ g ′′ = x m-m g,g ′′ F g,g ′′ ∈ R

for every g ′′ ∈ (G/H) \ {g}. The choice of the elements θ g ′′ ∈ R guarantees that the local sections

ψ g ′′ = x m v g ′′ + θ g ′′ ∈ Γ( Xg ′′ , OX), g ′′ ∈ G/H
glue to a global regular function ψ ∈ Γ( X, OX). Since θ g ′ = F g,g ′ is invertible modulo x, the regular functions x, ψ and ψθ g ′ generate the unit ideal in Γ( X, OX). The principal open subset Xx of X is isomorphic to Xg,x ≃ Spec( Rx[vg]) for every g ∈ G/H, hence is affine. On the other hand, Xψ and Xψ-θ g ′ are contained respectively in the open sub-schemes X(g) and X(g ′ ) obtained by gluing only the r -1 open subsets Xg ′′ corresponding to the elements g ′′ in (G/H) \ {g} and (G/H) \ {g ′ } respectively. By the induction hypothesis, the latter are both affine and hence Xψ and Xψ-θ g ′ are affine as well. This shows that X is an affine scheme and completes the proof.

  triangular with respect to the ordered coordinate system (x1, . . . , xn), i.e. has the form x1, . . . , xi-1) ∂ ∂xi where p0 ∈ A and where for every i = 1, . . . , n, pi-1(x1, . . . , xi-1) ∈ A[x1, . . . , xi-1] ⊂ A[x1, . . . , xn]. By localizing this notion over the base S, we arrive at the following definition:

Proposition 3 . 1 .

 31 With the notation above, let ∂ by an A-derivation of A[y, z, u] of the form ∂ = x n ∂y + q(y)∂z + p(y, z)∂u where n > 0 and where q(y) ∈ A[y] has non constant residue class in κ[y]. If the Ga,S-action on A 3 S = Spec(A[y, z, u]) generated by ∂ is proper, then ∂ is twin-triangulable.

3. 1 .

 1 The ♯-reduction of a triangular A-derivation. The conjugate of an A-derivation ∂ = x n ∂y + q(y)∂z + p(y, z)∂u of A[y, z, u] as in Proposition 3.1 by an isomorphism of A[y, z]-algebras ψ : A[y, z][ũ] ∼ → A[y, z][u] is again triangular of the form

  dy respectively always intersect each other. Suppose on the contrary that C ∩ D = ∅ and let m = deg q ≥ 1 and d = deg p ≥ 0. Then the closures C and D of C and D respectively in P 2 κ = Proj(κ[y1, y2, y3]) intersect each others along a closed sub-scheme Y of length deg C • deg D = m(d + ℓm) supported on the line {y3 = 0} ≃ Proj(κ[y1, y2]). By definition, up to multiplication by a nonzero scalar, the top homogeneous components of R and Θ have the form m i=1 (y2ζ i y1), where ζ ∈ κ is a primitive (m + 1)-th root of unity, and

4. 1 .

 1 Twin-triangular actions in general position and associated invariant covering. Here we construct a pair of principal Ga,S-invariant open subsets W± = WΓ ± of A 3

  Definition 4.2. Let (A, m, κ) be a discrete valuation valuation ring containing a field of characteristic 0 and let x ∈ m be a uniformizing parameter. A twin-triangular A-derivation ∂ = x n ∂y + p+(y)∂z + + p-(y)∂z -of A[y, z+, z-] is said to be in general position if it satisfies the following properties: a) The residue classes p ± ∈ κ[y] of the polynomials p± ∈ A[y] modulo m are both non zero and relatively prime, b) There exist integrals P ± ∈ A[y] of p ± with respect to y for which the inverse images of the branch loci of the morphisms P + : A 1 κ → A 1 κ and P -: A 1 κ → A 1 κ are disjoint. Lemma 4.3. With the notation above, every twin-triangular A-derivation ∂ of A[y, z+, z-] generating a fixed point free Ga,S-action on A 3 S is conjugate to one in general position. Proof. A twin-triangular derivation ∂ = x n ∂y + p+(y)∂z + + p-(y)∂z -generates a fixed point free Ga,S-action if and only if x n , p+(y) and p-(y) generate the unit ideal in A[y, z+, z-]. So the residue classes p + and p -of p+ and p-are relatively prime and at least one of them, say p -, is nonzero. If p + = 0 then p-is necessarily of the form p-(y) = c + xp-(y) for some c ∈ A * and so changing z+ for z+ + z-yields a twin-triangular derivation conjugate to ∂ for which the corresponding polynomials p±(y) both have non zero residue classes modulo x. More generally, changing z-for az-+ bz+ for general a ∈ A * and b ∈ A yields a twin-triangular derivation conjugate to ∂ and still satisfying condition a) in Definition 4.2. So it remains to show that up to such a coordinate change, condition b) in the Definition can be achieved.

1 κ → A 1 κ

 1 . Changing z-for az-+ bz+ for a pair (a, b) ∈ κ * × κ ⊂ A * × A corresponding to a general point in U yields a twin-triangular derivation conjugate to ∂ and satisfying simultaneously conditions a) and b) in Definition 4.2. 4.1.1. Now let ∂ = x n ∂y + p+(y)∂z + + p-(y)∂z -be a twin-triangular A-derivation of A[y, z+, z-] generating a proper whence fixed point free Ga,S-action σ : Ga,S ×S A 3 S → A 3 S . By virtue of Lemma 4.3 above, we may assume up to a coordinate change preserving twin-triangularity that ∂ is in general position. Property a) in Definition 4.2 then guarantees in particular that the triangular derivations ∂± = x n ∂y+p±(y)∂z ± of A[y, z±] are both irreducible. Furthermore, given any integral P±(y) ∈ A[y] of p±(y), the morphism P ± : A 1 κ → A 1 κ obtained by restricting P± : A 1 S = Spec(A[y]) → A 1 S = Spec(A[t]) to the closed fiber of pr S : A

  [y] with invertible residue class modulo x and a G-invariant polynomial S2 ∈ R [y] such that in R [y] one can write P (y)t = S1(y) g∈G/H (yσg) + x n S2(y).

  (g ′ ) -1 •g,m+1 . Iterating this procedure n-1 times yields the desired collection of elements σg = σg,n-1 ∈ R. By construction, g∈G/H (yσg) ∈ R[y] is then an invariant polynomial which divides P (y)-t modulo x n R, which implies in turn the existence of the G-invariant polynomials S1(y), S2(y) ∈ R[y].The closed fiber of the induced morphism W → S consists of a disjoint union of closed sub-schemesDg ≃ Spec( R[z, z-]) ≃ A 2 C with defining ideals (x, y -σg), g ∈ G/H. The open sub-scheme Wg = W \ g ′ ∈(G/H)\{g} D g ′ of W is G a, Ũ -invariantand one checks using the above expression for P (y)t that the rational mapW Spec( R[ug, z-]), (y, z, z-) → (ug, z-) = ( yσg x n = z -S2(y) S1(y) g ′ ∈(G/H)\{g} (yσ g ′ ) , z-) induces a G a, Ũ -equivariant isomorphism τg : Wg ∼ → A 2 Ũ = Spec( R[u g , z-]) for the G a, Ũ -action on A 2 Ũ generated by the locally nilpotent R-derivation ∂u g + p-(x n ug + σg)∂z -of R[ug, z-].The latter is a translation with ug as a global slice and with geometric quotient Wg/G a, Ũ isomorphic to Spec( R[vg]) where v g = z-x -n (P-(x n u g + σ g ) -P-(σ g )) ∈ R[u g , z-] G a, Ũ .

  3 S → S is not constant. The branch locus of P ± is then a principal divisor div(α±(t)) for a certain polynomial α±(t) ∈ κ[t] ⊂ A[t] generating the kernel of the homomorphism κ[t] → κ[y]/(p ± (y)), t → P ±(y) + (p ± (y)). Property b) in Definition 4.2 guarantees that we can choose P+ and P-in such a way that the polynomial α+(P +(y)) and α-(P -(y)) generate the unit ideal in κ[y]. Up to a diagonal change of coordinates on A[y, z+, z-], we may further assume without loss of generality that P + and P -are monic. 4.1.2. We let R± = A[t]α ± and we let U± = Spec(R±) be the principal open subset of A 1 S = Spec(A[t]
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