
HAL Id: hal-00796962
https://hal.science/hal-00796962v1

Submitted on 27 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Updatable Strategy Logic
Christophe Chareton, Julien Brunel, David Chemouil

To cite this version:
Christophe Chareton, Julien Brunel, David Chemouil. Towards an Updatable Strategy Logic.
1st International Workshop on Strategic Reasoning, Mar 2013, Rome, France. pp.91 - 98,
�10.4204/EPTCS.112.14�. �hal-00796962�

https://hal.science/hal-00796962v1
https://hal.archives-ouvertes.fr

To appear in EPTCS. c© Ch .Chareton, J. Brunel & D. Chemouil

Towards an Updatable Strategy Logic

Christophe Chareton Julien Brunel David Chemouil
Onera – The French Aerospace Lab

F-31055 Toulouse, France
firstname.lastname@onera.fr

This article is about temporal multi-agent logics. Several of these formalisms have been already
presented (ATL-ATL*, ATLsc, SL). They enable to express the capabilities of agents in a system to
ensure the satisfaction of temporal properties. Particularly, SL and ATLsc enable several agents to
interact in a context mixing the different strategies they play in a semantical game. We generalize
this possibility by proposing a new formalism, Updating Strategy Logic (USL). In USL, an agent can
also refine its own strategy. The gain in expressive power rises the notion of sustainable capabilities
for agents.

USL is built from SL. It mainly brings to SL the two following modifications: semantically, the
successor of a given state is not uniquely determined by the data of one choice from each agent.
Syntactically, we introduce in the language an operator, called an unbinder, which explicitly deletes
the binding of a strategy to an agent. We show that USL is strictly more expressive than SL.

1 Introduction

Multi-agent logics are receiving growing interest in contemporary research. Since the seminal work of
Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman [2], one major and recent direction (ATL with
Strategy Context [3, 6, 7], Strategy Logic (presented first in [5] and then extended in [8, 10]) aims at
contextualizing the statements of capabilities of agents.

Basically, multi-agent logics enable assertions about the capability of agents to ensure temporal
properties. Thus, ATL-ATL∗ [2] appears as a generalization of CTL-CTL∗, in which the path quantifiers
E and A are replaced by strategy quantifiers. Strategy quantifiers (the existential 〈〈A〉〉 and the universal
JAK) have a (coalition of) agent(s) as parameter. 〈〈A〉〉ϕ means that agents in A can act so as to ensure the
satisfaction of temporal formula ϕ . It is interpreted in Concurrent Game Structures (CGS), where agents
can make choices influencing the execution in the system. Formula 〈〈A〉〉ϕ is true if agents in A have a
strategy so that if playing it they force the execution to satisfy ϕ , whatever the other agents do.

A natural question is: how to interpret the imbrication of several quantifiers? Precisely, in the inter-
pretation of such formula as

ψ1 := 〈〈a1〉〉�(ϕ1∧〈〈a2〉〉�ϕ2)

(where�ϕ is the temporal operator meaning ϕ is always true, and a1 and a2 are agents), is the evaluation
of ϕ2 made in a context that takes into account both the strategy quantified in 〈〈a1〉〉 and the strategy
quantified in 〈〈a2〉〉?

In ATL-ATL∗, only a2 is bound: subformula 〈〈a2〉〉�ϕ2 is true iff a2 may ensure �ϕ2, whatever the
other agents do. Then 〈〈a2〉〉 stands for three successive operations: First, each agent is unbound from its
current strategy, then an existential quantification is made for strategy σ . At last, a2 is bound to strategy
σ .

ATLsc [3, 6, 7], while keeping the ATL syntax, adapts the semantics in order to interpret formulas in
a context which stores strategies introduced by earlier quantifiers.

2 Towards an Updatable Strategy Logic

Strategy Logic (SL [8,10]) is another interesting proposition, which distinguishes between the quan-
tifications over strategies and their bindings to agents. The operator 〈〈a〉〉 is split into two different
operators: a quantifier over strategies (〈〈x〉〉, where x is a strategy variable) and a binder ((a,x), where a
is an agent) that stores into a context the information that a plays along the strategy instantiating variable
x (let us write it σx in the remaining of this paper).The ATL formula ψ1 syntactically matches the SL:

ψ2 := 〈〈x1〉〉(a1,x1)�(ϕ1∧〈〈x2〉〉(a2,x2)�ϕ2)

In ψ2, when evaluating �ϕ2, a1 remains bound to strategy σx1 except if a1 and a2 are the same agent. If
they are the same, the binder (a2,x2) unbinds a from its current strategies before binding her to σx2 .

In this paper we present USL, a logic obtained from SL by making explicit the unbinding of strategies
and allowing new bindings without previous unbinding. For that, we introduce an explicit unbinder
(a 7 x) in the syntax (and the binder in USL is written (a B x)) and we interpret USL in models where
the choices of agents are represented by the set of potential successors they enable from the current state.
When there is no occurrence of an unbinder, each agent remains bound to her current strategies. Then
different strategies can combine together even for a single agent, provided that they are coherent, which
means they define choices in non-empty intersection (the notion is formally defined in Sect. 2).

The main interest in such introduction is to distinguish between cases where an agent composes
strategies together and situations where she revokes a current strategy for playing an other one. If a1 and
a2 are the same agents, then ψ2 is written in SL:

ψ3 := 〈〈x1〉〉(a,x1)�(ϕ1∧〈〈x2〉〉(a,x2)�ϕ2),

which syntactically matches the USL:

ψ4 := 〈〈x1〉〉(aB x1)�(ϕ1∧〈〈x2〉〉(aB x2)�ϕ2)

In ψ3, subformula 〈〈x2〉〉(a,x2)�ϕ2 states that a can adopt a new strategy that ensures�ϕ2, no matter
if it is coherent with the strategy σx1 previously adopted. In ψ4, both strategies must combine coherently
together. In natural language ψ4 states that a can ensure ϕ1 and leave open the possibility to ensure ϕ2
in addition. The equivalent of ψ3 in USL is actually not ψ4 but

ψ5 := 〈〈x1〉〉(aB x1)�(ϕ1∧〈〈x2〉〉(a 7 x1)(aB x2)�ϕ2)

There indeed, in subformula (a 7 x1)(aB x2)�ϕ2, a is first unbound from σx1 and then bound to σx2 .
A consequence of considering these compositions of strategies is the expressiveness of sustainable

capabilities of agents. Let us now consider the USL formula:

ψ6 := 〈〈x1〉〉(aB x1)�(〈〈x2〉〉(a 7 x1)(aB x2)X p)

There the binder (aB x2) is used with the unbinder (a 7 x1), so that ψ6 is equivalent to the SL:

ψ7 := 〈〈x1〉〉(a,x1)�(〈〈x2〉〉(a,x2)X p)

It states that a can remain capable to perform the condition expressed by X p when she wants. But in
case she actually performs it, the formula satisfaction does not require that she is still capable to perform
it. The statement holds in state s0 in structure M1 with single agent a. See Fig.1, where choices are
defined by the set of transitions they enable. Since M1 interprets SL formulas with only agent a, the
choices for a are deterministic: let s,s′ be two states and c a choice, then the transition from s to s′ is

Ch .Chareton, J. Brunel & D. Chemouil 3

s0¬p
s1p

s2¬pc2 c1

c1 c1

Figure 1: Structure M1

labelled with c iff {s′} is a choice for a at s. Indeed, by always playing choice c1, a remains in state s0,
where she can change her mind to ensure p. But if she chooses to reach p, she can do it only by moving
to state s1 and then to state s2. Doing so, she loses her capability to ensure X p at any time. The only
way for her to maintain her capability to reach p is to always avoid it, her capability is not sustainable.

A more game theoretical view is to consider strategies as commitments. In such view, by adopting
a strategy, a adopts a behavior that holds in the following execution, as far as it is not explicitly deleted.
Formula

ψ8 := 〈〈x1〉〉(aB x1)�(〈〈x2〉〉(aB x2)X p)

is the counterpart of formula ψ7 with such interpretation of composing strategies for a single agent. If
a plays σx2 , it must be coherently with σx1 . Thus, ψ8 is false in structure M1, since a cannot achieve p
more than once.

Formula ψ8 distinguishes between structures M1 and M2 from Fig.2 (Note that in this second
structure the choices are not deterministic: from a given state a choice may be compatible with several
potential successors). In M2, ψ8 is true at s0 since the strategy always play c1 ensure the execution to
remain in state s0 or s1 and is always coherent with strategy play c2 first and then always play c1, which
ensures X p from states s0 and s1. What is at stake with it is the difference between sustainable capa-
bilities and one shot capabilities. Formulas ψ7 and ψ8 both formalize the natural language proposition a
can always achieve p. One shot capability (ψ7) means she can achieve it once for all and choose when.
Sustainable capability (ψ8) means she can achieve it and choose when without affecting nor losing this
capability for the future.

s0¬p
s1p

s2¬p

c1,c2

c1,c3

c3

c1,c3

c1,c2

c1,c2,c3

Figure 2: Structure M2

In Sect.3, we compare the expressive power of SL and USL by use of formula ψ9, obtained from ψ7
by adding to a the sustainable capability to ensure X ¬p:

ψ9 := 〈〈x〉〉(aB x)�(〈〈x0〉〉(aB x0)X p∧〈〈x0〉〉(aB x0)X ¬p)

ψ9 states that a has sustainable capability to decide whether p or ¬p holds at next state. We say that a
has sustainable control on property p: she is sustainably capable to decide the truth value of p.

The main purposes of USL are to give a formalism for the composition of strategies and to unify
it with the classical branching-time mechanisms of strategy revocation. So, both treatments can be
combined in a single formalism. In the remaining of this paper we define USL syntax and semantics, and
we introduce the comparison of its expressive power with that of SL.

4 Towards an Updatable Strategy Logic

2 Syntax and semantics

In this section we present the syntax and semantics of USL, together with the related definitions they
require. The USL formulas distinguish between path and state formulas.

Definition 1. Let Ag be a set of agents, At a set of propositions and X a set of variables, USL (Ag,At,X)
is given by the following grammar:

• State formulas: ϕ ::= p | ¬ϕ | ϕ ∧ϕ | 〈〈x〉〉ϕ | (AB x)ψ | (A 7 x)ψ

• Path formulas: ψ ::= ϕ | ¬ψ | ψ ∧ψ | ψ U ψ | X ψ

where p ∈ At,A⊆ Ag,x ∈ X.

These formulas hold a notion of free variable that is similar to that in [8, 10]: an atom has an empty
set of free variables, a binder adds a free variable to the set of free variables of its direct subformula
and a quantifier deletes it. Upon formulas on this grammar, those that can be evaluated with no context
are the sentences. They are formulas with empty set of free variables, which means each of their bound
variables is previously quantified. We now come to the definitions for USL semantics.

Definition 2. A Non-deterministic Alternating Transition System (NATS) is a tuple
M = 〈Ag,M,At,v,Ch〉 where:

• M is a set of states, called the domain of the NATS, At is the set of atomic propositions and v is a
valuation function, from M to P(At).

• Ch: Ag×M→P(P(M)) is a choice function mapping a pair (agent,state) to a non-empty family
of choices of possible next states. It is such that for every state s ∈M and for every agents a1 and
a2 in Ag, for every c1 ∈ Ch(a1,s) and c2 ∈ Ch(a2,s),c1∩ c2 6= /0.

We call a finite sequence of states in M a track τ . The last element of a track τ is denoted by last(τ).
The set of tracks that are possible in M is denoted by trackM : τ = s0s1 . . .sk ∈ trackM iff for every i < k,
for every a ∈ Ag, there is ca ∈P(M) s.t. ca ∈ Ch(a,si) and si+1 ∈ ca. Similarly, an infinite sequence of
states such that all its prefixes are in trackM is called a path (in M).

Definition 3 (Strategies and coherence). A strategy is a function σ from Ag× trackM to P(M) such that
for all (a,τ)∈ Ag× trackM ,σ(a,τ)∈Ch(a, last(τ)). By extension, we write σ(A,τ) for

⋂
a∈A σ(a,τ) for

every A⊆Ag. Two strategies σ1 and σ2 are coherent iff for all (a,τ) in Ag× trackM ,σ1(a,τ)∩σ2(a,τ) 6=
/0. In this case, we also say that σ1(a,τ) and σ2(a,τ) are coherent choices.

A commitment κ is a finite sequence upon (P(Ag)×X), representing the active bindings. An assign-
ment α is a partial function from X to Strat. A context χ is a pair of an assignment and a commitment.
Note that an agent can appear several times in a commitment. Furthermore commitments store the or-
der in which pairs (A,x) are introduced. Therefore our notion of contexts differs from the notion of
assignments that is used in SL [8, 10].

A context defines a function from trackM to P(M). We use the same notation for the context itself
and its induced function. Let κ /0 be the empty sequence upon (P(Ag)×X), then:

• (α,κ /0)(τ) = M

• (α,(A,x))(τ) =

–
⋂

a∈A α(x)(a,τ) if A 6= /0
– else M

• (α,κ · (A,x))(τ) =

Ch .Chareton, J. Brunel & D. Chemouil 5

– (α,κ)(τ)∩ (α,(A,x))(τ) if this intersection is not empty.
– otherwise (which means the context induces contradictory choices), (α,κ)(τ) .

Now we can define the outcomes of a context χ , out (χ): let π = π0,π1, . . . be an infinite sequence over
M, then π ∈ out(s,χ) iff π is a path in M , s = π0 and for every n ∈ N, πn+1 ∈ χ(π0 . . .πn).

Definition 4 (Strategy and assignment translation). Let σ be a strategy and τ be a track. Then σ τ is the
strategy s.t. for every τ ′ ∈ trackM , σ τ(τ ′) = σ(ττ ′). The notion is extended to an assignment: for every
α,ατ is the assignment with domain equal to that of α and s.t. for every x ∈ dom(α),ατ(x) = (α(x))τ

We also define the following transformations of commitments and assignments. Given a commitment
κ , coalitions A and B, a strategy variable x, an assignment α and a strategy σ :

• κ[A→ x] = κ · (AB x)

• ((B,x) ·κ)[A 9 x] = (B\A,x) · (κ[A 9 x]) and κ /0[A 9 x] = κ /0

• α[x→ σ] is the assignment with domain dom(α)∪{x} s.t. ∀y∈ dom(α)\{x},α[x→ σ](y) = α(y)
and α[x→ σ](x) = σ

Definition 5 (Satisfaction relation). Let M be a NATS, then for every assignment α , commitment κ ,
state s and path π:

• State formulas:

– M ,α,κ,s |= p iff p ∈ v(s), with p ∈ At
– M ,α,κ,s |= ¬ϕ iff it is not true that M ,α,κ,s |= ϕ

– M ,α,κ,s |= ϕ1∧ϕ2 iff M ,α,κ,s |= ϕ1 and M ,α,κ,s |= ϕ2

– M ,α,κ,s |= 〈〈x〉〉ϕ iff there is a strategy σ ∈ Strat s.t. M ,α[x→ σ],κ,s |= ϕ

– M ,α,κ,s |= (AB x)ϕ iff for every π in out(α,κ[A→ x]),M ,α,κ[A→ x],π |= ϕ

– M ,α,κ,s |= (A 7 x)ϕ iff for all π in out(α,κ[A 9 x]),M ,α,κ[A 9 x],π |= ϕ

• Path formulas :

– M ,α,κ,π |= ϕ iff M ,α,κ,π0 |= ϕ , for every state formula ϕ

– M ,α,κ,π |= ¬ψ iff it is not true that M ,α,κ,π |= ψ

– M ,α,κ,π |= ψ1∧ψ2 iff M ,α,κ,π |= ψ1 and M ,α,κ,π |= ψ2

– M ,α,κ,π |= X ψ iff M ,απ0 ,κ,π1 |= ψ .
– M ,α,κ,π |= ψ1 U ψ2 iff there is i ∈ N s.t. M ,απ0...πi−1 ,κ,π i |= ψ2 and for every 0 ≤ j <

i,M ,απ0...π j−1 ,κ,π j |= ψ1

Let α /0 be the unique assignment with empty domain. Let ϕ be a sentence in USL (Ag,At,X). Then
M ,s |= ϕ iff M ,α /0,κ /0 |= ϕ .

Let us give the following comment over these definitions: for every context χ = (α,κ), the definition
of out (χ) ensures that the different binders encoded in χ compose their choices together, as far as
possible. In case two contradictory choices from an agent are encoded in the context, the priority is
given to the first binding that was introduced in this context (the left most binding in the formula). This
guarantees that a formula requiring the composition of two contradictory strategies is false. For example,
suppose that 〈〈x1〉〉(a B x1)ϕ1 and 〈〈x2〉〉(a B x2)ϕ2 are both true in a state of a model, and suppose that
strategies σx1 and σx2 necessarily rely on contradictory choices of a (this means that a cannot play in a
way that ensures both ϕ1 and ϕ2). Then, 〈〈x1〉〉(aB x1)(ϕ1∧〈〈x2〉〉(aB x2)ϕ2) is false in the same state of
the same model. If the priority was given to the most recent binding (right most binding in the formula),
the strategy σx1 would be revoked and the formula would be satisfied.

6 Towards an Updatable Strategy Logic

3 Comparison with SL [8, 10]

SL syntax can be basically described from SL by deleting the use of the unbinder. Furthermore, the
binders are limited to sole agents and are written (a,x) instead of (a B x). USL appears to be more
expressive than SL [8, 10]. More precisely, SL can be embedded in USL, while ψ9 is not expressible
in SL, even by extending its semantics to non-deterministic models. Here we give the three related
propositions. By lack of space, the proofs are only sketched in this article. Detailed proofs of these
propositions can be found in [4]. Note that, since SL is strictly more expressive than ATLsc [6], the
following results also hold for comparing USL with ATLsc.

Proposition 1. There is an embedding of SL into USL.

Proof (Sketch). The embedding consists in a parallel transformation from SL models and formulas to that
of USL. The transformation preserves the satisfaction relation. The differences between SL and USL
lie both in the definition of strategies in SL semantics and the difference of interpretation for the binding
operator. The first is treated by defining an internal transformation for SL. By this transformation, the
constraints of agents playing the same choices, issued from SL actions framework, are expressed in the
syntax. Then we define a new operator in USL that is equivalent to SL binding, and show the equivalence:
the operator [aB x] is an abbreviation for a binder (aB x) preceded by the set of unbinders (a 7 xi), one
for every variable xi in the language.

Proposition 2. A model is said deterministic if the successor of a state is uniquely determined by one
choice for every agent. Then, sustainable control is not expressible over deterministic models, neither in
SL nor in USL.

Proof (Sketch). One checks that for every deterministic NATS M , for any state s of M , M ,s 2 ψ9.
Proposition 1 then straightly brings proposition 2

Proposition 3. Sustainable control is not expressible in SL interpreted over NATSs.

Proof (Sketch). The proof uses a generalization of SL semantics over NATSs. Its definition is in [4] and
holds, for example, the following cases:

• M ,α,κ,s |=NATS X ϕ iff for every π ∈ out(s,(α,κ)),M ,απ0 ,κ,π1 |=NATS ϕ

• M ,α,κ,π |=NATS ϕ1 U ϕ2 iff for every π ∈ out(s,(α,κ)), there is i ∈ N s.t. M ,απ0...πi−1 ,κ,π i

|=NATS ϕ2 and for all 0≤ j ≤ i,M ,απ0...πi−1 ,κ,π j |=NATS ϕ1.

• M ,α,κ,s |=NATS 〈〈x〉〉ϕ iff there is a strategy σ ∈ Strat s.t. M ,α[x→ σ],κ,s |=NATS ϕ .

• M ,α,κ,s |=NATS (a,x)ϕ iff M ,α,κ[x\κ(a)],s |=NATS ϕ .

where κ[x\κ(a)] designates the context obtained from κ by replacing every (a,y) in it by (a,x).
Formula ψ9 states that a can always control whether p or not. Suppose there is a formula ϕ in SL

equivalent to ψ9 and let us call existential a formula in SL in which every occurrence of 〈〈x〉〉 is under an
even number of quantifiers. If ϕ is existential then under binary trees it is equivalent to a formula in Σ1

1
(the fragment of second order logic with only existential set quantifiers).

We now consider a set of formulas {Γi}i∈N, each one stating that a can choose i times between p and
¬p. The set {Γi}i∈N is defined by induction over i:

• Γ0 := 〈〈x〉〉(a,x)�(〈〈x0〉〉(a,x0)X p∧〈〈x0〉〉(a,x0)X ¬p)

Ch .Chareton, J. Brunel & D. Chemouil 7

• for all i ∈ N,Γi+1 = Γi[p∧�(〈〈xi+1〉〉(a,xi+1)X p∧〈〈xi+1〉〉(a,xi+1)X ¬p\p]
[¬p∧�(〈〈xi+1〉〉(a,xi+1)X p∧〈〈xi+1〉〉(a,xi+1)X ¬p)\¬p].

where the notation θ1[θ2\θ3] designates the formula obtained from θ1 by replacing any occurrence of
subformula θ3 in it by θ2. {Γi}i∈N is equivalent to ϕ . A compactness argument shows that it is not
equivalent to a formula in Σ1

1 under binary trees, hence ϕ is not an existential formula. Then, we notice
that ϕ is true in structures where, from any state, a can ensure any labelling of sequences over p. So, if
ϕ has a subformula (a,x)ψ where x is universally quantified, ψ must be equivalent to �(p∨¬p). Then,
by iteration, ϕ is equivalent to an existential formula in SL. Hence a contradiction.

4 Conclusion

In this article we defined a strategy logic with updatable strategies. By updating a strategy, agents remain
playing along it but add further precision to their choices. This mechanism enables to express such
properties as sustainable capability and sustainable control. To the best of our knowledge, this is the first
proposition for expressing such properties. Especially, the comparison introduced with SL in this article
could be adapted to ATL with Strategy Context [3].

The revocation of strategies is also questioned in [1]. The authors propose a formalism with definitive
strategies, that completely determine the behaviour of agents. They also underline the difference between
these strategies and revocable strategies in the classical sense. We believe that updatable strategies offer
a synthesis between both views: updatable strategies can be modified without being revoked.

Strategies in USL can also be explicitly revoked. This idea is already present in [3] with the operator
·〉A〈·. But the operator 〈·A·〉 also implicitly unbinds current strategy for agents in A before binding them
a new strategy. Thus it prevents agents from updating their strategy or composing several strategies.

Further study perspectives about USL mainly concern the model checking. Further work will provide
it with a proof of non elementary decidability, adapted from the proof in [10]. We are also working
on a semantics for USL under memory-less strategies and PSPACE algorithm for its model-checking.
Satisfiability problem should also be addressed. Since SL SAT problem is not decidable, similar result is
expectable for USL. Nevertheless, decidable fragments of USL may be studied in the future, in particular
by following the directions given in [9].

References

[1] Thomas Ågotnes, Valentin Goranko & Wojciech Jamroga (2007): Alternating-time temporal log-
ics with irrevocable strategies. In: Theoretical aspects of rationality and knowledge, pp. 15–24,
doi:10.1145/1324249.1324256.

[2] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. J. ACM
49(5), pp. 672–713, doi:10.1145/585265.585270.

[3] T. Brihaye, A. Da Costa, F. Laroussinie & N. Markey (2009): ATL with strategy contexts and bounded
memory. Logical Foundations of Computer Science, pp. 92–106, doi:10.1007/978-3-540-92687-0_7.

[4] Christophe Chareton, Julien Brunel & David Chemouil (2013): Updatable Strategy Logic. hal-00785659.
Available at http://hal.archives-ouvertes.fr/hal-00785659. Submitted.

[5] Krishnendu Chatterjee, Thomas A. Henzinger & Nir Piterman (2010): Strategy logic. Inf. & Comp. 208(6),
pp. 677–693, doi:10.1016/j.ic.2009.07.004.

[6] Arnaud Da Costa Lopes (2011): Propriétés de jeux multi-agents. Phd thesis, École normale supérieure de
Cachan.

http://dx.doi.org/10.1145/1324249.1324256
http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1007/978-3-540-92687-0_7
http://hal.archives-ouvertes.fr/hal-00785659
http://dx.doi.org/10.1016/j.ic.2009.07.004

8 Towards an Updatable Strategy Logic

[7] Arnaud Da Costa Lopes, François Laroussinie & Nicolas Markey (2010): ATL with Strategy Contexts: Ex-
pressiveness and Model Checking. In: FSTTCS, pp. 120–132, doi:10.4230/LIPIcs.FSTTCS.2010.120.

[8] Fabio Mogavero, Aniello Murano, Giuseppe Perelli & Moshe Y. Vardi (2011): Reasoning About Strategies:
On the Model-Checking Problem. CoRR abs/1112.6275. Available at http://arxiv.org/abs/1112.
6275.

[9] Fabio Mogavero, Aniello Murano, Giuseppe Perelli & Moshe Y. Vardi (2012): What Makes Atl* Decidable?
A Decidable Fragment of Strategy Logic. In: CONCUR, pp. 193–208, doi:10.1007/978-3-642-32940-1_15.

[10] Fabio Mogavero, Aniello Murano & Moshe Y. Vardi (2010): Reasoning about strategies. In: FSTTCS, 8, pp.
133–144, doi:10.4230/LIPIcs.FSTTCS.2010.133.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.120
http://arxiv.org/abs/1112.6275
http://arxiv.org/abs/1112.6275
http://dx.doi.org/10.1007/978-3-642-32940-1_15
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.133

	Introduction
	Syntax and semantics
	Comparison with SL vardi, varditr
	Conclusion

