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Abstract: So as to create innovative car silhouettes, we propose in this paper a model based on an 

Interactive Genetic Algorithm using an encoding of a design solution by a Fourier analysis approach. 

This model permits the designer to browse through generations of car profiles from an initial 

population of existing silhouettes. By qualitatively assessing each individual, the user converge 

towards solutions complying with his/her requirements and so potentially create novelty. We describe 

here tests for assessing the efficiency of this innovative design platform. These tests are based on a 

similarity matrix, a similarity measure being the perceived distance between two cars silhouettes. The 

results show a really satisfactory behavior of the model and open perspectives thanks to its flexible 

and extensible aspects. 

Keywords: Interactive Genetic Algorithm, Evolutionary Design, user tests, similarity index, subjective 

evaluation. 

1 Introduction 

Novelty emergence is a priority for the style designer. So CAD tools that permit to help them in a 

creative way are really precious. However most of those existing tools often offer wide possibilities, but 

they are not really compatible with the human and sometimes artistic refinement process that leads to 

2D sketches. In this field of study, the theory of Evolutionary Design (ED) seems to be very promising, 

and particularly Genetic Algorithms (GA) that were originally used for complex optimization problems 

[1] [2]. 

GAs work as an analogy to the theory of Evolution. The structure and the apparent qualities of each 

design solution, called phenotype, are encoded in a genome. From an initial population of such 

individuals, a GA permits to create generations of individuals that are combinations of individuals of 

the previous generation. This operation is called crossing over. By assessing each individual the 

algorithm displays better and better design solutions. 

The principle of an Interactive Genetic Algorithm (IGA) is the same, but the assessment is performed 

at each generation by the user himself [3]. So an IGA is particularly adapted to the situation that we 

described above, when human decisions and aesthetics are essential. 

So we propose in this paper a model based on such an algorithm to design car silhouettes. Different 

ways to encode the silhouette individuals exist, but they often have the disadvantage to be conceived 

for a given domain. Our encoding method is based on a Fourier analysis approach and can be applied 

to all possible objects represented by a 2D-closed-curve. We have chosen to work on car silhouettes. 
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In this way, innovative and new concepts are expected from the collaboration between a car designer 

and the IGA. 

As the human aspects are really essential in this process, we need a way to validate the model by 

taking into account the user perception. We propose to use a similarity index, that is described in this 

paper, and which permits to automatically measure the perceived distance between two car profiles. 

Automatic and user tests have then been performed to characterize our model of shape emergence. 

They show a really satisfactory behavior in terms of convergence, diversity of satisfactory solutions 

and often interesting perspectives about the user perception. 

We present in section 2 our model by detailing the encoding system and the IGA. Then in section 3 we 

present the construction of the similarity index and the different versions that have been tested to 

obtain an efficient tool. Section 4 describes the automatic test and the four user tests performed with 

this index to validate the model. Finally we conclude in section 5 with some remarks and perspectives. 

2 Model description 

This part has been developed in more details in a previous paper (see [4]). However, the model 

description is necessary to understand the next parts of this paper. 

2.1 Mathematic definition of the encoding of the silhouettes 

The main difficulty when using genetic algorithms in automatic design is the encoding of the genome 

(see [5]). Different methods exist like direct encoding with geometrical dimensions [6; 7], tree structure 

[8] shape grammars [9; 10] or a set of predefined components [3]. But the main disadvantage of these 

methods is that they are dependent from the context, that means they are conceived for a given 

design domain. So a difficult and time consuming process is necessary for each application. 

We use here an encoding method for a 2D-closed-curve based on the works of McGarva [11], using 

development into Fourier series for coding the phenotype of the car silhouettes. We have personally 

already used this theory in [12] for encoding a 2D-closed-curve into the five first Fourier harmonics of 

this decomposition. Numerous advantages are associated with such a method: 

 Almost all possible 2D-closed-curves may be generated 

 Every detail may be represented (which is really important to stimulate emotions and create 

novelty) 

 The genomes have a constant length (which is simpler for the crossing over operation) 

 The Fourier harmonics are narrowly associated to apparent characteristics of the phenotype. 

McGarva’s theory of Fourier decomposition of a closed curve considers that the position of each point 

belonging to this curve can be expressed by a complex function in the complex plane: 

  ( )    ( )      ( ) (1) 

As z(t) is a closed curve, its function is periodic. The period is normalized with: z(t+1) = z(t). This 

function z(t) can be developed into a Fourier series, according to formula (2): 

  ( )   ∑        (     )
 
     (2) 

where the complex Fourier coefficients can be calculated by formula (3): 

    ∫  ( )    (      )   
 

 
 (3) 
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Coefficient a0 is called fundamental, a1 and a-1 represent the first harmonic, a2 and a-2 the second 

harmonic, etc. 

As we will see later, the function z(t) is not known as an explicit function from the beginning. Instead, 

we assume that the curve has been initially defined by a set of successive points zk (k=0,..,N) which 

belong to the curve. So, in order to calculate the am coefficients (3) we need a numeric approximation. 

We obtain this approximation by dividing the curve into N segments connecting each point with its 

successor. We call tk the length of the curve between the first point z0 and the point zk. Under these 

conditions the integral can be calculated by the trapezium formula: 

    ∑ (
       

 

 
   (       (         )       (       )) (4) 

while z is a periodic function, (zN+1 = z0). tk is defined by: 

     
  

 
  (5) 

where the total length L is the sum of the lengths of all segments, Lk is the length from the origin to the 

current point, with xN+1 = x0 and yN+1 = y0. 

To construct the genome of an object, we develop its silhouette into Fourier series and define the 

fundamental (the coefficient a0) as gene number zero. The first harmonic (a1, a-1) will be called the first 

gene, the second harmonic the second gene, etc. 

On the basis of the genome, the original shape of the individual can be reconstructed. Every point Pk 

with the coordinates (xk, yk) on the curve z
*
 which approximates the silhouette of the car, can be 

calculated by formula (6). 

   (  )          ∑       (
 
          ) (6) 

where tk (0≤tk≤1) is the position on the curve and p fixes the number of harmonics used for the 

decoding. When p equals 1 for example, we use one harmonic to reconstruct the silhouette of the car. 

The more harmonics used for the decoding the more precise will be the approximation to the original 

curve. We call p the “precision” of decoding. 

2.2 Creation of the initial car silhouettes 

We divide the IGA process into two main phases (see Figure 1): the creation of an initial population, 

and the evolution of the population. 

The initial population consists of silhouettes of several already existing car bodies. We programmed 

an interface in Java to border a silhouette from a photograph by clicking on the screen and to encode 

it into Fourier harmonics. In order to obtain a good quality, a sufficient amount of points should be 

used to represent as many details as possible (a number M of 60 to 80 points are needed). 

However it is not sufficient to calculate a genome which is precise enough to allow a highly detailed 

decoding into the phenotype. Consequently we need to augment the number of points on the curve by 

smooth interpolations. We choose bicubic splines linking three successive points, because the result 

is very close to the original curve and few oscillations are noticed. We finally have a total number of N 

points with N>M. N has an influence on the precision of the Fourier coefficients. 

The number p of harmonics used to decode the genome has a strong influence on the final result too. 

So it is necessary to determine a satisfactory balance between N and p. Some experiments give us an 

optimum for p=71 and N=1500. A last operation of normalization is necessary in order to obtain car 

silhouettes that are independent of a particular location or size. 
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Figure 1. Diagrammatic plan of the IGA process. 

2.3 Evolution of the population 

Then the population can evolve (Phase 2 on Figure 1). During an operation called crossing over, the 

car silhouettes reproduce themselves to create new individuals. A fitness value f between 0 and 6 

(where 0 is the worst and 6 the best evaluation) is assigned to each individual, according to the grade 

given by the user via an interface (see Figure 2). It is important to notice that the meaning of the scale 

is chosen by the user himself. No visual connection is given, which permits a high liberty in the design 

process. But it may sometimes have bad effects, because the user can change his/her own scale 

during the evaluations. 

On the interface six individuals are displayed at a time and the user browses through all the individuals 

of a population (see Figure 2). He/she is supposed to evaluate all the individuals of a population. In 

order to permit novelty emergence and to optimize creativity, four operators have been implemented: 

 Selection: decides which individuals will reproduce and create children according to the 

fitness values. The probability for an individual to be selected to be a parent is proportional to 

its fitness value (between 0 and 6). 

 Crossover: builds a child’s genome from two selected genomes (called parents). A crossover 

weight W is chosen randomly between 0 and 100. A new gene g* is formed by calculating the 

weighted mean of the genes gm,1 and gm,2 of the parents after formula (7): 

   
   

      (     )    

   
 (7) 

 Mutation: changes in a random way a genome after the crossover. 

 Killing: decides which individuals from the parents’ population survive and live on in the new 

generation. We chose a turnover rate of 0.7, in this way we do not lose potential good design 

solutions 
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Figure 2. User Interface for the designer evaluation showing 6 individuals of a larger population. The 

designer can browse through the population by clicking on the arrow buttons. 

After choosing two individuals from the parents’ population thanks to the selection operator, their 

genomes are combined into the genome of a child by applying the crossover and the mutation 

operators. Afterwards the two individuals are re-put into the parents’ population. Indeed, an individual 

can be selected more than once by the selection operator. 

Varying weight W between 0 and 1, we can obtain different new design solutions which continuously 

interpolate a silhouette between the two parents’ silhouettes. With this interpolating crossover 

operator, children inherit from visual characteristics of their two parents and no ill-car is produced, but 

only a small space of possible solutions is explored. To enlarge the space of possible solutions and 

create more surprise and novelty for the designer we also apply a mutation operator. 

3 Building of the similarity index 

Is our system really capable to produce innovation and novelty? Is it possible for a user to design with 

the help of our system a new car body silhouette which was not part of the initial population? 

To answer these questions, it could be useful to have a tool that permits to automatically measure the 

perceived difference between two car silhouettes and to prove that two car silhouettes are really close 

or not. So we propose to create a similarity index. Based on user assessments, it would permit to 

easily measure the difference between two car profiles. It would be a helpful tool to realize tests and 

prove results. 

We propose here a description of the process to get this similarity index. Two different ways have 

been tested. The first is based on an exponential formula, and the second uses weights associated to 

genes. 

3.1 Mathematic definition 

We first define D(k,l) the distance between two genomes Gk and Gl. As the modifications on the ten 

first genes only are significant (modifications on other genes do not change anything on the car profile 

visual perception), the sum only consider those ten genes. And D(k,l) is: 

  (   )   ∑  ( )            
   

    (8) 

The factor  ( ) is a weighting factor which should give more importance to some genes according to 

their participation in the modification of the silhouettes. Here gk,m is gene number m from genome k 
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and gl,m is gene number m from genome l. One gene consists of two harmonics, called am and a-m, 

which are complex numbers. So they can be written as: am = um + i.vm. 

Then we define: 

            
   

(         )
 

(             )
  

(           )
 

(               )
  

  
(         )

 

(             )
  

(           )
 

(               )
  (9) 

where umax,k and umin,k (respectively vmax,k and vmin,k) are the maximal and the minimal values of uk and 

vk on the whole initial population. 

And we finally define the similarity index between two genomes k and l as: 

        (   )   
   

   (   )
  

   

  ∑  ( )           
   

   
  (10) 

So with this definition, the similarity index in included between 0 and 100%, where 100% means that 

the two individuals are identical. 

We now have to define the factor series  ( ). 

3.2 Exponential form 

In this section we assume that  ( ) can be written as an exponential expression which gives more 

importance to the first genes than to higher order genes, because a modification of the first genes 

impacts more the car silhouette than a modification of the last ones. So  ( ) is expressed as: 

  ( )         (11) 

where a and b are two constant terms. So D(k,l) becomes: 

  (   )   ∑                 
   

       ∑                
   

    (12) 

But now we need to find significant values of a and b. 

We propose the following process to measure b: 

 Choose a genome, which is copied 3 times: G0, G1, G2. 

 Choose a gene i in G1 (better with a low weight to be significant): g1i. 

 Choose a gene j (i ≠ j) in G2 (better with a low weight to be significant): g2j. 

 Modify the gene g1i of G1 in an arbitrary way. 

 Modify the gene g2j of G2 in such a way that there is an iso-similarity (defined below) between 

G0 and G1 on the one hand, and G0 and G2 on the other hand. 

We define the iso-similarity in this way: 

Two couples of car silhouettes are iso-similar if the perceived level of similarity is the same for the two 

couples. For example, it would mean here that the level of similarity is the same between G0 and G1, 

and between G0 and G2. Practically, it means that the user has to modify the gene g2j until the level of 

perceived similarity becomes the same between G0 and G1 as between G0 and G2. In that way, G2 

and G1 are not identical, but their level of similarity according to G0 is the same. 

Then we can write the following equality: 
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  ( )           
    ( )           

  (13) 

And b is: 

   
 

(   )
   

         
 

         
  (14) 

By making n times this tests with different car profiles and different users, we get n different b values. 

The final value of b adopted is the average. 

The next step consists in measuring a. We propose the following process: for each of the previous 

comparison (between G0, G1 and G2), the user defines the level of similarity (“the similarity between 

G0 and G1 on the one hand and G0 and G2 on the other hand is 70%” for example). As it is very hard 

to express such a value, we propose to work with a 7 degrees scale; the user just chooses the level of 

similarity in the Table 1. 

Table 1. Scale of similarity for user assessments 

Level of similarity Value of similarity index 

0 5% 

1 30% 

2 50% 

3 65% 

4 80% 

5 90% 

6 100% 

So then it is possible to write: 

    
   

    ∑              
   

   
 (15) 

where b is the average value of the previous tests. 

And a is: 

   
 

∑              
   

   
 (

   

  
  ) (16) 

We also obtain 2n different a. The average value is acceptable if the standard deviation is low. 

The calculation of the similarity index is now completed. 

Practically, we use a Java interface (see Figure 3) that permits to follow the processes described 

above by loading a population. 
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Figure 3. Java interface to calculate the parameters a and b 

3.2 Weighted form 

In the previous section, we assumed that  ( ) should give more importance to the first genes that to 

the last ones and can be written as an exponential expression. But some experiments showed us that 

this assessment could be wrong when using the ten first genes only: the importance of these genes is 

not necessarily relative to their rank. Each  ( ) is now associated to a given weight pm. 

So D(k,l) becomes: 

  (   )   ∑              
   

    (17) 

To obtain the weights values, we follow the same process as with the exponential form. And we finally 

obtain the following expression: 

     
         

 

         
     (18) 

By performing this test n times (n>10) with different values for i and j (to cover all the ten first genes), 

we have a system of n equations, that can easily be resolved with the logarithmic least square 

method. 

The tests are performed with a modified version of the Java interface described in the previous 

section. 

3.3 Performance comparison and choice of the index 

To find out the best version of the similarity index, we perform the tests described in Figure 4. The 

same 30 car silhouettes are used to build the two similarity indexes. After that, the same 10 car 

silhouettes are used to validate it and permit to choose the best one. We obtain 2 similarity matrices, 

and we ask users to assess the same 10 profiles in a third matrix, according to the scale of the table. 

These three matrices permit to calculate two correlation coefficients. 



 9 

 

 

Figure 4. Choice of the similarity index type 

We obtain with the exponential form of the index a correlation coefficient of 0.45, and the value is 0.7 

with the discrete weights form. So we choose this second form for the similarity index. We can now 

perform user tests to validate our model thanks to this similarity index. 

4 Validation tests 

To validate our model we first performed simple user tests without the similarity index, based on Kim 

works [3]. These tests are described in details in [13], so we just present here the important results 

that we obtained. The data were collected during a subjective evaluation workshop with 8 users and 2 

semantic attributes (4 users worked with the word friendly, and 4 users with the word sportive). We 

asked the users to find out the best car silhouettes according to their semantic attribute, after 10 

generations of 20 individuals and with non-hedonistic evaluations. Then we asked them to compare 

those best silhouettes with the best ones obtained in a basic way (profiles printed on paper, without 

genetic algorithm). Our conclusions are: 

 The user satisfaction increases with the generations. 

 The results are globally better with the IGA than without. 

 However, some major differences can be noticed between the two semantic attributes. Indeed 

the user perception is really different from a user to another: sportive seems to be perceived in 

the same way by everyone, whereas each user has a different perception of friendly. 

 

30 car silhouettes 30 car silhouettes 

Parameters (a,b) Weights p1… p10 

10 car silhouettes 10 car silhouettes 10 car silhouettes 

Calculated 

similarity matrix 1 

Calculated 

similarity matrix 2 User similarity 

matrix 

Correlation 

coefficient 1 

Correlation 

coefficient 2 

Choice of the 

similarity index 

Exponential form Discrete weights form 

Index 

construction 

Index validation 
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Figure 5. Examples of best sportive (on the left) and friendly (on the right)car silhouettes (one from each 

user). 

So to confirm these observations we have proceeded to more sophisticated post-processing analysis, 

using the similarity index described in section 3. 

4.1 Tests construction 

We propose here five user tests that use the similarity index to process the same data (except the first 

one) as those used for the previous tests (see [12]). 

4.1.1 Test of “novelty emergence” 

The goal of this test is to show that it is possible to reach a defined individual which is not part of the 

initial population. 

A designer draws on a sheet of paper a car body silhouette which comes spontaneously to his/her 

mind and which is not part of the initial population. This car body silhouette is taken as “reference 

individual”. By working with our system he should try to obtain in the end the silhouette he had drawn 

before on the paper. To cope with this, he is supposed to evaluate the car solutions which look close 

to the reference individual with higher grades and those who look different with lower grades. By 

counting the number of generations he needs to reach the reference individual, we can estimate the 

quality of our design system. 

But this method is highly linked to the designer subjectivity, which would probably influence the 

results. Our objective is just to estimate the convergence ability of the model. If no automatic 

convergence is observed, there will probably not be a convergence with any user test. So we have 

preferred to perform an automatic test. The target individual is a car silhouette that has been removed 

from the initial population. The role of the designer is played by an algorithm, which automatically 

evaluates the individuals of a generation in terms of their similarity to the target individual, using the 

similarity index. 

4.1.2 Test of “diversity lowering” 

The aim of this test, called test of “diversity lowering” is to study: 

 The evolution of the similarity index for each user along the ten generations. 

 The similarities that could exist between the individuals of the last generation of each 

designer. 

The idea consists simply to calculate the similarity index between all the individuals of all the users 

and for all the generations of the previous workshop (see [13]), and to group together the data to 

observe potential correlations. 

A high value of similarity for the last generation would mean that the IGA converges towards a single 

individuals family, and so that there is a diversity lowering. 
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4.1.3 Test of “inter-designer convergence” 

The goal of this test, called test of “inter-designer convergence” is to study the similarities that could 

exist between the last generations of all the users. 

As in the previous test, the idea consists simply to calculate the similarity index between all the 

individuals of all the users and for all the generations of the previous workshop (see [13]), and to 

group together the data to observe potential correlations. 

4.1.4 Test of “superiority of the IGA model” 

This test is called test of “superiority of the IGA model”. Its goal is to show that our model obtains 

better results than without, in particular in terms of time and number of individuals. 

It consists in comparing for each user the 3 best individuals of the IGA with the 3 best individuals 

obtained without the IGA (printed on paper, see [13]) with the similarity index. 

4.1.5 Test of ‘attraction in the surroundings of initial individuals” 

The last test proposed in this paper is called test of “attraction in the surroundings of initial individuals”. 

It tries to answer the following question: is the user really able to design his/her own car silhouette, or 

are the final individuals influenced by the initial individuals and close to their genotypes? 

Our solution to this problem is to compare the best individuals of the IGA with the 20 car silhouettes of 

the initial population. 

4.2 Results analysis 

4.2.1 Test of “novelty emergence” 

For the test we used the car in Figure 6a as reference individual. The parameters for the Genetic 

Algorithm were the following: population of 100 individuals, turnover rate of 0.7 and mutation 

probability of 0.3. The mutation could change a gene in a range of ±(50%-200%). After 10 generations 

our system reached the car body silhouette in figure 4b which has a similarity index of 92%, which can 

be considered as a much satisfactory result. 

The average fitness of the population converges over the generations to a high value (more than 

95%), whereas the value of the best similarity index in the population (the fitness of the fittest 

individual) raises rapidly from relative low 44% to 92%. 

So our system is able to automatically and quickly (less than 10 generations) converge towards a 

given car silhouette that is not in the initial population. It means that the space of possible solutions 

which can be reached by our system is large enough. This is necessary to be able to produce 

innovation and novelty. 

(a) 
(b) 

 

Figure 6. Example of comparison between the reference silhouette (a) and the final resulting silhouette 

(b). 
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4.2.2 Test of “diversity lowering” 

These results concern the evolution of the similarity index of each user. The curves are shown on 

Figure 7 .The initial population has an average of 6.5% of similarity. In all the cases and for the two 

semantic attributes, the values increase quickly. At the 6
th
 generation (Generation #5 on the graph), 

the averages of all the users are above 40% similarity, and at about 75% for the last generation. The 

averages of each user (in italic in tables 4 and 5) are all included between 60 and 90% of similarity, 

which correspond to a level of very strong similarities. 

It shows that for each user, the model converges towards a single family of car silhouettes, which are 

very close in terms of visual aspect. But it means too that there is a real diversity lowering. 

 

Figure 7. Evolution of the similarity index along the generations for the two semantic attributes. 

4.2.3 Test of “inter-designer convergence” 

The results are displayed on Tables 2 and 3. These matrices represent the averages of the similarity 

index for the two semantic attributes: 

 Between all the users (in bold). 

 For each user (in italic). These values are treated in the previous test. 

The values are really consistent with the visual aspect of the individuals. For the semantic attribute 

friendly, the values inter-designer (in bold) are not high, and the total average is only 9.21% similarity, 

whereas this total average is 50.83% for the attribute sportive. It means that the similarity between the 

last population of the users with the attribute sportive is very strong, and that there is no connection 

between those with the attribute friendly. 

These results confirm rigorously that the perception of the word sportive is the same for all users (they 

all came to the same type of profiles), whereas each user has its own perception of the word friendly 

(they all have a different kind of car silhouettes at the end of the workshop). 

Table 2. Similarity values between users for the semantic attribute friendly (in %). 

 

 

 

 

User 5 User 6 User 7 User 8 

User 5 79,07 6,91 4,02 2,89 

User 6 
 

89,65 20,65 8,81 

User 7 
  

61,02 11,97 

User 8 
   

74,16 

Total average 9,21 

 

Table 3. Similarity values between users for the semantic attribute sportive (in %). 
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User 1 User 2 User 3 User 4 

User 1 79,95 47,87 63,09 36,20 

User 2 
 

72,34 74,14 42,62 

User 3 
  

89,61 41,04 

User 4 
   

74,74 

Total average 50,83 

4.2.4 Test of “superiority of the IGA model” 

The maxima of similarity are shown in Table 4. For 5 users out of 8, the maximum is above 70% of 

similarity. For 2 users, the maximum is included between 20 and 30%. For the last one, it is only 

2.67% of similarity. 

These values mean that it is possible to obtain the same results with and without our model. 5 users 

have found with the IGA at least one individual that is common or very close to one of the paper 

individuals. 

400 individuals were proposed on paper. It took about 45 minutes for the user to evaluate them. Less 

than 200 individuals were used with the IGA (10 generations of 20 individuals, minus those who 

survive from one generation to the next one), during about 20 minutes. So we can say that our system 

seems to be able to bring the same results as without the model, more quickly and with fewer 

individuals. 

Table 4. maxima of similarity values between best individuals of the IGA and paper individuals (in %). 

Sportive 

User 1 84,49 

User 2 21,26 

User 3 80,92 

User 4 97,93 

Average 71,15 

Friendly 

User 5 2,67 

User 6 98,09 

User 7 71,32 

User 8 26,94 

Average 49,75 

Total Average 60,45 

4.2.5 Test of ‘attraction in the surroundings of initial individuals” 

The results of this test are very interesting, but too sizeable to be displayed here. That is why only the 

case of user 2 is presented on Table 5. 

This table shows that the best individuals of user 2 are very close to Individual #13 of the initial 

population (more than 50% of similarity). Individual #13 represents the silhouette of a Porsche 911. 

Two other minor influences can be noticed (with Individuals #2 and #8), but the values are below 20%, 

which is not significant. User 2 worked with the semantic attribute sportive, and it is important to notice 

that the same results are obtained with the 3 other users who worked with this attribute. 

That means that they all came to the same type of profile (see section 5.1.2) which is very close to a 

Porsche 911. In other words, all the users perceived a sportive car as a Porsche 911. 
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For the semantic attribute friendly, the results are totally different. No car that influences all the users 

can be identified. In 2 cases out of 4, no significant influence of an initial individual is noticed. In the 

two other cases, such a car can be identified, with the scores of 40% of similarity, but this car is 

different for the two users (Porsche 911 for the one, Chevrolet Corvette C4 for the other). It shows 

again that this attribute is differently perceived. 

Table 5. Example of similarity values for the comparison between the best individuals of the IGA and the 

initial population (in %). 

 

4.3 Synthesis 

Those five tests based on the similarity index permit to prove rigorously some results. Indeed in all 

cases the system turns out to converge towards a uniformized population. For the semantic attribute 

sportive, this profile is the same for any of the four users and is close to a Porsche 911. For the 

semantic attribute friendly, no similar influence from the initial population is identified, and the results 

really depend on the user. The perception of the attributes is really different from a user to another. 

Moreover, our model converges quickly and with less individuals than without the model, which is 

really satisfactory. 

However, some remarks can be formulated: 

 The model always converges towards one profile family. Is it not possible to converge towards 

at least two different families? 

 What happens if the Porsche 911 or the other influencing cars are not in the initial population? 

Do the users even find them? 

 Why are there so many differences in the perception of the semantic attributes? Some 

concepts of Emotional Design could be introduced to develop a more powerful model. 

 

Best Individual 1 Best Individual 2 Best Individual 3

Ind 0 2,04 1,93 1,84

Ind 1 2,95 2,77 2,65

Ind 2 10,02 9,02 8,80

Ind 3 0,91 0,88 0,90

Ind 4 3,45 3,24 3,35

Ind 5 2,04 1,94 1,91

Ind 6 1,42 1,36 1,36

Ind 7 1,78 1,74 1,52

Ind 8 13,90 13,73 10,75

Ind 9 6,62 6,17 6,53

Ind 10 2,76 2,60 2,47

Ind 11 3,28 3,41 2,91

Ind 12 2,08 1,97 1,97

Ind 13 69,65 69,89 53,21

Ind 14 3,50 3,30 3,46

Ind 15 7,15 7,23 10,83

Ind 16 2,07 1,97 1,93

Ind 17 3,05 2,88 2,87

Ind 18 1,65 1,58 1,47

Ind 19 1,99 1,93 1,69

User 2

Initial 

Population
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6 Concluding remarks 

From the user tests based on the similarity index that we have presented in this paper, we can say 

that our model is really satisfactory. Indeed we obtain very promising results: the users are satisfied 

and the results are better with our model than without. It also potentially creates novelty and the 

results are potentially different from a user to another; in fact those two assessments depend on the 

chosen semantic attributes, and some further works have to be done to elucidate them. 

But this model is maybe not really realistic with car silhouettes, because cars are too complex to be 

perceived only with a profile. So some ways of improvement could permit to adapt it to obtain more 

realistic results. Indeed our design platform is really flexible and extensible, because it is not confined 

to a product field. We think that excellent results could be obtained with simple shapes. The ideal form 

would be a simple 2D-closed-curve from a solid of revolution, like stemmed glasses or vases. So this 

one way of improvement that can be studied. 

Finally, it could be really interesting to allow a step of direct modifications by the designer during the 

genetic algorithm process, which means to modify a selected individual with a graphic tool and to 

reinject it in the current population. 

References 

[1] Bentley P.J. and Corne D.W. An introduction to creative evolutionary systems, pp. 1-75. 

[2] Renner G. and Ekart A. Genetic Algorithms in Computer Aided Design. Computer Aided 

Design vol. 35, 2003, pp. 709-726. 

[3] Kim H.S. and Cho S.B. Application of interactive genetic algorithm to fashion design. 

Engineering Applications of Artificial Intelligence vol. 13, 2000, pp. 635-644. 

[4] Yannou B., Dihlmann M. and Cluzel F. Indirect encoding of the genes of a closed curve for 

interactively create innovative car silhouettes. in International Design Conference - Design 2008, 

Dubrovnik, Croatia, May 19 - 22, 2008. 

[5] Nicaise F. and Antonsson E.K. Indirect encoding of structures for evolutionary design. In 

International Conference on Engineering Design: ICED'07, Paris, France, August 28-31, 2007. 

[6] Ang M.C., Chau H.H., McKay A. and de Pennington A. Combining evolutionary algorithms and 

shape grammars to generate branded product design. In Design Computing and Cognition ’06, Gero 

J.S. Editor, Springer Netherlands, 2006, pp. 521-539. 

[7] Yanagisawa H. and Fukuda S. Interactive Reduct Evolutional Computation for Aesthetic 

Design. Journal of Computing and Information Science in Engineering March, 2005. 

[8] Liu H., Tang M. and Frazer J.H. Supporting evolution in a multi-agent cooperative design 

environment. Advances in Engineering Software vol. 33, n° 6, 2002, pp. 319 - 328. 

[9] Cheutet V. 2D semantic sketcher for a car aesthetic design. In CPI'2007: Conception et 

Production Intégrées, Rabat, Maroc, October 22-24, 2007. 

[10] Osborn S., Cagan J., Pawlicki R. and Smith R. Creating cross-over vehicles: Defining and 

combining classes using shape grammars. Artificial Intelligence for Engineering Design, Analysis and 

Manufacturing vol. 20, 2006, pp. 217-246. 



 16 

[11] McGarva J. and Mullineux G. Harmonic representation of closed curves. Applied Mathematical 

Modelling vol. 17, 1993, pp. 213-218. 

[12] Vasiliu A. and Yannou B. Dimensional Synthesis of Planar Mechanisms Using Neural 

Networks: Application to Path Generator Linkages. Mechanism and Machine Theory vol. 36, n° 2, 

2001, pp. 299-310. 

[13] Cluzel F., Yannou B. and Dihlmann M. User tests for the convergence of a car silhouette 

design model using an Interactive Genetic Algorithm. In IDMME – Virtual Concept 2008, Beijing, 

China, October 8-10, 2008. 

 


