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Abstract—A novel framework to efficiently deal with three-dimensional (3-D) segmentation of challenging inho-
mogeneous data in real-time has been recently introduced by the authors. However, the existing framework still
relied on manual initialization, which prevented taking full advantage of the computational speed of the method.
In the present article, an automatic initialization scheme adapted to 3-D, echocardiographic data is proposed.
Moreover, a novel segmentation functional, which explicitly takes the darker appearance of the blood into account,
is also introduced. The resulting automatic segmentation framework provides an efficient, fast and accurate solu-
tion for quantification of the main left ventricular volumetric indices used in clinical routine. In practice,
the observed computation times are in the order of 1 s. (E-mail: daniel.barbosa@uzleuven.be) � 2013 World
Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Ultrasound imaging faced an important evolution with
the introduction of two-dimensional (2-D) matrix trans-
ducers in clinical practice. Indeed, three-dimensional
(3-D) visualization of the cardiac chambers allows over-
coming several important limitations of classical 2-D
ultrasound imaging, such as foreshortening, out-of-
plane motion and the need of geometric assumptions
for volume calculation. Volumetric analysis of left
ventricular (LV) function using real-time 3-D echocardi-
ography (RT3DE) has already been proven to be an accu-
rate approach in several comparative studies against the
current gold standard (i.e., magnetic resonance imaging
[MRI]) (Jenkins et al. 2004; Caiani et al. 2005; Jacobs
et al. 2006; Soliman et al. 2007, 2008; Mor-Avi et al.
2008; Muraru et al. 2010). These previous studies have
also revealed that the estimation of LV volumes using
traditional 2-D imaging has limited accuracy attributable
to the limitations introduced by the geometric assump-
ddress correspondence to: Daniel Barbosa, Medical Imaging
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tions required to estimate the volumetric measurements.
Furthermore, in these previous studies, interobserver
variability was also significantly larger in volumes esti-
mated using 2-D approaches (Jenkins et al. 2004;
Caiani et al. 2005; Jacobs et al. 2006). Therefore, the
potential of accurate 3-D volumetric assessment of
cardiac morphology and function using RT3DE, in addi-
tion to the intrinsic benefit of ultrasound imaging (i.e., its
cost and portability), makes it a very useful and promising
tool for clinical routine.

Nonetheless, and despite the efforts from the
research community and medical vendors, 3-D LV
segmentation typically remains a time consuming task
and heavily relies on user interaction to accurately
measure LV volumes. In fact, the amount of time required
to accurately extract the most commonvolumetric indices
(end-diastolic volume [EDV], end-systolic volume
[ESV], stroke volume [SV], ejection fraction [EF])
from a single examination ranges from 2 min
(Hansegard et al. 2009; Muraru et al. 2010) to 10 min
(Jenkins et al. 2004; Caiani et al. 2005), although approx-
imately 5 min seems to be the most common total anal-
ysis time (Jacobs et al. 2006; Soliman et al. 2007; 2008;
Mor-Avi et al. 2008). Furthermore, a recent study using
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a state-of-the-art commercial software package shows
that although automated LV volume measurements are
feasible (nine user clicks at ED and ES for initialization),
optimal LV volumetric assessment still requires a signifi-
cant amount of manual correction (Muraru et al. 2010).
This results in doubling the analysis time and also intro-
duces a user-dependent bias. Thus, there is still a signifi-
cant need for tools allowing automatic fast 3-D LV
segmentation, as highlighted in the closing remarks of
a recent review focusing on the automated border detec-
tion in RT3DE data (Leung and Bosch 2010). This is
strengthened by the fact that recent advances in the acqui-
sition techniques are pushing the temporal resolution
forward (Madore et al. 2009; Hasegawa and Kanai
2011; Tong et al. 2011), thus enforcing the need for auto-
mated methods to handle the increasing amount of data
available from a single cardiac cycle.

The authors recently proposed a framework for real-
time segmentation of challenging inhomogeneous 3-D
data (Barbosa et al. 2012a). This method uses B-spline
explicit active surfaces (BEAS) to recover objects from
volumetric data, allowing the use of global or local
region-based segmentation energies to evolve the contour.
A pipeline designed to segment RT3DE data using BEAS
was recently developed. In spite of obtaining promising
results, the existing semiautomated algorithm relies on
manual input (six clicks per 3-D volume) to fit an ellipsoid
used to initialize the segmentation algorithm (Barbosa et al.
2011, 2012b). This fact intrinsically introduces user-
dependent bias. Moreover, manual initialization accounts
for the vast majority (�95%) of the total analysis time.
Thus, a fast and automatic initialization method would be
of great clinical value. This would overcome any vari-
ability introducedby themanual initialization,while taking
full advantage of the real-time ability of BEAS.

Several attempts have recently been made to tackle
the initialization dependence of energy-based image
segmentation strategies. Li and Acton have proposed an
initialization framework aiming to recover the underlying
external energy field from the external (image) force
field, using then isolines of minimum energy to initialize
the segmentation process (Li and Acton 2008). Tauber
et al. have proposed the concept of centers of divergence
to solve the initialization dependence of active contours
(Tauber et al. 2010). Regarding cardiac segmentation
problems, van Stralen et al. have proposed a method for
automatic estimation of both LV orientation and mitral
valve detection (van Stralen et al. 2008).

The originality of the proposed method is twofold:
first, a new segmentation energy that takes explicitly
into account the darker appearance of the blood pool is
introduced, contributing to a more robust and accurate
segmentation. Second, getting inspired by the work of
van Stralen et al. (2008), a new algorithm based on
a robust phase-based edge detector and a fast ellipsoid
fitting procedure is proposed. This allows keeping the
computational burden of the initialization method around
1 s in a C11 implementation. The fully automatic
segmentation method as such obtained is then validated
using clinical volumetric ultrasound data.

METHODS

3-D LV real-time segmentation using soft prior
information

The segmentation framework (BEAS) used in the
present work has been recently proposed by the authors
to allow real-time segmentation of challenging inhomo-
geneous 3-D data (Barbosa et al. 2012a). The funda-
mental concept of this method is to regard the boundary
of an object as an explicit function, where one of the coor-
dinates of the points within the surface is given explicitly
from the remaining coordinates. Such explicit relation
can be mathematically defined as:

j : Rn211R; ðx2;.; xnÞ1x1 5jðx�Þ; (1)

where x˛Rn is a point of coordinates fx1;.; xng in an
n-dimensional space and x�˛Rn21 is a point of coordi-
nates fx2;/; xng in the associated ðn21Þ -dimensional
subspace.

In this framework, the explicit function J is ex-
pressed as the linear combination of B-spline basis func-
tions (Unser 1999):

x1 5jðx2;/; xnÞ5
X
k˛zn21

c½k�bd

�
x�

h
2k

�
; (2)

where bdð$Þ is the uniform symmetric n21 -dimensional
B-spline of degree d. This function is separable and is
built as the product of n21 one-dimensional B-splines,

so that bdðx�Þ5
Yn
j5 2

bdðxjÞ. The knots of the B-splines

are located on a rectangular grid defined on the chosen
coordinate system, with a regular spacing given by h.
The coefficients of the B-spline representation are gath-
ered in c½k�. Note that this representation follows what
has been initially proposed for the level-set framework
by Bernard et al. (2009).

The surfacewill evolve toward the object boundaries
by minimization of a segmentation energy functional.
Typically, the localized Yezzi energy, as proposed in
Lankton and Tannenbaum (2008), has been used:
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where FLðy;HfðyÞÞ is an image criterium and Bðx; yÞ
corresponds to a mask function in which the local param-
eters that drive the evolution of the interface are esti-
mated. dfðxÞ and HfðxÞ are the Dirac and Heaviside
operators respectively applied to the level set function
fðxÞ5jðx�Þ2x1, which is defined over the image
domain U. Note that ux and yx are the local mean intensi-
ties inside and outside the interfaceG, computed along the
normal direction as suggested in Barbosa et al. (2012a).

Since the blood pool is usually darker than the
myocardial tissue, we proposed to introduce a small
change in the original function by:

FL

�
y;HfðyÞ

�
5 ðux2yxÞ: (5)

Note that whenever ux.yx, this segmentation energy
will have a positive value, which is penalized in the
proposed minimization strategy. It is important to stress
that the proposed energy is intrinsically local, and thus
will converge to a local minimum. This is in line with
the goal of the proposed method, which consists in ob-
taining the optimal boundary between the blood pool
and the myocardial tissue, disregarding the remaining
contents of the image. Therefore, the minimization of
the proposed energy will converge to a local optimum,
corresponding to the interface maximizing the signed
separation between the local means around the interface
(i.e., enforcing the mean outside to be greater than the
one inside). It should also be noted that both ux and yx
are bounded by the image values range, which imposes
a lower bound on eqn (3).

The proposed energy can be directly minimized wrt.
the B-spline coefficients, as shown in the Appendix, using
the following evolution equations:

c½k�ðt11Þ 5 c½k�ðtÞ2l
vEL
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; (6)
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where Au and Ay are the areas inside and outside the inter-
face used to estimate the local means ux and yx, respec-
tively. For clarity sake, Iðx�Þ corresponds to the image
value at the position x5 fjðx�Þ; x2;/; xng. Further
details on the BEAS framework can be found in
Barbosa et al. (2012a).

In the present work, the J function was defined in
spherical coordinates and the number of points used to
discretize the interface, denoted as Nb, were 24 3 16
along the zenithal (i.e., longitudinal) and azimuthal
(i.e., circumferential) directions, respectively. The scale
parameter hwas fixed to 2, while the size of the neighbor-
hood Bðx; yÞ, r, was set to 16. In the Results section, the
influence of the choice of these parameters is addressed
and the influence of the variation of these parameters is
investigated.

Automatic initialization algorithm
The key steps of the proposed algorithm are the

sequential detection of the left ventricular long axis
(LAX) and mitral valve plane. Once this information is
available, we take advantage of the information gathered
in these two first steps to fit an ellipsoid to the detected
endocardial boundaries. The overview of the key process-
ing blocks of the algorithm are shown in Figures 1 and 2.

Image preprocessing
The first step for the automatic initialization of a 3-D

ultrasound volume is to detect the myocardial boundaries
using edge operators in several C-planes (i.e., planes
parallel to the transducer surface), perpendicular to the
acquisition axis. Given that ultrasound images possess
low contrast between the blood pool and the myocardial
tissue, it is proposed to include a robust, phase-based
edge detector, because of its intrinsic invariance to inten-
sity. The local phase extracted using monogenic signal,
recently applied to 3-D ultrasonic data by Rajpoot et al.
(2009), has a remarkable performance in the detection
of the myocardial boundaries in low quality ultrasound
data, even in low contrast areas. This edge detector is
applied to each of the 2-D C-planes taken 5 mm apart.

Since the endocardium is approximately a circle in
these 2-D C-planes, low level computer vision methods
can be employed to robustly find the most likely position
for the center of the LV cavity. To this end, the Hough
transform for circles (HTc) is employed. This transform
will return the probability of a given position ðx; yÞ in
the 2-D C-plane image being the center of a circle of
radius r. By concatenating the output of the HTc, a 4D
ðx; y; z; rÞ circle center probability matrix, Pc, can be
generated. To keep r in a physiologically relevant range,
½rmin; rmax� was set to ½15; 35� mm. A schematic diagram
of the steps taken in the image preprocessing block are
shown in Figure 1a. The multiscale phase-based edge
detector algorithm used wavelengths of 24, 30 and 36
pixels, as suggested in the original submission by
Rajpoot et al. (2009). Its result was normalized to its
maximum value and thresholded using Th5 0:05 to
obtain a binary edgemap detector prior to circle detection.

Long axis detection
To reduce the computational complexity of the long

axis detection step, Pc was transformed into a 3-D matrix,
Pmax, by taking into account only the maximum proba-
bility value along the r direction. Subsequently, multi-
dimensional dynamic programming (MDP) was used to



Fig. 1. Left ventricular long axis (LAX) and base detection: (a) Image pre-processing (red - edge indicator, green - circle
center probability); (b) Maximum probability path, displayed over Pmax; (c) Base detection (red - sliding averaging plane;

green ball detected base position).
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find the optimal path that maximizes the center probabil-
ities along the Z direction (Uzumcu et al. (2006)). For
each C-plane slice, Pmax can be seen as a density map
and thus, thanks to the MDP algorithm, a path corre-
sponding to a set of positions on each of the 2-D C-planes
that have high probability of being a center of a circle will
be found. Note that during the MDP estimation of the
optimal path, connectivity constraints are imposed to
penalize the variation of XY coordinates, to have
a smoother path. Through the positions of the path found
with MDP, a straight line is fit to determine the left
ventricular long axis. A demonstrative example of Pmax

(in green transparency) and the optimal path found with
MPD (green dots connected with red segments) are
shown in Figure 1b.
Base detection
After LAXdetection, a perpendicular square plane of

size rmax was slid along the LAX. For each position, an
average gray level was taken by averaging intensities
Fig. 2. Ellipsoid fitting: (a) Feature map and optimal ellipsoi
surface for the 3-D image
over this square plane. Given that the base plane corre-
sponds both to an area of brighter appearance and to
a dark-to-bright transition, a simplemerit function, whose
maximum corresponds to the base position, was built as:

gðzÞ5 ILAXðzÞ1ðILAXðzÞ2ILAXðz2zÞÞ; (8)

where ILAXðzÞ corresponds to the average gray level of the
square plane perpendicular to the LAX at the depth z and
z is a distance parameter used to assess the expected dark-
to-bright transition. z was set to 0.5 cm in all the experi-
ments. Note that the first term in eqn (8) accounts for the
brighter appearance of the valve plane and the second
term accounts for the variation in the gray level intensity
attributable to the blood-valve plane transition.

Ellipsoid fitting
Pc was sampled along the estimated LAX resulting

in a 2-D feature map, FMðz; rÞ, which will correspond
to the probability of the estimated LAX positions being
the center of a circle of radius r. Next, this feature map
d fit in cylindrical coordinates (green); (b and c) Initial
segmentation step.
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needs to be converted to a true 3-Dmodel that can be used
to initialize the segmentation algorithm. To this end, we
propose to formulate the ellipsoid fitting problem using
its parametric equation defined in a cylindrical coordinate
system. It should also be noted that all the required data
was already computed in the long axis detection step,
being thus a very computationally efficient solution.
Consider the ellipsoid parametric equation:

x2

a2
1
y2

b2
1
z2

c2
5 1: (9)

Assuming that a5 b (i.e., that the ellipsoid is actu-
ally a spheroid), it can be easily shown that x21y2 is actu-
ally the radius of the circle that results from the
intersection of the ellipsoid and a plane perpendicular
to the Z axis. Thus, the radius of each z-cut of the ellipsoid
can be expressed as:

r5 f ðzÞ5 a

ffiffiffiffiffiffiffiffiffiffiffi
12

z2

c2

r
: (10)

The apexwas fixed at 2 cm from the probe to provide
a rough estimate of the longitudinal measure for the LVel-
lipsoid fitting process. From all the plausible curves f(z)
(a˛½rmin; rmax� and c#dLAX , where dLAX 5 baseZ22cm),
the one maximizing the sum of the radius probability
along the LAX was selected, as shown in Figure 2a.
Once an automatically fitted ellipsoid is available for
the end-diastolic (ED) frame, it will be used as initializa-
tion of the segmentation algorithm.
Fig. 3. End-systolic initialization scheme: The contours arising
from the automatic segmentation of the end-diastolic frame (a)
are overlaid in the ES 3-D volume (b), being then deformed cir-
cumferentially (c) and longitudinally (d) toward a state that
maximizes the local contrast around the interface. Then, B-
spline explicit active surfaces (BEAS) is applied to determine

the final segmentation result (e).
End-systolic initialization
Since in clinical practice physicians are interested in

both end-diastolic and end-systolic volumes (EDV, ESV)
and functional parameters extracted from these, a second
initialization is needed for the end-systolic (ES) frame. To
provide a fast initialization and to keep coherence with
the segmentation result at end-diastole, a uniform defor-
mation is applied to the segmented LVat ED to initialize
the ES frame, as illustrated in Figure 3.

The segmentation result at ED, namely the mesh M
resulting from the sampling of jðq;fÞ, is used as the
input of the aforementioned deformation scheme:

M5 ðx5jðq;fÞcosðqÞsinðfÞ;
y5jðq;fÞsinðqÞsinðfÞ; z5jðq;fÞcosðfÞÞ; (11)

where jðq;fÞ is the explicit surface function, which has
been discretized in a rectangular grid over the azimuthal
and zenithal angles, q and f respectively. Given that the
reference Z-axis of the coordinate system was aligned
with the detected LV long axis,M can be compressed cir-
cumferentially simply by:
Mc 5 ðð12εcÞjðq;fÞcosðqÞsinðfÞ;
ð12εcÞjðq;fÞsinðqÞsinðfÞ;jðq;fÞcosðfÞÞ: (12)

The range of εc has been set to [10, 30]%, in agree-
ment with the circumferential deformation ranges previ-
ously reported for the left ventricle (Bogaert and
Rademakers 2001; Saito et al. 2009; Barbosa et al.
2010). Using the aforementioned segmentation energy



Table 1. Clinical and echocardiographic characteristics
of the study population (N 5 24, m6s, [Range])

Population details

Age (years) 46.4 6 22.1 [11–83]
HR (bpm) 67.0 6 19.5 [54–111]

LV parameters
EDV (mL) 137.3 6 49.7 [50.1–239.7]
ESV (mL) 66.5 6 35.7 [25.8–157.3]
EF (%) 52.7 6 11.8 [21.8–67.8]

Clinical diagnosis information
Healthy (%) 20
Valvular disease (%) 52
Congenital heart defect (%) 8
Apical aneurysm (%) 4
Ischemical cardiomyopathy (%) 4
Hypertrophic cardiomyopathy (%) 4
Atrial fibrillation (%) 4
Other (%) 12

EDV 5 end-diastolic volume; ESV 5 end-systolic volume; EF 5
ejection fraction; LV5 left ventricular.
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functional eqn (3), we can assess the energy associated to
the circumferential deformation applied to M as a func-
tion of εc. Once the entire deformation rangewas assessed
(in 1% variation steps), the optimal circumferential, εcopt
deformation can be taken as the one minimizing the
proposed energy functional.

Once the model has been deformed circumferen-
tially, it is subsequently deformed in the longitudinal
direction in an analogous manner, setting the range of
εl to [10, 30]% (Bogaert and Rademakers 2001; Saito
et al. 2009; Kuznetsova et al. 2008; Barbosa et al.
2010). However, if εcopt,15%, the εl range was con-
strained to [5, 15]%, since such low circumferential
deformation reveals that global LV dysfunction may
exist.

Using the proposed update scheme, it can be guaran-
teed that the initialization at ES corresponds to a low
segmentation energy state, being thus most likely in the
convergence basin of the desired energy optimum.

Experiments

Data acquisition and reference values. The
proposed framework was tested using real-time 3-D
echocardiography exams acquired with a Siemens Acu-
son SC2000 (Siemens Ultrasound, Mountain View, CA,
USA), using a 4Z1c matrix transducer. Volume sequences
were acquired from an apical window and the sonogra-
pher aimed at the inclusion of the entire LV within the
pyramidal field of view. All the data used in the present
Table 2. Image quality evaluation

Image quality Expert 1 Expert 2 Expert 3

Poor (%) 20.83 25.00 29.17
Fair (%) 37.5 50.00 29.17
Good (%) 41.67 25.00 41.67
work was acquired with the informed consent of all the
subjects involved and was anonymized prior to analysis.
This study was performed according to the ethical princi-
ples for medical research involving human subjects of the
World Medical Association’s declaration of Helsinki.
Each sequence was manually segmented by three clinical
experts, using a semiautomated segmentation tool (eSie
LVA pre-release software; Siemens Ultrasound) with
subsequent manual refinement of the segmentation
results, corresponding therefore to a computer-aided
manual segmentation of the RT3DE frames. The refer-
ence LV volumetric parameters (end-diastolic volume
[EDV], end-systolic volume [ESV], stroke volume [SV]
and ejection fraction [EF]) were estimated as the average
of the values estimated by the three experts.

Data processing and analysis. Image quality was
rated by three experts as poor, fair or good in accordance
to the percentage of the myocardial wall clearly visible in
the image (,60%, 60%–75%, .75%), the contrast
between the blood pool and the tissue and the presence
of severe image artifacts.

At first, a semiautomated version of the proposed
method was used, where two users were asked to provide
six clicks in the ED and ES frames, used to fit an ellipsoid
in each frame. Note that these users are not the same
experts that provided the reference values, being, thus,
blinded to the reference manual segmentation process.
By providing the same initialization to the segmentation
algorithm, it was possible to clearly highlight the effect
of taking the darker appearance of the blood explicitly
into account in the segmentation energy in contrast to
the regular, symmetric local Yezzi energy, where the
sign of the local contrast is not taken into account.

Subsequently, the automatic initialization algorithm
previously described was coupled with the BEAS frame-
work, using the proposed segmentation energy, providing
therefore an integrated framework for fully automatic
3-D segmentation of the left ventricle.

For accuracy and agreement assessment, linear
regression and Bland-Altman analysis (Bland and
Altman 1986) were performed between the BEAS values
(both for manual and automatic initialization) and the
reference ones (average of the volumetric indices ex-
tracted manually by the three experts).

Parameter sensitivity analysis. The William’s test
was used to quantify the influence of the parameter vari-
ation. This statistical test allows assessing whether the
results from our algorithm arewithin the agreement limits
of the experts’ manual references. When the William’s
index (WI) is greater or equal to one, it indicates that
the LV indices estimated with the automated method
differ from the manual LV indices as much as the LV
indices differ from one manual expert to another.



Fig. 4. Variation of image quality of the analyzed dataset (expert consensual classification to: a5 good; b5 fair; c5 poor).
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In fact, whenever the upper bound of the 95% confidence
interval of WI ðWIup95%Þ is greater than one, there is no
statistical evidence that the agreement between the auto-
mated method and the reference observers is less than the
reference interobserver agreement. Further details
regarding this test can be found in the original work of
Chalana and Kim (1997).

Since the initialization algorithm is strongly depen-
dent on the initial edge detection step, the effect of the
variation of the wavelengths of the filters used in the
phase-based edge detection was studied, as well as the
threshold used to generate the binary map used subse-
quently on the Hough transform for circles. The parame-
ters studied for the segmentation algorithm were the size
of the grid used to discretize the spherical domain where
J is defined, as well as the size of the neighborhood r

used to estimate the local means.
To define an appropriate range of variation where the

segmentation performance is not impaired, WIup95% was
used. The segmentation was considered successful for
a given parameter setting if WIup95%.1 for EDV, ESV,
SV and EF simultaneously. To define the initial ranges
where the parameter variation influence would be evalu-
ated, the aforementioned optimal parameters were used
and the initial range was defined by a perturbation of 50%
of the numeric value of the parameter. In caseWIup95%.1
for this interval, the rangewas increased until the condition
for accurate segmentation performance was not met.
RESULTS

Patient demographics and image quality analysis
Twenty-four examinations were used in the present

study, taken randomly from an existing database whereas
the only inclusion criteria was to have the LV included in
Table 3. Comparison of the segmentation performance using m

Initialization/
segmentation

Semiautomated analysis 1 (manual/local YezziLan

EDV(mL) ESV(mL) SV(mL) E

Correlation coefficient (R) 0.934 0.887 0.720
Bias (m) 23.91 218.4* 214.5* 1
LOA ðm61:96sÞ [239.1, 31.3] [263.9, 27.1] [235.0, 64.0] [21

EDV5end-diastolic volume; ESV5end-systolic volume; SV5 stroke volu
* p , 0.05, paired t-test.
the image pyramid. The dataset comprised both healthy
individuals and patients with different pathologies,
including valvular disease, congenital heart defects and
ischemic/dilated cardiomyopathy with severely distorted
LV geometry. An overview regarding the clinical details
of the dataset used in the present study is given in Table 1.

The details regarding the expert assessment of the
image quality are given in Table 2. Moreover, typical
volumes with varying image quality and that gathered
consensus on the experts’ image quality classification
are presented in Figure 4.
Proposed energy term
The overview of the results for the comparison

between the LV volumetric indices extracted using the
semiautomated (manual initialization) approach can be
found in Table 3. The proposed segmentation energy
shows a stronger correlation with the reference values
than the original local Yezzi functional for all the cardiac
volumetric indices. Bland-Altman analysis shows tighter
limits of agreement for proposed segmentation energy,
although a higher bias in EDV was observed when
compared with the original Yezzi functional. Figure 5
shows a comparison of the contour evolution with the
original local Yezzi functional and the proposed segmen-
tation energy, for the same initialization.
Automatic initialization algorithm
Table 4 provides an overview of the LV volumetric

indices extracted using the fully automatic approach.
The proposed framework for automatic LV volumetric
assessment shows a strong correlation with the reference
values (R5 0.971, 0.972, 0.938 and 0.907 for EDV, ESV,
SV and EF, respectively). Bland-Altman analysis re-
vealed small bias and none of these was statistically
anual initialization and different segmentation energies

kton 2008) Semiautomated analysis 2 (manual/proposed energy)

F(%) EDV(mL) ESV(mL) SV(mL) EF(%)

0.800 0.954 0.951 0.932 0.843
1.63* 7.35* 0.77 6.58* 3.12*
3.7, 36.9] [222.4, 37.5] [221.3, 22.9] [213.6, 26.7] [29.72, 16.0]

me; EF5 ejection fraction; LOA5Bland-Altman’s limits of agreement.



Fig. 5. Comparison between the interface evolution with proposed segmentation energy (green) and the classical local-
based Yezzi energy term (red), upon the same initialization (yellow) by the user (three clicks in two planes, top row).
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significant for the fully automatic approach, whereas the
bias for the EDV, SVand EF were statistically significant
(paired t-test, p , 0.05) for the semiautomated frame-
work using the proposed energy (Table 3). The Bland-
Altman plots for all the assessed cardiac volumetric
indices with the proposed automatic approach are shown
in Figure 6. Figure 7 shows three datasets with varying
image quality and its respective automatic initializations
compared with the ones provided manually by two
observers.
Parameter sensitivity analysis
Figure 8 illustrates the influence of the variation of

each parameter in the fully automatic segmentation
performance. The upper bound of the 95% confidence
interval of the William’s index ðWIup95%Þ was greater
than 1 simultaneously for all the computed LV volumetric
indices when the initialization algorithm ran with a edge-
threshold value below0.07 and alsowhile thewavelengths
of the filters used in the multiscale phase-based detector
block were in the interval ½ð12 15 18Þ; ð28 35 42Þ�.
Moreover, WIup95% was also greater than 1 when the
radius was within ½12; 18� and mesh sizes were
f16332; 24324; 24316; 24332g, where N3M repre-
sents the spherical discretization grid with N samples
along the zenithal direction and M samples along the
azimuthal direction.
Interobserver variability analysis
The interobserver variability of the manually ex-

tracted LV volumetric indices was 15.0 6 17.2 mL,
Table 4. Segmentation performance of the

Initialization/segmentation

Autom

EDV (mL) ES

Correlation coefficient (R) 0.971
Bias (m) 21.43
LOA ðm61:96sÞ [224.6, 21.8] [21

EDV5end-diastolic volume; ESV5end-systolic volume; SV5 stroke volu
p , 0.05, paired t-test.
13.4 6 13.5 mL, 12.4 6 11.3 mL and 7.0 6 5.5% for
the EDV, ESV, SV and EF, respectively (estimated as E
[abs(Refi-Refj)], m6s). The inter-observer variability
of the LV volumetric indices estimated with our semiau-
tomatic approach, using the proposed segmentation
energy, was 8.2 6 7.1 mL, 3.8 6 3.3 mL, 7.3 6 6.8
mL and 3.66 4.3% for the EDV, ESV, SVand EF, respec-
tively (estimated as E[abs(User1-User2)], m6s). One
should note that the proposed fully automatic framework
does not take user input on none of its steps, and thus has
no inter-observer variability.

DISCUSSION

Proposed energy
Classical region-based energies usually aim to

provide an optimal partition of the image without any
kind of prior knowledge regarding the appearance of
the object and background regions. This is evident in
eqn (4), where the segmentation energy is taken as the
square difference between the local means inside and
outside the contour. While this behavior might be desir-
able in a generic application, the proposed segmentation
energy takes advantage of a very simple assumption
which clearly improves the segmentation performance.
This is reflected in the tighter limits of agreement of the
Bland-Altman analysis for the proposed energy, as shown
in Table 3. By simply taking into account the darker
appearance of the blood pool explicitly, it is possible to
avoid segmentation errors arising from sub-optimal
initialization, as illustrated in Figure 5. In these situa-
tions, the right ventricle endocardium at septal wall
proposed fully automatic approach

atic analysis (automatic/proposed energy)

V (mL) SV (mL) EF (%)

0.972 0.938 0.907
2.02 23.45 20.95
6.6, 20.7] [223.2, 16.3] [210.7, 8.82]

me; EF5 ejection fraction; LOA5Bland-Altman’s limits of agreement.



Fig. 6. Bland-Altman plots for EDV, ESV, SV and EF, comparing the measured errors against the reference values
(green 5 bias; red 5 limits of agreement ðm61:96sÞ.

Fast 3-D echocardiographic segmentation d D. BARBOSA et al. 97
appears as a strong candidate to the interface convergence
in the classical local-based Yezzi energy, which leads to
segmentation errors and reduced robustness.

Automatic initialization algorithm
Although the proposed segmentation energy offers

promising results regarding left ventricular volumetric
assessment, it still relies on manual initialization.
However, comparing the results found in Table 3 and
Table 4, it is clear that the proposed initialization scheme
provides an appropriate ellipsoid to initialize the segmen-
tation algorithm, since there is no reduction on the perfor-
mancewhen comparedwith the semiautomated approach.

Bypassing manual initialization also avoids the
introduction of user-dependent variability and allows
taking full advantage of the important real-time image
segmentation capability offered by BEAS. Indeed, the
Fig. 7. Comparison between the proposed automatic initializ
provided by two different u
manual initialization time (�29s) was significantly
reduced with the proposed initialization algorithm. The
time of analysis required to extract all the desired cardiac
indices fully automatically was around 1s, in a C11 im-
plementation running in a standard laptop equipped with
a 2.8 GHz i7 Dual-Core processor. The details of the
computation times referring to each step of the proposed
algorithm are given in Table 5. Such an approach poten-
tiates the design of online analysis tools that would
provide real-time measurements of the LV volumes while
the physician is scanning the patient and avoiding the
cumbersome, offline manual analysis.

Parameter sensitivity analysis
Active contour-based segmentation frameworks

usually imply a delicate balance of the diverse parameters
involved in these algorithms. The stability of the proposed
ation approach (yellow) and the manual initializations
sers (red and green).



Fig. 8. Influence of the algorithm’s parameters variation in the overall segmentation performance (top to bottom: edge
detector threshold, phase-based filters’ wavelength, local neighborhood size, spherical discretization grid size; blue 5

EDV; red 5 ESV; green 5 SV; purple 5 EF).
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algorithm was tested by studying its robustness with
respect to the variation of its parameters. The results
show that accurate LV volume measurements are achiev-
able over awide range of values for the studied parameters.
In fact, by imposing as performance quality condition that
the WIup95%.1 simultaneously for all the assessed volu-
metric indices, it is guaranteed that in this interval the
agreement of the automatically extracted indices with
the manual references is within the inter-observer range
simultaneously for the EDV, ESV, SVand EF.

The results show that perturbations in the wave-
lengths used in the multi-scale phase-based edge detector
do not have a major impact in the segmentation perfor-
mance, although there is an optimal range. The threshold
used in binarization of the edge detection map had little
influence in the segmentation outcome. However, it was
verified that higher values led to less edge information
used in the LAX detection and ellipsoid fitting, ultimately
reducing the performance of the initialization algorithm.
The variation of the radius of the local neighborhood
was found to have a stronger effect in the EDVestimation.
This can be justified as a high value of r leads to errors in
the estimation of yx, as it will account not only formyocar-
dium but also for other tissue. This consequently affects



Table 5. CPU computational cost of the different stages of the proposed framework

ED initialization ED segmentation ES initialization ES segmentation

CPU processing time ðm6ssÞ 1.026 6 0.057 0.059 6 0.002 0.321 6 0.022 0.028 6 0.001

ED 5 end-diastolic; ES 5 end-systolic.
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the interface evolution toward the proper myocardial
boundary. Note also that a too small r value will limit
the field of view of the interface during its evolution,
affecting therefore the basin of convergence of the
segmentation algorithm. The results of the variation of
the discretization of J show that there is an intrinsic
trade-off between a proper shape support and a smooth
interface evolution. By having a spherical discretization
grid too small, the segmented shapes are not able to prop-
erly capture all the shape details of the left ventricle.
On the other hand, a too large spherical discretization
grid will provide too much freedom in the interface
evolution, since the support of each B-spline coefficient
will be more local. This intrinsically reduces the robust-
ness of the segmentation algorithm to noisy local means
estimates.

It is also clear that the performance of the proposed
method to extract both SV and EF is more unstable.
Therefore, there might be a cumulative error effect
between the ED and ES segmentation.

Performance comparison
Although the proposed approach offers promising

results, a careful comparison with the values reported in
the literature has been done. This comparison does not
aim to be extensive, but rather informative to the reader
on how the proposed fully automatic framework for LV
volume analysis compares with existing relevant
methods. An overview of the results of the proposed algo-
rithm and its comparison with other methods reported in
the literature is shown in Table 6. Nonetheless, it should
be noted that a fair and quantitative comparison is not
trivial, due to differences in patient population and image
quality and due to different acquisition conditions and
equipment. However, methods with a similar validation
Table 6. Segmentation perf

Exams #

EDV (mL)

BA ðm61:96sÞ R

Proposed method 24 21.4 6 23.2 0.97
Angelini et al. (2005) 10 16.1 6 50.1 0.63
Hansegard et al. (2007) 21 25.0 6 21 0.91
Muraru et al. (2010) 23 221.3 6 3 1.5 0.89
Leung et al. (2010) 99 1.47 6 35.4 0.95
Leung et al. (2011) 35 2.2 6 14.5 X
Rajpoot et al. (2011) 26 25.1 6 48.5 X

BA 5 Bland-Altman analysis; R 5 Pearson product-moment correlation co
approach (i.e., where the segmentation results were
compared with manual segmentation of RT3DE data)
were selected.

Study limitations
The key limitation of the proposed framework for

fully automatic LV volumetric assessment is the intrinsic
assumption that the C-planes of the 3-D image volume
correspond roughly to short-axis slices of the left
ventricle. This is only true in apical acquisitions, and
therefore the proposed pipeline will not automatically
adapt to parasternal 3-D echocardiographic data, where
the LAX is approximately perpendicular to the acquisi-
tion axis. Nonetheless, apical 3-D RT3DE data is far
more commonly acquired in clinical practice.

It is also important to refer that the tuning of these
parameters may be dataset dependent. Therefore, the
scope of our work will be expanded toward data acquired
with other ultrasound imaging systems, to test the robust-
ness of our method with respect to the intrinsically
different image characteristics provided by the ultrasound
systems from the different medical vendors.

One should also note that the proposed deformation
scheme is sub-optimal in its longitudinal component due
to the effects caused by the mitral valve. In fact, if the ED
segmentation result includes the mitral valve within the
segmented surface, there may be an overestimation of
the longitudinal deformation, since the proposed scheme
favors an ES initialization where the mitral valve is left
outside the segmented volume, to maximize the signed
mean separation energy at this region. Nonetheless,
efforts will be addressed toward the development of
real-time tracking framework based on the existing
segmentation algorithm, allowing thus to overcome this
limitation.
ormance comparison

ESV (mL) EF (%)

BA ðm61:96sÞ R BA ðm61:96sÞ R

2.0 6 18.7 0.97 21.0 6 9.8 0.91
26.6 6 34.4 0.63 20.6 6 22.2 0.45
6.2 6 19 0.91 27.7 6 12 0.74

24.8 6 23 0.83 24.4 6 10.5 0.75
X X X X

1.4 6 11.8 X 1.2 6 11.2 X
1.2 6 25.7 X 0.7 6 14.1 X

efficient; # 5 number of cases.
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CONCLUSIONS

In this article, a novel energy term is proposed to
increase the robustness of the segmentation of RT3DE
data, as well as a fast and accurate algorithm to initialize
the segmentation method with a 3-D ellipsoid positioned
near the endocardial interface.

The proposed framework provides an accurate and
robust platform for fully automatic 3-D LV volumetric
analysis. Furthermore, extraction of relevant volumetric
cardiac indices takes around 1 s. Therefore, the BEAS
framework allows for a fast quantification of 3-D cardiac
morphology and global function, facilitating its use in the
clinical routine and in bed-side applications.
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APPENDIX: SEGMENTATION ENERGY
DERIVATION

The classical mean separation energy has been proposed by Yezzi
et al. (2002) to segment an object from the image background by maxi-
mizing the intensity means between the different regions inside and
outside an evolving contour. By considering IðxÞ aN-dimensional image
partitioned into two different regions Uin and Uout, the corresponding
criterion can be written as:

EY 52
1

2
ðu2yÞ2; (A.1)

where u and y represent the mean inside and outside the evolving inter-
face respectively.

In the present work, the fact that the inside region (blood pool)
should be darker than the outside one (tissue area) is explicitly taken
as a prior information. Thus, we propose to minimize the following
energy functional:
EG 5 u2v; (A.2)

Moreover, as the statistics are not consistent over the endocardial
border, we propose to localize this criterion. The underlying energy
model states as:

EL 5

ð
U

dfðxÞ
ð
U

Bðx; yÞFL

�
y;HfðyÞ

�
dydx; (A.3)

and

FL

�
y;HfðyÞ

�
5 ðux2yxÞ; (A.4)

where ux and yx are the local means inside and outside the interface at the
position x and fðxÞ5jðx�Þ2x1. Now getting use of the BEAS frame-
work proposed in the work of Barbosa et al. (2012a), the proposed
energy gradient with respect to a given B-spline coefficient c½ki� can
be directly expressed by:

vEL

vc½ki�5
ð
G

gLðx�Þbd

�
x�

h
2ki

�
dx�; (A.5)

where

gLðx�Þdfðx�Þ5
vFL

�
x�;Hfðx�Þ

�
vf

: (A.6)

Using standard calculus of variation, we obtain:

gLðx�Þ5
��

Iðx�Þ2ux
�

Au

1

�
Iðx�Þ2yx

�
Av

�
: (A.7)

Now getting use of (A.6) and (A.7), we directly obtain eqn (7).
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