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SYMMETRIC ITINERARY SETS

MICHAEL F. BARNSLEY AND NICOLAE MIHALACHE

Abstract. We consider a one parameter family of dynamical systems W :
[0, 1] → [0, 1] constructed from a pair of monotone increasing diffeomorphisms

Wi, such that W
−1

i
: [0, 1] → [0, 1], (i = 0, 1). We characterize the set of

symbolic itineraries of W using an attractor Ω of an iterated closed relation,

in the terminology of McGehee, and prove that there is a member of the family
for which Ω is symmetrical.

1. Introduction

LetW0 : [0, a] → [0, 1] andW1 : [1−b, 1] → [0, 1] be continuous and differentiable,
and such that a + b > 1, W0(0) = W1(1 − b) = 0, W0(a) = W1(1) = 1. Let the
derivatives W ′

i (x) (i = 0, 1) be uniformly bounded below by d > 1.
For ρ ∈ [1− b, a] we define W : [0, 1] → [0, 1] by

[0, 1] ∋ x 7→

{
W0(x) if x ∈ [0, ρ]
W1(x) otherwise.

See Figure 1. Similarly, we define W+ : [0, 1] → [0, 1] by replacing [0, ρ] by [0, ρ).
Let I = {0, 1}. Let I∞ = {0, 1}×{0, 1}×· · · have the product topology induced

from the discrete topology on I. For σ ∈ I∞ write σ = σ0σ1σ2 . . . , where σk ∈ I
for all k ∈ N. The product topology on I∞ is the same as the topology induced by
the metric d(ω, σ) = 2−k where k is the least index such that ωk 6= σk. It is well
known that (I∞, d) is a compact metric space. We define a total order relation �
on I∞, and on In for any n ∈ N, by σ ≺ ω if σ 6= ω and σk < ωk where k is the least
index such that σk 6= ωk. For σ ∈ I∞ and n ∈ N we write σ|n = σ0σ1σ2...σn. I∞

is the appropriate space in which to embed and study the itineraries of the family
of discontinuous dynamical systems W : [0, 1] → [0, 1].

For W(+) ∈ {W,W+} let W k
(+) denote W(+) composed with itself k times, for

k ∈ N, and let W−k
(+) = (W k

(+))
−1. We define a map τ : [0, 1] → I∞, using all of the

orbits of W, by

τ(x) = σ0σ1σ2 . . .

where σk equals 0, or 1, according as W k(x) ∈ [0, ρ], or (ρ, 1], respectively. We
call τ(x) the itinerary of x under W , or an address of x, and we call Ω = τ([0, 1])
an address space for [0, 1]. Similarly, we define τ+ : [0, 1] → I∞ so that τ+(x)k
equals 0, or 1, according as W k

+(x) ∈ [0, ρ), or [ρ, 1], respectively; and we define
Ω+ = τ+([0, 1]). Note that W , W+, Ω, Ω+, τ , and τ+ all depend on ρ.

The main goals of this paper are to characterise Ω and to show that there exists
a value of ρ such that Ω is symmetric.
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Figure 1. The piecewise continuous dynamical system
W:[0,1]→[0,1] is defined in terms of two monotone strictly
increasing differentiable functions W0(x) and W1(x), and a real
parameter ρ.

Theorem 1. Let an iterated closed relation r ⊂ I∞ × I∞ be defined by

r := {(σ, 0σ) ∈ I∞ × I∞ : σ � α} ∪ {(σ, 1σ) ∈ I∞ × I∞ : σ � β}

where α = τ(W0(ρ)) and β = τ+(W1(ρ)). The only attractors of r are {0},
{1}, {0, 1}, and Ω. The corresponding dual repellers are {σ ∈ I∞ : β � σ}, {σ ∈
I∞ : σ � α}, {σ ∈ I∞ : β � σ}∪{σ ∈ I∞ : σ � α}, and the empty set, respectively.
The chain recurrent set for r is {0, 1} ∪ {σ ∈ Ω : β � σ � α}.

We write E to denote the closure of a set E. But we write 0 = 000..., 1 =
111... ∈ I∞. For σ = σ0σ1σ2 . . . ∈ I∞ we write 0σ to mean 0σ0σ1σ2 . . . ∈ I∞ and
1σ = 0σ0σ1σ2 . . . ∈ I∞.

Define a symmetry function ∗ : I∞ → I∞ by σ∗ = ω where ωk = 1 − σk for all
k.

Theorem 2. There exists a unique ρ ∈ [1− b, a] such that Ω
∗
= Ω.

Theorem 1 tells us that Ω is fixed by itineraries of two inverse images of the
critical point ρ, and provides the basis for a stable algorithm to determine Ω. It
relates the address spaces of dynamical systems of the form of W to the beautiful
theory of iterated closed relations on compact Hausdorff spaces [3], and hence to
the work of Charles Conley.

Theorem 2 is interesting in its own right and also because it has applications in
digital imaging, as explained and demonstrated, in the special case of affine maps,
in [1]. It enables the construction of parameterized families of nondifferentiable
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homeomorphisms on [0, 1], using pairs of overlapping iterated function systems, see
Proposition 4. Theorem 2 generalizes results in [1] to nonlinear Wi’s. The proof
uses symbolic dynamics in place of the geometrical construction outlined in [1].
The approach and results open up the mathematics underlying [1] and [2].

To tie the present work into [1], note that τ is a section, as defined in [1], for the
hyperbolic iterated function system

F := ([0, 1];W−1
0 ,W−1

1 ).

Our observations interrelate to, but are more specialized than, the work of Parry
[5]. Our point of view is topological rather than measure-theoretic, and our main
results appear to be new.

2. Basic properties of τ

The following list of properties is relatively easy to check. Below the list we
elaborate on points 1, 2, and 3.

(1) Wn is piecewise differentiable and its derivative is uniformly bounded below
by dn; each, except the leftmost branch of Wn, is defined on an interval of
the form (r, s]. Wn

+ is piecewise differentiable and its derivative is uniformly
bounded below by dn; each, except for the rightmost branch of Wn

+, is
defined on an interval of the form [r, s).

(2) If (r, s) is the interior of the definition domain of a branch of Wn (and
of Wn

+) then τ(x)|n is constant on (r, s], τ+(x)|n is constant on [r, s), and
τ(x)|n = τ+(x)|n for all x ∈ (r, s).

(3) The boundary of the definition domain of a branch of Wn is contained in

{0, 1} ∪
n−1⋃
k=0

W−k(ρ); by (1), the length of such a domain is at most d−n.

(4) The set
⋃
k∈N

W−k(ρ) is dense in [0, 1]. This follows from (3).

(5) τ(x) = τ+(x) unless x ∈
⋃
k∈N

W−k(ρ) in which case τ(x) ≺ τ+(x).

(6) Both τ(x) and τ+(x) are strictly increasing functions of x ∈ [0, 1] and
τ(x) � τ+(x). This follows from (4) and (5).

(7) For all x ∈ [0, 1], τ(x) is continuous from the left, τ+(x) is continuous from
the right. Moreover, for all x ∈ (0, 1),

τ(x) = lim
ε→0+

τ+(x− ε) and τ+(x) = lim
ε→0+

τ(x+ ε).

These assertions follow from (2), (3) and (4).
(8) Each x ∈ W−n(ρ), such that τ(x)|n is constant, moves continuously with

respect to ρ with positive velocity bounded above by d−n. This follows from
(1).

(9) For x ∈ (0, 1)\
n⋃

k=0

W−k(ρ), τ(x)|n = τ+(x)|n is locally constant with re-

spect to ρ; moreover, this holds if x depends continuously on ρ. This follows
from (2), (3) and (6).

(10) The symmetry function ∗ : I∞ → I∞ is strictly decreasing and continuous.
(11) For any σ|n ∈ In, n ∈ N, the set

I(σ|n) := {x ∈ [0, 1] : τ(x)|n = σ|n or τ+(x)|n = σ|n},
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is either empty or a non-degenerate compact interval of length at most d−n.
This follows from (2), (3) and (6).

(12) The projection π̂ : I∞ → [0, 1] is well-defined by

π̂(σ) = sup{x ∈ [0, 1] : τ+(x) � σ} = inf{x ∈ [0, 1] : τ(x) � σ}.

This follows from (6).
(13) The projection π̂ : I∞ → [0, 1] is increasing, by (6); continuous, by (11);

and, by (7),

π̂(τ(x)) = π̂(τ+(x)) = x for all x ∈ [0, 1],

τ(π̂(σ)) � σ � τ+(π̂(σ)) for all σ ∈ I∞.

(14) Let S : I∞ → I∞ denote the left-shift map σ0σ1σ2... 7→ σ1σ2σ3.... For all
σ ∈ I∞ such that σ � τ(ρ) or σ ≥ τ+(ρ),

π̂(S(σ)) = W (π̂(σ)).

Also π̂(τ+(ρ)) = ρ and π̂(S(τ+(ρ))) = W1(ρ). These statements follow
from (7).

Here we elaborate on points (1), (2) and (3). Consider the piecewise continuous
function W k(x), for k ∈ {1, 2, ...}. Its discontinuities are at ρ and, for k > 1,
other points in (0, 1), each of which can be written in the form W−1

σ0
◦ W−1

σ2
◦

...W−1
σl−1

(ρ) for some σ0σ1...σl−1 ∈ {0, 1}l for some l ∈ {1, 2, ...k − 1}. We denote
these discontinuities, together with the points 0 and 1, by

Dk,0 := 0 < Dk,1 < Dk,2 < .... < Dk,D(k)−1 < 1 =: Dk,D(k),

where D(1) = 3, D(2) = 5 < D(3) < D(4)... . For each k ≥ 1, one of the
Dk,j ’s is equal to ρ. For k ≥ 1 we have W k(x) = W k

0 (x) for x ∈ [Dk,0, Dk,1]
and W k

+(x) = W k
0 (x) for x ∈ [Dk,0, Dk,1). Similarly W k(x) = W k

1 (x) for all

x ∈ (Dk,D(k)−1, Dk,D(k)] and W k
+(x) = W k

1 (x) for x ∈ [DD(k)−1, DD(k)].

For all x ∈ (Dk,l, Dk,l+1) (l = 0, 1, ..., D(k)−1), W k(x) = W k
+ (x) = Wθk◦Wθk−1

◦

...Wθ1(x) for some fixed θ1θ2...θk ∈ {0, 1}k. We refer to θ1θ2...θk as the address of
the interval (Dk,l, Dk,l+1), we say (Dk,l, Dk,l+1) that ”has address θ1θ2...θk”, and
we write, by slight abuse of notation, τ((Dk,l, Dk,l+1)) = θ1θ2...θk.

Let k > 1. Consider two adjacent intervals,(Dk,m−1, Dk,m] and (Dk,m, Dk,m+1]
for m ∈ {1, 2, ..., D(k) − 1} and k > 1. Let the one on the right have address
θ0θ1...θk−1 and the one on the left have address η0η1... ηk−1. Then η0η1... ηk−1 ≺
θ0θ1...θk−1 and we have

τ(x)|k−1 = η0η1...ηk−1 for all x ∈ (Dk,m−1, Dk,m],

τ+(x)|k−1 = η0η1...ηk−1 for all x ∈ [Dk,m−1, Dk,m),

τ(x)|k−1 = θ0θ1...θk−1 for all x ∈ (Dk,m, Dk,m+1],

τ+(x)|k−1 = θ0θ1...θk−1 for all x ∈ [Dk,m, Dk,m+1).

In particular, τ(x)|k−1 and τ+(x)|k−1 are constant and equal on each of the open in-

tervals (Dk,m−1, Dk,m) and have distinct values at the discontinuity points {Dk,m}
D(k)−1
m=1 .
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3. The structures of Ω, Ω+ and Ω.

In this section we characterize Ω and Ω+ as certain inverse limits, and we char-
acterize Ω as an attractor of an iterated closed relation on I∞. These inverse limits
are natural and they clarify the structures of Ω and Ω+. They are implied by the
shift invariance of Ω and Ω+. Recall that S : I∞ → I∞ denotes the left-shift map
σ0σ1σ2... 7→ σ1σ2σ3....

Proposition 1. (i) τ(W (x)) = S(τ(x)) and τ+(W+(x)) = S(τ+(x)) for all x ∈
[0, 1].

(ii) S(Ω) = Ω and S(Ω+) = Ω+.

Proof. (i) This follows at once from the definitions of τ and τ+. (ii) This follows
from (i) together with W ([0, 1]) = W+([0, 1]) = [0, 1]. �

We say that Λ ⊂ I∞ is closed from the left if, whenever {xn}
∞
n=0 is an non-

decreasing sequence of points in Λ, limxn ∈ Λ. We say that Λ ⊂ I∞ is closed from
the right if, whenever {xn}

∞
n=0 is non-increasing sequence in Λ, limxn ∈ Λ. For

S ⊂ X, where X = I∞ or [0, 1], we write L(S) = {σ ∈ X : there is a non-decreasing
sequence {zn}

∞
n=0 ⊂ S with σ = lim zn} to denote the closure of S from the left.

Analogously, we define R(S) for the closure of S from the right.

Proposition 2. (i) Ω is closed from the left and Ω+ is closed from the right;
(ii) Ω = Ω+ = Ω ∪ Ω+ = Ω ∩ Ω+

Proof. Proof of (i): By (6) τ : [0, 1] → I∞ is monotone strictly increasing. By (7)
τ is continuous from the left. Let {zn}

∞
n=0 be a non-decreasing sequence of points

in Ω. Let yn = τ−1(zn). Let y = lim yn ∈ [0, 1]. Since τ is continuous from the left,
Ω ∋ τ(y) = τ(lim yn) = lim τ(yn) = lim zn. It follows that Ω is closed from the left.
Similarly, Ω+ is closed from the right.

Proof of (ii): Let Q = {x ∈ [0, 1] : τ(x) = τ+(x)}. Then by (4) Q = [0, 1]. Also,
by (5),

Ω ∩ Ω+ = τ([0, 1]) ∩ τ+([0, 1]) = τ(Q) = τ+(Q).

Hence

Ω ∩ Ω+ = τ(Q) = τ+(Q) = Ω = Ω+.

Finally, Ω ∪ Ω+ = L(τ(Q)) ∪R(τ+(Q)) = L(τ(Q)) ∪R(τ(Q)) = τ(Q) = Ω. �

We define si : I
∞ → I∞ by si(σ) = iσ (i = 0, 1). Note that both s0, and s1, are

contractions with contractivity 1/2. We write 2I
∞

to denote the set of all subsets
of I∞. For σ, ω ∈ I∞ we define

[σ, ω] := {ζ ∈ I∞ : σ � ζ � ω},

(σ, ω) := {ζ ∈ I∞ : σ ≺ ζ ≺ ω},

(σ, ω] := {ζ ∈ I∞ : σ ≺ ζ � ω},

[σ, ω) := {ζ ∈ I∞ : σ � ζ ≺ ω}.

Proposition 3. Let α = S(τ(ρ)) and β = S(τ+(ρ)).
(i) Ω =

⋂
k∈N

Ψk([0, 1]) where Ψ : 2I
∞

→ 2I
∞

is defined by

2I
∞

∋ Λ 7→ s0(Λ ∩ [0, α]) ∪ s1(Λ ∩ (β, 1]).
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(ii) Ω+ =
⋂
k∈N

Ψk
+([0, 1]) where Ψ+ : 2I

∞

→ 2I
∞

is defined by

2I
∞

∋ Λ 7→ s0(Λ ∩ [0, α)) ∪ s1(Λ ∩ [β, 1]).

(iii) Ω = Ω+ =
⋂
k∈N

Ψ
k
([0, 1]) where Ψ : 2I

∞

→ 2I
∞

is defined by

2I
∞

∋ Λ 7→ s0(Λ ∩ [0, α]) ∪ s1(Λ ∩ [β, 1]).

Proof. Proof of (i): Let S|Ω : Ω → Ω denote the domain and range restricted shift
map. It is readily found that the branches of S|−1

Ω : Ω → Ω are s0|Ω : [0, α]∩Ω → Ω
where

s0|Ω(σ) = s0(σ) = 0σ for all σ ∈ [0, α] ∩ Ω,

and s1|Ω : (β, 1] ∩ Ω → Ω where

s1|Ω(σ) = s1(σ) = 1σ for all σ ∈ (β, 1] ∩ Ω.

(Note that α0 = 1, β0 = 0 and β ≺ α.) It follows that

S|−1
Ω (Λ) = s0(Λ ∩ [0, α]) ∪ s1(Λ ∩ (β, 1]) = Ψ(Λ)

for all Λ ⊂ Ω. Since Ω ⊂ [0, 1] it follows that

Ω = S|−1
Ω (Ω) = Ψ(Ω) ⊂ Ψ([0, 1]).

Also, since Ψ([0, 1]) ⊂ [0, 1] it follows that {Ψk([0, 1])} is a decreasing (nested)
sequence of sets, each of which contains Ω; hence

Ω ⊂
⋂

k∈N

Ψk([0, 1]).

It remains to prove that Ω ⊃
⋂
k∈N

Ψk([0, 1]). We note that s0([0, α]) = [0, τ(ρ)]

and s1((β, 1]) = (τ+(ρ), 1], from which it follows that

(3.1)
⋂

k∈N

Ψk([0, 1]) =
⋂

k∈N

{σ ∈ I∞ : Sk(σ) ∈ [0, τ(ρ)] ∪ (τ+(ρ), 1]}.

Let ω ∈
⋂
k∈N

Ψk([0, 1]). Suppose ω /∈ Ω. Let

ω− = sup{σ ∈ Ω : σ � ω} and ω+ = inf{σ ∈ Ω : ω � σ},

so that
ω− � ω � ω+.

But ω− ∈ Ω (since Ω is closed from the left), so

ω− ≺ ω � ω+.

Note that, since inf{σ ∈ Ω : ω � σ} = inf{σ ∈ Ω+ : ω � σ}, and Ω+ is closed
from the right, we have ω+ ∈ Ω+. Let K = min{k ∈ N : (ω−)k 6= (ω+)k}. Then
SK(ω−) ≺ SK(ω) � SK(ω+) and we must have SK(ω−) = τ(ρ) and SK(ω+) =
τ+(ρ). So

τ(ρ) ≺ SK(ω) � τ+(ρ),

therefore ω /∈ {σ ∈ I∞ : SK(σ) ∈ [0, τ(ρ)] ∪ (τ+(ρ), 1]} which, because of (3.1),
contradicts our assumption that ω ∈

⋂
k∈N

Ψk([0, 1]). Hence ω ∈ Ω and we have

Ω ⊃
⋂

k∈N

Ψk([0, 1]).
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This completes the proof of (i).
Proof of (ii): similar to the proof of (i), with the role of [0, τ(ρ)] played by

[0, τ(ρ)) and the role of (τ+(ρ), 1] played by [τ+(ρ), 1].
Proof of (iii): similar to the proofs of (i) and (ii). �

It is helpful to note that the addresses α and β in Proposition 3 obey

α = τ(W0(ρ)), β = τ(W1(ρ)),

τ(ρ) = 0α = 01α1α2... and τ+(ρ) = 0β = 10β1β2....

Let M > 0 be such that Dk,M+1 = ρ. It follows from the discussion at the end of
Section 2 that τ((Dk,M , ρ)) = τ+((Dk,M , ρ)) = 01α1α2..αk−2 and τ((ρ,Dk,M+2)) =
τ+((ρ,Dk,M+2)) = 10β1β2...βk−2.

Corollary 1. Let k ≥ 1, α = τ(W0(ρ)), β = τ(W1(ρ)), and let M > 0 be

such that Dk,M+1 = ρ. The set of addresses {τ((Dk,l, Dk,l+1))}
D(k)−1
l=0 is uniquely

determined by α|k−1 and β|k−1. For some n1, n2 such that 0 ≤ n1 < M <
n2 ≤ D(k) − 1, τ((Dk,n1

, Dk,n1+1)) = β0β1...βk−2βk−1 and τ((Dk,n2
, Dk,n2+1)) =

α0α1...αk−2αk−1. The set of addresses {τ((Dk,l, Dk,l+1)) : l ∈ {0, 1, ..., D(k) −
1}, l 6= n1, l 6= n} are uniquely determined by α|k−2 and β|k−2; for example,
τ((Dk,M , ρ)) = 0α0α1...αk−2, and τ((ρ,Dk,M+2)) = 1β0β1...βk−2.

Proof. It follows from Proposition 3 that the set of addresses at level k, namely

{τ((Dk,l, Dk,l+1))}
D(k)−1
l=0 , is invariant under the following operation: put a ”0” in

front of each address that is less than or equal to α, then truncate back to length k;
take the union of the resulting set of addresses with the set of addresses obtained
by: put a ”1” in front of each address that is greater than or equal to β, and drop
the last digit. �

4. Symmetry of Ω and a consequent homeomorphism of [0, 1]

Lemma 1. Ω = {σ ∈ I∞ : for all k ∈ N, σk = 0 ⇒ Sk(σ) � τ(ρ) and σ0 = 1 ⇒
τ+(ρ) � Sk(σ)}.

Proof. This is an immediate consequence of Proposition 3. �

Corollary 2. Ω is symmetric if and only if α = β∗ (or equivalently τ(ρ) =
(τ+(ρ))

∗
).

Lemma 2. The maps τ(ρ) and τ+(ρ) are strictly increasing as functions of ρ ∈
[a, b] to I∞.

Proof. Note that τ(ρ) depends both implicitly and explicitly on ρ. Let 1− b ≤ ρ <
ρ′ ≤ a be such that τ(ρ) � τ(ρ′). Observe that τ(ρ)|0 = τ(ρ′)|0.

Assume first that there is a largest n > 0 such that τ(ρ)|n = τ(ρ′)|n := θ0θ1...θn.
Then τ(ρ) = θ0θ1...θn1... and τ+(ρ) = θ0θ1...θn0..., which implies

(4.1) Wn
ρ (ρ) ≥ ρ and Wn

ρ′(ρ′) ≤ ρ′.

(We write W = Wρ when we want to note the dependence on ρ. ) We may assume
that τ(ρ)|n is constant on [ρ, ρ′] for otherwise we can restrict to a smaller interval
with a strictly smaller value of n. As a consequence, at every iteration, we apply the
same branch W0 or W1 to Wξ to compute compute g(ξ) := Wn

ξ (ξ) for all ξ ∈ [ρ, ρ′].

Therefore g is continuous with derivative at least dn > 1, which contradicts (4.1).
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The only remaining possibility is that τ(ρ) = τ(ρ′). We may assume that τ(ρ) is
constant on [ρ, ρ′], otherwise we can reduce the problem to the previous case. This
would mean that for arbitrarily large n, the image of the interval [ρ, ρ′] under g is
at an interval of size least dn(ρ′ − ρ), a contradiction.

Essentially the same argument, with the role of τ played by τ+ and the role of
played by W+, proves that τ

+(ρ) is strictly increasing as a function of ρ ∈ [1− b, a]
to I∞. �

Corollary 3. The map ρ 7→ τ(ρ) is left continuous and the map ρ 7→ τ+(ρ) is right
continuous.

Proof. Fix a parameter ρ0 and let ε > 0. Then by (7) there is x < ρ0 which is not
a preimage of ρ0 for any order and such that

d(τ+ρ0
(x), τρ0

(ρ0)) <
ε

2
.

By (9), for any n ∈ N there exists δ > 0 such that the prefix τ+ρ (x)|n is constant

when ρ ∈ (ρ0 − δ, ρ0 + δ). Let n be such that 2−n < ε, and let ρ > x and
ρ ∈ (ρ0 − δ, ρ0). We have that τ+ρ (x) ≺ τ+ρ (ρ) and

d(τ+ρ (x), τ+ρ0
(x)) <

ε

2
.

Combining the two inequalities we obtain

d(τ+ρ (x), τρ0
(ρ0)) < ε,

and by Lemma 2 we also have

τ+ρ (x) ≺ τρ(ρ) ≺ τρ0
(ρ0).

The distance d has the property that if σ ≺ ζ ≺ σ′ then d(σ, ζ) ≤ d(σ, σ′) and
d(ζ, σ′) ≤ d(σ, σ′). This shows that ρ 7→ τ(ρ) is left continuous. The right continu-
ity of ρ 7→ τ+(ρ) admits an analagous proof. �

As a consequence of Corollary 2, Lemma 2 and (10), we obtain the unicity of ρ
for which Ω is symmetric.As a consequence of Corollary 2, Lemma 2 and (10), we
obtain the unicity of ρ for which Ω is symmetric.

Corollary 4. There is at most one ρ ∈ [1− b, a] such that Ω = Ω
∗
.

Proof of Theorem 2. By Lemma 2 and (10), we may define

ρ0 := sup{ρ ∈ [1− b, a] : τ(ρ) � τ+(ρ)∗} = inf{ρ ∈ [1− b, a] : τ(ρ)∗ � τ+(ρ)}.

Assume τ(ρ0) ≺ τ+(ρ0)
∗. It is straighfoward to check 1− b < ρ0 < a.

There is a largest n ≥ 2 such that τ(ρ0)|n = τ+(ρ0)
∗|n =: η = 01... .

Observe that τ(ρ0) = 0τ(W0(ρ0)) and τ+(ρ0) = 1τ+(W1(ρ0)). If neither W0(ρ0)

norW1(ρ0) belongs to {0, 1}∪
n−1⋃
k=0

W−k(ρ0), then by (9) both τ(ρ)|n+1 and τ+(ρ)|n+1

are constant on a neighborhood of ρ0 which contradicts the definition of ρ0.
Let us consider the projection π̂(τ+(W1(ρ0))

∗). If π̂(τ+(W1(ρ0))
∗) > W0(ρ0)

then by the continuity of W0, of π̂ by (13), of ρ 7→ τ+ρ (ρ) (Corollary 3) there

is a ρ > ρ0 such that π̂ρ(τ
+
ρ (W1(ρ0))

∗) > W0(ρ). By (6) and (13) this implies

τρ(ρ) ≺ τ+ρ (ρ)∗, which again contradicts the definition of ρ0.
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As π̂ is increasing, (13) and τ(W0(ρ0)) ≺ τ+(W1(ρ0))
∗, we have π̂(τ+(W1(ρ0))

∗) =
W0(ρ0). Let 0 < m < n be minimal such that Wm◦W0( ρ0) = ρ0 or W

m◦W1(ρ0) =
ρ0. We may apply (14) m times and obtain

(4.2) Wm ◦W0(ρ0) = π̂(Sm(τ+(W1(ρ0))
∗)) = π̂(τ+(Wm ◦W1(ρ0))

∗).

As τ+(ρ0) = 1..., if Wm ◦W1(ρ0) = ρ0 then we have

τ(ρ0) ≺ τ+(ρ0)
∗ = τ+(Wm ◦W1(ρ0))

∗ ≺ τ+(ρ0),

which by (6) and equation (4.2) implies Wm ◦ W0(ρ0) = ρ0. Therefore τ(ρ0) =
τ+(ρ0)

∗ as both are periodic of period m + 1 and have the same prefix of length
n > m, a contradiction.

If Wm ◦ W1(ρ0) 6= ρ0 then Wm ◦ W0(ρ0) = ρ0 thus by (13), (10) and equality
(4.2) we obtain

τ(ρ0) ≺ τ+(ρ0)
∗ � τ+(Wm ◦W1(ρ0)) := σ′.

By (6), this means that ρ0 ≤ Wm ◦W1(ρ0) so in fact

ρ0 < Wm ◦W1(ρ0).

As Wm+1(ρ0) = ρ0, τ(ρ0) = κκκ... := κ∞ where κ = τ(ρ0)|m+1 = τ+(ρ0)
∗|m+1,

as m + 1 ≤ n. We can write τ+(ρ0) = κ∗σ′ therefore κ∗σ′ ≺ σ′ by (6) and the
previous inequality. By induction we get κ∗∞ ≺ σ′ so

τ+(ρ0)
∗ = κ(σ′∗) ≺ κ∞ = τ(ρ0),

a contradiction.
The case τ(ρ0) ≻ τ+(ρ0)

∗ is analagous by the symmetric definition of ρ0, there-
fore Ωρ0

is symmetric. �

Proposition 4. If Ω = Ω
∗
then the map h : [0, 1] → [0, 1] defined by h(x) =

π̂(τ(x)∗) is a homeomorphism and h ◦ π̂ = π̂◦∗ on I∞.

Proof. First by Corollary 2, we have τ(ρ) = τ+(ρ)∗ and points x for which τ(x) 6=
τ+(x) are exactly preimages of ρ. In this case, there is n ≥ 0 such that τ(x) and
τ+(x) have the same initial prefix κ := τ(x)|n = τ+(x)|n, and τ(x) = κτ(ρ), τ+(x) =
κτ+(ρ). Therefore, by (13), for all x ∈ [0, 1], we have

τ(h(x)) = τ+(x)∗ and τ+(h(x)) = τ(x)∗,

thus h◦h(x) = x. By (6), (10) and (13), h is also decreasing. Therefore h : [0, 1] →
[0, 1] is a homeomorphism.

Let σ ∈ I∞ and x = π̂(σ). By (13) we have τ(x) � σ � τ+(x). As Ω = Ω
∗
,

by Proposition 2, we obtain that there exists y ∈ [0, 1] such that τ(x)∗ = τ+(y).
By Lemma 1 and Corollary 2 we also have that τ+(x)∗ = τ(y). We may compute
h ◦ π̂(σ) = h(x) = π̂(τ(x)∗) = π̂(τ(y)) = y, which is also equal to π̂(σ∗) as τ(y) �
σ∗ � τ+(y).

�

5. Iterated Closed Relations and Conley Decomposition for

Itineraries of W

Theorem 1 follows from Proposition 3, but some extra language is needed. In
explaining this language we describe the Conley-McGehee-Wiandt decomposition
theorem, [3, Theorem 13.1].
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For X a compact Hausdorff space, let 2X be the subsets of X. A relation r on
X is simply a subset of X ×X. A relation r on X is called a closed relation if r is a
closed of X ×X. For example the set r ⊂ I∞ × I∞ defined in Theorem 1, namely

r = {(0σ, σ) ∈ I∞ × I∞ : σ � α} ∪ {(1σ, σ) ∈ I∞ × I∞ : β � σ},

is a closed relation. Following [3], a relation r ∈ 2X provides a mapping r : 2X → 2X

defined by

r(C) = {y ∈ X : (x, y) ∈ r for some x ∈ C}.

Notice that the image of a nonempty set may be empty. Iterated relations are
defined by r0 = X ×X and, for all k ∈ N,

rk+1 = r ◦ rk = {(x, z) : (x, y) ∈ r, (y, z) ∈ rk for some y ∈ X}.

The omega limit set of C ⊂ X under a closed relation r ⊂ X ×X is

ω(C) = ∩K(C)

where

K(C) = {D is a closed subset of X : r(D) ∪ rn(C) ⊂ D for some n ∈ N}.

By definition, an attractor of a closed relation r is a closed set A such that the
following two conditions hold:

(i) r(A) = A;
(ii) there is a closed neighborhood N (A) of A such that ω(C) ⊂ A for all C ⊂

N (A).
The basin B(A) of an attractor A for a closed relation r on a compact Hausdorff

space X is the union of all open sets O ⊂ X such that ω(C) ⊂ A for all C ⊂ O.
Given an attractor A for a closed relation r on a compact Hausdorff space X,

there exists a corresponding attractor block, namely a closed set E ⊂ X such that
E contains both A and r(E) in its interior, and A = ω(E). Also, there exists a
unique dual repeller A∗ = X\B(A). This repeller is an attractor for the transpose
relation r∗ = {(y, x) : (x, y) ∈ r}. The set of connecting orbits associated with the
attractor/repeller pair A, A∗ is C(A) = X\(A ∪A∗).

If r is a closed relation on a compact Hausdorff space X, then x ∈ X is called
chain-recurrent for r if for every closed neighborhood f of r, x is periodic for f
(i.e. there exists a finite sequence of points {xn}

p−1
n=0 ⊂ X such that x0 = x,

(xp−1, x0) ∈ f and (xn−1, xn) ∈ f for n = 1, 2, ..., p − 1). The chain recurrent set
R for r is the union of all the points that are chain recurrent for r. A transitive
component of R is a member of the equivalence class on R defined by x ∼ y when
for every closed neighborhood f of r there is an orbit from x to y under f (i.e.

there exists a finite sequence of points {xn}
p−1
n=0 ⊂ R such that x0 = x, xp−1 = y,

and (xn, xn+1) ∈ f for all n ∈ {0, 1, ...p− 1}.)

Theorem 3 (Conley-McGehee-Wiandt). If r is a closed relation on a compact
Hausdorff space X, then

R =
⋃

A∈U

C(A)

where R is the chain-recurrent set and U is the set of attractors.

Proof of Theorem 1. This follows at once from Proposition 3 together with The-
orem 3, but see [3]. �
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We note the following. Ω can be embedded in [0, 1] ⊂ R using the (continuous
and surjective) coding map π : I∞ → [0, 1] associated with the iterated function
system ([0, 1];x 7→ x/2, x 7→ (1 + x)/2). This coding map π is defined, for all σ, by

π(σ) =
∑

k∈N

σk

2k+1
.

π provides a homeomorphism between Ω and π(Ω). The point σ ∈ Ω is uniquely and
unambiguously represented by the binary real number 0.σ. In the representation
provided by π, the map Ψ : 2I

∞

→ 2I
∞

becomes the action of the iterated closed
relation r̃ ⊂ [0, 1]× [0, 1] ⊂ R

2 defined by

r̃ := {(x, x/2) : x ∈ [0, π(α)]} ∪ {(x, (x+ 1)/2) : x ∈ [π(β), 1]}

on subsets of [0, 1]. It follows from Proposition 3 (iii) that π(Ω) is the maximal
attractor, as defined in [3], of r̃. The corresponding dual repeller is the empty set. It
is also easy to see that {0} and {1} are the only other attractors, with corresponding
dual repellers [π(α), 1] and [0, π(β)] respectively. It follows from Theorem 3 that
the chain recurrent set of r̃ is {0, 1} ∪ (π(Ω) ∩ (π(β), π(α))).
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