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Introduction

Let W 0 : [0, a] → [0, 1] and W 1 : [1-b, 1] → [0, 1] be continuous and differentiable, and such that a + b > 1, W 0 (0) = W 1 (1b) = 0, W 0 (a) = W 1 (1) = 1. Let the derivatives W ′ i (x) (i = 0, 1) be uniformly bounded below by d > 1.

For ρ ∈ [1 -b, a] we define W : [0, 1] → [0, 1] by [0, 1] ∋ x → W 0 (x) if x ∈ [0, ρ] W 1 (x) otherwise.
See Figure 1. Similarly, we define W + : [0, 1] → [0, 1] by replacing [0, ρ] by [0, ρ).

Let I = {0, 1}. Let I ∞ = {0, 1} × {0, 1} × • • • have the product topology induced from the discrete topology on I. For σ ∈ I ∞ write σ = σ 0 σ 1 σ 2 . . . , where σ k ∈ I for all k ∈ N. The product topology on I ∞ is the same as the topology induced by the metric d(ω, σ) = 2 -k where k is the least index such that ω k = σ k . It is well known that (I ∞ , d) is a compact metric space. We define a total order relation on I ∞ , and on I n for any n ∈ N, by σ ≺ ω if σ = ω and σ k < ω k where k is the least index such that σ k = ω k . For σ ∈ I ∞ and n ∈ N we write σ| n = σ 0 σ 1 σ 2 ...σ n . I ∞ is the appropriate space in which to embed and study the itineraries of the family of discontinuous dynamical systems W : [0, 1] → [0, 1].

For W (+) ∈ {W, W + } let W k (+) denote W (+) composed with itself k times, for k ∈ N, and let W -k (+) = (W k (+) ) -1 . We define a map τ : [0, 1] → I ∞ , using all of the orbits of W, by τ (x) = σ 0 σ 1 σ 2 . . .

where σ k equals 0, or 1, according as W k (x) ∈ [0, ρ], or (ρ, 1], respectively. We call τ (x) the itinerary of x under W , or an address of x, and we call Ω = τ ([0, 1]) an address space for [0, 1]. Similarly, we define τ + : [0, 1] → I ∞ so that τ + (x) k equals 0, or 1, according as W k + (x) ∈ [0, ρ), or [ρ, 1], respectively; and we define Ω + = τ + ([0, 1]). Note that W , W + , Ω, Ω + , τ , and τ + all depend on ρ.

The main goals of this paper are to characterise Ω and to show that there exists a value of ρ such that Ω is symmetric. We write E to denote the closure of a set E. But we write 0 = 000..., 1 = 111...

∈ I ∞ . For σ = σ 0 σ 1 σ 2 . . . ∈ I ∞ we write 0σ to mean 0σ 0 σ 1 σ 2 . . . ∈ I ∞ and 1σ = 0σ 0 σ 1 σ 2 . . . ∈ I ∞ .
Define a symmetry function * :

I ∞ → I ∞ by σ * = ω where ω k = 1 -σ k for all k. Theorem 2. There exists a unique ρ ∈ [1 -b, a] such that Ω * = Ω.
Theorem 1 tells us that Ω is fixed by itineraries of two inverse images of the critical point ρ, and provides the basis for a stable algorithm to determine Ω. It relates the address spaces of dynamical systems of the form of W to the beautiful theory of iterated closed relations on compact Hausdorff spaces [START_REF] Mcgehee | Conley decomposition for closed relations[END_REF], and hence to the work of Charles Conley.

Theorem 2 is interesting in its own right and also because it has applications in digital imaging, as explained and demonstrated, in the special case of affine maps, in [START_REF] Barnsley | How to filter and transform images using iterated function systems[END_REF]. It enables the construction of parameterized families of nondifferentiable homeomorphisms on [0, 1], using pairs of overlapping iterated function systems, see Proposition 4. Theorem 2 generalizes results in [START_REF] Barnsley | How to filter and transform images using iterated function systems[END_REF] to nonlinear W i 's. The proof uses symbolic dynamics in place of the geometrical construction outlined in [START_REF] Barnsley | How to filter and transform images using iterated function systems[END_REF]. The approach and results open up the mathematics underlying [START_REF] Barnsley | How to filter and transform images using iterated function systems[END_REF] and [START_REF] Igudesman | A certain family of self-similar sets[END_REF].

To tie the present work into [START_REF] Barnsley | How to filter and transform images using iterated function systems[END_REF], note that τ is a section, as defined in [START_REF] Barnsley | How to filter and transform images using iterated function systems[END_REF], for the hyperbolic iterated function system

F := ([0, 1]; W -1 0 , W -1 1
). Our observations interrelate to, but are more specialized than, the work of Parry [START_REF] Parry | Symbolic dynamics and transformations of the unit interval[END_REF]. Our point of view is topological rather than measure-theoretic, and our main results appear to be new.

Basic properties of τ

The following list of properties is relatively easy to check. Below the list we elaborate on points 1, 2, and 3.

(1) W n is piecewise differentiable and its derivative is uniformly bounded below by d n ; each, except the leftmost branch of W n , is defined on an interval of the form (r, s]. W n + is piecewise differentiable and its derivative is uniformly bounded below by d n ; each, except for the rightmost branch of W n + , is defined on an interval of the form [r, s). 

5) τ (x) = τ + (x) unless x ∈ k∈N W -k (ρ) in which case τ (x) ≺ τ + (x).
(6) Both τ (x) and τ + (x) are strictly increasing functions of x ∈ [0, 1] and τ (x) τ + (x). This follows from (4) and ( 5). (7) For all x ∈ [0, 1], τ (x) is continuous from the left, τ + (x) is continuous from the right. Moreover, for all x ∈ (0, 1),

τ (x) = lim ε→0 + τ + (x -ε) and τ + (x) = lim ε→0 + τ (x + ε).
These assertions follow from (2), ( 3) and ( 4). (8) Each x ∈ W -n (ρ), such that τ (x)| n is constant, moves continuously with respect to ρ with positive velocity bounded above by d -n . This follows from (1).

(9) For x ∈ (0, 1)\

n k=0 W -k (ρ), τ (x)| n = τ + (x)
| n is locally constant with respect to ρ; moreover, this holds if x depends continuously on ρ. This follows from (2), (3) and ( 6). (10) The symmetry function * : I ∞ → I ∞ is strictly decreasing and continuous. (11) For any σ| n ∈ I n , n ∈ N, the set

I(σ| n ) := {x ∈ [0, 1] : τ (x)| n = σ| n or τ + (x)| n = σ| n },
is either empty or a non-degenerate compact interval of length at most d -n . This follows from (2), ( 3) and ( 6). (12) The projection π :

I ∞ → [0, 1] is well-defined by π(σ) = sup{x ∈ [0, 1] : τ + (x) σ} = inf{x ∈ [0, 1] : τ (x) σ}.
This follows from (6). (13) The projection π : I ∞ → [0, 1] is increasing, by (6); continuous, by (11); and, by (7),

π(τ (x)) = π(τ + (x)) = x for all x ∈ [0, 1], τ (π(σ)) σ τ + (π(σ)) for all σ ∈ I ∞ . (14) Let S : I ∞ → I ∞ denote the left-shift map σ 0 σ 1 σ 2 ... → σ 1 σ 2 σ 3 .... For all σ ∈ I ∞ such that σ τ (ρ) or σ ≥ τ + (ρ), π(S(σ)) = W (π(σ)).
Also π(τ + (ρ)) = ρ and π(S(τ + (ρ))) = W 1 (ρ). These statements follow from ( 7).

Here we elaborate on points (1), ( 2) and ( 3). Consider the piecewise continuous function W k (x), for k ∈ {1, 2, ...}. Its discontinuities are at ρ and, for k > 1, other points in (0, 1), each of which can be written in the form

W -1 σ0 • W -1 σ2 • ...W -1 σ l-1 (ρ) for some σ 0 σ 1 ...σ l-1 ∈ {0, 1} l for some l ∈ {1, 2, ...k -1}.
We denote these discontinuities, together with the points 0 and 1, by

D k,0 := 0 < D k,1 < D k,2 < .... < D k,D(k)-1 < 1 =: D k,D(k) , where D(1) = 3, D(2) = 5 < D(3) < D(4)... . For each k ≥ 1, one of the D k,j 's is equal to ρ. For k ≥ 1 we have W k (x) = W k 0 (x) for x ∈ [D k,0 , D k,1 ] and W k + (x) = W k 0 (x) for x ∈ [D k,0 , D k,1 ). Similarly W k (x) = W k 1 (x) for all x ∈ (D k,D(k)-1 , D k,D(k) ] and W k + (x) = W k 1 (x) for x ∈ [D D(k)-1 , D D(k) ]. For all x ∈ (D k,l , D k,l+1 ) (l = 0, 1, ..., D(k)-1), W k (x) = W k + (x) = W θ k •W θ k-1 • ...W θ1 (x) for some fixed θ 1 θ 2 ...θ k ∈ {0, 1} k . We refer to θ 1 θ 2 ...θ k as the address of the interval (D k,l , D k,l+1 ), we say (D k,l , D k,l+1
) that "has address θ 1 θ 2 ...θ k ", and we write, by slight abuse of notation, τ

((D k,l , D k,l+1 )) = θ 1 θ 2 ...θ k . Let k > 1. Consider two adjacent intervals,(D k,m-1 , D k,m ] and (D k,m , D k,m+1 ] for m ∈ {1, 2, ..., D(k) -1} and k > 1.
Let the one on the right have address θ 0 θ 1 ...θ k-1 and the one on the left have address In this section we characterize Ω and Ω + as certain inverse limits, and we characterize Ω as an attractor of an iterated closed relation on I ∞ . These inverse limits are natural and they clarify the structures of Ω and Ω + . They are implied by the shift invariance of Ω and Ω + . Recall that S :

η 0 η 1 ... η k-1 . Then η 0 η 1 ... η k-1 ≺ θ 0 θ 1 ...θ k-1 and we have τ (x)| k-1 = η 0 η 1 ...η k-1 for all x ∈ (D k,m-1 , D k,m ], τ + (x)| k-1 = η 0 η 1 ...η k-1 for all x ∈ [D k,m-1 , D k,m ), τ (x)| k-1 = θ 0 θ 1 ...θ k-1 for all x ∈ (D k,m , D k,m+1 ], τ + (x)| k-1 = θ 0 θ 1 ...θ k-1 for all x ∈ [D k,m , D k,m+1 ).
I ∞ → I ∞ denotes the left-shift map σ 0 σ 1 σ 2 ... → σ 1 σ 2 σ 3 .... Proposition 1. (i) τ (W (x)) = S(τ (x)) and τ + (W + (x)) = S(τ + (x)) for all x ∈ [0, 1].
(ii) S(Ω) = Ω and S(Ω + ) = Ω + .

Proof. (i) This follows at once from the definitions of τ and τ + . (ii) This follows from (i) together with

W ([0, 1]) = W + ([0, 1]) = [0, 1].
We say that Λ ⊂ I ∞ is closed from the left if, whenever {x n } ∞ n=0 is an nondecreasing sequence of points in Λ, lim x n ∈ Λ. We say that Λ ⊂ I ∞ is closed from the right if, whenever {x n } ∞ n=0 is non-increasing sequence in Λ, lim x n ∈ Λ. For S ⊂ X, where X = I ∞ or [0, 1], we write L(S) = {σ ∈ X : there is a non-decreasing sequence {z n } ∞ n=0 ⊂ S with σ = lim z n } to denote the closure of S from the left. Analogously, we define R(S) for the closure of S from the right. Proposition 2. (i) Ω is closed from the left and Ω + is closed from the right;

(ii) . Also, by [START_REF] Parry | Symbolic dynamics and transformations of the unit interval[END_REF],

Ω = Ω + = Ω ∪ Ω + = Ω ∩ Ω + Proof. Proof of (i): By (6) τ : [0, 1] → I ∞ is
Ω ∩ Ω + = τ ([0, 1]) ∩ τ + ([0, 1]) = τ (Q) = τ + (Q). Hence Ω ∩ Ω + = τ (Q) = τ + (Q) = Ω = Ω + . Finally, Ω ∪ Ω + = L(τ (Q)) ∪ R(τ + (Q)) = L(τ (Q)) ∪ R(τ (Q)) = τ (Q) = Ω.
We define s i : I ∞ → I ∞ by s i (σ) = iσ (i = 0, 1). Note that both s 0 , and s 1 , are contractions with contractivity 1/2. We write 2 I ∞ to denote the set of all subsets of I ∞ . For σ, ω ∈ I ∞ we define

[σ, ω] := {ζ ∈ I ∞ : σ ζ ω}, (σ, ω) := {ζ ∈ I ∞ : σ ≺ ζ ≺ ω}, (σ, ω] := {ζ ∈ I ∞ : σ ≺ ζ ω}, [σ, ω) := {ζ ∈ I ∞ : σ ζ ≺ ω}. Proposition 3. Let α = S(τ (ρ)) and β = S(τ + (ρ)). (i) Ω = k∈N Ψ k ([0, 1]) where Ψ : 2 I ∞ → 2 I ∞ is defined by 2 I ∞ ∋ Λ → s 0 (Λ ∩ [0, α]) ∪ s 1 (Λ ∩ (β, 1]). (ii) Ω + = k∈N Ψ k + ([0, 1]) where Ψ + : 2 I ∞ → 2 I ∞ is defined by 2 I ∞ ∋ Λ → s 0 (Λ ∩ [0, α)) ∪ s 1 (Λ ∩ [β, 1]). (iii) Ω = Ω + = k∈N Ψ k ([0, 1]) where Ψ : 2 I ∞ → 2 I ∞ is defined by 2 I ∞ ∋ Λ → s 0 (Λ ∩ [0, α]) ∪ s 1 (Λ ∩ [β, 1]).
Proof. Proof of (i): Let S| Ω : Ω → Ω denote the domain and range restricted shift map. It is readily found that the branches of S| -1

Ω : Ω → Ω are s 0 | Ω : [0, α] ∩ Ω → Ω where s 0 | Ω (σ) = s 0 (σ) = 0σ for all σ ∈ [0, α] ∩ Ω, and s 1 | Ω : (β, 1] ∩ Ω → Ω where s 1 | Ω (σ) = s 1 (σ) = 1σ for all σ ∈ (β, 1] ∩ Ω.
(Note that α 0 = 1, β 0 = 0 and β ≺ α.) It follows that

S| -1 Ω (Λ) = s 0 (Λ ∩ [0, α]) ∪ s 1 (Λ ∩ (β, 1]) = Ψ(Λ) for all Λ ⊂ Ω. Since Ω ⊂ [0, 1] it follows that Ω = S| -1 Ω (Ω) = Ψ(Ω) ⊂ Ψ([0, 1]). Also, since Ψ([0, 1]) ⊂ [0, 1] it follows that {Ψ k ([0, 1])} is a decreasing (nested) sequence of sets, each of which contains Ω; hence Ω ⊂ k∈N Ψ k ([0, 1]).
It remains to prove that Ω ⊃ k∈N Ψ k ([0, 1]). We note that s 0 ([0, α]) = [0, τ (ρ)] and s 1 ((β, 1]) = (τ + (ρ), 1], from which it follows that

(3.1) k∈N Ψ k ([0, 1]) = k∈N {σ ∈ I ∞ : S k (σ) ∈ [0, τ (ρ)] ∪ (τ + (ρ), 1]}. Let ω ∈ k∈N Ψ k ([0, 1]). Suppose ω / ∈ Ω. Let ω -= sup{σ ∈ Ω : σ ω} and ω + = inf{σ ∈ Ω : ω σ}, so that ω -ω ω + . But ω -∈ Ω (since Ω is closed from the left), so ω -≺ ω ω + .
Note that, since inf{σ ∈ Ω : ω σ} = inf{σ ∈ Ω + : ω σ}, and Ω + is closed from the right, we have

ω + ∈ Ω + . Let K = min{k ∈ N : (ω -) k = (ω + ) k }. Then S K (ω -) ≺ S K (ω)
S K (ω + ) and we must have S K (ω -) = τ (ρ) and S K (ω

+ ) = τ + (ρ). So τ (ρ) ≺ S K (ω) τ + (ρ), therefore ω / ∈ {σ ∈ I ∞ : S K (σ) ∈ [0, τ (ρ)] ∪ (τ + (ρ), 1]
} which, because of (3.1), contradicts our assumption that ω ∈ k∈N Ψ k ([0, 1]). Hence ω ∈ Ω and we have

Ω ⊃ k∈N Ψ k ([0, 1]).
This completes the proof of (i). Proof of (ii): similar to the proof of (i), with the role of [0, τ (ρ)] played by [0, τ (ρ)) and the role of (τ + (ρ), 1] played by [τ + (ρ), 1].

Proof of (iii): similar to the proofs of (i) and (ii).

It is helpful to note that the addresses α and β in Proposition 3 obey

α = τ (W 0 (ρ)), β = τ (W 1 (ρ)), τ (ρ) = 0α = 01α 1 α 2 ... and τ + (ρ) = 0β = 10β 1 β 2 .... Let M > 0 be such that D k,M +1 = ρ. It follows from the discussion at the end of Section 2 that τ ((D k,M , ρ)) = τ + ((D k,M , ρ)) = 01α 1 α 2 ..α k-2 and τ ((ρ, D k,M +2 )) = τ + ((ρ, D k,M +2 )) = 10β 1 β 2 ...β k-2 . Corollary 1. Let k ≥ 1, α = τ (W 0 (ρ)), β = τ (W 1 (ρ))
, and let M > 0 be such that D k,M +1 = ρ. The set of addresses {τ

((D k,l , D k,l+1 ))} D(k)-1 l=0
is uniquely determined by α| k-1 and β| k-1 . For some n 1 , n 2 such that 0

≤ n 1 < M < n 2 ≤ D(k) -1, τ ((D k,n1 , D k,n1+1 )) = β 0 β 1 ...β k-2 β k-1 and τ ((D k,n2 , D k,n2+1 )) = α 0 α 1 ...α k-2 α k-1 . The set of addresses {τ ((D k,l , D k,l+1 )) : l ∈ {0, 1, ..., D(k) - 1}, l = n 1 , l = n} are uniquely determined by α| k-2 and β| k-2 ; for example, τ ((D k,M , ρ)) = 0α 0 α 1 ...α k-2 , and τ ((ρ, D k,M +2 )) = 1β 0 β 1 ...β k-2 .
Proof. It follows from Proposition 3 that the set of addresses at level k, namely {τ

((D k,l , D k,l+1 ))} D(k)-1 l=0
, is invariant under the following operation: put a "0" in front of each address that is less than or equal to α, then truncate back to length k; take the union of the resulting set of addresses with the set of addresses obtained by: put a "1" in front of each address that is greater than or equal to β, and drop the last digit.

Symmetry of Ω and a consequent homeomorphism of [0, 1]

Lemma 1. Ω = {σ ∈ I ∞ : for all k ∈ N, σ k = 0 ⇒ S k (σ) τ (ρ) and σ 0 = 1 ⇒ τ + (ρ) S k (σ)}.
Proof. This is an immediate consequence of Proposition 3.

Corollary 2. Ω is symmetric if and only if

α = β * (or equivalently τ (ρ) = (τ + (ρ)) * ).
Lemma 2. The maps τ (ρ) and τ + (ρ) are strictly increasing as functions of ρ ∈

[a, b] to I ∞ .
Proof. Note that τ (ρ) depends both implicitly and explicitly on

ρ. Let 1 -b ≤ ρ < ρ ′ ≤ a be such that τ (ρ) τ (ρ ′ ). Observe that τ (ρ)| 0 = τ (ρ ′ )| 0 . Assume first that there is a largest n > 0 such that τ (ρ)| n = τ (ρ ′ )| n := θ 0 θ 1 ...θ n . Then τ (ρ) = θ 0 θ 1 ...θ n 1... and τ + (ρ) = θ 0 θ 1 ...θ n 0..., which implies (4.1)
W n ρ (ρ) ≥ ρ and W n ρ ′ (ρ ′ ) ≤ ρ ′ . (We write W = W ρ when we want to note the dependence on ρ. ) We may assume that τ (ρ)| n is constant on [ρ, ρ ′ ] for otherwise we can restrict to a smaller interval with a strictly smaller value of n. As a consequence, at every iteration, we apply the same branch W 0 or W 1 to W ξ to compute compute g(ξ) := W n ξ (ξ) for all ξ ∈ [ρ, ρ ′ ]. Therefore g is continuous with derivative at least d n > 1, which contradicts (4.1).

The only remaining possibility is that τ (ρ) = τ (ρ ′ ). We may assume that τ (ρ) is constant on [ρ, ρ ′ ], otherwise we can reduce the problem to the previous case. This would mean that for arbitrarily large n, the image of the interval [ρ, ρ ′ ] under g is at an interval of size least d n (ρ ′ρ), a contradiction.

Essentially the same argument, with the role of τ played by τ + and the role of played by W + , proves that τ + (ρ) is strictly increasing as a function of ρ ∈ [1b, a] to I ∞ . Corollary 3. The map ρ → τ (ρ) is left continuous and the map ρ → τ + (ρ) is right continuous.

Proof. Fix a parameter ρ 0 and let ε > 0. Then by (7) there is x < ρ 0 which is not a preimage of ρ 0 for any order and such that

d(τ + ρ0 (x), τ ρ0 (ρ 0 )) < ε 2 .
By (9), for any n ∈ N there exists δ > 0 such that the prefix τ + ρ (x)| n is constant when ρ ∈ (ρ 0δ, ρ 0 + δ). Let n be such that 2 -n < ε, and let ρ > x and ρ ∈ (ρ 0δ, ρ 0 ). We have that τ + ρ (x) ≺ τ + ρ (ρ) and

d(τ + ρ (x), τ + ρ0 (x)) < ε 2 .
Combining the two inequalities we obtain d(τ + ρ (x), τ ρ0 (ρ 0 )) < ε, and by Lemma 2 we also have

τ + ρ (x) ≺ τ ρ (ρ) ≺ τ ρ0 (ρ 0 ). The distance d has the property that if σ ≺ ζ ≺ σ ′ then d(σ, ζ) ≤ d(σ, σ ′ ) and d(ζ, σ ′ ) ≤ d(σ, σ ′ )
. This shows that ρ → τ (ρ) is left continuous. The right continuity of ρ → τ + (ρ) admits an analagous proof.

As a consequence of Corollary 2, Lemma 2 and (10), we obtain the unicity of ρ for which Ω is symmetric.As a consequence of Corollary 2, Lemma 2 and (10), we obtain the unicity of ρ for which Ω is symmetric.

Corollary 4. There is at most one ρ ∈ [1 -b, a] such that Ω = Ω * .
Proof of Theorem 2. By Lemma 2 and (10), we may define

ρ 0 := sup{ρ ∈ [1 -b, a] : τ (ρ) τ + (ρ) * } = inf{ρ ∈ [1 -b, a] : τ (ρ) * τ + (ρ)}. Assume τ (ρ 0 ) ≺ τ + (ρ 0 ) * . It is straighfoward to check 1 -b < ρ 0 < a. There is a largest n ≥ 2 such that τ (ρ 0 )| n = τ + (ρ 0 ) * | n =: η = 01... . Observe that τ (ρ 0 ) = 0τ (W 0 (ρ 0 )) and τ + (ρ 0 ) = 1τ + (W 1 (ρ 0 )). If neither W 0 (ρ 0 ) nor W 1 (ρ 0 ) belongs to {0, 1}∪ n-1 k=0 W -k (ρ 0 ), then by (9) both τ (ρ)| n+1 and τ + (ρ)| n+1
are constant on a neighborhood of ρ 0 which contradicts the definition of ρ 0 . Let us consider the projection π(τ + (W 1 (ρ 0 )) * ). If π(τ + (W 1 (ρ 0 )) * ) > W 0 (ρ 0 ) then by the continuity of W 0 , of π by (13), of ρ → τ + ρ (ρ) (Corollary 3) there is a ρ > ρ 0 such that πρ (τ + ρ (W 1 (ρ 0 )) * ) > W 0 (ρ). By (6) and (13) this implies τ ρ (ρ) ≺ τ + ρ (ρ) * , which again contradicts the definition of ρ 0 .

As π is increasing, (13) and τ (W 0 (ρ 0 )) ≺ τ + (W 1 (ρ 0 )) * , we have π(τ + (W 1 (ρ 0 )) * ) = W 0 (ρ 0 ). Let 0 < m < n be minimal such that W m •W 0 ( ρ 0 ) = ρ 0 or W m •W 1 (ρ 0 ) = ρ 0 . We may apply (14) m times and obtain

(4.2) W m • W 0 (ρ 0 ) = π(S m (τ + (W 1 (ρ 0 )) * )) = π(τ + (W m • W 1 (ρ 0 )) * ). As τ + (ρ 0 ) = 1..., if W m • W 1 (ρ 0 ) = ρ 0 then we have τ (ρ 0 ) ≺ τ + (ρ 0 ) * = τ + (W m • W 1 (ρ 0 )) * ≺ τ + (ρ 0 ),
which by (6) and equation (4.2) implies W m • W 0 (ρ 0 ) = ρ 0 . Therefore τ (ρ 0 ) = τ + (ρ 0 ) * as both are periodic of period m + 1 and have the same prefix of length n > m, a contradiction. 13), (10) and equality (4.2) we obtain 6) and the previous inequality. By induction we get κ * ∞ ≺ σ ′ so

If W m • W 1 (ρ 0 ) = ρ 0 then W m • W 0 (ρ 0 ) = ρ 0 thus by (
τ (ρ 0 ) ≺ τ + (ρ 0 ) * τ + (W m • W 1 (ρ 0 )) := σ ′ . By (6), this means that ρ 0 ≤ W m • W 1 (ρ 0 ) so in fact ρ 0 < W m • W 1 (ρ 0 ). As W m+1 (ρ 0 ) = ρ 0 , τ (ρ 0 ) = κκκ... := κ ∞ where κ = τ (ρ 0 )| m+1 = τ + (ρ 0 ) * | m+1 , as m + 1 ≤ n. We can write τ + (ρ 0 ) = κ * σ ′ therefore κ * σ ′ ≺ σ ′ by (
τ + (ρ 0 ) * = κ(σ ′ * ) ≺ κ ∞ = τ (ρ 0 ), a contradiction.
The case τ (ρ 0 ) ≻ τ + (ρ 0 ) * is analagous by the symmetric definition of ρ 0 , therefore Ω ρ0 is symmetric. For X a compact Hausdorff space, let 2 X be the subsets of X. A relation r on X is simply a subset of X × X. A relation r on X is called a closed relation if r is a closed of X × X. For example the set r ⊂ I ∞ × I ∞ defined in Theorem 1, namely

r = {(0σ, σ) ∈ I ∞ × I ∞ : σ α} ∪ {(1σ, σ) ∈ I ∞ × I ∞ : β σ},
is a closed relation. Following [START_REF] Mcgehee | Conley decomposition for closed relations[END_REF], a relation r ∈ 2 X provides a mapping r : 2 X → 2 X defined by r(C) = {y ∈ X : (x, y) ∈ r for some x ∈ C}.

Notice that the image of a nonempty set may be empty. Iterated relations are defined by r 0 = X × X and, for all k ∈ N,

r k+1 = r • r k = {(x, z) : (x, y) ∈ r, (y, z) ∈ r k for some y ∈ X}. The omega limit set of C ⊂ X under a closed relation r ⊂ X × X is ω(C) = ∩K(C)
where

K(C) = {D is a closed subset of X : r(D) ∪ r n (C) ⊂ D for some n ∈ N}.
By definition, an attractor of a closed relation r is a closed set A such that the following two conditions hold:

(i) r(A) = A; (ii) there is a closed neighborhood N (A) of A such that ω(C) ⊂ A for all C ⊂ N (A).
The basin B(A) of an attractor A for a closed relation r on a compact Hausdorff space X is the union of all open sets O ⊂ X such that ω(C) ⊂ A for all C ⊂ O.

Given an attractor A for a closed relation r on a compact Hausdorff space X, there exists a corresponding attractor block, namely a closed set E ⊂ X such that E contains both A and r(E) in its interior, and A = ω(E). Also, there exists a unique dual repeller A * = X\B(A). This repeller is an attractor for the transpose relation r * = {(y, x) : (x, y) ∈ r}. The set of connecting orbits associated with the attractor/repeller pair A, A * is C(A) = X\(A ∪ A * ).

If r is a closed relation on a compact Hausdorff space X, then x ∈ X is called chain-recurrent for r if for every closed neighborhood f of r, x is periodic for f (i.e. there exists a finite sequence of points {x n } p-1 n=0 ⊂ X such that x 0 = x, (x p-1 , x 0 ) ∈ f and (x n-1 , x n ) ∈ f for n = 1, 2, ..., p -1). The chain recurrent set R for r is the union of all the points that are chain recurrent for r. A transitive component of R is a member of the equivalence class on R defined by x ∼ y when for every closed neighborhood f of r there is an orbit from x to y under f (i.e. there exists a finite sequence of points {x n } p-1 n=0 ⊂ R such that x 0 = x, x p-1 = y, and (x n , x n+1 ) ∈ f for all n ∈ {0, 1, ...p -1}.) where R is the chain-recurrent set and U is the set of attractors.

Proof of Theorem 1. This follows at once from Proposition 3 together with Theorem 3, but see [START_REF] Mcgehee | Conley decomposition for closed relations[END_REF].

We note the following. Ω can be embedded in [0, 1] ⊂ R using the (continuous and surjective) coding map π : I ∞ → [0, 1] associated with the iterated function system ([0, 1]; x → x/2, x → (1 + x)/2). This coding map π is defined, for all σ, by π(σ) = 

Figure 1 .Theorem 1 .

 11 Figure 1. The piecewise continuous dynamical system W:[0,1]→[0,1] is defined in terms of two monotone strictly increasing differentiable functions W 0 (x) and W 1 (x), and a real parameter ρ. Theorem 1. Let an iterated closed relation r ⊂ I ∞ × I ∞ be defined by r := {(σ, 0σ) ∈ I ∞ × I ∞ : σ α} ∪ {(σ, 1σ) ∈ I ∞ × I ∞ : σ β} where α = τ (W 0 (ρ)) and β = τ + (W 1 (ρ)). The only attractors of r are {0}, {1}, {0, 1}, and Ω. The corresponding dual repellers are {σ ∈ I ∞ : β σ}, {σ ∈ I ∞ : σ α}, {σ ∈ I ∞ : β σ} ∪ {σ ∈ I ∞ : σ α}, and the empty set, respectively. The chain recurrent set for r is {0, 1} ∪ {σ ∈ Ω : β σ α}.

( 2 ) 1 k=0W

 21 If (r, s) is the interior of the definition domain of a branch of W n (and of W n + ) then τ (x)| n is constant on (r, s], τ + (x)| n is constant on [r, s), and τ (x)| n = τ + (x)| n for all x ∈ (r, s). (3) The boundary of the definition domain of a branch of W n is contained in {0, 1} ∪ n--k (ρ); by (1), the length of such a domain is at most d -n . (4) The set k∈N W -k (ρ) is dense in [0, 1]. This follows from (3).

(

  

. 3 .

 3 In particular, τ (x)| k-1 and τ + (x)| k-1 are constant and equal on each of the open intervals (D k,m-1 , D k,m ) and have distinct values at the discontinuity points {D k,m } D(k)-1 m=1 The structures of Ω, Ω + and Ω.

  monotone strictly increasing. By (7) τ is continuous from the left. Let {z n } ∞ n=0 be a non-decreasing sequence of points in Ω. Let y n = τ -1 (z n ). Let y = lim y n ∈ [0, 1]. Since τ is continuous from the left, Ω ∋ τ (y) = τ (lim y n ) = lim τ (y n ) = lim z n . It follows that Ω is closed from the left. Similarly, Ω + is closed from the right. Proof of (ii): Let Q = {x ∈ [0, 1] : τ (x) = τ + (x)}. Then by (4) Q = [0, 1]

Proposition 4 . 5 .

 45 If Ω = Ω * then the map h : [0, 1] → [0, 1] defined by h(x) = π(τ (x) * ) is a homeomorphism and h • π = π• * on I ∞ .Proof. First by Corollary 2, we have τ (ρ) = τ + (ρ) * and points x for which τ (x) = τ + (x) are exactly preimages of ρ. In this case, there is n ≥ 0 such that τ (x) and τ + (x) have the same initial prefix κ := τ (x)| n = τ + (x)| n , and τ (x) = κτ (ρ), τ + (x) = κτ + (ρ). Therefore, by (13), for all x ∈ [0, 1], we haveτ (h(x)) = τ + (x) * and τ + (h(x)) = τ (x) * , thus h • h(x) = x. By (6), (10) and (13), h is also decreasing. Therefore h :[0, 1] → [0, 1] is a homeomorphism.Let σ ∈ I ∞ and x = π(σ). By (13) we have τ (x) σ τ + (x). As Ω = Ω * , by Proposition 2, we obtain that there exists y ∈ [0, 1] such that τ (x) * = τ + (y). By Lemma 1 and Corollary 2 we also have that τ + (x) * = τ (y). We may computeh • π(σ) = h(x) = π(τ (x) * ) = π(τ (y)) = y,which is also equal to π(σ * ) as τ (y) σ * τ + (y). Iterated Closed Relations and Conley Decomposition for Itineraries of W Theorem 1 follows from Proposition 3, but some extra language is needed. In explaining this language we describe the Conley-McGehee-Wiandt decomposition theorem, [3, Theorem 13.1].

Theorem 3 (

 3 Conley-McGehee-Wiandt). If r is a closed relation on a compact Hausdorff space X, then R = A∈U C(A)

k∈N σ k 2

 2 k+1 . π provides a homeomorphism between Ω and π(Ω). The point σ ∈ Ω is uniquely and unambiguously represented by the binary real number 0.σ. In the representation provided by π, the map Ψ : 2I ∞ → 2 I ∞ becomes the action of the iterated closed relation r ⊂ [0, 1] × [0, 1] ⊂ R 2 defined by r := {(x, x/2) : x ∈ [0, π(α)]} ∪ {(x, (x + 1)/2) : x ∈ [π(β), 1]} on subsets of [0, 1]. It follows from Proposition 3 (iii) that π(Ω) is the maximal attractor, as defined in[START_REF] Mcgehee | Conley decomposition for closed relations[END_REF], of r. The corresponding dual repeller is the empty set. It is also easy to see that {0} and {1} are the only other attractors, with corresponding dual repellers [π(α), 1] and [0, π(β)] respectively. It follows from Theorem 3 that the chain recurrent set of r is {0, 1} ∪ (π(Ω) ∩ (π(β), π(α))).
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