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A Bit Allocation Method for Sparse Source Coding
Mounir Kaaniche, Member IEEE, Aurélia Fraysse, Member IEEE,

Béatrice Pesquet-Popescu, Fellow IEEE and Jean-Christophe Pesquet, Fellow IEEE

Abstract—In this paper, we develop an efficient bit allocation
strategy for subband-based image coding systems. More specif-
ically, our objective is to design a new optimization algorithm
based on a rate-distortion optimality criterion. To this end, we
consider the uniform scalar quantization of a class of mixed
distributed sources following a Bernoulli-Generalized Gaussian
distribution. This model appears to be particularly well-adapted
for image data which have a sparse representation in a wavelet
basis. In this paper, we propose new approximations of the
entropy and the distortion functions by using piecewise affine and
exponential forms, respectively. Thanks to these approximations,
bit allocation is reformulated as a convex optimization problem.
Solving the resulting problem allows us to derive the optimal
quantization step for each subband. Experimental results show
the benefits that can be drawn from the proposed bit allocation
method in a typical transform-based coding application.

Index Terms—Bit allocation, sparse sources, generalized Gaus-
sian, lossy source coding, rate-distortion theory, piecewise ap-
proximation, convex optimization.

I. INTRODUCTION

In image and video coding systems, it is desired to achieve

the best possible image quality for a given bitrate or, con-

versely, to minimize the bitrate for a given image quality. To

this respect, a great attention has been paid to the problem of

bit allocation where a given amount of bits must be efficiently

distributed among blocks of a DCT-coded image or among

subbands of a wavelet-based coder [2], or among frames in

a video sequence [3]. The general framework behind the bit

allocation strategy is Rate-Distortion (R-D) theory which aims

at minimizing the average distortion of the input signal subject

to a constraint on the available global bitrate. Since both the

rate and the distortion measures in a typical transform coding

scheme are controlled by the choice of the quantizers, the

major issue is to find the optimal quantization steps for the

constrained minimization problem. It is thus necessary to study

the rate and distortion functions of the source to be encoded.

Two main classes of methods have been developed to deal

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
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B. Pesquet-Popescu is with Télécom ParisTech, Signal and Image
Processing Department, 46 rue Barrault, 75014 Paris, France. E-mail:
pesquet@telecom-paristech.fr.
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Part of this work has been presented in [1].

with the bit allocation problem: numerical- and analytical-

based approaches. Algorithms in the first category aim at

empirically estimating the R-D curves and resort to some

iterative techniques to find the optimal quantization parameters

[3]. For instance, Lagrangian optimization techniques have

been well investigated in the literature [4], [5], [6]. In these ap-

proaches, the constrained minimization problem is transformed

into an unconstrained version by incorporating the constraint

into the objective function. In [4], a bit allocation method

for completely arbitrary input signals (or blocks) and discrete

quantizer sets is considered in the case of independent coding

contexts. An extension of this work to subband coding has

been proposed in [2]. Another extension to a dependent coding

environment has also been considered in [6]. More precisely,

the authors describe the R-D Lagrangian cost function in the

form of a trellis and use the Viterbi algorithm to find the

optimal solution for coders exploiting temporal and spatial

dependencies such as MPEG and pyramidal coders. In [7],

the bit allocation problem is converted into the graph theoretic

problem of finding the shortest path in a directed acyclic graph.

Besides, it should be noticed that dynamic programming

algorithms [3], [8] and descent algorithms [9], [10] have also

been proposed to select the optimal quantization parameters.

It is important to note that these numerical methods may

be computationally intensive since a large number of R-D

operating points must be measured for each subband in order

to obtain R-D curves which are both differentiable and convex

[11]. In other words, the R-D data are first evaluated for all

possible quantization settings. Then, the optimal solution is

derived. For instance, the EBCOT algorithm of JPEG2000

relies on the explicit computation of several truncation points,

for each code-block of size 32×32 or 64×64 of the subband

coefficients, and a post-optimization by selecting the best

R-D points for each Lagrangian parameter λ. Generally, a

larger number of truncation points per code-block induces

a higher complexity, but also better optimization results. In

order to reduce the complexity, André et al. [12] have recently

proposed to perform the computation of a few points (i.e.

for some possible quantization settings) and interpolate them

using spline approximations.

Thus, to further overcome the complexity of these numerical

methods, alternative approaches which do not require the

estimation of R-D curves have also been developed. These

approaches provide closed-form expressions of the R-D func-

tion by assuming various input distributions and quantizer

characteristics. For instance, the performance of optimum

scalar quantizers subject to an entropy constraint was inves-

tigated through numerical methods [13], [14] for different

source probability densities (e.g uniform, Gaussian, Laplacian,

Generalized Gaussian) at low resolution (i.e. bitrate). In [15],
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a parametric representation of the operational R-D function of

a scalar quantizer is derived for a uniformly distributed source

and a wide class of distortion measures. In [16], a distortion

measure based on differential entropy has been introduced for

image coding using uniform scalar quantization. In [17], an

approach for designing entropy constrained scalar quantizers

for exponential and Laplace distributions is proposed and

comparisons are made with uniform quantizers. Recently in

[18], the asymptotic behavior of a uniform quantizer is char-

acterized at low resolution for a memoryless Gaussian source

and a squared error distortion measure. Other studies have

also considered the use of Laplace and Generalized Gaussian

probability models in modern compression systems [19], [20],

[21].

While using R-D models leads to a reduction of the com-

plexity of the optimal quantization parameter selection for the

different subbands in the context of still image compression,

classical high rate R-D models [22] play also a crucial role

in the selection of the modes, for example in the context of

H.264/AVC video coding standard [23]. The slope of the R-

D curve is directly related to the quantization parameter of

the macroblock, and shown to be equal to the Lagrangian

parameter for the mode selection. Furthermore, in order to

estimate the motion vector for each macroblock, an R-D op-

timization is performed for the different partition modes, and

the partition leading to the smallest R-D cost is selected. Due

to complexity reasons, the mode and partition optimization is

performed recursively from macroblock to macroblock, thus

leading to a (possibly) not optimal global solution. Moreover,

in a multi-layer coding environment, an R-D model in the ρ-

domain has been developed [24] based on similar high rate

approximations.

The main contribution of this paper is to design an efficient

bit allocation algorithm in a subband coding context (typ-

ically, for wavelet-based coders) by adopting an analytical

approach. More precisely, we will consider the uniform scalar

quantization of the different subband coefficients resulting

from a multiresolution analysis. Moreover, in order to provide

a general framework, we develop the theoretical part by

considering a Bernoulli-Generalized Gaussian (BGG) model

which was found to be well-suited for modelling sparse

wavelet coefficients [25], [26]. It must be emphasized that the

developed theoretical results remain also valid for standard

images which are often modeled by using a Generalized

Gaussian (GG) distribution [27], [28]. After extending recent

approximation formulas for the entropy and the distortion

of uniformly quantized BGG sources [29], we propose a

piecewise affine (resp. piecewise exponential) form of the

entropy (resp. distortion) which allows us to get fine low rate

and high rate approximations of these functions. Thanks to the

proposed approximations, we are able to reformulate the bit

allocation problem by making use of convex analysis tools.

Following this approach, we derive explicit expressions of

the optimal quantization parameters of the subbands. Finally,

simulations are performed on natural images which can be

simply modeled by a GG distribution, and then on images

with flat regions (like the cartoon ones) where a BGG model

appears to be more appropriate than the former one.

The remainder of this paper is organized as follows: in Sec-

tion II, we define the probabilistic model for the considered

subband coefficients as well as the quantizer characteristics.

We introduce the resulting entropy and distortion functions. In

Section III, we provide new piecewise convex approximations

of the entropy and the distortion. In Section IV, we reformu-

late the bit allocation problem as a set of convex optimization

problems, for which we derive the optimal solutions. Finally,

an application of the proposed method to transform-based

image coding is illustrated in Section V and some conclusions

are drawn in Section VI.

II. ENTROPY AND DISTORTION OF A UNIFORMLY

QUANTIZED BGG SOURCE

A. Source and quantization models

First, we consider the problem of coding an input signal

by performing a wavelet (or frame-based) decomposition. Let

us assume that the source to be quantized is composed of

J subbands having nj coefficients (j ∈ {1, . . . , J}) so that

n =
∑J

j=1 nj is the total number of coefficients. Since the

empirical distribution of the detail coefficients shows a very

high number of small amplitude (close to zero) values, an

appropriate way for characterizing their sparsity in the j-th
subband consists of modelling these coefficients with a BGG

distribution whose probability density function fj is defined

by:

∀ξ ∈ R, fj(ξ) = (1− ϵj)δ(ξ) + ϵj f̃j(ξ) (1)

where ϵj ∈ [0, 1] is a mixture parameter, δ denotes the Dirac

distribution (i.e. point mass at 0) and f̃j is the probability

density function for a GG distribution with shape parameter

βj ∈]0, 2] and scale factor ωj ∈]0,+∞[:

∀ξ ∈ R, f̃j(ξ) =
βjω

1/βj

j

2Γ(1/βj)
e−ωj |ξ|

βj

(2)

where Γ is the gamma function. Recall that the differential

entropy of such a GG variable is given [30] as:

hβj
(ωj) = −

∫ ∞

−∞

f̃j(ξ) log2 f̃j(ξ) dξ = log2

(2Γ(1/βj)
βjω

1/βj

j

)
+

1

βj
.

Each coefficient Xj,s with s ∈ {1, . . . , nj} in subband j ∈
{1, . . . , J} is quantized before being entropy coded. For this

purpose, we assume that, for each subband j, a scalar uniform

quantizer with a quantization step qj and having a deadzone

of size (2τj − 1)qj where τj > 1/2 is used [31]. Note that

τj = 1 corresponds to a deadzone of size qj . Thus, for every

s ∈ {1, . . . , nj}, the output Xj,s of the quantizer is given by:

Xj,s = r0 = 0, if |Xj,s| <
(
τj −

1
2

)
qj , where τj > 1/2

and, for all i ∈ Z, Xj,s = ri,j ,

(if (τj + i− 3
2 )qj ≤ Xj,s < (τj + i− 1

2 )qj and i ≥ 1)

or (if (−τj + i+ 1
2 )qj < Xj,s ≤ (−τj + i+ 3

2 )qj and i ≤ −1),

where the reconstruction levels are given by

∀i ≥ 1, ri,j = −r−i,j = (τj + i− 1 + ζj)qj (3)
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and ζj ∈ [−1/2, 1/2] is an ”offset” parameter indicating the

shift of the reconstruction level with respect to the center

of the quantization interval. Note that we will not consider

any saturation effect. The most commonly used quantization

rule corresponds to the case when ζj = 0 (i.e. mid-point

reconstruction). For example, this rule constitutes the basic

ingredient of many encoding strategies (such as EBCOT [32])

which have been developed in wavelet-based image compres-

sion techniques.

Since the objective of the paper is to focus on the bit allocation

problem for the quantized coefficients, it is now necessary to

study their rate and distortion functions.

B. Entropy and distortion measures

As frequently done in the development of R-D algorithms,

we approximate the bitrate of a memoryless source by the

zero-order entropy of the quantized coefficients [22], [33].

Thus, by assuming that the random variable Xj,s with j ∈
{1, . . . , J} and s ∈ {1, . . . , nj} is distributed according to

(1), the entropy of the associated quantized variable Xj,s with

j ∈ {1, . . . , J} and s ∈ {1, . . . , nj} is given by:

Hfj (qj , ϵj) = −

∞∑

i=−∞

pi,j log2 pi,j (4)

where, for every i ∈ Z, pi,j = P(Xj,s = ri,j) represents the

probability of occurrence of the ri,j reconstruction level.

We also propose to express the distortion function by using

the pj-th order moment of the quantization error:

ej(qj , ϵj) = E[|Xj,s −Xj,s|
pj ] (5)

where pj ≥ 1 is a real exponent. In particular, pj = 2
corresponds to the mean square error criterion whereas pj = 1
corresponds to the mean absolute one. Taking real values of

the exponent which depend on j provides flexibility in the

choice of the distortion measure.

It is important to note here that close approximations of the

entropy and asymptotic expressions of the distortion of a

quantized BGG random variable are provided in [29] for both

low and high bitrates. However, these approximations have

been derived in the case of log-concave distributions (more

precisely when 1 ≤ βj ≤ 2) and for a quantizer with a

deadzone of size qj (i.e. τj = 1). It is worth pointing that

in practice, typical values of βj can be smaller than 1 and the

size of the deadzone can be parameterized to have a different

value for each subband (as in JPEG2000 Part 2, while in Part

1, a typical deadzone of size 2qj is used) [34]. Therefore, the

main approximation results given in [29] need to be extended

in this paper by incorporating a nontrivial deadzone in the

quantizer and also considering the case when βj < 1.

Once the entropy and distortion functions have been defined,

the bit allocation problem can be formulated. In our case, this

problem consists of finding the quantization steps for each

subband or, equivalently, the vector q = (q1, q2, . . . , qJ ) ∈
[0,+∞[J minimizing the average distortion

D(q) =
J∑

j=1

ρjej(qj , ϵj) (6)

where ∀j ∈ {1, . . . , J}, ρj ∈]0,+∞[ and

J∑

j=1

ρj = 1,

subject to the constraint that the total bitrate is equal to or

smaller than a target bitrate Rmax:

H(q) =
J∑

j=1

nj
n
Hfj (qj , ϵj) ≤ Rmax. (7)

Note that, for orthonormal representations, when for every

j ∈ {1, . . . , J}, pj = 2 and ρj = nj/n, D(q) is also equal

to the distortion in the spatial domain. For other scenarios

(biorthogonal representations or redundant frames), a good

approximation of the distortion in the spatial domain can

be obtained in a number of cases by appropriate choices of

the constants (ρj)1≤j≤J [35]. The degrees of freedom in the

choices of the constants (pj)1≤j≤J and (ρj)1≤j≤J can also

be exploited in order to define perceptual criteria [36] better

fitting the Human Visual System (HVS) characteristics.

III. APPROXIMATIONS OF THE ENTROPY AND OF THE

DISTORTION

The objective of this section is to develop accurate ap-

proximations of the entropy and the distortion for a general

BGG source model. These approximations will allow us to

reformulate the bit allocation problem in a more tractable

form.

A. Piecewise affine approximation of the entropy

Let Qa with a ∈ R∗
+ be the normalized incomplete Gamma

function [37], defined as

∀ξ ∈ R, Qa(ξ) =
1

Γ(a)

∫ ξ

0

θa−1e−θdθ. (8)

A close approximation of the entropy of a quantized BGG

source can be obtained as follows:

Proposition 1: For a quantized BGG random variable

distributed according to (1), the entropy Hfj (qj , ϵj) can be

approximated by

Ĥfj (qj , ϵj) = Φ(p0,j , ϵj) + ϵjĤf̃j
(qj) (9)

with Φ(p0,j , ϵj) =−
(
1− ϵj(1− p0,j)

)
log2

(
1− ϵj(1− p0,j)

)

− ϵj(1− p0,j) log2 ϵj + ϵjp0,j log2 p0,j ,

and Ĥf̃j
(qj) = −p0,j log2 p0,j − 2p1,j log2 p1,j

+
(
hβj

(ωj)− log2 qj
)(

1−Q1/βj

(
ωj

(
τj +

1

2

)βj
q
βj

j

))

+
ω
1/βj

j (τj +
1
2 )qj

Γ(1/βj)
e−ωj(τj+

1
2 )

βj q
βj
j . (10)

The error incurred in this approximation is such that

0 ≤ Ĥfj (qj , ϵj)−Hfj (qj , ϵj) ≤ 2ϵjqjC(βj , τj)f̃j
(
(τj+

1

2
)qj

)
,

with C(βj , τj) =





(
2τj+1
2τj−1

)1−βj

if βj < 1
(

2τj+2
2τj+1

)βj−1

if βj ∈ [1, 2].
(11)
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Proof : See Appendix A.

It is worth pointing out that such an approximation formula

may be useful in practice in the sense that it allows us to effi-

ciently compute the entropy for any given set of quantization

steps.

Generally, analytical-based R-D algorithms use the standard

Bennett formula to obtain a close approximation of the entropy

[29], [22]. This high-resolution approximation formula, which

is also valid when a quantizer with a deadzone is used and

βj ∈ (0, 2], allows us to express the entropy of the j-th
subband as an affine function of lj = log2(qj):

Hfj (qj , ϵj) = Hϵj + ϵj(hβj
(ωj)− lj) + o(lj2

lj ) (12)

where Hϵj = −ϵj log2 ϵj − (1− ϵj) log2(1− ϵj) is the entropy

of a Bernoulli random variable with parameters (1− ϵj , ϵj).
However, the approximation formula (10) is not tractable for

optimization purposes, whereas (12) is only valid at high

resolution (i.e. when qj is small). In order to develop a bit

allocation strategy well-adapted for both high and low resolu-

tions, we propose to define a piecewise convex approximation

of the entropy function by considering a more flexible function

of l = (l1, l2, . . . , lJ ), given by
∑J

j=1
nj

n gj(lj), where gj have

the following piecewise affine form:

∀j ∈ {1, . . . , J}, gj(lj) = akj lj+c
k
j if l

(h,k−1)
j ≤ lj ≤ l

(h,k)
j

(13)

with k ∈ {1, 2, . . . ,m(h)} and m(h) is a given parameter

corresponding to the considered number of intervals (i.e. the

number of segments chosen to approximate the entropy).

For every j ∈ {1, . . . , J}, the parameters (akj )1≤k≤m(h)

are nonpositive reals, and the parameters (ckj )1≤k≤m(h) are

real numbers. Note that the superscript h has been used to

distinguish between the intervals used for the approximation

of the entropy and those later used for the approximation of

the distortion.

B. Practical implementation of the entropy approximation

In practice, we set l
(h,0)
j = −∞ and we choose the other

points
(
l
(h,k)
j

)
1≤k≤m(h)

in such a way that the resulting

piecewise affine function constitutes a good approximation

of the entropy Hfj of the source. More precisely, for the

first interval, the high resolution approximation (12) can be

employed, leading to

∀ j ∈ {1, . . . , J}, a1j = −ϵj and c1j = Hϵj+ϵjhβj
(ωj).

By considering an arbitrary point l̃
(h,1)
j , we derive (a2j , c

2
j )

such that gj on the second interval is tangent to the graph

of the entropy function Ĥfj at l̃
(h,1)
j . The computation of

the tangent thus relies on the approximation of the entropy

derived in Proposition 1. The upper bound of the first interval

l
(h,1)
j , which corresponds also to the lower bound of the

second interval, is then fixed to the abscissis of the intersection

of the lines obtained on the first and second intervals. As

explained below, the point l̃
(h,1)
j is defined so as to get a small

approximation error between the entropy Ĥfj and the function

gj on the first interval [l
(h,0)
j , l

(h,1)
j ]. In this way, we obtain an

approximation of the entropy function by using two intervals.

By repeating the process, we compute the remaining values

(l̃
(h,k)
j )2≤k≤m(h)−1 which allow us to deduce the constants

(akj )3≤k≤m(h) , (ckj )3≤k≤m(h) and (l
(h,k)
j )2≤k≤m(h)−1. Since

the entropy must be a nonnegative function, the last interval

bound l
(h,m(h))
j is found such that am

(h)

j l
(h,m(h))
j + cm

(h)

j = 0.

This entails:

∀j ∈ {1, . . . , J}, gj(lj) = 0 if lj ≥ l
(h,m(h))
j . (14)

It is worth pointing out that, in practice, the points

(l̃
(h,k)
j )1≤k≤m(h)−1 (where the tangent to the graph of the

entropy is computed) are determined only once (in an off-line

computation step) by considering the possible values for βj
∈]0, 2] and ϵj ∈ [0, 1]. Indeed, we have observed from our tests

that the points (l̃
(h,k)
j )1≤k≤m(h)−1 have similar values for the

wavelet coefficients whose βj values belong to a specific range

[βmin
j , βmax

j ]. Based on this observation, we have constructed

look-up tables, for the selection of (l̃
(h,k)
j )1≤k≤m(h)−1, de-

pending on intervals for the (ϵj , βj) pair values. In other

words, for a given interval for ϵj values, for βj ∈]1.75, 2],

we determine the optimal values of (l̃
(h,k)
j )1≤k≤m(h)−1. Then,

for βj ∈]1.5, 1.75], we determine the optimal values of

(l̃
(h,k)
j )1≤k≤m(h)−1. After that, we proceed similarly for βj

∈]1.3, 1.5], and so on.

Therefore, it is enough to estimate the distribution parameters

per subband of the input image, and then to use the off-

line computed values of (l̃
(h,k)
j )1≤k≤m(h)−1 to deduce all the

constants used in the piecewise convex approximation (13).

From this viewpoint, our approach can be applied in real

applications to any input image.

Fig. 1 illustrates the approximations of the entropy using two

intervals (m(h) = 2) and four intervals (m(h) = 4). As

expected, increasing the number of intervals leads to a better

approximation of the entropy.
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Fig. 1. Approximations gj (in dashed line) of the entropy Hfj (in solid

line) of a uniformly quantized BGG source versus lj : m(h) = 2 (left side),

m(h) = 4 (right side). The parameters of the BGG source are ϵj = 0.5,
βj = 1.2 and ωj = 1.

C. Piecewise exponential approximation of the distortion

On the other hand, a good approximation of the distortion

of a quantized BGG source can be obtained as follows:

Proposition 2: For a quantized BGG random variable

distributed according to (1), the distortion ej(qj , ϵj) can be
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approximated by

êj(qj , ϵj)

= 2ϵj

(ω−pj/βj

j Γ((pj + 1)/βj)

2Γ(1/βj)
Q(pj+1)/βj

(
ωj(τj −

1

2
)βjq

βj

j

)

+

∫ (τj+
1
2 )qj

(τj−
1
2 )qj

|ξ − r1,j |
pj f̃j(ξ)dξ

+
νjq

pj

j

2(pj + 1)

(
1−Q1/βj

(
ωj(τj +

1

2
)βjq

βj

j

)))
(15)

where the approximation error is such that

|ej(qj , ϵj)− êj(qj , ϵj)| ≤ 2ϵj
νjq

pj+1
j

pj + 1
f̃j
(
(τj +

1

2
)qj

)
. (16)

Proof : See Appendix B.

Some comments can be made about this result:

• When qj → 0, the classical high resolution approximation

is recovered:

ej(qj , ϵj) = ϵj
νj

pj + 1
q
pj

j (1 +O(qj)) (17)

where νj = ( 12 + ζj)
pj+1 + ( 12 − ζj)

pj+1.

• When pj = 2 (or more generally when pj is an even

integer), the integral in (15) can be easily expressed by

using incomplete Gamma functions.

Similarly to the approximation of the entropy, Proposition 2

will be useful to compute both fast and accurate approxima-

tions of the distortion, but the derived expressions remain too

intricate for developing efficient bit allocation algorithms.

We thus propose to use a rougher approximation of the

distortion. More specifically, we propose to express the

global distortion as a function of l = (l1, l2, . . . , lJ ) =(
log2(q1), . . . , log2(qJ)

)
under the form

∑J
j=1 ρjdj(lj),

where dj has the following piecewise exponential form:

∀ j ∈ {1, . . . , J},

dj(lj) =





ϵj(α
k
j 2

ljγ
k
j + δkj ) if l

(d,k−1)
j ≤ lj < l

(d,k)
j

ϵjω
−pj/β
j

Γ
(
(pj + 1)/βj

)

Γ(1/βj)
if lj ≥ l

(d,m(d))
j

(18)

where k ∈ {1, 2, . . . ,m(d)} and m(d) is a given integer corre-

sponding to the number of intervals used in our approximation.

For every j ∈ {1, . . . , J}, the parameters (αk
j )1≤k≤m(d)

and (γkj )1≤k≤m(d) are nonnegative reals, and the parameters

(δkj )1≤k≤m(d) are real numbers. While setting γ1j = pj and

γkj = 1 for every k ∈ {2, . . . ,m(d)}, and similarly to the

selection procedure used with the approximation of the entropy

(explained in Section III-B), the constants (αk
j )1≤k≤m(d) ,

(δkj )1≤k≤m(d) and (l
(d,k)
j )0≤k≤m(d) (with l

(d,0)
j = −∞) are

determined in such a way that dj(lj) constitutes a good ap-

proximation of êj(2
lj , ϵj). In particular, by taking α1

j =
νj

pj+1

and δ1j = 0, we obtain the high bitrate approximation of the

distortion (see (17)) on the first interval [l
(d,0)
j , l

(d,1)
j ].

Fig. 2 shows the approximations of the distortion for 2 and

4 intervals. It can be observed that setting m(d) to 2 results

in a less precise approximation of the distortion ej than

m(d) = 4, especially at low bitrate. It can also be noticed

from Figs. 1 and 2 that the chosen approximation interval

bounds l
(h,1)
j , l

(h,2)
j and l

(h,3)
j for the entropy differ from

those l
(d,1)
j , l

(d,2)
j and l

(d,3)
j for the distortion. This illustrates

the fact that the selection steps for
(
l
(h,k)
j

)
1≤k≤m(h)

and
(
l
(d,k)
j

)
1≤k≤m(d)

should be performed independently in order

to obtain good approximations of both the entropy and the

distortion functions.
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Fig. 2. Approximations dj (in dashed line) of the distortion ej (in solid

line) of a uniformly quantized BGG source versus lj : m(d) = 2 (left side),

m(d) = 4 (right side). The parameters of the BGG source are ϵj = 0.5,
βj = 1.2 and ωj = 1.

IV. PROPOSED BIT ALLOCATION METHOD

In this part, we show how the approximations of the entropy

and distortion functions proposed in the previous section allow

us to solve the bit allocation problem in an efficient manner.

A. Optimization problem

Using the approximations gj (resp. dj) of the entropy in

(13) (resp. of the distortion in (18)), the bit allocation problem

defined at the end of Section II, can be recast as follows:

Problem 1: Find l̃ minimizing the distortion function

∀ l = (l1, . . . , lJ) ∈ R
J , D(l) =

J∑

j=1

ρjdj(lj)

over the set C defined as

C := {l = (l1, . . . , lJ ) ∈ R
J |

J∑

j=1

nj
n
gj(lj) ≤ Rmax}. (19)

A major difficulty for solving this problem stems from the

fact that the functions gj and dj are non-differentiable and

nonconvex. To define the different domains where the opti-

mization is performed, we shall jointly sort the coefficients(
l
(h,k)
j

)
1≤k≤m(h)

and
(
l
(d,k)
j

)
1≤k≤m(d)

in ascending order for

each j ∈ {1, . . . , J}. The resulting sorted coefficients will be

denoted by (l1j , . . . , l
m
j ) such that l1j ≤ l2j ≤ . . . ≤ lmj where

m ≤ m(h) + m(d). From the definition of the total bitrate

constraint, a necessary condition for l to belong to C is

∀ j ∈ {1, . . . , J}, a1j lj + c1j ≤ nn−1
j Rmax. (20)
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This means that, for every j ∈ {1, . . . , J}, we can set the

lower bound l0j of the search interval to

l0j = min(
nn−1

j Rmax − c1j
a1j

, l1j ). (21)

Moreover, since gj(lj) = 0 for every lj ≥ lmj , and dj is an

increasing function of lj , it is clear that the optimal value of lj
will be lower than or equal to lmj . As a result, the problem is

equivalent to minimize the distortion over the domain [l01, l
m
1 ]×

. . . × [l0J , l
m
J ]. In order to overcome the problem of the non-

differentiability of the functions gj or dj at points
(
lkj
)
1≤k<m

,

we propose to subdivide the previous domain into boxes of the

form [lb11 , l
b1+1
1 ]× . . .× [lbJJ , lbJ+1

J ] where b = (b1, . . . , bJ) ∈
{0, . . . ,m− 1}J . On each box, the entropy and distortion are

convex functions. Therefore, this subdivision technique leads

to mJ subdomains where a convex optimization problem must

be solved.

B. Solution of the bit allocation problem

In the following, we provide a closed form expression

of the optimal quantization parameters. Suppose that Pb =
[lb11 , l

b1+1
1 ]×. . .×[lbJJ , lbJ+1

J ] corresponds to a given subdomain

and let us denote by (Pb) the convex minimization problem

on this subdomain. For concision purposes, let us introduce

the following notation, for every j ∈ {1, . . . , J},

Nj = −
nj a

bj
j

γ
bj
j

, κj =
n

Nj
ρjϵjα

bj
j ln 2, (22)

λj = κj2
γ
bj
j

l
bj
j , λj = κj2

γ
bj
j

l
bj+1

j . (23)

The solution to the Problem (Pb) is given below.

Proposition 3:

(i) If
∑J

j=1
nj

n gj(l
bj+1

j ) > Rmax, then there is no solution.

(ii) If
∑J

j=1
nj

n gj(l
bj
j ) ≤ Rmax, then the solution is l̃ =

(lb11 , . . . , l
bJ
J ).

(iii) Otherwise, the solution is the vector l̃b defined by

∀j ∈ {1, . . . , J}, l̃j,b =





l
bj
j if j ∈ I

1

γ
bj
j

log2

(
λ̃
κj

)
if j ∈ J

l
bj+1
j if j ∈ K

(24)

where

λ̃NJ =
2(

∑J
j=1 njc

bj
j

−nRmax)

2(
∑

j∈I
Njγ

bj
j

l
bj
j

+
∑

j∈K
Njγ

bj
j

l
bj+1

j
)

∏

j∈J

κ
Nj

j (25)

NJ =
∑

j∈J

Nj (26)

I = {j ∈ {1, . . . , J} | Φ′(λj) ≤ 0}, (27)

K = {j ∈ {1, . . . , J} | Φ′(λj) > 0} (28)

J = {1, . . . , J} \ (I ∪K) (29)

∀ λ ∈ R+,

Φ(λ) = λ
( J∑

j=1

nj
n
c
bj
j −Rmax

)
−

J∑

j=1

φj(λ) (30)

with ∀ j ∈ {1, . . . , J},

φj(λ) =





Nj

n (γ
bj
j l

bj
j λ−

λj

ln 2 )− ρjϵjδ
bj
j if λ ≤ λj

Njλ
n ln 2 (ln(

λ
κj
)− 1)− ρjϵjδ

bj
j if λj < λ < λj

Nj

n (γ
bj
j l

bj+1
j λ−

λj

ln 2 )− ρjϵjδ
bj
j if λ ≥ λj .

Proof : See Appendix C.

The above expressions of the quantization parameters, ob-

tained for each subdomain, allow us to determine a finite set

of candidate distortion values. Once this has been performed,

the subdomain leading to the global minimum distortion value

is selected and its resulting quantization steps correspond to

the optimal ones. It is worth pointing out that the computation

of the quantization parameters as well as their corresponding

distortion can be carried out for the subdomains independently

of each other. Furthermore, it can be noticed that the maximum

number mJ of these evaluations can be reduced by checking

Conditions (i) and (ii) in Proposition 3.

V. EXPERIMENTAL RESULTS

In this part, we study the performance of the proposed bit

allocation method in the context of transform-based coding ap-

plications. We employ the 9/7 biorthogonal wavelet transform,

selected in the lossy coding mode of part I of the JPEG2000

compression standard. The decomposition is carried out over

three resolution levels (i.e. J = 10) since the test image size

(512 × 512) is not very large. Note also that the weights

(ρj)1≤j≤J for the different wavelet subbands are computed

by using the procedure presented in [38]. Our experiments

have been performed for various standard test images1 with

different characteristics as shown in Fig. 3.

We should note that the wavelet transform is kept the same in

all the experiments, and we are mainly interested in computing

the optimal quantization parameters of the resulting wavelet

subbands. As mentioned before, the first step of our method

consists of modelling the resulting wavelet coefficients. For

this purpose, we consider the two following models: the GG

one and the more general BGG one.

A. GG-based model

In this case, the parameters βj and ωj for each subband

are estimated directly from the corresponding coefficients,

by using the maximum likelihood technique. Afterwards, we

compute their corresponding entropy and distortion approx-

imations and deduce their optimal quantization steps using

Proposition 3. Figs. 4(a), 4(b) and 4(c) show the influence of

the choice of the parameters m(h) and m(d) used for approxi-

mating the entropy and distortion functions. The plotted curve

using the ‘circle’ symbols corresponds to the quadratic distor-

tion (i.e. pj = 2) resulting from an uniform scalar quantization

of the GG model. The rate-distortion curve plotted using the

‘star’ symbol is obtained by performing a similar quantization

of the wavelet coefficients of the image with the derived

optimal quantizers. More precisely, we consider the cases

m(h) = m(d) = 2, m(h) = m(d) = 3 and m(h) = m(d) = 4.

1http://sipi.usc.edu/database/
and http://homepages.cae.wisc.edu/∼ece533/images/
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It can be noticed that the difference between the plots corre-

sponding to the theoretical GG source model and the image

wavelet coefficients is reduced when the number of segments

increases. In addition, one can observe from Fig. 4(d) that

the image rate-distortion curves behave similarly when 3 or

4 approximating intervals are used. Based on this observation

(which was confirmed by tests performed on other images), it

can be concluded that there is no need to increase the number

of segments, and therefore, it is sufficient in practice to use 3 or

4 intervals to approximate the entropy and distortion functions.

Finally, we propose to compare the proposed bit allocation

method with state-of-the-art methods based on Lagrangian

optimization techniques [4]. More precisely, we consider the

improved version of these methods, proposed recently in [12],

where a spline interpolation method for rate-distortion curves

is introduced. Fig. 5 shows the variations of the PSNR curves

versus the entropy for different images. It can be observed

that our method outperforms the state-of-the-art method by

0.2-1.2 dB. While the deadzone parameter τj is set to 1 in

Fig. 5, Figs. 6(a) and 6(b) illustrate the performance of our

method when the size of the deadzone is increased (τj = 2).

Thus, it can be noticed that the proposed method achieves

a significant improvement compared with the state-of-the-art

method.

B. BGG-based model

Although the GG model is well adapted to a large class

of natural images, we have observed that this model is not

the best suited for the class of images with flat regions

separated by smooth contours. Examples of such images

include cartoon ones and depth maps. To confirm this,

we illustrate in Figs. 7(a) and 7(b) the histogram of the

diagonal detail wavelet subband of the “cartoon” image at

the first resolution level as well as the distribution used

for modelling its coefficients. To find the best model, we

propose to use a statistical goodness-of-fit test such as

the Kolmogorov-Smirnov (KS) test which is based on the

comparison of the cumulative distribution functions (cdf)

[39]. Figs. 7(c) and 7(d) display these functions for both

models with their resulting KS measure (the smallest measure

value corresponds to the best fit). Hence, it can be noticed

that the cdf associated with the BGG model is very close to

the cdf associated with the subband wavelet coefficients. This

illustrates the fact that the BGG model is more appropriate

than the GG one for modelling very sparse representations.

Based on this model, we have also employed the proposed

bit allocation method for this class of images. Compared with

the improved version of the Lagrangian based optimization

technique [12], Figs. 8(a) and 8(b) show that the proposed

method achieves an improvement of about 0.3-1 dB. In

Fig. 8, the deadzone parameter τj is set to 1. Figs. 9(a) and

9(b) illustrate the performance of our method when the size

of the deadzone is equal to 3qj (τj = 2). It can be concluded

that the proposed method outperforms the state-of-the-art

method in all these experiments. In addition, Fig. 10 shows

the performance in terms of rate-distortion for the tested

“cartoon” image when GG and BGG models are adopted. The

obtained results confirm our previous observation concerning

the interest of the statistical BGG model with respect to the

GG one for very sparse representations.

Finally, in order to measure the relative gain of the

proposed method, we used the Bjontegaard metric [40].

The results are illustrated in Table I for low and high

bitrates corresponding respectively to the four bitrate points

{0.1, 0.2, 0.3, 0.4} and {0.7, 0.8, 0.9, 1} bpp. Table I gives

the gain of our method compared with the improved version

of the Lagrangian based optimization technique [12]. Note

that a bitrate saving with respect to the reference method

corresponds to negative values. It can be observed that the

proposed approach outperforms in average the state-of-the-art

method by about -13 % and 0.7 dB in terms of entropy

(bitrate saving) and PSNR. As it can be seen in Table I, the

coding gain at low bitrate depends on the image, and it is

close to that obtained at high bitrate for some images like

“straw”, “castle” and “cartoon”. However, for other images,

it can also be observed that the coding gains are higher at

high bitrates than at low bitrates. This may be due to the fact

that the resulting approximation error has more impact at low

than at high bitrate.

For completeness sake, we have implemented our rate

allocation scheme with two arithmetic entropy coders: one

without context modeling (denoted by AC-1) and another one

exploiting the previously encoded symbol as context (denoted

by AC-2). The results, compared with JPEG2000 coder, are

reported in Table II. We remark that our approach, followed

by an arithmetic coder, can achieve better performance than

JPEG2000 on some images (“straw” and “marseille”), while

JPEG2000 does better on other images (“lena”, “goldhill”

and “einst”). The main reason for this is the high number

of contexts used by JPEG2000 for the arithmetic coder,

and this at each bitplane, not only on the final quantized

coefficients. Moreover, due to the three passes per bitplane

in the arithmetic coding, JPEG2000 performs actually a

quantization with a fractional step size, which can be

different in each code-block of size 32× 32 or 64× 64, while

the current implementation of our method provides only one

quantization step per subband.

Concerning the complexity of the proposed method, we first

recall that the main steps behind our approach consist of

computing the R-D curves for each subband and solving the

convex optimization problem. Thus, thanks to Propositions 1

and 2, the convex approximations of the entropy and distortion

functions are extremely fast. However, the solution of the

convex optimization problem depends on the used number

of intervals (since the maximum number of subdomains

is equal to mJ as mentioned at the end of Section IV).

For instance, for an image of size 512 × 512, and using a

non-optimized Matlab implementation with an Intel Core 2

(2.93 GHz) computer, our optimization approach requires

an execution time of about 2 and 30 seconds when 2 and

3 intervals are respectively employed, while the Lagrangian

R-D optimization approach [12] takes about 15 seconds.

When four or more intervals are used, the execution time

becomes more important. It is worth pointing out that

the computation of the quantization parameters as well as
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their resulting distortions can be carried out in a parallel

way for all the possible subdomains. Thus, much more

efficient implementations on multicore architectures should

significantly reduce these execution times.

All these results, obtained with different images, confirm the

effectiveness of the considered probabilistic models and of

the proposed bit allocation method.

VI. CONCLUSION

In this work, we have proposed to reformulate the bit

allocation problem as a set of convex programming problems

which can be dealt with in parallel. For this purpose, we have

first proposed new piecewise convex approximations of the

entropy and the distortion functions. Then, we have derived

explicit expressions of the optimal quantization parameters

which are valid in a given subdomain. This study has been

carried out by considering two probabilistic models: the well-

known GG model and its more general BGG form, which is

particularly well-adapted for very sparse sources. Finally, we

have illustrated through experimental results the benefits which

can be drawn from the application of the proposed technique

in transform-based coding application. The proposed approach

can be further investigated in compression applications using

other transforms, and the fine high rate and low rate approxi-

mations for the R-D curves could also be useful for the mode

selection in video applications.

It is worth pointing out that the proposed scheme has been

developed in the context of uniform scalar quantization which

is retained in many embedded coders such as SPIHT, EBCOT

and Tarp filter [41]. Furthermore, our approach can be used

with different sizes of deadzone which is an interesting feature

in JPEG2000 Part 2 where the deadzone can be parameterized

to have a different width per subband. In our future work,

we plan to extend this new promising scheme to various

embedded coding systems. In addition, it should be noticed

that our method can also be useful in the context of stereo

image compression where the rate allocation process between

the two views is not always well addressed in the literature.

APPENDIX A

APPROXIMATION OF THE ENTROPY

We recall that the entropy of a quantized BGG random

variable distributed according to (1) is given by [29]:

Hfj (qj , ϵj) = Φ(p0,j , ϵj) + ϵjHf̃j
(qj) (31)

where Hf̃j
(qj) = −p0,j log2 p0,j − 2

∞∑

i=1

pi,j log2 pi,j (32)

is the entropy of a quantized GG random variable with

probability density function f̃j . The probability of the zero

level is

p0,j = 2

∫ qj(τj−
1
2 )

0

f̃j(ξ)dξ = Q1/βj

(
ωj(τj −

1

2
)βjq

βj

j

)

(33)

and the probability pi,j of the ri,j reconstruction level, i ≥ 1,

is

∫ (τj+i− 1
2 )qj

(τj+i− 3
2 )qj

f̃j(ξ)dξ =
1

2

(
Q1/βj

(
ωj

(
(τj + i−

1

2
)qj

)βj

)

−Q1/βj

(
ωj

(
(τj + i−

3

2
)qj)

βj

))
.

In the following, in order to prove the desired result, it is

sufficient to show that the following approximation formula

of the discrete entropy of a quantized GG random variable

holds:

Hf̃j
(qj) = Ĥf̃j

(qj) + ∆ (34)

where 0 ≤ ∆ ≤ 2qjC(βj , τj)f̃j
(
(τj +

1

2
)qj

)
. (35)

Note that the case βj ∈ [1, 2] was addressed in [29] for a

quantizer with a deadzone of size qj (i.e. τj = 1). Let us now

proceed to the general case.

Since f̃j is a decreasing function on R+, we have

∀ i > 0, qj f̃j
(
(τj+i−1/2)qj

)
≤ pi,j ≤ qj f̃j

(
(τj+i−3/2)qj

)

By noticing that

− pi,j log2 pi,j +

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) log2 f̃j(ξ) dξ

=

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ)(log2 f̃j(ξ)− log2 pi,j) dξ (36)

we get the inequality:

− pi,j log2 pi,j +

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) log2 f̃j(ξ) dξ

≤

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ)
(
log2 f̃j(ξ)− log2 f̃j

(
(τj + i− 1/2)qj

)

− log2 qj

)
dξ. (37)

On the other hand, from the positivity of the Kullback-Leibler

divergence [42],

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ)

pi,j
log2

( f̃j(ξ)/pi,j
1/qj

)
dξ ≥ 0 (38)

After developing (38) and using (37), we obtain for all i ≥ 1

0 ≤− pi,j log2 pi,j +

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) log2 f̃j(ξ) dξ

+ log2 qj

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ

≤
(
log2 f̃j((τj + i− 3/2)qj)− log2 f̃j

(
(τj + i− 1/2)qj)

)

×

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ

= ωjq
βj

j

(
(τj + i− 1/2)βj − (τj + i− 3/2)βj

)

×

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ. (39)
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Now, two cases shall be considered:

• If βj < 1, then, for every i ≥ 1,

(τj + i− 1/2)βj − (τj + i− 3/2)βj ≤ βj(τj + i− 3/2)βj−1,

where the upper bound follows from the fact that ξ 7→ ξβj is

a concave function when βj < 1. In this case, we have

ωjq
βj

j

(
(τj + i− 1/2)βj − (τj + i− 3/2)βj

)

×

∫ ((τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ

≤ βjωjqj

(
qj(τj + i−

1

2
)− qj

)βj−1
∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ,

and 0 ≤ −pi,j log2 pi,j +

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) log2 f̃j(ξ) dξ

+ log2 qj

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ

≤ βjωjqj

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

(ξ − qj)
βj−1f̃j(ξ) dξ.

It can be deduced that

0 ≤ −
+∞∑

i=2

pi,j log2 pi,j +

∫ +∞

(τj+
1
2 )qj

f̃j(ξ) log2 f̃j(ξ)dξ

+ log2 qj

∫ +∞

(τj+
1
2 )qj

f̃j(ξ)dξ ≤ I1 (40)

where I1 = βjωjqj

∫ +∞

(τj+
1
2 )qj

(ξ − qj)
βj−1f̃j(ξ) dξ.

Since ξ ≥ (τj + 1/2)qj ⇔ ξ − qj ≥ (2τj − 1)ξ/(2τj + 1),
it can be concluded that

I1 ≤ βjωjqj

(2τj − 1

2τj + 1

)βj−1
∫ +∞

(τj+
1
2 )qj

ξβj−1f̃j(ξ) dξ

=
βjω

1/βj

j qj

2Γ(1/βj)

(2τj − 1

2τj + 1

)βj−1

e−ωj(τj+
1
2 )

βj q
βj
j . (41)

• If βj ∈ [1, 2] then, for every i ≥ 1,

(τj + i− 1/2)βj − (τj + i− 3/2)βj = (τj + i− 1)βj

×
(
(1 +

1

2(τj + i− 1)
)βj − (1−

1

2(τj + i− 1)
)βj

)

≤ βj(τj + i− 1)βj−1. (42)

Consequently,

ωjq
βj

j

(
(τj + i− 1/2)βj − (τj + i− 3/2)βj

) ∫ (τj+i− 1
2 )qj

(τj+i− 3
2 )qj

f̃j(ξ) dξ

≤ βjωjqj

(
qj(τj + i−

3

2
) +

qj
2

)βj−1 ∫ (τj+i− 1
2 )qj

(τj+i− 3
2 )qj

f̃j(ξ) dξ

and 0 ≤ −pi,j log2 pi,j +

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) log2 f̃j(ξ) dξ

+ log2 qj

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ

≤ βjωjqj

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

(ξ +
qj
2
)βj−1f̃j(ξ) dξ.

Thus,

0 ≤ −
+∞∑

i=2

pi,j log2 pi,j +

∫ +∞

(τj+
1
2 )qj

f̃j(ξ) log2 f̃j(ξ)dξ

+ log2 qj

∫ +∞

(τj+
1
2 )qj

f̃j(ξ)dξ ≤ I2 (43)

where I2 = βjωjqj

∫ +∞

(τj+
1
2 )qj

(ξ +
qj
2
)βj−1f̃j(ξ) dξ.

Since ξ ≥ (τj + 1/2)qj ⇔ ξ +
qj
2 ≤ (2τj + 2)ξ/(2τj + 1), it

can be concluded that

I2 ≤ βjωjqj

(2τj + 2

2τj + 1

)βj−1
∫ +∞

(τj+
1
2 )qj

ξβj−1f̃j(ξ) dξ

=
βjω

1/βj

j qj

2Γ(1/βj)

(2τj + 2

2τj + 1

)βj−1

e−ωj(τj+
1
2 )

βj q
βj
j . (44)

By combining (40) and (41) (resp. (43) and (44)) when βj < 1
(resp. βj ∈ [1, 2]), we get the following result:

0 ≤ −
+∞∑

i=2

pi,j log2 pi,j +

∫ +∞

(τj+
1
2 )qj

f̃j(ξ) log2 f̃j(ξ)dξ

+ log2 qj

∫ +∞

(τj+
1
2 )qj

f̃j(ξ)dξ

≤
βjω

1/βj

j qj

2Γ(1/βj)
C(βj , τj)e

−ωj(τj+
1
2 )

βj q
βj
j (45)

where C(βj , τj) is given by (11). Furthermore, it can be

checked [29] that we have:

2

∫ +∞

(τj+
1
2 )qj

f̃j(ξ)dξ = 1−Q1/βj

(
ωj

(
τj +

1

2

)βj
q
βj

j

)
(46)

and 2

∫ +∞

(τj+
1
2 )qj

f̃j(ξ) log2 f̃j(ξ)dξ

= −hβj
(ωj)

(
1−Q1/βj

(
ωj

(
τj +

1

2

)βj
q
βj

j

))

−
ω
1/βj

j (τj +
1
2 )qj

Γ(1/βj)
e−ωj(τj+

1
2 )

βj q
βj
j . (47)

Therefore, the approximation formula of the entropy of the

quantized GG random variable, given by (34)-(35), follows

from (32), (45)-(47). Finally, the approximation formula for

the discrete entropy of the quantized BGG random variable

can be easily deduced from (31).

Concerning the high bitrate approximation of the entropy, it

can be firstly noticed that ∆ = O(qj). We further know [43,

p.891] that for all a > 0,

Qa(ξ) = O(ξa), as ξ → 0. (48)
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Therefore, when qj → 0, we have

Hf̃j
(qj) = hβj

(ωj)− log2 qj +O(qj). (49)

Moreover, according to (33) and (48), we get

Φ(p0,j , ϵj) = −ϵj log2 ϵj − (1− ϵj) log2(1− ϵj)

+ ϵj1(0,1)(ϵj)
βjω

1/βj

j qj

2Γ(1/βj)
log2(ω

1/βj

j qj) +O(qj)

= Hϵj +O(qj log2 qj) (50)

where 1(0,1) is the characteristic function of the interval (0, 1).
Consequently, a high resolution approximation of the entropy

of a quantized BGG random variable is given by (12).

APPENDIX B

APPROXIMATION OF THE DISTORTION

If Xj,s is distributed according to (1), the distortion evalu-

ated through the pj-th order moment of the quantization error

is given by [29]:

ej(qj , ϵj) = 2ϵj

(∫ (τj−
1
2 )qj

0

ξpj f̃j(ξ)dξ

+
+∞∑

i=1

∫ (τj+i− 1
2 )qj

(τj+i− 3
2 )qj

|ξ − ri,j |
pj f̃j(ξ)dξ

)
.

By noticing that

∫ (τj−
1
2 )qj

0

ξpj f̃j(ξ)dξ =
ω
−pj/βj

j Γ((pj + 1)/βj)

2Γ(1/βj)

×Q(pj+1)/βj

(
ωj(τj −

1

2
)βjq

βj

j

)
(51)

the approximation error can be expressed as

ej(qj , ϵj)−êj(qj , ϵj) = 2ϵj

(+∞∑

i=2

∫ (τj+i− 1
2 )qj

(τj+i− 3
2 )qj

|ξ−ri,j |
pj f̃j(ξ)dξ

−
νjq

pj

j

2(pj + 1)

(
1−Q1/βj

(
ωj

(
(τj +

1

2
)qj

)βj

)))
. (52)

First, for every i ≥ 1, we have

f̃j
(
(τj + i−

1

2
)qj

) ∫ (τj+i− 1
2 )qj

(τj+i− 3
2 )qj

|ξ − ri,j |
pjdξ

≤

∫ (τj+i− 1
2 )qj

(τj+i− 3
2 )qj

|ξ − ri,j |
pj f̃j(ξ)dξ

≤ f̃j
(
(τj + i−

3

2
)qj

) ∫ (τj+i− 1
2 )qj

(τj+i− 3
2 )qj

|ξ − ri,j |
pjdξ (53)

with

∫ (τj+i− 1
2 )qj

(τj+i− 3
2 )qj

|ξ − ri,j |
pjdξ =

νjq
pj+1
j

pj + 1
. (54)

In addition, we have the following inequalities:

∫ (τj+i+ 1
2 )qj

(τj+i− 1
2 )qj

f̃j(ξ)dξ ≤ qj f̃j
(
(τj + i −

1

2
)qj

)
(55)

and, for every i ≥ 2,

qj f̃j
(
(τj + i−

3

2
)qj

)
≤

∫ (τj+i− 3
2 )qj

(τj+i− 5
2 )qj

f̃j(ξ)dξ. (56)

We deduce from (53), (54), (55), (56) and (51) that

νjq
pj

j

2(pj + 1)

(
1−Q1/βj

(
ωj(τj+

1

2
)βjq

βj

j

))
−
νjq

pj+1
j

pj + 1
f̃j
(
(τj+

1

2
)qj

)

≤
+∞∑

i=2

∫ (τj+i− 1
2 )qj

(τj+i− 3
2 )qj

|ξ − ri,j |
pj f̃j(ξ)dξ

≤
νjq

pj

j

2(pj + 1)

(
1−Q1/βj

(
ωj(τj +

1

2
)βjq

βj

j

))

+
νjq

pj+1
j

pj + 1
f̃j
(
(τj +

1

2
)qj

)
. (57)

Therefore, the approximation error satisfies

− 2ϵj
νjq

pj+1
j

pj + 1
f̃j
(
(τj +

1

2
)qj

)
≤ ej(qj , ϵj)− êj(qj , ϵj)

≤ 2ϵj
νjq

pj+1
j

pj + 1
f̃j
(
(τj +

1

2
)qj

)
(58)

which yields the desired approximation of the distortion.

Let us now focus on the expression of the distortion at high

bitrate. When qj → 0, according to (48), the first term in the

left hand side of (15) is such that

Q(pj+1)/βj

(
ωj(τj −

1

2
)βjq

βj

j

)
= O(q

pj+1
j ). (59)

Moreover, using (53) and (54), we obtain

νjq
pj+1
j

pj + 1
f̃j
(
(τj +

1

2
)qj

)
≤

∫ (τj+
1
2 )qj

(τj−
1
2 )qj

|ξ − r1,j |
pj f̃j(ξ)dξ

≤
νjq

pj+1
j

pj + 1
f̃j
(
(τj −

1

2
)qj

)
(60)

which shows that
∫ (τj+

1
2 )qj

(τj−
1
2 )qj

|ξ − r1,j |
pj f̃j(ξ)dξ = O(q

pj+1
j ). (61)

In addition, we have

νjq
pj

j

2(pj + 1)

(
1−Q1/βj

(
ωj(τj +

1

2
)βjq

βj

j

))

=
νjq

pj

j

2(pj + 1)

(
1 +O(qj)

)
. (62)

Since (16) shows that ej(qj , ϵj) − êj(qj , ϵj) = O(q
pj+1
j ), it

can be deduced from (59), (61) and (62) that (17) holds.

APPENDIX C

SOLUTION OF THE BIT ALLOCATION PROBLEM

For simplicity, for every j ∈ {1, . . . , J}, we will drop the

index k in the variables akj , ckj , γkj , αk
j , and δkj , which are used

in (13) and (18).
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As gj(lj) is a decreasing function of lj for every j ∈

{1, . . . , J}, it is clear that, if
∑J

j=1
nj

n gj(l
bj+1
j ) > Rmax ⇔∑J

j=1
nj

n (aj l
bj+1
j + cj) > Rmax, then Problem (Pb) admits

no solution since C∩([lb11 , l
b1+1
1 ]×· · ·× [lbJJ , lbJ+1

J ]) is empty.

Another particular case is when

J∑

j=1

nj
n
(aj l

bj
j + cj) ≤ Rmax (63)

Since, for every j ∈ {1, . . . , J}, dj is an increasing function,

the solution to (Pb) is obviously l̃b = (lb11 , . . . , l
bJ
J ).

In the following, we will discard these two trivial cases by

assuming that

J∑

j=1

nj
n
(aj l

bj
j + cj) > Rmax

and

J∑

j=1

nj
n
(aj l

bj+1
j + cj) ≤ Rmax. (64)

Under these assumptions, since (lb1+1
1 , . . . , lbJ+1

J ) ∈ C ∩
([lb11 , l

b1+1
1 ]×· · · [lbJJ , lbJ+1

J ]), the intersection set is nonempty

and the problem (Pb) has a solution l̃b. In order to find

this solution, we will apply the Fenchel-Rockafellar duality

theorem [44].

Theorem 1: Let f and g be two lower-semicontinuous

convex functions from RJ to ] − ∞,+∞]. Then, provided

that dom(f) ∩ dom(g) is nonempty, we have

inf
l∈RJ

(f(l) + g(l)) = max
l∗∈RJ

(−g∗(−l∗)− f∗(l∗)), (65)

where f∗ (resp. g∗) is the convex conjugate of f (resp. g).2

In our case, we take g = ιC where ιC is the indicator function3

of the closed convex set C defined by (19). Taking l ∈ C is

equivalent to take l ∈ RJ such that

e⊤l ≥
J∑

j=1

nj
n
cj −Rmax, with e = −

1

n
(n1a1, . . . , nJaJ)

(66)

Thus, the conjugate of g satisfies

∀ l∗ ∈ R
J , g∗(l∗) = sup

l∈C
l⊤l∗ = sup

l∈C
(λl⊤e+ l⊤l∗⊥), (67)

where l∗⊥ belongs to Vect{e}⊥, the orthogonal subspace of e,

and λ ∈ R. From (66), we see that if l∗⊥ ̸= 0, g∗(l∗) = +∞.

Furthermore, if l∗ = λe with λ > 0, the supremum over l of

l⊤e is infinite. Finally, we obtain for all l∗ ∈ RJ

g∗(l∗) =





λ
( J∑

j=1

nj
n
cj −Rmax

)
if l∗ = λe with λ ≤ 0

+∞ else.

On the other hand, we take, for every l ∈ RJ , f(l) =
D(l) + ιPb

(l), where Pb is the box defined at the beginning

2Recall that dom(f) = {l ∈ RJ |f(l) < +∞} and f∗ is defined as:
∀ l

∗ ∈ RJ , f∗(l∗) = sup
l∈RJ (l⊤l

∗ − f(l)).
3The indicator function of C is defined as: ∀ x ∈ RJ , ιC(x) = 0 if

x ∈ C; +∞ otherwise.

of Section IV-B. Thus, f can be rewritten as

∀ l ∈ R
J , f(l) =

J∑

j=1

ϕj(lj) (68)

where, for every j ∈ {1, . . . , J},

∀ lj ∈ R, ϕj(lj) = ρjϵj(αj2
γj lj +δj)+ ι

[l
bj
j

,l
bj+1

j
]
(lj). (69)

Using the separability of the convex conjugate of f , we get

∀ l∗ = (l∗1, . . . , l
∗
J) ∈ R

J f∗(l∗) =
J∑

j=1

ϕ∗j (l
∗
j ). (70)

For any given j ∈ {1, . . . , J} and l∗j ∈ R, let us define

∀ lj ∈ R, ψj(lj) = lj l
∗
j − ρjϵj(αj2

γj lj + δj). (71)

We can write

ϕ∗j (l
∗
j ) = sup

l
bj
j

≤lj≤l
bj+1

j

ψj(lj). (72)

Furthermore,

∀ lj ∈ R, ψ′
j(lj) = l∗j−ln(2)ρjϵjγjαj2

γj lj = l∗j−
κjNjγj
n

2γj lj .

Thus, if l∗j ≤ 0, then ψ′
j(lj) < 0 and ϕ∗j (l

∗
j ) = ψj(l

bj
j ). In

turn, if l∗j > 0, then it can be checked that ψ′
j(lj) < 0 if and

only if

lj >
1

γj
log2

( nl∗j
κjNjγj

)
. (73)

Three cases have then to be considered:

(i) If l
bj
j ≥ 1

γj
log2

(
nl∗j

κjNjγj

)
which is equivalent to

2γj l
bj
j ≥

nl∗j
κjNjγj

then, for every lj ≥ l
bj
j , ψ′

j(lj) < 0
and

ϕ∗j (l
∗
j ) = ψj(l

bj
j ) = l∗j l

bj
j − ρjϵj(αj2

γj l
bj
j + δj). (74)

(ii) Similarly, if
nl∗j

κjNjγj
≥ 2γj l

bj+1

j then, for every lj ∈

[l
bj
j , l

bj+1
j ], ψ′

j(lj) > 0 and

ϕ∗j (l
∗
j ) = ψj(l

bj+1
j ) = l∗j l

bj+1
j − ρjϵj(αj2

γj l
bj+1

j + δj). (75)

(iii) Otherwise, if 2γj l
bj
j <

nl∗j
κjNjγj

< 2γj l
bj+1

j then,

ϕ∗j (l
∗
j ) = ψj

( 1

γj
log2

( nl∗j
κjNjγj

))

=
l∗j

γj ln 2

(
ln

( nl∗j
κjNjγj

)
− 1

)
− ρjϵjδj . (76)

Now, by recalling that dom(g) = {−λe, λ ≥ 0}, the dual

problem can be reexpressed as

max
l∗∈RJ

(−g∗(−l∗)− f∗(l∗)) = max
−l∗∈dom(g)

(−g∗(−l∗)− f∗(l∗))

= max
λ≥0

Φ(λ) (77)

where

∀λ ∈ R+, Φ(λ) = λ
( J∑

j=1

nj
n
cj−Rmax

)
−

J∑

j=1

ϕ∗j

(
−λ

nj
n
aj

)
.
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According to (74)-(76) and the notation introduced in (22) and

(23), Φ is the function defined in (30). The derivative of this

function is given by

∀λ ∈ R+, Φ′(λ) =
J∑

j=1

nj
n
cj −Rmax −

J∑

j=1

φ′
j(λ) (78)

where φ′
j corresponds to the derivative of the function φj

defined in Proposition 3. Thus, it can be checked that, for

every λ ∈ R∗
+, we have Φ′′(λ) ≤ 0. The inequality being strict

if and only if min1≤j≤J λj < λ < max1≤j≤J λj , Φ is strictly

concave on this interval. In addition, if λ ≤ min1≤j≤J λj ,

then

Φ′(λ) =
J∑

j=1

nj
n
(aj l

bj
j + cj)−Rmax > 0 (79)

and, if λ ≥ max1≤j≤J λj , then

Φ′(λ) =
J∑

j=1

nj
n
(aj l

bj+1
j + cj)−Rmax ≤ 0 (80)

where the assumptions given by (64) have been used.

As Φ′ is strictly decreasing on [min1≤j≤J λj ,max1≤j≤J λj ],

we deduce that there exists a unique value λ̃ in this interval

such that Φ′(λ̃) = 0. Thus, λ̃ corresponds to the maximizer

of Φ over R+. From the definitions of the sets in (27), (28)

and (29), we get:

∀j ∈ I, λ̃ ≤ λj (81)

∀j ∈ J, λj < λ̃ ≤ λj (82)

∀j ∈ K, λ̃ > λj . (83)

Finally, it can be deduced from (78) that Φ′(λ̃) = 0 implies

that

∑

j∈J

Nj log2

( λ̃
κj

)
+
∑

j∈I

Njγj l
bj
j +

∑

j∈K

Njγj l
bj+1
j

=

J∑

j=1

njcj − nRmax (84)

which yields the expression of λ̃ in (25).

Furthermore, the optimal value l̃b = (l̃1,b, . . . , l̃J,b) of l is

given by the critical point of f . This means that, for every

j ∈ {1, . . . , J}, l̃j,b is the maximizer of ψj over [l
bj
j , l

bj+1
j ]

when l∗j = −λ̃njaj/n. Therefore, we get the optimal values

l̃j,b given by (24).
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TABLE I
THE AVERAGE PSNR DIFFERENCES AND THE BITRATE SAVING AT LOW

AND HIGH BITRATES. THE GAIN OF THE PROPOSED APPROACH W.R.T THE

STATE-OF-THE-ART METHOD [12].

bitrate saving PSNR gain
(in %) (in dB)

Images low high low high

goldhill -4.89 -14.50 0.16 0.82

barbara -31.94 -12.80 1.34 0.96

lena -1.64 -8.79 0.01 0.45

einst -8.20 -19.42 0.15 0.65

marseille -6.96 -13.86 0.24 0.68

straw -16.41 -19.53 0.51 0.77

elaine -0.45 -16.37 0.02 0.69

castle -7.78 -9.02 0.40 0.68

cartoon -5.16 -4.27 0.36 0.63

average -9.27 -13.17 0.35 0.70

TABLE II
PERFORMANCE COMPARISON IN TERMS OF PSNR AFTER ENTROPY

ENCODING PROCESS.

Image Rate JPEG2000 Our method Our method
(bpp) with AC-1 with AC-2

goldhill 0.15 28.93 28.14 28.36
0.25 30.44 29.79 29.94
0.5 33.15 32.11 32.36

lena 0.15 31.51 30.87 31.13
0.25 33.98 32.95 33.26
0.5 37.16 35.88 36.16

straw 0.15 20.47 20.68 20.83
0.25 21.89 21.87 21.99
0.5 24.35 24.25 24.40

marseille 0.15 24.67 24.82 24.89
0.25 26.34 26.31 26.39
0.5 29.02 28.97 29.06

einst 0.15 30.22 29.55 29.71
0.25 31.32 30.77 30.91
0.5 32.92 32.25 32.46
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Tech (formerly, ENST), first as an Associate Professor, and since 2007 as a
Professor, Head of the Multimedia Group. She is the Head of the UBIMEDIA
common research laboratory between Alcatel-Lucent and Institut Télécom.
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Einst Straw Goldhill Barbara

Cartoon Castle Marseille Lena
Fig. 3. Test images used for the experiments.
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Fig. 4. D1/2 versus entropy (in bpp) for a uniform scalar quantizer with a deadzone of size qj (i.e. τj = 1) for “marseille” image: influence
of the number of intervals.
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Fig. 5. PSNR versus entropy for a uniform scalar quantizer with a deadzone of size qj (i.e. τj = 1) for images “goldhill” (a), “straw” (b),
“marseille” (c) and “barbara” (d): performance of the proposed approach vs the Lagrangian one.
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Fig. 6. PSNR versus entropy for a uniform scalar quantizer with a deadzone of size 3qj (i.e. τj = 2) for images “einst” (left side) and
“elaine” (right side): performance of the proposed approach vs the Lagrangian one.
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Fig. 7. Modelling the distribution of the diagonal detail wavelet coefficient of the “cartoon” image using (a) GG model (b) BGG model. The
cumulative distribution function using (c) GG model (d) BGG model. The curve plotted in solid (resp. dashed) line is associated with the
subband wavelet coefficients (resp. theoretical model).
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Fig. 8. PSNR versus entropy for a uniform scalar quantizer with a deadzone of size qj (i.e. τj = 1) for images “cartoon” (a) and “castle”
(b): performance of the proposed approach vs the Lagrangian one.
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Fig. 9. PSNR versus entropy for a uniform scalar quantizer with a deadzone of size 3qj (i.e. τj = 2) for images “cartoon” (a) and “castle”
(b): performance of the proposed approach vs the Lagrangian one.
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Fig. 10. PSNR versus entropy for a uniform scalar quantizer with a deadzone of size 3qj (i.e. τj = 2) for “cartoon” image: BGG model
versus the GG one.


