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Abstract

In this paper, we develop an efficient bit allocation strategy for subband-based image coding systems.

More specifically, our objective is to design a new optimization algorithm based on a rate-distortion

optimality criterion. To this end, we consider the uniform scalar quantization of a class of mixed

distributed sources following a Bernoulli-Generalized Gaussian distribution. This model appears to be

particularly well-adapted for image data which have a sparse representation in a wavelet basis. In this

context, we propose new approximations of the entropy and the distortion functions by using piecewise

affine and exponential forms, respectively. Thanks to these approximations, we reformulate the bit

allocation problem as a convex optimization one. Solving the resulting problem allows us to derive

the optimal quantization step for each subband. Experimental results show the benefits that can be drawn

from the proposed bit allocation method in a typical transform-based coding application.
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I. INTRODUCTION

In image and video coding systems, it is desired to achieve the best possible image quality for a given

bitrate or, conversely, to minimize the bitrate for a given image quality. To this respect, a great attention

has been paid to the problem of bit allocation where a given amount of bits must be efficiently distributed

among blocks of a DCT-coded image or among subbands of a wavelet-based coder [2], or among frames

in a video sequence [3]. The general framework behind the bit allocation strategy is Rate-Distortion

(R-D) theory which aims at minimizing the average distortion of the input signal subject to a constraint

on the available global bitrate. Since both the rate and the distortion measures in a typical transform

coding scheme are controlled by the choice of the quantizers, the major issue is to find the optimal

quantization steps for the constrained minimization problem. It is thus necessary to study the rate and

distortion functions of the source to be encoded.

Two main classes of methods have been developed to deal with the bit allocation problem: numerical-

and analytical-based approaches. Algorithms in the first category aim at empirically estimating the R-

D curves and resort to some iterative techniques to find the optimal quantization parameters [3]. For

instance, Lagrangian optimization techniques have been well investigated in the literature [4], [5], [6].

In these approaches, the constrained minimization problem is transformed into an unconstrained version

by incorporating the constraint into the objective function. In [4], a bit allocation method for completely

arbitrary input signals (or blocks) and discrete quantizer sets is considered in the case of independent

coding contexts. An extension of this work to subband coding has been proposed in [2]. Another extension

to a dependent coding environment has also been considered in [6]. More precisely, the authors describe

the R-D Lagrangian cost function in the form of a trellis and use the Viterbi algorithm to find the optimal

solution for coders exploiting temporal and spatial dependencies such as MPEG and pyramidal coders. In

[7], the bit allocation problem is converted into the graph theoretic problem of finding the shortest path

in a directed acyclic graph. Besides, it should be noticed that dynamic programming algorithms [3], [8]

and descent algorithms [9], [10] have also been proposed to select the optimal quantization parameters.

It is important to note that these numerical methods may be computationally intensive since a large

number of R-D operating points must be measured for each subband in order to obtain R-D curves

which are both differentiable and convex [11]. In other words, the R-D data are first evaluated for all

possible quantization settings. Then, the optimal solution is derived. In order to reduce the complexity,

André et al. [12] have recently proposed to perform the computation of a few points (i.e. for some

possible quantization settings) and interpolate them using spline approximations.
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To further overcome the complexity of these numerical methods, alternative approaches which do not

require the estimation of R-D curves have also been developed. These approaches provide closed-form

expressions of the R-D function by assuming various input distributions and quantizer characteristics. For

instance, the performance of optimum scalar quantizers subject to an entropy constraint was investigated

through numerical methods [13], [14] for different source probability densities (e.g uniform, Gaussian,

Laplacian, Generalized Gaussian) at low resolution (i.e. bitrate). In [15], a parametric representation of

the operational R-D function of a scalar quantizer is derived for a uniformly distributed source and a

wide class of distortion measures. In [16], a distortion measure based on differential entropy has been

introduced for image coding using uniform scalar quantization. In [17], an approach for designing entropy

constrained scalar quantizers for exponential and Laplace distributions is proposed and comparisons are

made with uniform quantizers. Recently in [18], the asymptotic behavior of a uniform quantizer is

characterized at low resolution for a memoryless Gaussian source and a squared error distortion measure.

Other studies have also considered the use of Laplace and Generalized Gaussian probability models in

modern compression systems [19], [20], [21].

The objective of this paper is to design an efficient bit allocation algorithm in a subband coding context

(typically, for wavelet-based coders) by adopting an analytical approach. More precisely, we will consider

the uniform scalar quantization of the different subband coefficients resulting from a multiresolution

analysis. While the GG model has been extensively employed for modelling wavelet coefficients [22],

[23], we adopt in this paper a more general mixture model, referred to as Bernoulli-GG (BGG), which

was found to be well-suited for modelling sparse wavelet coefficients [24], [25]. After extending recent

approximation formulas of the entropy and the distortion of uniformly quantized BGG sources [26], we

propose a piecewise affine (resp. piecewise exponential) form of the entropy (resp. distortion) which

allows us to get fine approximations of these functions. Thanks to the proposed approximations, we

reformulate the bit allocation problem by making use of convex analysis tools. Following this approach,

we finally derive explicit expressions of the optimal quantization parameters.

The remainder of this paper is organized as follows: in Section II, we define the probabilistic model for

the considered subband coefficients as well as the quantizer characteristics. We introduce the resulting

entropy and distortion functions. In Section III, we provide new piecewise convex approximations of the

entropy and the distortion. In Section IV, we reformulate the bit allocation problem as a set of convex

optimization problems, for which we derive the optimal solutions. Finally, an application of the proposed

method to transform-based image coding is illustrated in Section V and some conclusions are drawn in

Section VI.
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II. ENTROPY AND DISTORTION OF A UNIFORMLY QUANTIZED BGG SOURCE

A. Source and quantization models

First, we consider the problem of coding an input signal by performing a wavelet (or frame-based)

decomposition. Let us assume that the source to be quantized is composed of J subbands having nj

coefficients (j ∈ {1, . . . , J}) so that n =
∑J

j=1 nj is the total number of coefficients. An appropriate

model for characterizing the sparsity of the coefficients of the j-th subband is the BGG model whose

probability distribution fj is defined by:

∀ξ ∈ R, fj(ξ) = (1− ǫj)δ(ξ) + ǫj f̃j(ξ) (1)

where ǫj ∈ [0, 1] is a mixture parameter, δ denotes the Dirac distribution (i.e. point mass at 0) and f̃j is

the probability density function for a GG distribution with shape parameter βj ∈]0, 2] and scale factor

ωj ∈]0,+∞[:

∀ξ ∈ R, f̃j(ξ) =
βjω

1/βj

j

2Γ(1/βj)
e−ωj |ξ|

βj

(2)

where Γ is the gamma function. Recall that the differential entropy of such a GG variable is given [27]

as:

hβj
(ωj) = −

∫ ∞

−∞
f̃j(ξ) log2 f̃j(ξ) dξ = log2

(2Γ(1/βj)
βjω

1/βj

j

)
+

1

βj
.

Each coefficient Xj,s with s ∈ {1, . . . , nj} in subband j ∈ {1, . . . , J} is quantized before being entropy

coded. For this purpose, we assume that, for each subband j, a scalar uniform quantizer with a quantization

step qj and having a deadzone of size (2τj − 1)qj where τj > 1/2 is used [28]. Note that τj = 1

corresponds to a deadzone of size qj . Thus, for every s ∈ {1, . . . , nj}, the output Xj,s of the quantizer

is given by:

Xj,s = r0 = 0, if |Xj,s| <
(
τj −

1
2

)
qj , where τj > 1/2

and, for all i ∈ Z, Xj,s = ri,j ,

(if (τj + i− 3
2)qj ≤ Xj,s < (τj + i− 1

2)qj and i ≥ 1)

or (if (−τj + i+ 1
2)qj < Xj,s ≤ (−τj + i+ 3

2)qj and i ≤ −1),

where the reconstruction levels are given by

∀i ≥ 1, ri,j = −r−i,j = (τj + i− 1 + ζj)qj (3)

and ζj ∈ [−1/2, 1/2] is an ”offset” parameter indicating the shift of the reconstruction level with respect

to the center of the quantization interval. Note that we will not consider any saturation effect. The most
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commonly used quantization rule corresponds to the case when ζj = 0 (i.e mid-point reconstruction).

For example, this rule constitutes the basic ingredient of many encoding strategies (such as EBCOT [29])

which have been developed in wavelet-based image compression techniques.

Since the objective of the paper is to focus on the bit allocation problem for the quantized coefficients,

it is now necessary to study their rate and distortion functions.

B. Entropy and distortion measures

As frequently done in the development of R-D algorithms, we approximate the bitrate of a memoryless

source by the zero-order entropy of the quantized coefficients [30], [31]. Thus, by assuming that the

random variable Xj,s with j ∈ {1, . . . , J} and s ∈ {1, . . . , nj} is distributed according to (1), the

entropy of the associated quantized variable Xj,s with j ∈ {1, . . . , J} and s ∈ {1, . . . , nj} is given by:

Hfj (qj , ǫj) = −

∞∑

i=−∞

pi,j log2 pi,j (4)

where, for every i ∈ Z, pi,j = P(Xj,s = ri,j) represents the probability of occurrence of the ri,j

reconstruction level.

We also propose to express the distortion function by using the pj-th order moment of the quantization

error:

ej(qj , ǫj) = E[|Xj,s −Xj,s|
pj ] (5)

where pj ≥ 1 is a real exponent. In particular, pj = 2 corresponds to the mean square error criterion

whereas pj = 1 corresponds to the mean absolute one. Taking real values of the exponent which depend

on j provides flexibility in the choice of the distortion measure.

It is important to note here that close approximation of the entropy and asymptotic expressions of the

distortion of a quantized BGG random variable are provided in [26] for both low and high bitrates.

However, these approximations have been derived in the case of log-concave distributions (more precisely

when 1 ≤ βj ≤ 2) and for a quantizer with a deadzone of size qj (i.e. τj = 1). It is worth pointing that

in practice, typical values of βj can be smaller than 1 and the size of the deadzone can be parameterized

to have a different value for each subband (as in JPEG2000 Part 2, while in Part 1, a typical deadzone

of size 2qj is used) [32]. Therefore, the main approximation results given in [26] need to be extended

in this paper by incorporating a nontrivial deadzone in the quantizer and also considering the case when

βj < 1.

Once the entropy and distortion functions have been defined, the bit allocation problem can be formulated.
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In our case, this problem consists of finding the quantization steps for each subband or, equivalently, the

vector q = (q1, q2, . . . , qJ) ∈ [0,+∞[J minimizing the average distortion

D(q) =

J∑

j=1

ρjej(qj , ǫj) (6)

where ∀j ∈ {1, . . . , J}, ρj ∈]0,+∞[ and

J∑

j=1

ρj = 1,

subject to the constraint that the total bitrate is equal to or smaller than a target bitrate Rmax:

H(q) =

J∑

j=1

nj
n
Hfj (qj , ǫj) ≤ Rmax. (7)

Note that, for orthonormal representations, when for every j ∈ {1, . . . , J}, pj = 2 and ρj = nj/n, D(q)

is also equal to the distortion in the spatial domain. For other scenarios (biorthogonal representations or

redundant frames), a good approximation of the distortion in the spatial domain can be obtained in a

number of cases by appropriate choices of the constants (ρj)1≤j≤J [33]. The degrees of freedom in the

choices of the constants (pj)1≤j≤J and (ρj)1≤j≤J can also be exploited in order to define perceptual

criteria [34] better fitting the Human Visual System (HVS) characteristics.

III. APPROXIMATIONS OF THE ENTROPY AND OF THE DISTORTION

The objective of this section is to develop accurate approximations of the entropy and the distortion

for a general BGG source model. These approximations will allow us to reformulate the bit allocation

problem in a more tractable form.

A. Piecewise affine approximation of the entropy

Let Qa with a ∈ R∗
+ be the normalized incomplete Gamma function [35], defined as

∀ξ ∈ R, Qa(ξ) =
1

Γ(a)

∫ ξ

0
θa−1e−θdθ. (8)

As shown in Appendix A, a close approximation of the entropy of a quantized BGG source can be

obtained as follows:

Proposition 1: The entropy Hfj (qj , ǫj) of a quantized BGG random variable distributed according to

(1) can be approximated by

Ĥfj (qj , ǫj) = Φ(p0,j , ǫj) + ǫjĤf̃j
(qj) (9)

with Φ(p0,j , ǫj) = −
(
1− ǫj(1− p0,j)

)
log2

(
1− ǫj(1− p0,j)

)
− ǫj(1− p0,j) log2 ǫj + ǫjp0,j log2 p0,j ,
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and Ĥ
f̃j
(qj) =− p0,j log2 p0,j − 2p1,j log2 p1,j +

(
hβj

(ωj)− log2 qj
)(

1−Q1/βj

(
ωj

(
τj +

1

2

)βjq
βj

j

))

+
ω
1/βj

j (τj +
1
2)qj

Γ(1/βj)
e−ωj(τj+

1

2
)βj q

βj
j . (10)

The error incurred in this approximation is such that

0 ≤ Ĥfj (qj , ǫj)−Hfj (qj , ǫj) ≤ 2ǫjqjC(βj , τj)f̃j
(
(τj +

1

2
)qj
)
,

with C(βj , τj) =





(
2τj+1
2τj−1

)1−βj

if βj < 1
(
2τj+2
2τj+1

)βj−1
if βj ∈ [1, 2].

(11)

It is worth pointing out that such an approximation formula may be useful in practice in the sense that

it allows us to efficiently compute the entropy for any given set of quantization steps.

Generally, analytical-based R-D algorithms use the standard Bennett formula to obtain a close approxi-

mation of the entropy [26], [30]. This high-resolution approximation formula, which is also valid when

a quantizer with a deadzone is used and βj ∈ (0, 2], allows us to express the entropy of the j-th subband

as an affine function of lj = log2(qj):

Hfj (qj , ǫj) = Hǫj + ǫj(hβj
(ωj)− lj) + o(lj2

lj ) (12)

where Hǫj = −ǫj log2 ǫj − (1 − ǫj) log2(1 − ǫj) is the entropy of a Bernoulli random variable with

parameters (1− ǫj , ǫj).

However, the approximation formula (10) is not tractable for optimization purposes, whereas (12) is only

valid at high resolution (i.e. when qj is small). In order to develop a bit allocation strategy well-adapted

for both high and low resolutions, we propose to define a piecewise convex approximation of the entropy

function by considering a more flexible function of l = (l1, l2, . . . , lJ), given by
∑J

j=1
nj

n gj(lj), where

gj have the following piecewise affine form:

∀j ∈ {1, . . . , J}, gj(lj) = akj lj + ckj if l
(h,k−1)
j ≤ lj ≤ l

(h,k)
j (13)

with k ∈ {1, 2, . . . ,m(h)} and m(h) is a given parameter corresponding to the considered number of

intervals (i.e. the number of segments chosen to approximate the entropy). For every j ∈ {1, . . . , J}, the

parameters (akj )1≤k≤m(h) are nonpositive reals, and the parameters (ckj )1≤k≤m(h) are real numbers. Note

that the superscript h has been used to distinguish between the intervals used for the approximation of

the entropy and those later used for the approximation of the distortion.

In practice, we set l
(h,0)
j = −∞ and we choose the other points

(
l
(h,k)
j

)
1≤k≤m(h)

in such a way that the

February 21, 2013 DRAFT
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resulting piecewise affine function constitutes a good approximation of the entropy Hfj of the source.

For the first interval, the high resolution approximation (12) can be employed, leading to

∀ j ∈ {1, . . . , J}, a1j = −ǫj and c1j = Hǫj + ǫjhβj
(ωj).

By considering an arbitrary point l̃
(h,1)
j , we derive (a2j , c

2
j ) such that gj on the second interval is tangent

to the graph of the entropy function at l̃
(h,1)
j . The lower bound l

(h,1)
j of the second interval is then

fixed to the abscissis of the intersection of the lines obtained on the first and second intervals. By

repeating the process, we deduce the remaining values l
(h,2)
j , l

(h,3)
j , . . . , l

(h,m(h)−1)
j and the associated

affine approximations. Since the entropy must be a nonnegative function, the last interval bound l
(h,m(h))
j

is found such that am
(h)

j l
(h,m(h))
j + cm

(h)

j = 0. This entails:

∀j ∈ {1, . . . , J}, gj(lj) = 0 if lj ≥ l
(h,m(h))
j . (14)

Fig. 1 illustrates the approximations of the entropy using two intervals (m(h) = 2) and four intervals

(m(h) = 4). As expected, increasing the number of intervals leads to a better approximation of the

entropy.
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Fig. 1. Approximations gj (in dashed line) of the entropy Hfj (in solid line) of a uniformly quantized BGG source versus lj :

m(h) = 2 (left side), m(h) = 4 (right side). The parameters of the BGG source are ǫj = 0.5, βj = 1.2 and ωj = 1.

B. Piecewise exponential approximation of the distortion

On the other hand, we show in Appendix B that a good approximation of the distortion of a quantized

BGG source can be obtained as follows:

Proposition 2: The distortion ej(qj , ǫj) of a quantized BGG random variable distributed according
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to (1) can be approximated by

êj(qj , ǫj) = 2ǫj

(
ω
−pj/βj

j Γ((pj + 1)/βj)

2Γ(1/βj)
Q(pj+1)/βj

(
ωj(τj −

1

2
)βjq

βj

j

)
+

∫ (τj+
1

2
)qj

(τj−
1

2
)qj

|ξ − r1,j |
pj f̃j(ξ)dξ

+
νjq

pj

j

2(pj + 1)

(
1−Q1/βj

(
ωj(τj +

1

2
)βjq

βj

j

))
)

(15)

where the approximation error is such that

|ej(qj , ǫj)− êj(qj , ǫj)| ≤ 2ǫj
νjq

pj+1
j

pj + 1
f̃j
(
(τj +

1

2
)qj
)
. (16)

Some comments can be made about this result:

• When qj → 0, the classical high resolution approximation is recovered:

ej(qj , ǫj) = ǫj
νj

pj + 1
q
pj

j (1 +O(qj)) (17)

where νj = (12 + ζj)
pj+1 + (12 − ζj)

pj+1.

• When pj = 2 (or more generally when pj is an even integer), the integral in (15) can be easily

expressed by using incomplete Gamma functions.

Similarly to the approximation of the entropy, Proposition 2 will be useful to compute both fast and

accurate approximations of the distortion, but the derived expressions remain too intricate for developing

efficient bit allocation algorithms.

We thus propose to use a rougher approximation of the distortion. More specifically, we propose to

express the global distortion as a function of l = (l1, l2, . . . , lJ) =
(
log2(q1), . . . , log2(qJ)

)
under the

form
∑J

j=1 ρjdj(lj), where dj has the following piecewise exponential form:

∀ j ∈ {1, . . . , J}, dj(lj) =





ǫj(α
k
j 2

ljγk
j + δkj ) if l

(d,k−1)
j ≤ lj < l

(d,k)
j

ǫjω
−pj/β
j

Γ
(
(pj + 1)/βj

)

Γ(1/βj)
if lj ≥ l

(d,m(d))
j

(18)

where k ∈ {1, 2, . . . ,m(d)} and m(d) is a given integer corresponding to the number of intervals used

in our approximation. For every j ∈ {1, . . . , J}, the parameters (αk
j )1≤k≤m(d) and (γkj )1≤k≤m(d) are

nonnegative reals, and the parameters (δkj )1≤k≤m(d) are real numbers. Similarly to the selection procedure

for
(
l
(h,k)
j

)
0≤k≤m(h)

, the values of the interval bounds
(
l
(d,k)
j

)
0≤k≤m(d)

(with l
(d,0)
j = −∞) are chosen

in such a way that dj(lj) constitutes a good approximation of ej(2
lj , ǫj). In particular, by taking γ1j = pj ,

α1
j =

νj

pj+1 , and δ1j = 0, we obtain the high bitrate approximation of the distortion (see (17)) on the first

interval [l
(d,0)
j , l

(d,1)
j ].

Fig. 2 shows the approximations of the distortion for 2 and 4 intervals. It can be observed that setting m(d)
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to 2 results in a less precise approximation of the distortion ej than m(d) = 4, especially at low bitrate.

It can also be noticed from Figs. 1 and 2 that the chosen approximation interval bounds l
(h,1)
j , l

(h,2)
j and

l
(h,3)
j for the entropy differ from those l

(d,1)
j , l

(d,2)
j and l

(d,3)
j for the distortion. This illustrates the fact

that the selection steps for
(
l
(h,k)
j

)
1≤k≤m(h)

and
(
l
(d,k)
j

)
1≤k≤m(d)

should be performed independently in

order to obtain good approximations of both the entropy and the distortion functions.
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Fig. 2. Approximations dj (in dashed line) of the distortion ej (in solid line) of a uniformly quantized BGG source versus lj :

m(d) = 2 (left side), m(d) = 4 (right side). The parameters of the BGG source are ǫj = 0.5, βj = 1.2 and ωj = 1.

IV. PROPOSED BIT ALLOCATION METHOD

In this part, we show how the approximations of the entropy and distortion functions proposed in the

previous section allow us to solve the bit allocation problem in an efficient manner.

A. Optimization problem

Using the approximations gj (resp. dj) of the entropy in (13) (resp. of the distortion in (18)), the bit

allocation problem defined at the end of Section II, can be recast as follows:

Problem 1: Find l̃ minimizing the distortion function

∀ l = (l1, . . . , lJ) ∈ R
J , D(l) =

J∑

j=1

ρjdj(lj)

over the set C defined as

C := {l = (l1, . . . , lJ) ∈ R
J |

J∑

j=1

nj
n
gj(lj) ≤ Rmax}. (19)

A major difficulty for solving this problem stems from the fact that the functions gj and dj are non-

differentiable and non convex. To define the different domains where the optimization is performed, we

shall jointly sort the coefficients
(
l
(h,k)
j

)
1≤k≤m(h)

and
(
l
(d,k)
j

)
1≤k≤m(d)

in ascending order for each j ∈
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{1, . . . , J}. The resulting sorted coefficients will be denoted by (l1j , . . . , l
m
j ) such that l1j ≤ l2j ≤ . . . ≤ lmj

where m ≤ m(h) +m(d). From the definition of the total bitrate constraint, a necessary condition for l

to belong to C is

∀ j ∈ {1, . . . , J}, a1j lj + c1j ≤ nn−1
j Rmax. (20)

This means that, for every j ∈ {1, . . . , J}, we can set the lower bound l0j of the search interval to

l0j = min(
nn−1

j Rmax − c1j

a1j
, l1j ). (21)

Moreover, since gj(lj) = 0 for every lj ≥ lmj , and dj is an increasing function of lj , it is clear that

the optimal value of lj will be lower than or equal to lmj . As a result, the problem is equivalent to

minimize the distortion over the domain [l01, l
m
1 ]× . . .× [l0J , l

m
J ]. In order to overcome the problem of the

non-differentiability of the functions gj or dj at points
(
lkj
)
1≤k<m

, we propose to subdivide the previous

domain into boxes of the form [lb11 , l
b1+1
1 ]× . . .× [lbJJ , l

bJ+1
J ] where b = (b1, . . . , bJ) ∈ {0, . . . ,m− 1}J .

On each box, the entropy and distortion are convex functions. Therefore, this subdivision technique leads

to mJ subdomains where a convex optimization problem must be solved.

B. Solution of the bit allocation problem

In the following, we provide a closed form expression of the optimal quantization parameters. Suppose

that Pb = [lb11 , l
b1+1
1 ]× . . .× [lbJJ , l

bJ+1
J ] corresponds to a given subdomain and let us denote by (Pb) the

convex minimization problem on this subdomain. For concision purposes, let us introduce the following

notation, for every j ∈ {1, . . . , J},

Nj = −
nj a

bj
j

γ
bj
j

, κj =
n

Nj
ρjǫjα

bj
j ln 2, (22)

λj = κj2
γ
bj
j l

bj
j , λj = κj2

γ
bj
j l

bj+1

j . (23)

The solution to the Problem (Pb) is given below.

Proposition 3:

(i) If
∑J

j=1
nj

n gj(l
bj+1

j ) > Rmax, then there is no solution.

(ii) If
∑J

j=1
nj

n gj(l
bj
j ) ≤ Rmax, then the solution is l̃ = (lb11 , . . . , l

bJ
J ).

(iii) Otherwise, the solution is the vector l̃b defined by

∀j ∈ {1, . . . , J}, l̃j,b =





l
bj
j if j ∈ I

1

γ
bj
j

log2

(
λ̃
κj

)
if j ∈ J

l
bj+1
j if j ∈ K

(24)
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where

λ̃NJ =
2(

∑
J

j=1 njc
bj
j −nRmax)

2(
∑

j∈I
Njγ

bj
j l

bj
j +

∑
j∈K

Njγ
bj
j l

bj+1

j )

∏

j∈J

κ
Nj

j (25)

NJ =
∑

j∈J

Nj (26)

I = {j ∈ {1, . . . , J} | Φ′(λj) ≤ 0}, (27)

K = {j ∈ {1, . . . , J} | Φ′(λj) > 0} (28)

J = {1, . . . , J} \ (I ∪K) (29)

∀ λ ∈ R+, Φ(λ) = λ
( J∑

j=1

nj
n
c
bj
j −Rmax

)
−

J∑

j=1

ϕj(λ) (30)

with ∀ j ∈ {1, . . . , J},

ϕj(λ) =





Nj

n (γ
bj
j l

bj
j λ−

λj

ln 2)− ρjǫjδ
bj
j if λ ≤ λj

Njλ
n ln 2(ln(

λ
κj
)− 1)− ρjǫjδ

bj
j if λj < λ < λj

Nj

n (γ
bj
j l

bj+1
j λ− λj

ln 2)− ρjǫjδ
bj
j if λ ≥ λj .

Proof : See Appendix C.

The above expressions of the quantization parameters, obtained for each subdomain, allow us to determine

a finite set of candidate distortion values. Once this has been performed, the subdomain leading to

the global minimum distortion value is selected and its resulting quantization steps correspond to the

optimal ones. It is worth pointing out that the computation of the quantization parameters as well

as their corresponding distortion can be carried out for the subdomains independently of each other.

Furthermore, it can be noticed that the maximum number mJ of these evaluations can be reduced by

checking Conditions (i) and (ii) in Proposition 3.

V. EXPERIMENTAL RESULTS

In this part, we study the performance of the proposed bit allocation method in the context of transform-

based coding applications. We employ the 9/7 biorthogonal wavelet transform, retained in the JPEG2000

compression standard. The decomposition is carried out over three resolution levels (i.e. J = 10). Note

also that the weights (ρj)1≤j≤J for the different wavelet subbands are computed by using the procedure

presented in [36]. Our experiments have been performed for various standard test images with different

characteristics. As mentioned before, the first step of our method consists of modelling the resulting
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wavelet coefficients. For this purpose, we consider the two following models: the GG one and the more

general BGG one.

A. GG-based model

In this case, the parameters βj and ωj for each subband are estimated by using the maximum likelihood

technique. Afterwards, we compute their corresponding entropy and distortion approximations and deduce

their optimal quantization steps using Proposition 3. Figs. 3(a), 3(b) and 3(c) show the influence of the

choice of the parameters m(h) and m(d) used for approximating the entropy and distortion functions. The

plotted curve using the ‘circle’ symbols corresponds to the quadratic distortion (i.e. pj = 2) resulting

from an uniform scalar quantization of the GG model. The rate-distortion curve plotted using the ‘star’

symbol is obtained by performing a similar quantization of the wavelet coefficients of the image with the

derived optimal quantizers. More precisely, we consider the cases m(h) = m(d) = 2, m(h) = m(d) = 3

and m(h) = m(d) = 4. It can be noticed that the difference between the plots corresponding to the

theoretical GG source model and the image wavelet coefficients is reduced when the number of segments

increases. In addition, one can observe from Fig. 3(d) that the image rate-distortion curves behave

similarly when 3 or 4 approximating intervals are used. Based on this observation (which was confirmed

by tests performed on other images), it can be concluded that there is no need to increase the number

of segments, and therefore, it is sufficient in practice to use 3 or 4 intervals to approximate the entropy

and distortion functions. Finally, we propose to compare the proposed bit allocation method with state-

of-the-art methods based on Lagrangian optimization techniques [4]. More precisely, we consider the

improved version of these methods, proposed recently in [12], where a spline interpolation method for

rate-distortion curves is introduced. Fig. 4 shows the variations of the PSNR curves versus the entropy

for different images. It can be observed that our method outperforms the state-of-the-art method by

0.2-1.2 dB. While the deadzone parameter τj is set to 1 in Fig. 4, Figs. 5(a) and 5(b) illustrate the

performance of our method when the size of the deadzone is increased (τj = 2). Thus, it can be noticed

that the proposed method achieves a significant improvement compared with the state-of-the-art method.

B. BGG-based model

Although the GG model is well adapted to a large class of natural images, we have observed that

this model is not the best suited for the class of images with flat regions separated by smooth contours.

Examples of such images include cartoon ones and depth maps. To confirm this, we illustrate in Figs. 6(a)
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and 6(b) the histogram of the diagonal detail wavelet subband of the “cartoon” image at the first resolution

level as well as the distribution used for modelling its coefficients. To find the best model, we propose

to use a statistical goodness-of-fit test such as the Kolmogorov-Smirnov (KS) test which is based on the

comparison of the cumulative distribution functions (cdf) [37]. Figs. 6(c) and 6(d) display these functions

for both models with their resulting KS measure. Hence, it can be noticed that the cdf associated with the

BGG model is very close to the cdf associated with the subband wavelet coefficients. This illustrates the

fact that the BGG model is more appropriate than the GG one for modelling very sparse representations.

Based on this model, we have also employed the proposed bit allocation method for this class of images.

Compared with the improved version of the Lagrangian based optimization technique [12], Figs. 7(a) and

7(b) show that the proposed method achieves an improvement of about 0.3-1 dB. In Fig. 7, the deadzone

parameter τj is set to 1. Figs. 8(a) and 8(b) illustrate the performance of our method when the size of

the deadzone is equal to 3qj (τj = 2). It can be concluded that the proposed method outperforms the

state-of-the-art method in all these experiments.

Finally, in order to measure the relative gain of the proposed method, we used the Bjontegaard metric

[38]. The results are illustrated in Table I for low and high bitrates corresponding respectively to the

four bitrate points {0.1, 0.2, 0.3, 0.4} and {0.7, 0.8, 0.9, 1} bpp. Table I gives the gain of our method

compared with the improved version of the Lagrangian based optimization technique [12]. Note that a

bitrate saving with respect to the reference method corresponds to negative values. It can be observed

that the proposed approach outperforms the state-of-the-art method by about -10% and 0.7 dB in terms

of bitrate saving and PSNR. All these results, obtained with different images, confirm the effectiveness

of the considered probabilistic models and of the proposed bit allocation method.

VI. CONCLUSION

In this work, we have proposed to reformulate the bit allocation problem as a set of convex programming

problems which can be dealt with in parallel. For this purpose, we have first proposed new piecewise

convex approximations of the entropy and the distortion functions. Then, we have derived explicit

expressions of the optimal quantization parameters which are valid in a given subdomain. This study has

been carried out by considering two probabilistic models: the well-known GG model and its more general

BGG form, which is particularly well-adapted for very sparse sources. Finally, we have illustrated through

experimental results the benefits which can be drawn from the application of the proposed technique in

the context of transform-based coding application.
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APPENDIX A

APPROXIMATION OF THE ENTROPY

We recall that the entropy of a quantized BGG random variable distributed according to (1) is given

by [26]:

Hfj (qj , ǫj) = Φ(p0,j , ǫj) + ǫjHf̃j
(qj) (31)

with H
f̃j
(qj) = −p0,j log2 p0,j − 2

∞∑

i=1

pi,j log2 pi,j (32)

is the entropy of a quantized GG random variable with probability density function f̃j , where the

probability of the zero level is

p0,j = 2

∫ qj(τj−
1

2
)

0
f̃j(ξ)dξ = Q1/βj

(
ωj(τj −

1

2
)βjq

βj

j

)
(33)

and the probability pi,j of the ri,j reconstruction level, i ≥ 1, is

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

f̃j(ξ)dξ =
1

2

(
Q1/βj

(
ωj

(
(τj + i−

1

2
)qj
)βj

)
−Q1/βj

(
ωj

(
(τj + i−

3

2
)qj)

βj

))
.

In the following, in order to prove the desired result, it is sufficient to show that the following approxi-

mation formula of the discrete entropy of a quantized GG random variable holds:

H
f̃j
(qj) = Ĥ

f̃j
(qj) + ∆ (34)

where 0 ≤ ∆ ≤ 2qjC(βj , τj)f̃j
(
(τj +

1

2
)qj
)
. (35)

Note that the case βj ∈ [1, 2] was addressed in [26] for a quantizer with a deadzone of size qj (i.e.

τj = 1). Let us now proceed to the general case.

Since f̃j is a decreasing function on R+, we have, for all i > 0,

qj f̃j
(
(τj + i− 1/2)qj

)
≤ pi,j ≤ qj f̃j

(
(τj + i− 3/2)qj

)

By noticing that

−pi,j log2 pi,j +

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) log2 f̃j(ξ) dξ =

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ)(log2 f̃j(ξ)− log2 pi,j) dξ (36)

we get the inequality:

− pi,j log2 pi,j +

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) log2 f̃j(ξ) dξ ≤

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ)
(
log2 f̃j(ξ)−

log2 f̃j
(
(τj + i− 1/2)qj

)
− log2 qj

)
dξ. (37)
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On the other hand, from the positivity of the Kullback-Leibler divergence,

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ)

pi,j
log2

( f̃j(ξ)/pi,j
1/qj

)
dξ ≥ 0 (38)

After developing (38) and using (37), we obtain for all i ≥ 1

0 ≤− pi,j log2 pi,j +

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) log2 f̃j(ξ) dξ + log2 qj

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ

≤
(
log2 f̃j((τj + i− 3/2)qj)− log2 f̃j

(
(τj + i− 1/2)qj)

)∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ

= ωjq
βj

j

(
(τj + i− 1/2)βj − (τj + i− 3/2)βj

) ∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ. (39)

Now, two cases shall be considered:

• If βj < 1, then, for every i ≥ 1,

(τj + i− 1/2)βj − (τj + i− 3/2)βj ≤ βj(τj + i− 3/2)βj−1,

where the upper bound follows from the fact that ξ 7→ ξβj is a concave function when βj < 1. In this

case, we have

ωjq
βj

j

(
(τj + i− 1/2)βj − (τj + i− 3/2)βj

) ∫ ((τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ ≤ βjωjqj

(
qj(τj + i−

1

2
)− qj

)βj−1

×

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ,

and 0 ≤ −pi,j log2 pi,j +

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) log2 f̃j(ξ) dξ + log2 qj

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

f̃j(ξ) dξ

≤ βjωjqj

∫ (τj+i−1/2)qj

(τj+i−3/2)qj

(ξ − qj)
βj−1f̃j(ξ) dξ.

It can be deduced that

0 ≤ −

+∞∑

i=2

pi,j log2 pi,j +

∫ +∞

(τj+
1

2
)qj

f̃j(ξ) log2 f̃j(ξ)dξ + log2 qj

∫ +∞

(τj+
1

2
)qj

f̃j(ξ)dξ ≤ I1 (40)

where I1 = βjωjqj

∫ +∞

(τj+
1

2
)qj

(ξ − qj)
βj−1f̃j(ξ) dξ.

Since ξ ≥ (τj + 1/2)qj ⇔ ξ − qj ≥ (2τj − 1)ξ/(2τj + 1), it can be concluded that

I1 ≤ βjωjqj

(2τj − 1

2τj + 1

)βj−1
∫ +∞

(τj+
1

2
)qj

ξβj−1f̃j(ξ) dξ

=
βjω

1/βj

j qj

2Γ(1/βj)

(2τj − 1

2τj + 1

)βj−1
e−ωj(τj+

1

2
)βj q

βj
j . (41)
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• If βj ∈ [1, 2] then, for every i ≥ 1,

(τj + i− 1/2)βj − (τj + i− 3/2)βj = (τj + i− 1)βj

(
(1 +

1

2(τj + i− 1)
)βj − (1−

1

2(τj + i− 1)
)βj

)

≤ βj(τj + i− 1)βj−1. (42)

Consequently,

ωjq
βj

j

(
(τj + i− 1/2)βj − (τj + i− 3/2)βj

) ∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

f̃j(ξ) dξ ≤ βjωjqj

(
qj(τj + i−

3

2
) +

qj
2

)βj−1

×

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

f̃j(ξ) dξ

and 0 ≤ −pi,j log2 pi,j +

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

f̃j(ξ) ln f̃j(ξ) dξ + log2 qj

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

f̃j(ξ) dξ

≤ βjωjqj

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

(ξ +
qj
2
)βj−1f̃j(ξ) dξ.

Thus,

0 ≤ −

+∞∑

i=2

pi,j log2 pi,j +

∫ +∞

(τj+
1

2
)qj

f̃j(ξ) log2 f̃j(ξ)dξ + log2 qj

∫ +∞

(τj+
1

2
)qj

f̃j(ξ)dξ ≤ I2 (43)

where I2 = βjωjqj

∫ +∞

(τj+
1

2
)qj

(ξ +
qj
2
)βj−1f̃j(ξ) dξ.

Since ξ ≥ (τj + 1/2)qj ⇔ ξ + qj
2 ≤ (2τj + 2)ξ/(2τj + 1), it can be concluded that

I2 ≤ βjωjqj

(2τj + 2

2τj + 1

)βj−1
∫ +∞

(τj+
1

2
)qj

ξβj−1f̃j(ξ) dξ =
βjω

1/βj

j qj

2Γ(1/βj)

(2τj + 2

2τj + 1

)βj−1
e−ωj(τj+

1

2
)βj q

βj
j . (44)

By combining (40) and (41) (resp. (43) and (44)) when βj < 1 (resp. βj ∈ [1, 2]), we get the following

result:

0 ≤ −

+∞∑

i=2

pi,j log2 pi,j +

∫ +∞

(τj+
1

2
)qj

f̃j(ξ) log2 f̃j(ξ)dξ + log2 qj

∫ +∞

(τj+
1

2
)qj

f̃j(ξ)dξ

≤
βjω

1/βj

j qj

2Γ(1/βj)
C(βj , τj)e

−ωj(τj+
1

2
)βj q

βj
j (45)

where C(βj , τj) is given by (11). Furthermore, it can be checked [26] that we have:

2

∫ +∞

(τj+
1

2
)qj

f̃j(ξ)dξ = 1−Q1/βj

(
ωj

(
τj +

1

2

)βjq
βj

j

)
(46)
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and 2

∫ +∞

(τj+
1

2
)qj

f̃j(ξ) log2 f̃j(ξ)dξ = −hβj
(ωj)

(
1−Q1/βj

(
ωj

(
τj +

1

2

)βjq
βj

j

))
−

ω
1/βj

j (τj +
1
2)qj

Γ(1/βj)
e−ωj(τj+

1

2
)βj q

βj
j . (47)

Therefore, the approximation formula of the entropy of the quantized GG random variable, given by

(34)-(35), follows from (32), (45)-(47). Finally, the approximation formula for the discrete entropy of the

quantized BGG random variable can be easily deduced from (31).

Concerning the high bitrate approximation of the entropy, it can be firstly noticed that ∆ = O(qj). We

further know [39, p.891] that for all a > 0,

Qa(ξ) = O(ξa), as ξ → 0. (48)

Therefore, when qj → 0, we have

H
f̃j
(qj) = hβj

(ωj)− log2 qj +O(qj). (49)

Moreover, according to (33) and (48), we get

Φ(p0,j , ǫj) = −ǫj log2 ǫj − (1− ǫj) log2(1− ǫj) + ǫj1(0,1)(ǫj)
βjω

1/βj

j qj

2Γ(1/βj)
log2(ω

1/βj

j qj) +O(qj)

= Hǫj +O(qj log2 qj) (50)

where 1(0,1) is the characteristic function of the interval (0, 1). Consequently, a high resolution approxi-

mation of the entropy of a quantized BGG random variable is given by (12).

APPENDIX B

APPROXIMATION OF THE DISTORTION

If Xj,s is distributed according to (1), the distortion evaluated through the pj-th order moment of the

quantization error is given by [26]:

ej(qj , ǫj) = 2ǫj

(∫ (τj−
1

2
)qj

0
ξpj f̃j(ξ)dξ +

+∞∑

i=1

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ − ri,j |
pj f̃j(ξ)dξ

)
.

By noticing that

∫ (τj−
1

2
)qj

0
ξpj f̃j(ξ)dξ =

ω
−pj/βj

j Γ((pj + 1)/βj)

2Γ(1/βj)
Q(pj+1)/βj

(
ωj(τj −

1

2
)βjq

βj

j

)
(51)

the approximation error can be expressed as

ej(qj , ǫj)− êj(qj , ǫj)

= 2ǫj

( +∞∑

i=2

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ − ri,j |
pj f̃j(ξ)dξ −

νjq
pj

j

2(pj + 1)

(
1−Q1/βj

(
ωj

(
(τj +

1

2
)qj
)βj

)))
. (52)
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First, for every i ≥ 1, we have

f̃j
(
(τj + i−

1

2
)qj
) ∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ − ri,j |
pjdξ ≤

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ − ri,j |
pj f̃j(ξ)dξ

≤ f̃j
(
(τj + i−

3

2
)qj
) ∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ − ri,j |
pjdξ (53)

with

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ − ri,j |
pjdξ =

νjq
pj+1
j

pj + 1
. (54)

In addition, we have the following inequalities:

∫ (τj+i+ 1

2
)qj

(τj+i− 1

2
)qj

f̃j(ξ)dξ ≤ qj f̃j
(
(τj + i−

1

2
)qj
)

(55)

and, for every i ≥ 2,

qj f̃j
(
(τj + i−

3

2
)qj
)
≤

∫ (τj+i− 3

2
)qj

(τj+i− 5

2
)qj

f̃j(ξ)dξ. (56)

We deduce from (53), (54), (55), (56) and (51) that

νjq
pj

j

2(pj + 1)

(
1−Q1/βj

(
ωj(τj+

1

2
)βjq

βj

j

))
−
νjq

pj+1
j

pj + 1
f̃j
(
(τj+

1

2
)qj
)
≤

+∞∑

i=2

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ−ri,j |
pj f̃j(ξ)dξ

≤
νjq

pj

j

2(pj + 1)

(
1−Q1/βj

(
ωj(τj +

1

2
)βjq

βj

j

))
+
νjq

pj+1
j

pj + 1
f̃j
(
(τj +

1

2
)qj
)
. (57)

Therefore, the approximation error satisfies

−2ǫj
νjq

pj+1
j

pj + 1
f̃j
(
(τj +

1

2
)qj
)
≤ ej(qj , ǫj)− êj(qj , ǫj) ≤ 2ǫj

νjq
pj+1
j

pj + 1
f̃j
(
(τj +

1

2
)qj
)

(58)

which yields the desired approximation of the distortion.

Let us now focus on the expression of the distortion at high bitrate. When qj → 0, according to (48),

the first term in the left hand side of (15) is such that

Q(pj+1)/βj

(
ωj(τj −

1

2
)βjq

βj

j

)
= O(q

pj+1
j ). (59)

Moreover, using (53) and (54), we obtain

νjq
pj+1
j

pj + 1
f̃j
(
(τj +

1

2
)qj
)

≤

∫ (τj+
1

2
)qj

(τj−
1

2
)qj

|ξ − r1,j |
pj f̃j(ξ)dξ ≤

νjq
pj+1
j

pj + 1
f̃j
(
(τj −

1

2
)qj
)

(60)

which shows that

∫ (τj+
1

2
)qj

(τj−
1

2
)qj

|ξ − r1,j |
pj f̃j(ξ)dξ = O(q

pj+1
j ). (61)
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In addition, we have

νjq
pj

j

2(pj + 1)

(
1−Q1/βj

(
ωj(τj +

1

2
)βjq

βj

j

))
=

νjq
pj

j

2(pj + 1)

(
1 +O(qj)

)
. (62)

Since (16) shows that ej(qj , ǫj)− êj(qj , ǫj) = O(q
pj+1
j ), it can be deduced from (59), (61) and (62) that

(17) holds.

APPENDIX C

SOLUTION OF THE BIT ALLOCATION PROBLEM

For simplicity, for every j ∈ {1, . . . , J}, we will drop the index k in the variables akj , ckj , γkj , αk
j , and

δkj , which are used in (13) and (18).

As gj(lj) is a decreasing function of lj for every j ∈ {1, . . . , J}, it is clear that, if
∑J

j=1
nj

n gj(l
bj+1
j ) >

Rmax ⇔
∑J

j=1
nj

n (ajl
bj+1
j + cj) > Rmax, then Problem (Pb) admits no solution since C ∩ ([lb11 , l

b1+1
1 ]×

· · · × [lbJJ , l
bJ+1
J ]) is empty. Another particular case is when

J∑

j=1

nj
n
(ajl

bj
j + cj) ≤ Rmax (63)

Since, for every j ∈ {1, . . . , J}, dj is an increasing function, the solution to (Pb) is obviously l̃b =

(lb11 , . . . , l
bJ
J ).

In the following, we will discard these two trivial cases by assuming that

J∑

j=1

nj
n
(ajl

bj
j + cj) > Rmax

and

J∑

j=1

nj
n
(ajl

bj+1
j + cj) ≤ Rmax. (64)

Under these assumptions, since (lb1+1
1 , . . . , lbJ+1

J ) ∈ C ∩ ([lb11 , l
b1+1
1 ] × · · · [lbJJ , l

bJ+1
J ]), the intersection

set is nonempty and the problem (Pb) has a solution l̃b. In order to find this solution, we will apply the

Fenchel-Rockafellar duality theorem [40].

Theorem 1: Let f and g be two lower-semicontinuous convex functions from RJ to ]−∞,+∞]. Then,

provided that dom(f) ∩ dom(g) is nonempty, we have

inf
l∈RJ

(f(l) + g(l)) = max
l∗∈RJ

(−g∗(−l∗)− f∗(l∗)), (65)

where f∗ (resp. g∗) is the convex conjugate of f (resp. g).1

1Recall that dom(f) = {l ∈ R
J |f(l) < +∞} and f∗ is defined as: ∀ l

∗ ∈ R
J , f∗(l∗) = sup

l∈RJ (l⊤l∗ − f(l)).
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In our case, we take g = ιC where ιC is the indicator function2 of the closed convex set C defined

by (19). Taking l ∈ C is equivalent to take l ∈ RJ such that

e⊤l ≥

J∑

j=1

nj
n
cj −Rmax, where e = −

1

n
(n1a1, . . . , nJaJ) (66)

Thus, the conjugate of g satisfies

∀ l∗ ∈ R
J , g∗(l∗) = sup

l∈C
l⊤l∗ = sup

l∈C
(λl⊤e+ l⊤l∗⊥), (67)

where l∗⊥ belongs to Vect{e}⊥, the orthogonal subspace of e, and λ ∈ R. From (66), we see that if

l∗⊥ 6= 0, g∗(l∗) = +∞. Furthermore, if l∗ = λe with λ > 0, the supremum over l of l⊤e is infinite.

Finally, we obtain for all l∗ ∈ RJ

g∗(l∗) =





λ
( J∑

j=1

nj
n
cj −Rmax

)
if l∗ = λe with λ ≤ 0

+∞ else.

On the other hand, we take, for every l ∈ RJ , f(l) = D(l) + ιPb
(l), where Pb is the box defined at the

beginning of Section IV-B. Thus, f can be rewritten as

∀ l ∈ R
J , f(l) =

J∑

j=1

φj(lj) (68)

where, for every j ∈ {1, . . . , J},

∀ lj ∈ R, φj(lj) = ρjǫj(αj2
γj lj + δj) + ι

[l
bj
j ,l

bj+1

j ]
(lj). (69)

Using the separability of the convex conjugate of f , we get

∀ l∗ = (l∗1, . . . , l
∗
J) ∈ R

J f∗(l∗) =

J∑

j=1

φ∗j (l
∗
j ). (70)

For any given j ∈ {1, . . . , J} and l∗j ∈ R, let us define

∀ lj ∈ R, ψj(lj) = ljl
∗
j − ρjǫj(αj2

γj lj + δj). (71)

We can write

φ∗j (l
∗
j ) = sup

l
bj
j ≤lj≤l

bj+1

j

ψj(lj). (72)

Furthermore,

∀ lj ∈ R, ψ′
j(lj) = l∗j − ln(2)ρjǫjγjαj2

γj lj = l∗j −
κjNjγj
n

2γj lj .

2The indicator function of C is defined as: ∀ x ∈ R
J , ιC(x) = 0 if x ∈ C; +∞ otherwise.
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Thus, if l∗j ≤ 0, then ψ′
j(lj) < 0 and φ∗j (l

∗
j ) = ψj(l

bj
j ). In turn, if l∗j > 0, then it can be checked that

ψ′
j(lj) < 0 if and only if

lj >
1

γj
log2

( nl∗j
κjNjγj

)
. (73)

Three cases have then to be considered:

(i) If l
bj
j ≥ 1

γj
log2

(
nl∗j

κjNjγj

)
which is equivalent to 2γj l

bj
j ≥

nl∗j
κjNjγj

then, for every lj ≥ l
bj
j , ψ′

j(lj) < 0

and

φ∗j (l
∗
j ) = ψj(l

bj
j ) = l∗j l

bj
j − ρjǫj(αj2

γj l
bj
j + δj). (74)

(ii) Similarly, if
nl∗j

κjNjγj
≥ 2γj l

bj+1

j then, for every lj ∈ [l
bj
j , l

bj+1
j ], ψ′

j(lj) > 0 and

φ∗j (l
∗
j ) = ψj(l

bj+1
j ) = l∗j l

bj+1
j − ρjǫj(αj2

γj l
bj+1

j + δj). (75)

(iii) Otherwise, if 2γj l
bj
j <

nl∗j
κjNjγj

< 2γj l
bj+1

j then,

φ∗j (l
∗
j ) = ψj

( 1

γj
log2

( nl∗j
κjNjγj

))

=
l∗j

γj ln 2

(
ln
( nl∗j
κjNjγj

)
− 1
)
− ρjǫjδj . (76)

Now, by recalling that dom(g) = {−λe, λ ≥ 0}, the dual problem can be reexpressed as

max
l∗∈RJ

(−g∗(−l∗)− f∗(l∗)) = max
−l∗∈dom(g)

(−g∗(−l∗)− f∗(l∗)) = max
λ≥0

Φ(λ) (77)

where

∀λ ∈ R+, Φ(λ) = λ
( J∑

j=1

nj
n
cj −Rmax

)
−

J∑

j=1

φ∗j

(
− λ

nj
n
aj

)
.

According to (74)-(76) and the notation introduced in (22) and (23), Φ is the function defined in (30).

The derivative of this function is given by

∀λ ∈ R+, Φ′(λ) =

J∑

j=1

nj
n
cj −Rmax −

J∑

j=1

ϕ′
j(λ) (78)

where ϕ′
j corresponds to the derivative of the function ϕj defined in Proposition 3. Thus, it can be checked

that, for every λ ∈ R∗
+, we have Φ′′(λ) ≤ 0. The inequality being strict if and only if min1≤j≤J λj <

λ < max1≤j≤J λj , Φ is strictly concave on this interval. In addition, if λ ≤ min1≤j≤J λj , then

Φ′(λ) =

J∑

j=1

nj
n
(ajl

bj
j + cj)−Rmax > 0 (79)

and, if λ ≥ max1≤j≤J λj , then

Φ′(λ) =

J∑

j=1

nj
n
(ajl

bj+1
j + cj)−Rmax ≤ 0 (80)
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where the Assumptions given by (64) have been used.

As Φ′ is strictly decreasing on [min1≤j≤J λj ,max1≤j≤J λj ], we deduce that there exists a unique value

λ̃ in this interval such that Φ′(λ̃) = 0. Thus, λ̃ corresponds to the maximizer of Φ over R+. From the

definitions of the sets in (27), (28) and (29), we get:

∀j ∈ I, λ̃ ≤ λj (81)

∀j ∈ J, λj < λ̃ ≤ λj (82)

∀j ∈ K, λ̃ > λj . (83)

Finally, it can be deduced from (78) that Φ′(λ̃) = 0 implies

∑

j∈J

Nj log2

(
λ̃

κj

)
+
∑

j∈I

Njγjl
bj
j +

∑

j∈K

Njγjl
bj+1
j =

J∑

j=1

njcj − nRmax (84)

which yields the expression of λ̃ in (25).

Furthermore, the optimal value l̃b = (l̃1,b, . . . , l̃J,b) of l is given by the critical point of f . This

means that, for every j ∈ {1, . . . , J}, l̃j,b is the maximizer of ψj over [l
bj
j , l

bj+1
j ] when l∗j = −λ̃njaj/n.

Therefore, we get the optimal values l̃j,b given by (24).
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THE AVERAGE PSNR DIFFERENCES AND THE BITRATE SAVING AT LOW AND HIGH BITRATES. THE GAIN OF THE PROPOSED

APPROACH W.R.T THE STATE-OF-THE-ART METHOD [12].

bitrate saving PSNR gain

(in %) (in dB)

Images low high low high

einst -8.20 -19.42 0.15 0.65

marseille -6.96 -13.86 0.24 0.68

straw -16.41 -19.53 0.51 0.77

elaine -0.45 -16.37 0.02 0.69

castle -7.78 -9.02 0.40 0.68

cartoon -5.16 -4.27 0.36 0.63
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Fig. 3. D1/2 versus entropy (in bpp) for a uniform scalar quantizer with a deadzone of size qj (i.e. τj = 1) for “marseille”

image: influence of the number of intervals.
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Fig. 4. PSNR versus entropy for a uniform scalar quantizer with a deadzone of size qj (i.e. τj = 1) for images “einst” (a),

“straw” (b), “marseille” (c) and “elaine” (d): performance of the proposed approach vs the Lagrangian one.
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(a) βj = 0.05 (b) βj = 0.34, ǫj = 0.40 (c) KS=0.53 (d) KS=0.06

Fig. 6. Modelling the distribution of the diagonal detail wavelet coefficient of the “cartoon” image using (a) GG

model (b) BGG model. The cumulative distribution function using (c) GG model (d) BGG model. The curve plotted

in solid (resp. dashed) line is associated with the subband wavelet coefficients (resp. theoretical model).
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Fig. 7. PSNR versus entropy for a uniform scalar quantizer with a deadzone of size qj (i.e. τj = 1) for images “cartoon” (a)

and “castle” (b): performance of the proposed approach vs the Lagrangian one.
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Fig. 8. PSNR versus entropy for a uniform scalar quantizer with a deadzone of size 3qj (i.e. τj = 2) for images “cartoon” (a)

and “castle” (b): performance of the proposed approach vs the Lagrangian one.
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