INITIAL

Cyclic fatigue behavior of woven hemp/epoxy composite: Damage analysis

Davi S. de Vasconcellos, F. Touchard, L. Chocinski-Arnault

davi.vasconcellos@ensma.fr

Institut P' • CNRS Département Physique et Mécanique des Matériaux ISAE-ENSMA • Téléport 2 1, avenue Clément Ader • BP 40109 F86961 FUTUROSCOPE CHASSENEUIL Cedex - FRANCE

OVERVIEW

- Material and testing methods
- Results and discussion
 - Fatigue behavior
 - Damage analysis

NSTITU

- Damage evolution
- Acoustic Emission
- CT scan and thermal field
- Conclusions and Further Work

Tested material

Composite:

- 7 layers of plain weave fabric hemp
- epoxy resin

fiber volume fraction = $38 \pm 5\%$

Fabric weight = 267 g/m^2 Density = 1.2 g/cm^3 Tg = $100 \degree$ C

V

ECCM 15 - Cyclic fatigue behavior of woven hemp/epoxy composite: Damage analysis

Tested specimens

Two orientations related to the tensile axis: [0°/90°]₇ and [±45°]₇

Dimensions: 150x20x3 mm³

[±45°]₇ [0°/90°]₇

Testing methods Cyclic Fatigue

Frequency = 1 Hz R ($\sigma_{min}/\sigma_{max}$) = 0.01

Testing methods Cyclic Fatigue

Frequency = 1 Hz R ($\sigma_{min}/\sigma_{max}$) = 0.01

1) Acoustic Emission (AE)

- Physical Acoustics SA
- 80 mm distance between sensors

1) Acoustic Emission (AE)

- Physical Acoustics SA
- 80 mm distance between sensors

2) Thermal field

Infrared camera

1) Acoustic Emission (AE)

- Physical Acoustics SA
- 80 mm distance between sensors

2) Thermal field

Infrared camera

3) X-ray 3D CT-scan

- Jean Lamour Institute at Ecole des Mines de Nancy, France.
- 20x20 mm² zone near the failure.
- resolution of 14.8 $\mu\text{m/pixel}$

Results – Fatigue behavior S-N Curves

* Sigma ratio is used to take into account tensile strength variations between different composite plates

Results – Fatigue behavior S-N Curves

* Sigma ratio is used to take into account tensile strength variations between different composite plates

→ Higher dispersion for $[0^{\circ}/90^{\circ}]_7$ → Yarns (natural aspect) on tensile direction

Results – Fatigue behavior S-N Curves

* Sigma ratio is used to take into account tensile strength variations between different composite plates

- → Higher dispersion for $[0^{\circ}/90^{\circ}]_7$ → Yarns (natural aspect) on tensile direction
- → Adapted Wöhler model in accordance with experimental points:

$$Log(N_f) = A - B \frac{\sigma_{\text{fatigue}_max}}{\sigma_{\text{static}_failure}}$$
ECCM 15 - Cyclic fatigue behavior of woven
hemp/epoxy composite: Damage analysis
7

Damage evolution

Three parameters:

Damage evolution

Three parameters:

Damage evolution

Three parameters:

1) $E_{
m sec}$ / $E_{
m sec}^1$

2) ϵ_{max}

Damage evolution

ε_{res}

Three parameters:

Damage evolution

Damage evolution

More influenced by the number of fatigue cycles

ECCM 15 - Cyclic fatigue behavior of woven hemp/epoxy composite: Damage analysis

0.4

cycle ratio (N/N_f)

0.6

0.8

1.0

0.0

0.2

Damage evolution

More influenced by the number of fatigue cycles

Damage evolution

Damage evolution

➔ Three marked phases

Acoustic Emission

Acoustic Emission

Acoustic Emission

Acoustic Emission

Acoustic Emission

[0°/90°]₇

→ AE events distributed all along the specimen and throughout the fatigue lifetime

→ tendency to localize at failure zone

Graph represents:

AE events total number total fatigue cycles

➔ Influence of fatigue stress levels

→ Significant difference for the lowest stress level in $[\pm 45^{\circ}]_7$

z

Graph represents:

AE events total number total fatigue cycles

➔ Influence of fatigue stress levels

→ Significant difference for the lowest stress level in $[\pm 45^{\circ}]_7$

Predominance of low amplitudes (35 to 45 dB) for all stress levels	Specimen	$\sigma_{ m fatigue_max}/\sigma_{ m static_failure}$	Mean amplitude [dB]	Standard deviation [dB]
		40 %	43	3
	[0º/90º] ₇	60 %	40	6
		80 %	41	6
	[±45°] ₇	60 %	40	5
		75 %	40	5
		90 %	40	5

INS

Graph represents:

AE events total number total fatigue cycles

➔ Influence of fatigue stress levels

→ Significant difference for the lowest stress level in $[\pm 45^{\circ}]_7$

Predominance of low amplitudes 40% 43 3 (35 to 45 dB) for all stress levels $[0^{\circ}/90^{\circ}]_7$ 60% 40 6 Matrix cracks? 80% 41 6 $[1 \pm 45^{\circ}]_7$ 75% 40 5 90% 40 5		Specimen	σ _{fatigue_max} / σ _{static_failure}	Mean amplitude [dB]	Standard deviation [dB]
Image: Note an stress levels $[0^{\circ}/90^{\circ}]_7$ 60% 40 6 Matrix cracks? 60% 41 6 60% 40 5 $[\pm 45^{\circ}]_7$ 75% 40 5 90% 40 5	Predominance of low amplitudes (35 to 45 dB) for all stress levels Matrix cracks?		40 %	43	3
Matrix cracks? 80% 41 6 60% 40 5 $[\pm 45^{\circ}]_7$ 75\% 40 5 90\% 40 5		[0º/90º] ₇	60 %	40	6
$\begin{bmatrix} \pm 45^{\circ} \end{bmatrix}_{7} = \begin{bmatrix} 60 \% & 40 & 5 \\ 60 \% & 40 & 5 \\ 40 & 5 \\ 90 \% & 40 & 5 \end{bmatrix}$			80 %	41	6
[±45°] ₇ 75% 40 5 90% 40 5			60 %	40	5
90 % 40 5		[±45°] ₇	75 %	40	5
			90 %	40	5

Acoustic Emission

Each cycle:

Acoustic Emission

Each cycle:

Each cycle:

During fatigue lifetime:

- ➔ Concentrated around maximum stress value
- ➔ Mostly in the upward region

NSTITU

➔ No acoustic event near minimum stresses

Microtomography and thermal field $[0^{\circ}/90^{\circ}]_{7}$ $[\pm 45^{\circ}]_{7}$

- → Matrix cracks mainly at the interface
 - \rightarrow tend to be perpendicular to tensile axis (x)
 - \rightarrow tend to follow interface

UTITU

Microtomography and thermal field $[0^{\circ}/90^{\circ}]_{7}$ $[\pm 45^{\circ}]_{7}$

- → Matrix cracks mainly at the interface
- → confirms AE results (low amplitude ⇔ matrix cracks)

Microtomography and thermal field $[0^{\circ}/90^{\circ}]_{7}$ $[\pm 45^{\circ}]_{7}$

- → Matrix cracks mainly at the interface
- → confirms AE results (low amplitude ⇔ matrix cracks)

➔ Friction of crack surface can increase material temperature and could explain heat concentration

Thermal field:

Conclusions

Determination of the cyclic fatigue behavior of a woven fabric hemp/epoxy composite

for two types of laminates: $[0^{\circ}/90^{\circ}]_{7}$ and $[\pm 45^{\circ}]_{7}$

- → Significant dispersion due to the **natural aspect** of **hemp yarns**
- → Significant loss of the secant modulus during fatigue life
- → Acoustic events are **distributed** throughout the **specimen gauge** and the **fatigue life**
- → There is a predominance of **low amplitude events** (35 to 45 dB)
- → Those events probably correspond to matrix cracks development, mainly at the interface, as observed by CT-scan
- ➔ Internal frictions of crack surfaces are probably the cause of heat concentration observed by infrared camera.

Conclusions

Determination of the cyclic fatigue behavior of a woven fabric hemp/epoxy composite

for two types of laminates: $[0^{\circ}/90^{\circ}]_{7}$ and $[\pm 45^{\circ}]_{7}$

- → Significant dispersion due to the **natural aspect** of **hemp yarns**
- → Significant loss of the secant modulus during fatigue life
- → Acoustic events are distributed throughout the specimen gauge and the fatigue life
- → There is a predominance of **low amplitude events** (35 to 45 dB)
- → Those events probably correspond to **matrix cracks** development, mainly at the **interface**, as observed by CT-scan
- ➔ Internal frictions of crack surfaces are probably the cause of heat concentration observed by infrared camera.

Further Work:

NSTITU

- → S-N-P curves
- → Further interface studies
- → AE analysis

Conclusions

Determination of the cyclic fatigue behavior of a woven fabric hemp/epoxy composite

for two types of laminates: $[0^{\circ}/90^{\circ}]_{7}$ and $[\pm 45^{\circ}]_{7}$

- → Significant dispersion due to the **natural aspect** of **hemp yarns**
- → Significant loss of the secant modulus during fatigue life
- → Acoustic events are **distributed** throughout the **specimen gauge** and the **fatigue life**
- → There is a predominance of **low amplitude events** (35 to 45 dB)
- → Those events probably correspond to matrix cracks development, mainly at the interface, as observed by CT-scan
- ➔ Internal frictions of crack surfaces are probably the cause of heat concentration observed by infrared camera.

Further Work:

UTITU

- → S-N-P curves
- → Further interface studies
- → AE analysis

INITIAL

Cyclic fatigue behavior of woven hemp/epoxy composite: Damage analysis

Davi S. de Vasconcellos, F. Touchard, L. Chocinski-Arnault

davi.vasconcellos@ensma.fr

Institut P' • CNRS Département Physique et Mécanique des Matériaux ISAE-ENSMA • Téléport 2 1, avenue Clément Ader • BP 40109 F86961 FUTUROSCOPE CHASSENEUIL Cedex - FRANCE

