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Abstract  

 

The task of bouncing a ball on a racket was adopted as a model system for 

investigating the behavioral dynamics of rhythmic movement, specifically how perceptual 

information modulates the dynamics of action. Two experiments, with sixteen participants 

each, were carried out to definitively answer the following questions: How are passive 

stability and active stabilization combined to produce stable behavior?  What informational 

quantities are used to actively regulate the two main components of the action – the timing of 

racket oscillation and the correction of errors in bounce height? We used a virtual ball-

bouncing set-up to simultaneously perturb gravity (g) and ball launch velocity (vb) at impact.  

In Experiment 1, we tested the control of racket timing by varying the ball’s upward half-

period tup while holding its peak height hp constant.  Conversely, in Experiment 2, we tested 

error correction by varying hp while holding tup constant.  Participants adopted a mixed 

control mode in which information in the ball’s trajectory is used to actively stabilize 

behavior on a cycle-by-cycle basis, in order to keep the system within or near the passively 

stable region.  The results reveal how these adjustments are visually controlled:  the period of 

racket oscillation is modulated by the half-period of the ball’s upward flight, and the change 

in racket velocity from the previous impact (via a change in racket amplitude) is governed by 

the error to the target. 

 (228 words) 
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Introduction 

 

Living in the material world  

Biological systems live in a material world and must interact with its physical 

properties.  This can be viewed as an obstacle to carrying out functional tasks, or as part of the 

solution that simplifies the control problem. The fundamental question underlying the present 

research is how biology exploits physics to order behavior.  There is growing evidence that 

perceiving-acting systems capitalize on physical dynamics in order to generate stable patterns 

of behavior (Turvey 1990).  At the same time, to avoid getting locked into rigid action 

patterns, they use perceptual information to modulate those dynamics in order to achieve 

adaptive flexibility (Warren 2006).  Precisely how passive dynamics is combined with active 

control to generate stable, adaptive behavior is a general problem in the study of perception 

and action.  In this article we argue for a control regime that we call ‘mixed control’ as a 

general solution to this problem. 

 There are many real-world examples of this combination of passive stability and active 

control.  For instance, the morphology of the human musculoskeletal system realizes a 

dynamically stable and energy-efficient solution for bipedal walking (Kuo 2007), which has 

recently inspired the design of passive dynamic robots (Collins et al. 2005).  This design 

simplifies the control problem from one of actively controlling all biomechanical degrees of 

freedom to one of tweaking the passive dynamics of the system. 

We adopted the task of bouncing a ball on a racket as a model system for investigating 

the behavioral dynamics of rhythmic movement (Warren 2006), specifically how perceptual 

information modulates the dynamics of action.  The physics of ball-bouncing is well 

understood and exhibits a passively stable solution for period-1 bouncing (in which the ball’s 

flight period is equal to one racket period and bounces to a constant height).  By using a 
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virtual ball-bouncing set-up, visual information about the ball’s trajectory can be manipulated 

to probe the relation between passive dynamics and active control.  The present study aimed 

to definitively answer three questions.  First, how are passive stability and active stabilization 

combined to produce stable behavior?  Further, what informational quantities are used to 

actively regulate the two main components of the action – the timing of racket oscillation and 

the correction of errors in bounce height? 

 

Dynamics of ball bouncing  

 Schaal et al. (1996) and Dijkstra et al. (2004) modeled the ball-racket system, analyzed 

its nonlinear stability properties, and demonstrated its relevance to motor control. In these 

models, the ball falls with gravitational acceleration g, racket motion is periodic (or 

harmonic), and the ball-racket system is characterized by its coefficient of restitution (i.e. 

the “bounciness” of the ball with a constant racket). By means of local and non-local stability 

analyses, the authors showed the existence of a passively stable regime, in which small 

perturbations or errors in ball motion will die out after several racket cycles, without active 

error correction.  Specifically, if the falling ball is hit during racket upswing and if racket 

acceleration at impact ar is negative and satisfies the following relationship between g and : 

 
 

 2
2

1

12





 g

< ar < 0 

then the ball will spontaneously relax back to its original limit-cycle trajectory.  The ball-

bouncing system is thus self-stabilizing with respect to its flight period and bounce height. 

From the perspective of perceptual-motor control, exploiting passive stability obviates the 

need for active error correction, for bouncing is stable even for a blind open-loop system with 

no perceptual input.  
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Initial reports confirmed that experienced participants tend to bounce in the passively 

stable regime, with negative impact accelerations clustered in the maximally stable range 

(Schaal et al. 1996; Sternad et al. 2001). As expected, the variability of impact acceleration 

and ball amplitude were also lowest in the maximally stable range. With practice, impact 

accelerations became progressively negative over trials and converged to the maximally stable 

region (Sternad et al. 2000).  This evidence indicates that actors exploit passive stability, 

consistent with the passive stabilization hypothesis. 

However, later studies revealed that participants can actively stabilize bouncing 

outside the passive region (de Rugy et al. 2003; Wei et al. 2007; Morice et al. 2007), implying 

that they also take advantage of perceptual information to control the racket oscillation. When 

 was perturbed, altering the flight time and peak height of the ball’s trajectory, steady-state 

bouncing was reestablished faster than predicted by passive relaxation alone, and racket 

adjustments were proportional to the perturbation magnitude (de Rugy et al. 2003; Wei et al. 

2007). Wei et al. (2007) concluded that participants used a “blend” of active and passive 

control.  However, de Rugy et al. (2003) did not test small perturbations, and neither study 

tested perturbations of g, which alter the relation between ball flight time and peak height.    

 

How are passive stability and active control combined?  

To characterize how passive stability and active stabilization might be combined, 

Siegler et al. (2010) described four candidate control modes.  At the extremes are pure passive 

control (open-loop), which relies solely on passive self-stabilization without perceptual input, 

and pure active control (closed-loop), perceptual control alone without reference to passive 

stability.  Examples of the latter include the ‘mirror algorithm’ for robot bouncing (Bühler et 

al. 1994), in which the racket velocity symmetrically mirrors the ball velocity, and optimal 

control solutions based on the ball’s trajectory (Kulchenko and Todorov 2011). On the hybrid 
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control hypothesis, small perturbations are passively stabilized while large perturbations 

outside the passive region are actively stabilized.  This implies a threshold at the stability 

boundary where active adjustments are initiated, depending on the magnitude of the 

perturbation. The mixed control hypothesis proposes that active stabilization exploits the 

passive physics of the task. On this view, bouncing is perceptually controlled on each cycle in 

order to keep the system in or near the passively stable region, thereby reducing the 

magnitude of racket adjustments and increasing the stability of behavior.  

Siegler et al. (2010) provided evidence that participants regulate racket oscillation 

using mixed control. By suddenly changing g to a new value at the peak of the ball’s flight, or 

changing  at impact, they found very rapid racket adjustments, beginning in the first racket 

cycle following the transition and relaxing to a new stable state within two cycles after a 

change in g or three cycles after a change in . More importantly, such adjustments occurred 

after both stabilizing and destabilizing transitions, contrary to the hybrid control hypothesis. 

The findings supported a mixed control mode, in which actors take advantage of both passive 

stability properties and active control to achieve stable, adaptive behavior.  The first aim of 

the present study is to provide a further test of the control mode by parametrically varying the 

magnitude of discrete perturbations in g and . 

 

How is racket timing visually controlled? 

How might mixed control be implemented in rhythmic ball-bouncing?  There are two 

main components to the task: controlling the timing of ball-racket impact to keep bouncing in 

or near the passive region, and controlling the velocity of ball-racket impact to stabilize the 

bounce height at the target (error correction).  For the control of timing, Siegler et al. (2010) 

identified three optical variables in the ball’s trajectory that are informative about the time of 
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the ball’s return to the previous impact height, and thus could be used to regulate the period 

and phase of racket oscillation (Fig. 1a):  

(i) Launch velocity: Assuming that g is known, the ball’s total flight time (period Tb) 

is specified by its launch velocity vb:  Tb  2 vb g  

(ii) Peak height:  Given that g is known, the duration of the ball’s descent, and hence 

the total flight time, is specified by its peak height hp:  Tb  2 2hp g  

(iii)  Half-period: As long as g is constant during the ball’s flight, the duration of its 

ascent (tup) is equal to the duration of the ensuing descent (tdown), and hence the 

ball’s upward half-period specifies the total flight period, regardless of the value of 

g:  Tb  2tup  

To dissociate these variables and test their influence on racket period (Tr), Siegler et 

al. (2010) changed g to a new value when the ball reached its peak height. This altered the 

relation between peak height hp and the ball’s descent tdown, as well as the relation between the 

next launch velocity vb and the ball’s flight period Tb, while keeping tup = tdown on subsequent 

bounces. Racket period correlated highly with tup (r = 0.61 to 0.91), but it also correlated with 

hp in one condition (r = 0.77). Siegler et al. (2010) concluded that racket period is likely 

regulated by the duration of the ball’s upward half-period, the only variable among the three 

that does not depend upon a known g.  The second aim of this paper is to dissociate these 

informational variables further, by perturbing g and  (or equivalently, launch velocity vb) at 

impact in order to manipulate the duration of tup while holding hp constant.  

 

How is error correction visually controlled? 

In addition to the control of impact timing, participants must correct for bounce error 

() from the target height.  The key racket variable that determines the ball’s peak height hp is 

the racket velocity at impact (vr), given the ball’s impact velocity (vb). The third aim of the 
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present study is thus to understand how racket velocity is visually controlled for error 

correction. Two main hypotheses are compared. 

Ronsse and Sternad (2010; Ronsse et al. 2010) proposed that the peak height of the 

ball (hp) is used to compute the absolute racket velocity (vr) required on the next impact; we 

will call this the absolute hypothesis. The authors analyzed ball-bouncing as combining 

continuous rhythmic actuation of the racket with the control of discrete impact events, and 

accordingly developed a two-layer model within an optimal control framework (Todorov and 

Jordan 2002). In the first discrete layer, the ball’s peak height is used to determine its landing 

velocity, which in turn is used to compute the exact racket velocity required to hit the ball to 

the target height. The second continuous layer then smoothly drives the racket to this desired 

state.  However, this hypothesis assumes a known g, whereas Siegler et al. (2010) showed that 

accurate bouncing is recovered in only two cycles after a change in g. 

Wei et al. (2008) observed that racket impact velocity was an inverse linear function of 

the preceding bounce error, and interpreted the negative slope as a feedback gain.  However, 

this relation was weak for a control variable, with R² values between 0.2 and 0.3 (depending 

on ).  Within an oscillator framework, Siegler et al. (2010) argued that impact velocity is a 

consequence of the racket amplitude, and assumed the latter would be visually controlled.  

However, the correlation of racket amplitude with the preceding error (ball peak height hp) 

was virtually nil, and they could not identify an effective control law.  Thus, it is not clear that 

either absolute racket velocity or racket amplitude are visually controlled.  

In order to avoid under-specified control variables, Warren (1988) suggested that 

information might be used to regulate the change in the value of a control variable rather than 

its absolute value. The relative hypothesis thus proposes that bounce error is used to control 

the change in racket velocity from the previous impact (∆vr), in order to compensate for the 

error.  Specifically, when participants see an overshoot ( > 0) they should produce a lower 
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racket velocity than on the previous impact (∆vr < 0), and when they see an undershoot ( < 0) 

they should generate a higher impact velocity than before (∆vr > 0). A simple linear 

relationship between  and ∆vr could account for error correction, and its slope could be 

rapidly retuned after a change in g, , or target height.  To test these hypotheses, we isolated 

bounce error  by perturbing g and vb at impact in order to manipulate the ball’s peak height 

hp, while holding its upward flight time tup constant. 

 

In sum, to determine how the two main components of action are visually controlled, 

we used a virtual ball-bouncing set-up to simultaneously perturb g and vb at impact.  In 

Experiment 1, we varied the ball’s upward half-period tup while holding its peak height hp 

constant, and conversely in Experiment 2, we varied hp while holding tup constant.  We find 

that racket movement is actively controlled on a cycle-by-cycle basis at all perturbation 

magnitudes, contrary to hybrid control but consistent with mixed control.  To control the 

timing of oscillation, racket period Tr is modulated by the ball’s upward half-period tup, while 

to perform error correction, the change in racket velocity from the previous impact ∆vr is 

regulated by bounce error . 

 

 -----------Insert Figure 1 about here ------- 

 

Experiment 1: Visual control of racket timing 

 

The dual purpose of Experiment 1 was to identify the control mode of rhythmic bouncing, and 

to test the information (tup or hp) used to control racket period. To dissociate these variables, 

the normal physical relation between the ball’s launch velocity, flight duration, and peak 
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height was altered by perturbing vb and g at impact for one-half cycle.  This allowed us to 

vary tup while holding hp constant, and to measure the resulting racket adjustment. Graded 

perturbations were applied by randomly sampling a continuous range of vb values. The mixed 

control hypothesis predicts that racket adjustments will be a monotonic function of 

perturbation magnitude, whereas the hybrid control hypothesis predicts they will only be 

initiated when the perturbation exceeds the stability boundary. If racket period is controlled 

by the ball’s upward half-period, then Tr should be more strongly correlated with tup than with 

hp or vb. 

 

Methods 

 

Participants 

Sixteen participants were tested in Exp 1 (25.2 ± 4.3 years).  None had previously 

participated in a bouncing experiment or had extensive practice with the task, so they were 

considered novice bouncers. The protocol was approved by the local ethics board (Comité 

ethique, Université Paris-Sud), and participants provided written informed consent. 

 

Apparatus  

The virtual ball-bouncing setup (Fig. 2) was previously described in Morice et al. 

(2007) and Siegler et al. (2010). Participants stood 1.5 m in front of a rear-projection screen 

with an LCD projector (50 Hz), holding a table tennis paddle in their preferred hand (the 

physical racket).  Racket position was measured by an electromagnetic sensor (Flock of Birds, 

Ascension Technologies) at a sampling rate of 120 Hz, and used to compute the vertical 

position of the virtual racket (a horizontal bar on the screen) and its interaction with the 

virtual ball (a disk 0.04 m in diameter). The paddle could be moved freely in three 
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dimensions, but participants were asked to keep it horizontal and to perform movements in the 

vertical dimension only. A sheet of cardboard positioned horizontally at neck level prevented 

them from seeing the racket once the experiment began. The task was to bounce the virtual 

ball to a target (a horizontal line) at a height hT of 0.65 m with respect to a zero racket 

position, which was measured at the beginning of each session by asking the participant to 

hold the racket horizontally with the elbow flexed at 90˚. A sound was played at contact 

between the virtual racket and the ball. Total latency was measured at 30ms (Morice et al. 

2008).  

 -----------Insert Figure 2 about here ------- 

 

Procedure 

Participants were instructed to repeatedly bounce the virtual ball to the target height.  

They began with twelve 40s “steady-state” familiarization trials, followed by twenty-four 40s 

“perturbation” test trials. During familiarization trials, g and were constant at 9.81 m/s² and 

0.42, respectively, and launch velocity vb was unperturbed. On test trials, ball kinematics were 

perturbed every 5 cycles on half the trials and every 6 cycles on the other half; trials were 

presented in a random order to minimize anticipation. During unperturbed cycles, g and 

were also set at 9.81 m/s² and 0.42, respectively. 

 

Perturbations 

Ball and racket variables are defined in Fig. 1a.  For the ball, a bounce was defined by 

two successive impacts, where subscript ‘0’ refers to the flight preceding the perturbed impact 

and subscript ‘1’ refers to the perturbation and the subsequent flight.  For the racket, a cycle 

was defined by two successive peak racket positions, where C0 refers to the racket cycle that 
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contained the perturbed impact, C1 refers to the cycle that immediately followed the 

perturbation, and so on.     

To dissociate the ball’s upward flight duration (tup) from its peak height (hp), we 

introduced coordinated perturbations in the ball’s launch velocity vb1 and g1 at impact for one 

half-cycle, so that tup1 varied while the amplitude of the ball’s flight (H1) remained unchanged 

(Fig. 1b); consequently, the peak height hp1 was unaffected by the perturbation. The 

magnitude x of the vb1 perturbation was selected randomly so that the new launch velocity vb1’ 

varied within ±25% of its original value: vb1’ = vb1 (1+x), where x was in the range [-0.25, 

0.25].  To keep the ball amplitude H1 constant despite the perturbation, a new value of gravity 

g’ was applied for one-half cycle: g1’ = (vb1’)²/2H1 = g(1+x)². As a consequence, the duration 

of the ball’s ascent was modified: tup1’ = tup1/(1+x). In other words, if vb1 was increased (x>0, 

“positive magnitudes”) then g was increased to keep the ball amplitude constant and 

consequently tup1 decreased; and vice versa for “negative magnitudes” (x<0). At the peak of 

ball flight, the value of g was reset to the reference value of 9.81, so the duration of ball 

descent tdown1 was unaffected by the perturbation. 

The resulting perturbations in the ball upward motion (vb1 and tup1) were binned into 

ten categories depending on the magnitude of the perturbation of vb1 (Mag-5, Mag-4, …, 

Mag5). For example, Mag-5 corresponds to -25.0% to -20.1% perturbations of vb1, Mag-4 

corresponds to -20.0% to -15.1% perturbations, and Mag5 corresponds to +20.1 to +25.0% 

perturbations. Due to the nonlinear relationship between vb and tup, the relationship between 

perturbation magnitude and tup1 (and therefore with ball’s total flight Tb1) was also nonlinear 

(see Fig. 3a). Mag-5 corresponds to an expected 14.5% increase of racket period Tr1, whereas 

Mag5 corresponds to an expected -9.18% decrease. 

 

 



 13

Data reduction and analyses  

A total of 2570 perturbations were recorded in the 5-cycle trials, and 2077 

perturbations in the 6-cycle trials.  The raw time series of racket position were filtered with a 

second-order Butterworth filter using a cut-off frequency of 12 Hz. Filtered position was then 

differentiated to yield racket velocity, and differentiated again to yield racket acceleration. 

Dependent variables were selected to measure task performance, racket oscillation, and 

ball/racket impact.  Performance was characterized by the error in bouncing to the target () 

defined as the difference between the midpoint of the ball at its peak position and target 

height. Racket oscillation was characterized by the following variables: cycle period (Tr), 

defined as the time between two successive peak racket positions, and the duration of the 

downswing (Trdown) and upswing (Trup). For each subject, means of the dependent variables 

were computed for each perturbation magnitude and analyzed using repeated measures 

ANOVAs. 

Informational variables included tup, tdown, hp, vb, as well as BMax, the phase in the 

racket downswing at which the ball reached peak height.  The strength of the relationship 

between an informational variable and a racket variable was determined by computing a 

Pearson’s correlation for each participant on data from all perturbations. These individual r 

values were transformed to Fischer’s z values, the group mean was computed, and then it was 

transformed back into a mean r value.  Individual r values were compared using Williams-

Hotelling t-tests for the difference between two correlated correlation coefficients. 

 

Results 

 

Positive perturbations destabilized bouncing, whereas negative perturbations were stabilizing.  

Yet in both cases we observed rapid racket adjustments that were proportional to the 
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perturbation magnitude and recovered a constant bounce height in only 1 cycle.  This pattern 

of results is indicative of mixed control, in which racket motion is actively regulated on every 

cycle whether perturbations are large or small, destabilizing or stabilizing.  In addition, the 

only optical variable that correlated highly with racket period was the upward half-period of 

the ball’s flight, indicating that racket timing is visually regulated by the ball’s upward flight 

time.  We describe each of the results in detail.  

-----------Insert Figure 3  about here ------- 

 

Positive perturbations were destabilizing, negative perturbations were stabilizing 

Mean racket acceleration at the pre-perturbation impact (C0) was 1.73±0.31 m.s-2, 

slightly above the stable range, as is typical of novice bouncers (Morice et al. 2007).  This 

implies that positive perturbations were destabilizing, because they produced a shorter tup1 and 

would result in an earlier impact with a higher racket acceleration (if uncorrected), whereas 

negative perturbations were stabilizing, because they produced a longer tup1 and a later impact 

with a lower acceleration.  Indeed, despite partial compensation in the first racket cycle, the 

next impact acceleration (C1) was shifted in the positive direction (away from the stable 

region) following positive perturbations, and shifted in the negative direction (toward the 

stable region) after negative perturbations (Fig. 3).  This confirms that positive perturbations 

were destabilizing while negative perturbations were stabilizing. 

 

Rapid recovery time 

To determine how quickly performance recovered from the perturbation, we analyzed 

bounce error  over cycles separately for positive and negative perturbations. The results 

indicate that: (1) participants rapidly stabilized bounce height, within the first racket cycle 

after the perturbation in nearly all cases; (2) regardless of perturbation magnitude, 
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performance always recovered to baseline levels before the next perturbation (in C5 or C6).  

Specifically, for positive (destabilizing) perturbations, a two-way repeated measures ANOVA 

(6 cycles  5 magnitudes) on error yielded no significant effects.  Given that the first ball peak 

height after the perturbation (hp1) was kept unchanged, this indicates that performance 

recovered by the second peak (hp2), implying a recovery time of one racket cycle (C1). For 

negative (stabilizing) perturbations, a similar ANOVA revealed a significant main effect of 

cycle, F(5, 75) = 5.74, p<0.001, [eta]2=0.28, and perturbation magnitude, F(4, 60) = 4.65, 

p<0.01, [eta]2=0.24, but no interaction, F(20,300) = 1.09, p=0.35, [eta]2=0.07. Post-hoc Tukey 

tests confirmed that the first peak height (hp1) did not differ from the pre-perturbation peak 

(hp0), as expected. The only subsequent deviations occurred for the largest perturbation (Mag-

5), when hp2 and hp3 errors differed from hp0, p=.001 and p=.006, respectively.  Thus, recovery 

times for both destabilizing and stabilizing perturbations were 1 cycle, with the exception of 

the largest stabilizing perturbation, which was 3 cycles. 

-----------Insert Figure 4 about here ------- 

 

Racket period Tr is proportional to perturbation magnitude 

Racket adjustments were proportional to the magnitude of the perturbation, as 

illustrated in Fig. 4a. In the pre-perturbation cycle (C0), the racket period (Tr) was flat as 

expected, but in the first post-perturbation cycle (C1), it was proportional to perturbation 

magnitude, showing rapid adaptation to small and large perturbations, both negative 

(stabilizing) and positive (destabilizing). An ANOVA (2 cycles x 10 magnitudes) on Tr 

yielded a main effect of cycle, F(1,15)=6.99, p<0.05, [eta]²=0.32, a main effect of 

perturbation magnitude, F(9,135)=112, p<0.05, [eta]²=0.88, and most importantly a 

significant interaction, F(9,135)=47.9, p<0.0001, [eta]²=0.76. A linear regression was 

performed between Tr1 and the ball’s perturbed flight time (Tb1) yielding the equation: Tr1= 
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0.77×Tb1+0.17, with R²=.9977. Therefore, the observed value of Tr1 is a linear function of 

ball’s perturbed flight time and close to the theoretical value for complete compensation;  

however, racket period did not fully adapt within one cycle, as shown by the slope of 0.77. 

The fact that racket adjustments were proportional to perturbation magnitude, rather than to 

the distance from the stability boundary, is consistent with mixed control but contrary to 

hybrid control. 

 

 

Duration of downswing and upswing.  The timing of the racket adjustment can be 

analyzed further by decomposing racket period Tr into the duration of the downswing (Trdown) 

and succeeding upswing (Trup) (Fig. 4b and 4c). In the first post-perturbation cycle (C1), the 

racket adjustment does not occur in the first 420ms downswing (Trdown1), but almost entirely 

by shortening or lengthening the subsequent 320ms upswing (Trup1). An ANOVA on Trdown 

revealed a main effect of perturbation magnitude, F(9,135)=2.96, p<0.0001, [eta]²=.16, and a 

significant magnitude by cycle interaction, F(9,135)=4.93, p<0.01, [eta]²=0.25. However, the 

effect size was small (Fig. 4b), and post hoc Tukey tests failed to find a significant difference 

between C1 and C0 at any perturbation magnitude. A similar ANOVA on Trup revealed main 

effects of cycle F(1,15)=46.0, p<0.001, [eta]²=.75, and perturbation magnitude, F(9,135)=179, 

p<0.0001, [eta]²=.92, and a significant interaction, F(9,135)=208, p<0.0001, [eta]²=0.93, with 

a much larger effect size.  Thus, following a perturbation at impact, nearly all of the 

adjustment in racket period occurs 420ms later, during the subsequent upswing. 

 

-----------Insert Figure 5  about here ------- 

 

Racket period Tr correlates with the ball’s upward flight time tup 
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To assess the visual information used to regulate racket timing, the five informational 

variables in the ball’s trajectory were correlated with the three racket cycle variables (Fig. 5). 

Before the perturbation (C0, Fig. 5a), several informational variables naturally covaried with 

racket period Tr0 (mean r ~ 0.86).  After the perturbation (C1, Fig 5a), the correlation of the 

ball’s upward flight time tup with racket period Tr1 remained high (mean r = 0.85), and was 

significantly greater than any other variable (p<.05 or better for all participants, Williams-

Hotelling t-tests). In particular, the correlation for ball peak height hp1 was significantly 

weaker (mean r = 0.65), and that for ball launch velocity vb1 was actually negative (mean r = -

0.27). Contrary to the mirror algorithm, in C0 the racket period did not correlate with the 

phase in the downswing at which the ball reached its peak height (BMax) (mean r = 0.40); the 

higher correlation with phase in C1 (mean r = 0.68) is a spurious consequence of the ball’s 

perturbed upward flight time.   

The influence of the optical variables can be analyzed further by breaking racket 

period into its downswing and upswing durations (refer to of Fig. 5b,c).  Before the 

perturbation (C0), tup correlated significantly better with the whole racket period Tr  (r = .86) 

than with either the downswing Trdown or upswing Trup (p<.05 or better, Williams-Hotelling t-

tests). After the perturbation (C1), the correlation with the upswing Trup increased to a 

comparable level (r = .81), while the correlation with the whole period Tr remained high (r = 

.84).  This pattern implies that the whole racket cycle is normally modulated by visual 

information, but participants can rapidly correct the upswing for perturbations late in the 

racket cycle.  

In sum, Exp 1 showed that racket period Tr is adjusted rapidly in the first cycle after 

the perturbation, that it varies linearly with perturbation magnitude for stabilizing as well as 

destabilizing perturbations, and that it is visually regulated by the ball’s upward half-period 
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tup.  These results are consistent with a mixed control mode in which the racket oscillation is 

modulated by the ball’s upward flight time on a cycle-by-cycle basis. 

 

Experiment 2:  Visual control of error correction 

 

The purpose of Exp 2 was to answer the outstanding question of how participants correct for 

errors in bounce height. To isolate the effect of error , we perturbed both g and vb at impact 

so as to vary the ball’s peak height hp with respect to the target, while holding tup constant.  

The absolute hypothesis predicts that peak height hp (i.e. ) should be highly correlated with 

the next racket velocity vr required to hit the ball to the target, whereas the relative hypothesis 

predicts that  should be more strongly correlated with the change in racket velocity from the 

previous impact ∆vr. 

  

Methods 

 

Participants and procedure 

Sixteen participants were tested in Exp 2 (23.5 ± 2.6 years), eight of whom had 

participated in Exp 1 one year before. The apparatus and procedure were the same as in Exp 

1, with one exception: the twenty-four ‘perturbation’ test trials were 75s long, and ball 

kinematics were perturbed every 6 cycles on half the trials and every 7 cycles on the other 

half. 

 

Perturbations 

 To dissociate the ball’s peak height hp from its upward flight duration tup, we 

simultaneously perturbed the ball’s launch velocity vb1 and g1 at impact for one full cycle, so 
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that the total amplitude H1 of the ball’s flight varied while the duration of the flight period Tb 

remained unaffected (Fig. 1c).  The magnitude of the vb perturbation was selected randomly as 

in Exp 1, so the new ball velocity vb’ remained within ±25% of its original value. To keep Tb 

unchanged, a new value of g was applied during the first flight period: g’= vb’/Tb = g(1+x), so 

that tup1=tdown1. As a consequence, ball amplitude H1 was modified: H1’=( vb’)²/(2g’)=H1(1+x). 

In sum, vb, g and H were perturbed by the same proportion so that the ball’s peak height (hp1) 

varied but its upward flight time tup1 was unaffected. At the next impact, the value of g was 

reset to the reference value of 9.81, so vb2 was the same as if the ball had dropped from an 

unperturbed height.  

 A total of 2209 perturbations were recorded in the 6-cycle trials and 2005 

perturbations in the 7-cycle trials.  In addition to the previous dependent variables, we also 

analyzed the racket velocity at impact in C1 (vr1), the change in racket velocity at impact from 

C0 to C1 (vr), and the amplitude of racket downswing (Ardown) and upswing (Arup), defined as 

the difference between successive peak and valley racket positions (Sternad et al. 2001; De 

Rugy et al. 2003). 

 

Results 

 

Compensatory responses to perturbations in bounce height were observed in the first cycle, 

including proportional adjustments in downswing duration, upswing amplitude, and racket 

impact velocity; the recovery time for bounce height was under 3 cycles.  These results are 

again consistent with active regulation of every cycle.  Error  from the target had a 

significantly stronger correlation with the change in racket velocity from the previous impact 

vr than the absolute racket velocity vr, implying that error correction is achieved by using 
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bounce error to control the change in impact velocity.  We describe these results in detail.-----

------Insert Figure 6 about here ------- 

 

Recovery time 

As expected by the protocol, negative perturbations produced target undershoot in C1, 

and positive perturbations target overshoot, proportional to perturbation magnitude (Fig. 6). 

The error in C2, of opposite sign to the perturbation, indicates a rapid adjustment on the first 

post-perturbation impact, with some over-compensation.  After C2, bounce error decreased 

over one or two more cycles. To determine the recovery time after negative perturbations 

(decrease in hp1), a two-way repeated measures ANOVA (7 cycles  5 magnitudes) on error  

yielded main effects of perturbation magnitude, F(4, 60) = 4.07, p<0.01, [eta]2=0.21, and 

cycle, F(6, 90) = 192, p<0.0001, [eta]2=0.93, and a significant interaction, F(24,360) = 35, 

p=0<0.0001, [eta]2=0.70. For positive perturbations (increase in hp1), a similar ANOVA 

yielded a main effect of cycle, F(6, 90) = 145, p<0.0001, [eta]2=0.91, and a significant 

interaction, F(24, 360) = 27.7, p<0.0001, [eta]2=0.65, but no overall effect of magnitude, F(4, 

60) = 1.25, p=0.29, [eta]2=0.07.  Post-hoc Tukey tests found that the error was significantly 

different from pre-perturbation levels (C0) in cycle C2 for Mag-5, Mag-4, Mag-3, Mag-2, Mag3, 

Mag4, Mag5 p<.001 or better), and in cycle C3 (for Mag-5, Mag-4, Mag4, p<.005 or better). By 

cycle C4 the error for even the largest perturbations (Mag-5, Mag-4, Mag4, Mag5) was no 

longer significant.  Thus, performance recovered within 3 cycles after both negative and 

positive perturbations.  

-----------Insert Figure 7 about here ------- 

 

Racket velocity at impact vr1 is proportional to perturbation magnitude 
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Racket velocity was adaptively adjusted on the first post-perturbation impact (vr1), 

within one cycle C1 (Fig. 7a). Specifically, when the ball undershot the target (negative 

perturbation), vr1 increased, and vice versa. Moreover, the change in impact velocity was 

proportional to the perturbation magnitude. An ANOVA (2 cycles  10 magnitudes) on vr 

yielded a significant interaction, F(9,135) = 17.7, p<0.0001, [eta]2=0.54, and planned 

comparisons showed a significant linear trend for C1, F(1,15)=37.9, p<0.0001, showing that 

impact velocity scaled linearly with the perturbation.  This rapid, compensatory adjustment to 

large and small perturbations is again indicative of active error correction on a cycle-by-cycle 

basis. 

 

Racket amplitude is proportional to the perturbation 

The change in racket velocity was delivered by a corresponding change in racket 

amplitude, which was much greater on the upswing than the downswing.  The amplitudes of 

racket downswing (Ardown) and upswing (Arup) are plotted as a function of perturbation 

magnitude in Fig. 8a and 8b. Following a negative perturbation, the increase in racket velocity 

at the next impact was delivered by a greater racket amplitude, and vice versa. The ANOVAs 

(2 cycles × 10 magnitudes) revealed significant interactions for both the downswing 

amplitude, F(9,135) = 4.65, p<0.0001, [eta]2=0.24, and the upswing amplitude, F(9,135) = 

70.0, p<0.0001, [eta]2=0.84, but the magnitude of the effect on Arup was almost four times that 

on Ardown, and proportional to perturbation magnitude.      

 

Racket period Tr responds to perturbations in bounce height  

Despite an unchanged ball flight period during the perturbation in cycle C1, racket period in 

C1 was smaller than in C0 for negative perturbations, and larger for positive perturbations, 

with a linear increase in C1 racket period (Fig. 7b). This indicates that bounce error elicited 
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small but reliable adjustments in racket period despite a constant ball flight period.  However, 

compared to Exp 1 the matched perturbations in Exp 2 had a relatively small effect on racket 

period (Fig. 7b): the largest difference between C0 and C1 was only 28ms at Mag-5 (a 3.7% 

change in racket period), compared to 82ms for Mag-5 in Exp. 1 (an 11.1% change).  An 

ANOVA (2 cycles × 10 magnitudes) on Tr yielded a main effect of perturbation magnitude, 

F(9,135) = 21.0, p<0.0001, [eta]2=0.58, and a significant interaction, F(9,135) = 26.9, 

p<0.0001, [eta]2=0.64. Planned comparisons showed a significant linear trend for C1, 

F(1,15)=131, p<0.0001, and Tukey post-hoc tests found that C1 was significantly different 

from C0 at six perturbation magnitudes (Mag-5, Mag-4, Mag-3 Mag-2, Mag4, Mag5).   

 

 

Duration of downswing and upswing. When racket period is decomposed into the 

downswing (Trdown) and upswing (Trup) (Fig. 8c and 8d), it is clear that the change in timing 

occurs entirely during the C1 downswing: target undershoot yields a shorter downswing, and 

target overshoot a longer downswing.  The ANOVA (2 cycles  10 magnitudes) on Trdown 

revealed a significant interaction, F(9,135) = 48.5, p<0.01, [eta]2=0.76, but there was no 

interaction for the ANOVA on Trup, F(9,135) = .97, ns. Thus, in contrast to the modulation of 

upswing duration in Exp 1 (Fig. 4c), bounce error elicited a small adjustment in the racket 

downswing duration. 

 

-----------Insert Figure 8 about here ------- 

 

Change in racket velocity vr correlates with bounce error   

To assess how error correction is controlled, the informational variables were 

correlated with the racket variables and the key results are summarized here (Fig. 9). Note that 
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correlations with bounce error  are equivalent to those with ball peak height hp, because they 

only differ by a constant (  = hp - 0.65). Both before (C0) and after the perturbation (C1), the 

correlation of  with the change in racket velocity vr (mean r = -.63, -.60) was significantly 

stronger than with the absolute racket velocity vr (mean r = -.32, -.44), for all participants (all 

p<.0001, Williams-Hotelling t-tests). The mean regression equation for vr as a function of  

was: vr = 1.57   + 0.03. 

-----------Insert Figure 9 about here ------- 

 

 The results of Exp 2 show that active error correction is governed by using bounce 

error  to regulate the change in racket velocity from the previous impact vr, consistent with 

the relative hypothesis. Specifically, a negative error (1) elicits a coordinated modulation of 

racket oscillation within the same cycle (C1): a small decrease in downswing duration 

(Trdown1), preparatory to an increase in upswing amplitude (Arup1), to deliver an increase in 

impact velocity (vr1) relative to the previous cycle;  and vice versa for a positive error.  

 

Discussion 

In the present study, we used a rhythmic ball-bouncing task to address three questions about 

perception and action.  First, how are passive stability and active control combined to yield 

stable, adaptive behavior?  Second, what information is used to regulate the period of 

oscillation to control impact timing?  Third, how is the racket velocity at impact regulated to 

perform error correction?  We find that (1) racket adjustments are rapid and proportional to 

perturbation magnitude, consistent with mixed control; (2) to control timing, the upward half-

period (tup) of the ball’s flight is used to modulate the period of racket oscillation (Tr); and (3) 
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for error correction, error () from the target height is used to regulate the change in racket 

velocity from the previous impact (∆vr), consistent with the relative hypothesis. 

The purpose of Exp 1 was to further test the “mixed” control mode, in which 

participants actively regulate racket motion in order to exploit the passively stability 

properties of the ball-racket system.  Siegler et al. (2010) described four candidate control 

modes and reported compensatory adjustments in racket period to changes in g and  whether 

they were stabilizing or destabilizing, supporting mixed control.  However, only four 

perturbation magnitudes were tested (small/large; stabilizing/destabilizing) and candidate 

informational variables in the ball’s trajectory, specifically tup and peak height hp, remained 

highly correlated. Here we applied graded perturbations in tup while ball peak height hp was 

kept unchanged in order to test mixed control and dissociate the informational variables. The 

period of the first racket cycle, particularly the duration of racket upswing, was proportional 

to perturbation magnitude for both negative and positive perturbations. In other words, racket 

period was regulated whether the perturbation was large or small, destabilizing or stabilizing. 

This confirms a mixed control mode in which racket period is adjusted on a cycle-by-cycle 

basis for all perturbations.  On the other hand, it is contrary to hybrid control, in which the 

response should depend on the distance from the stability boundary and stabilizing or small 

neutral perturbations should not elicit racket adjustments. Moreover, the greater dissociation 

of informational variables in Exp 1 compared to Siegler et al. (2010) revealed that the ball’s 

upward flight time tup bore a significantly stronger correlation with racket period than did 

peak height hp, launch velocity vb, or peak phase BMax.  Thus, racket period is primarily 

regulated by the ball’s upward half-period.  This period controller has two clear advantages:  

it is dimensionless (the informational variable and control variable are in the same units), and 

it does not require specific knowledge of g. 
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The purpose of Exp 2 was to determine whether error correction is performed by using 

the ball’s peak height (hp) to control racket velocity at impact (vr) or the change in velocity 

from the previous impact (∆vr).  The absolute hypothesis (Ronsse et al. 2010) proposes that 

the ball’s peak height is used to compute the exact racket velocity required to correct for 

bounce error. Wei et al. (2008) had found that the relation between racket velocity and error 

had a significantly negative slope, with R² values near 0.2 (r = 0.44, slope -.055) for  =.5. 

When we perturbed ball peak height in Exp 2, while leaving tup unchanged, we observed a 

similarly weak relation with vr (mean correlation of r = -0.4), but a significantly stronger 

correlation with vr (r = -0.60).  Our results thus favor the relative hypothesis that participants 

use error () to regulate the change in racket velocity from the previous impact (∆vr).  This is 

apparently achieved by modulating the duration of racket downswing (Trdown) and the 

amplitude of racket upswing (Arup) relative to the previous cycle.  

 Together with previous findings, the present results give us a comprehensive picture of 

this model perception-action system.  The most important conclusion is that such systems 

exploit passive dynamics to simplify the task in combination with active control.  Behavior is 

organized around dynamic stabilities, but uses information to maintain adaptive flexibility.  In 

the present case, the actor adopts a mixed control mode in which information in the ball’s 

trajectory is used to actively stabilize behavior on a cycle-by-cycle basis, in order to keep the 

system within or near the passively stable region.  We now understand precisely how these 

adjustments are visually controlled:  the period of racket oscillation is modulated by the half-

period of the ball’s upward flight, and the change in racket velocity from the previous impact 

is governed by the error to the target.  Active control provides rapid adaptive responses to 

changes in environmental conditions, while staying near the passive regime serves to 

minimize the adjustments needed to maintain bouncing.  Mixed control thus offers a general 

solution for biological systems interacting with the physical world.   
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Figure captions 

 

 

Fig. 1 a. Definition of racket and ball variables. b. Schematic of perturbations in ball 

kinematics in Exp 1. Half-period of the ball (tup) is perturbed while ball amplitude (H) 

remains unchanged.  c. Schematic of perturbations in Exp  2. Ball amplitude (H) is perturbed 

while ball period (Tb) and half-period (tup) remain unchanged  

 

Fig. 2. Experimental set-up (reproduced from Siegler et al. (2010)) 

 

Fig. 3 Racket acceleration at impact (mean  Standard Error) in cycles C0 and C1 as a 

function of perturbation magnitude in Exp 1. 
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Fig. 4 Duration variables in cycles C0 and C1 as a function of perturbation magnitude in Exp 

1.  a. Racket cycle period Tr (mean  S.E). Graph also displays the theoretical duration of the 

ball trajectory if ball is hit in C1 at the same racket vertical position as in C0. b. Downswing 

duration Trdown (mean   S.E). c. Upswing duration Trup (mean   S.E)  

Fig. 5.   For the pre-perturbation (C0) and post-perturbation (C1) cycle, correlation coefficients 

between informational variables and (A) racket period, (B) duration of racket downswing, and 

(C) duration of racket upswing.  (tup=duration of ball upward flight, tdown=duration of ball 

downward flight, hp=peak height of ball, vb=ball launch velocity, BMax =phase in racket cycle 

of peak ball height) 

 

Fig. 6 Error to target  (mean   S.E) from C0 to C6, for negative (a) and positive (b) 

perturbation magnitudes in Exp 2 

 

Fig. 7 a. Racket velocity at impact Vr (mean   s.e) in cycle C0 and C1 as a function of 

perturbation magnitude (Exp 2)b. Racket cycle period Tr (mean  S.E) of C0 and C1 as a 

function of perturbation magnitude (Exp 2). 

 

Fig 8. Characterization of racket downswing and upswing in cycles C0 and C1 as a function of 

perturbation magnitude (Exp 2). a. Downswing amplitude Ardown  (mean   S.E). b. Upswing 

amplitude Arup (mean   S.E).c. Downswing duration Trdown (mean   S.E). d. Upswing 

duration Trup (mean  S.E). 

 

Fig. 9. For the pre-perturbation (C0) and post-perturbation (C1) cycle, correlation coefficients 

between error to the target () and racket velocity (Vr, Vr).   
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