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, continues to yield estimates of the slope coe¢ cients that are consistent and asymptotically normal. Small sample properties of the estimators under various patterns of cross section dependence, including spatial forms, are investigated by Monte Carlo experiments. Results show that the CCE approach works well in the presence of weak and/or strong cross sectionally correlated errors.

Introduction

Over the past few years there has been a growing literature, both empirical and theoretical, on econometric analysis of panel data models with cross sectionally dependent error processes. Such cross correlations can arise for a variety of reasons, such as omitted common factors, spatial spill-overs, and interactions within socioeconomic networks. Conditioning on variables speci…c to the cross section units alone does not deliver cross section error independence; an assumption required by the standard literature on panel data models. In the presence of such dependence, conventional panel estimators such as …xed or random e¤ects can result in misleading inference and even inconsistent estimators [START_REF] Phillips | Dynamic panel estimation and homogeneity testing under cross section dependence[END_REF]). Further, conventional panel estimators may be inconsistent if regressors are correlated with unobserved common factors that might be causing the error cross section dependence [START_REF] Andrews | Cross section regression with common shocks[END_REF]).

Currently, there are two main strands in the literature for dealing with error cross section dependence in panels where N is large relative to T , namely the residual multifactor and the spatial econometric approaches.

The multifactor approach assumes that the cross dependence can be characterized by a …nite number of unobserved common factors, possibly due to economy-wide shocks that a¤ect all units, albeit with di¤erent intensities. Under this framework, the error term is a linear combination of few common time-speci…c e¤ects with heterogeneous factor loadings plus an idiosyncratic (individual-speci…c) error term. Estimation of a panel with such multifactor residual structure can be addressed by using statistical techniques commonly adopted in factor analysis, such as the maximum likelihood [START_REF] Robertson | Factor residuals in SUR regressions: Estimating panels allowing for cross sectional correlation[END_REF]; [START_REF] Robertson | Maximum likelihood factor analysis with rank-de…cient sample covariance matrices[END_REF]), and the principal components procedures [START_REF] Coakley | A principal components approach to cross-section dependence in panels[END_REF]; [START_REF] Bai | Panel data models with interactive …xed e¤ects[END_REF]). Recently, [START_REF] Pesaran | Estimation and inference in large heterogenous panels with multifactor error structure[END_REF] has suggested an estimation method, referred to as Common Correlated E¤ects (CCE), that consists of approximating the linear combinations of the unobserved factors by cross section averages of the dependent and explanatory variables and then running standard panel regressions augmented with these cross section averages. An advantage of this approach is that it yields consistent estimates under a variety of situations, such as serial correlation in errors, unit roots in the factors and possible contemporaneous dependence of the observed regressors with the unobserved factors [START_REF] Coakley | Unobserved heterogeneity in panel time series[END_REF]; [START_REF] Kapetanios | Alternative approaches to estimation and inference in large multifactor panels: Small sample results with an application to modelling of asset returns[END_REF]; [START_REF] Kapetanios | Panels with nonstationary multifactor error structures[END_REF]).

The spatial approach assumes that the structure of cross section correlation is related to location and distance among units, de…ned according to a pre-speci…ed metric. Proximity need not be measured in terms of physical space, but can be de…ned using other types of metrics, such as economic [START_REF] Conley | GMM estimation with cross sectional dependence[END_REF]; [START_REF] Pesaran | Modelling regional interdependencies using a global error-correcting macroeconometric model[END_REF], policy, or social distance [START_REF] Conley | Socio-economic distance and spatial patterns in unemployment[END_REF]). Hence, cross section correlation is represented by means of a spatial process, which explicitly relates each unit to its neighbours [START_REF] Whittle | On stationary processes on the plane[END_REF]). Estimation of panels with spatially correlated errors can be based on maximum likelihood (ML) techniques [START_REF] Lee | Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models[END_REF]), or on the generalized method of moments (GMM) [START_REF] Kelejian | A generalized moments estimator for the autoregressive parameter in a spatial model[END_REF]; [START_REF] Lee | GMM and 2SLS estimation of mixed regressive, spatial autoregressive models[END_REF]; [START_REF] Kelejian | Speci…cation and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances[END_REF]). Recently, non-parametric methods based on heteroskedasticity and autocorrelation consistent estimators applied to spatial models have also been proposed [START_REF] Conley | GMM estimation with cross sectional dependence[END_REF]; [START_REF] Kelejian | HAC estimation in a spatial framework[END_REF]; [START_REF] Bester | Inference with dependent data using cluster covariance estimators[END_REF]).

In this paper we build on the existing literature and consider a general panel data model where error cross section dependence is due to unobserved common factors and/or spatial dependence, whilst at the same time 1 allow for the errors to be serially correlated. We focus on estimation and inference procedures that are robust to the presence of various forms of cross sectional and temporal dependencies in the error processes. Robust methods are needed because the source and extent of error cross section dependence is often unknown. The error cross section dependence can take many di¤erent forms and its nature could di¤er at micro and macro levels. For instance, at a micro-level, individual consumption behaviour can be in ‡uenced by economy-wide factors, such as changes in taxation and interest rates, and by local neighbourhood e¤ects such as keeping up with the Jones's [START_REF] Cowan | Waves in consumption with interdependence among consumers[END_REF]). In macroeconomics, several studies have argued business cycle ‡uctuations could be the result of both strategic interactions as well as aggregate technological shocks [START_REF] Cooper | Evidence on macroeconomic complementarities[END_REF]). Our econometric speci…cation, by allowing for the presence of both sources of contemporaneous error correlations, is su¢ ciently general and includes the models proposed in the literature as special cases.

We focus on estimation of slope coe¢ cients in the case of a number of di¤erent speci…cations. Initially, we concentrate on a panel data model without unobserved factors where the errors are spatially dependent and possibly serially correlated, and derive the asymptotic distribution of the mean group and pooled estimators, under alternative assumptions regarding the slope coe¢ cients. In the presence of heterogeneous slopes, we show that the non-parametric approach advanced by [START_REF] Pesaran | Estimation and inference in large heterogenous panels with multifactor error structure[END_REF] continues to be applicable and can be used to obtain standard errors that are robust to both spatial and serial error correlations. However, in the case of homogeneous slopes the CCE procedure will not be applicable. In this case we propose a non-parametric variance matrix estimator that adapts the [START_REF] Newey | A simple, positive semi-de…nite, heteroskedasticity and autocorrelation consistent covariance matrix[END_REF]'s heteroskedasticity autocorrelation consistent (HAC) procedure to allow for the spatial e¤ects along the lines recently advanced by [START_REF] Kelejian | HAC estimation in a spatial framework[END_REF]. We refer to this variance estimator as spatial, heteroskedasticity, autocorrelation (SHAC) estimator.

We then consider the more general case where the error term in the panel data model is composed of a multifactor structure and a spatial process, and show that Pesaran's CCE approach continues to be valid and yields consistent estimates of the slope coe¢ cients and their standard errors. We also show how to obtain consistent estimates of the errors in the panel to be used in tests of cross section independence, and for further analysis of the underlying spatial processes.

Using Monte Carlo techniques, we investigate the small sample performance of the estimators under various patterns of error cross section dependence, with and without error serial correlation, under both cases of heterogeneous and homogeneous slopes. We examine the performance of the alternative estimators when the errors only display spatial dependence, when they are subject to unobserved common factors as well as spatial dependence, and in the case where the source of cross section dependence changes over time. Our results indicate that the mean group and pooled estimators with robust standard errors do work well under certain regularity conditions outlined in our theorems. However, under slope homogeneity or in the presence of unobserved common factors these estimators fail to provide correct inference. The results also document the tendency of the tests based on HAC type standard errors to over reject the null hypothesis in small samples even in the case of error cross section dependence which is purely spatial. In contrast, our Monte Carlo experiments clearly show that the augmentations of panel regressions with cross section averages, as formulated by the CCE procedure, eliminates the e¤ects of all forms of spatial and temporal correlations, irrespective of whether these are due to spatial and/or unobserved common factors. The small sample properties of CCE estimators do not seem to be a¤ected by the heterogeneity assumptions on slope coe¢ cients, or by the presence of error serial correlations.

It is this level of robustness of the CCE estimator which particularly commends it for use in empirical analysis.

The plan of the remainder of the paper is as follows: Section 2 sets out a panel regression model with unobserved common factors and general spatial and temporal error processes. Section 3 develops the asymptotic distribution of the mean group and pooled estimators in the presence of spatial error dependence and error serial correlation. Sections 4 considers the more general case where the errors also contain unobserved common factors, and establishes the validity of the CCE estimators for this class of models. Consistent estimation of the residuals from such models is considered in Section 5, where the necessary identi…cation conditions are stated.

Section 6 describes the Monte Carlo experiments and report the results. Section 7 ends with some concluding remarks.

Notation: 1 (A)

2 (A) ::: n (A) are the eigenvalues of a matrix A 2 M n n , where M n n is the space of real n n matrices. A denotes a generalized inverse of A. The column norm of A 2 M n n is kAk 1 = max

1 j n P n i=1 ja ij j. The row norm of A is kAk 1 = max 1 i n P n j=1 ja ij j. The Euclidean norm of A is kAk 2 = [T r(AA 0 )] 1=2 .
K is used for a …xed positive constant. (N; T ) j ! 1 denotes N and T tending to in…nity jointly but in no particular order.

2 Heterogenous panels with unobserved common factors and spatial error correlation

We begin with a general speci…cation where the dependent variable is a function of a set of individual-speci…c regressors, a linear combination of common observed and unobserved factors, and includes errors that are serially and spatially correlated. Let y it be the observation on the i th cross section unit at time t for i = 1; 2; :::; N ; t = 1; 2; :::; T , and suppose that it is generated as

y it = 0 i d t + 0 i x it + 0 i f t + e it ; (1) 
where d t = (d 1t ; d 2t ; :::; d nt ) 0 is a n 1 vector of observed common e¤ects, and x it is a k 1 vector of observed individual-speci…c regressors on the i th cross section unit at time t, f t = (f 1t ; f 2t ; :::; f mt ) 0 is an m-dimensional vector of unobservable common factors, i = ( 1i ; 2i ; :::; mi ) 0 is the associated m 1 vector of factor loadings.

The number of factors, m, is assumed to be …xed relative to N , and in particular m < N . The common factors, f t simultaneously a¤ect all cross section units, albeit with di¤erent degrees as measured by i . For instance, a rise in the interest rate may a¤ect household consumption and …rm investment decisions; oil price shocks may in ‡uence …rm production costs; real shocks, such as a decline in the aggregate demand and employment could simultaneously slow growth in a number of countries (see [START_REF] Andrews | Cross section regression with common shocks[END_REF]).

Finally, the unit-speci…c or idiosyncratic errors, e it , are assumed to be spatially and temporally correlated.

The most widely used spatial models are the Spatial Moving Average (SMA), the Spatial Autoregressive (SAR) model, and the Spatial Error Component (SEC) speci…cations. These models di¤er in the range of dependence implied by their covariance matrices, but under certain invertibility conditions they can all be written as special cases of e :t = R t " :t ; for t = 1; 2; :::; T;

(2) where e :t = (e 1t ; :::; e N t ) 0 , " :t = (" 1t ; :::; " N t ) 0 and R t is a given N N matrix.

We shall make use of the following assumptions.

ASSUMPTION 1 For each i, " it follows the linear stationary process with absolute summable autocovariances:

" it = 1 X s=0 a is is ;
where is IID(0; 1) with …nite fourth-order cumulants.

ASSUMPTION 2 R t has bounded row and column norms for all t.

ASSUMPTION 3 The slope coe¢ cients i follow the random coe¢ cient model

i = + i ; i IID(0;
) for i = 1; 2; :::; N;

where k k 2 < K , k k 2 < K, is a symmetric non-negative de…nite matrix, and the random deviations, i , are distributed independently of " jt ; x jt ; and d t ; for all i; j and t.

ASSUMPTION 4 (d 0 t ; x 0 it ) 0 and " js are independently distributed for all t, s; i and j.

Note that under Assumption 1 we have

V ar (" it ) = 1 X s=0 a 2 is = 2 i K < 1;
and the covariance matrix of " i: = (" i1 ; " i2 ; :::; " iT ) 0 has bounded row and column norms, for all i. Assumption 2 implies that the spatial error process, (2), carries weak cross section dependence at all points in time, namely that its weighted averages converges to zero for all set of weights satisfying certain regularity conditions (see also Lemma A.1 in the Appendix). Notions of weak and strong cross section dependence are developed and discussed in [START_REF] Chudik | Weak and strong cross section dependence and estimation of large panels[END_REF]. We note that Assumption 2 holds for most widely used spatial models that are subject to a set of regularity conditions that are standard in the spatial econometrics literature. These regularity conditions ensure consistency and asymptotic normality of quasi-ML and GMM estimators of spatial parameters (see [START_REF] Kelejian | A generalized moments estimator for the autoregressive parameter in a spatial model[END_REF], [START_REF] Lee | Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models[END_REF], and [START_REF] Mardia | Maximum likelihood estimation of models for residual covariance in spatial regression[END_REF] for details).

The model outlined in equations ( 1)-( 2) is quite general and renders a variety of linear panel data models as special cases. The coe¢ cients i may be treated as …xed or random, possibly correlated with the other variables in the panel. The vector d t could contain deterministic terms such as an intercept or linear trends, or common observed variables such as oil prices. For example, in the case of panel data models with …xed e¤ects we would set n = 1, and d 1t = 1, for t = 1; 2; :::; T .

The focus of this paper is on estimating the slope coe¢ cients i , their cross section means, = E( i ),

and unit-speci…c errors, u it . We shall consider four cases of interest. Initially, we abstract from unobserved common factors, and concentrate exclusively on the e¤ects of weak spatial error dependence. Accordingly, we impose i = 0 in equation ( 1), and consider estimation of the slope coe¢ cients and their cross section means in a panel regression model where e it follows an invertible spatial process of type (2). We then investigate the properties of the proposed estimators under the special case of homogeneous slopes, namely when i = for i = 1; 2; :::; N (i..e., = 0 in Assumption 3). Next, we turn to the more general speci…cation where i 6 = 0, and allow the unobserved common factors to be correlated with the individual-speci…c regressors, x it . Initially, we deal with the case of heterogeneous slopes and then consider the special case of = 0. There are two further speci…cations that may be derived from ( 1)-( 2). These are the cases of common factors and no spatial error correlation with either heterogeneous or homogeneous slopes. However, these speci…cations have already been discussed in [START_REF] Pesaran | Estimation and inference in large heterogenous panels with multifactor error structure[END_REF] and will not be considered here. Consistent estimators of the residuals in the general case is addressed in Section 5.

Estimating panels with spatial error correlation

The literature on spatial econometrics typically considers the problem of spatial dependence under strong assumptions of homogeneity and temporal independence. Only recently, a strand of literature in spatial econometrics has considered the incorporation of unobserved heterogeneity in spatial panel data models, where N is usually assumed to be large relative to T . [START_REF] Baltagi | Testing panel data regression models with spatial error correlation[END_REF] and [START_REF] Kapoor | Panel data models with spatially correlated error components[END_REF] have focused on ML and GMM estimation of panels where the error term is the sum of an individual-speci…c component and a spatially correlated idiosyncratic error. [START_REF] Baltagi | A generalized spatial panel data model with random e¤ects[END_REF] generalized their earlier work by allowing for spatial correlations in both the individual means and the remainder error components, with possibly di¤erent spatial autoregressive parameters. [START_REF] Fingleton | A generalized method of moments estimator for a spatial panel model with an endogenous spatial lag and spatial moving average errors[END_REF] extended [START_REF] Kapoor | Panel data models with spatially correlated error components[END_REF] contribution on GMM estimation of spatial random e¤ects panels to the case where the idiosyncratic error term follows a spatial moving average process, while [START_REF] Egger | An unbalanced spatial panel data approach to US state tax competition[END_REF] have focused on extensions to the case of unbalanced panels. [START_REF] Lee | Estimation of spatial autoregressive panel data models with …xed e¤ects[END_REF] considered estimation of a spatial panel data model with individual-speci…c …xed e¤ects, and proposed a "transformation approach" to eliminate the …xed e¤ects and then apply quasi-ML to the transformed model. Yu, de Jong, and [START_REF] Lee | GMM and 2SLS estimation of mixed regressive, spatial autoregressive models[END_REF], [START_REF] Yu | Quasi-maximum likelihood estimators for spatial dynamic panel data with …xed e¤ects when both n and T are large[END_REF] and [START_REF] Yu | Estimation of unit root spatial dynamic panel data models[END_REF] focused on the properties of the quasi-ML estimator in the case of dynamic, possibly non-stationary, panels with …xed e¤ects and spatial error correlation, assuming both N and T large.

It is worth noting that application of ML techniques requires the serial correlation processes of the error terms, if any, to be fully speci…ed. In panels where N is relatively large this could be quite demanding, since di¤erent dynamic speci…cations might be appropriate across di¤erent cross sectional units. The GMM method is less demanding but still requires moment conditions that correctly take account of speci…c spatial and serial correlation patterns of the errors. The use of quasi-ML and GMM becomes even more involved if the errors also depend on unobserved common factors. It is, therefore, of interest to develop estimation and inference procedures for panels that are reasonably robust to the presence of cross section and temporal dependencies in the error processes.

In this section we focus on two estimators that can be used for estimating the mean, , of the slope coe¢ cients in equation ( 1), when errors are spatially correlated. The …rst, known as mean group (MG) estimator of , is given by (see [START_REF] Pesaran | Estimating long-run relationships from dynamic heterogeneous panels[END_REF])

^ M G = N 1 N X i=1 ^ i ; (3) 
where

^ i = X 0 i: M D X i: 1 X 0 i: M D y i: ; (4) 
with y i: = (y i1 ; y i2 ; :::; y iT ) 0 , X 0 i: = (x i1 ; x i2 ; :::; x iT ), M D = I T D(D 0 D) 1 D 0 , and D 0 = (d 1 ; d 2 ; :::; d T ). Alternatively, we can use the …xed e¤ects, or pooled, estimator of

^ P = N X i=1 X 0 i: M D X i: ! 1 N X i=1 X 0 i: M D y i: : (5) 
To derive the asymptotic distribution of the above estimators, we make the following additional assumption on the individual-speci…c regressors and observed common factors.

ASSUMPTION 5 We assume:

(a) For each i = 1; 2; :::; N , the k k observation matrix T 1 X 0 i: M D X i: is non-singular for the sample size T under consideration and tends to a …nite non-singular matrix, Q i as T ! 1. Also, the elements of the

k T matrix W 0 i: = T 1 X 0 i: M D X i: 1 X 0 i: M D are uniformly bounded, and T 1 W 0 i: W i: = X 0 i: M D X i: T 1 has bounded elements as T ! 1.
(b) The k k pooled observation matrix (N T ) 1 P N i=1 X 0 i: M D X i: is …nite and non-singular for sample sizes N and T under consideration and tends to a …nite non-singular matrix, Q, as (N; T ) j ! 1.

We have

p N ^ M G = 1 p N N X i=1 i + 1 p N N X i=1 h T 1 X 0 i: M D X i: 1 T 1 X 0 i: M D e i: i ; (6) p N ^ P = N 1 N X i=1 T 1 X 0 i: M D X i: ! 1 1 p N N X i=1 T 1 X 0 i: M D (X i: i + e i: ) : (7) 
where e i: = (e i1 ; e i2 ; :::; e iT ) 0 . The asymptotic distributions of ( 6) and ( 7) are summarized in the following theorems.

Theorem 1 (MG estimator -Heterogeneous slopes, spatial corr. and no common factors) Consider the panel data model ( 1) with errors e it following the spatial process given by (2). Suppose that Assumptions 1-4 and 5(a) hold and that i = 0, for i = 1; 2; :::; N . Then for the mean group estimator, ^ M G , given by (3), as (N; T )

j ! 1 we have p N ^ M G d ! N (0; M G );
where M G = :

Theorem 2 (Pooled estimator -Heterogeneous slopes, spatial corr. and no common factors) Consider the panel data model ( 1)-( 2). Suppose that Assumptions 1-4 and 5(b) hold and that i = 0, for i = 1; 2; :::; N .

Then for the pooled estimator, ^ P ; given by (5), as (N; T ) j ! 1, we have

p N ^ P d ! N (0; P );
where

P = Q 1 Q 1 ; (8) with Q = lim N;T !1 N 1 N X i=1 X 0 i: M D X i: T ; (9) 
= lim

N;T !1 " N 1 N X i=1 X 0 i: M D X i: T X 0 i: M D X i: T # :
The proofs are provided in the Appendix. We observe that, to obtain the asymptotic distribution of both estimators, we have premultiplied them by p N rather than the usual p N T . This follows from the random coe¢ cients hypothesis stated in Assumption 3, since the time-invariant variability of i dominates the other sources of randomness in the model. Robust estimators for P and M G can be obtained following the nonparametric approach employed in [START_REF] Pesaran | Estimation and inference in large heterogenous panels with multifactor error structure[END_REF], which makes use of estimates of computed for di¤erent cross sectional units. A consistent estimator of the asymptotic variance of the mean group estimator is given by

\ Asy:V ar ^ M G = 1 N (N 1) N X i=1 ^ i ^ M G ^ i ^ M G 0 : (10) 
Similarly, a consistent non-parametric estimator of the asymptotic variance of the pooled estimator is

\ Asy:V ar ^ P = 1 N Q 1 N T N T Q 1 N T ; (11) 
where

Q N T = 1 N N X i=1 T 1 X 0 i M D X i ; ( 12 
) N T = 1 N 1 N X i=1 X 0 i M D X i T ^ i ^ M G ^ i ^ M G 0 X 0 i M D X i T :
One advantage of the above non-parametric variance estimators is that their computation does not require a priori knowledge of the spatial arrangement of cross sectional units. As we shall see later in the paper, mis-speci…cation of the spatial weights matrix may lead to substantial size distortions in tests based on the ML or quasi-ML estimators of i (or ). Another advantage of using the above approach over standard spatial techniques is that, while allowing for serially correlated errors, it does not entail information on the time series processes underlying " it , so long as these processes are covariance stationary.

Under the special case of homogeneous slopes, with i = for all i, to obtain non-degenerate asymptotic distributions, the MG and pooled estimators should now be multiplied by p N T , rather than by p N . In this case, we have

p N T ^ M G = 1 p N T N X i=1 h T 1 X 0 i: M D X i: 1 X 0 i: M D e i: i ; (13) 
p N T ^ P = " N 1 N X i=1 T 1 X 0 i: M D X i: # 1 1 p N T N X i=1 X 0 i: M D e i: : (14) 
Using results (A.15) and (A.16) in the appendix, the asymptotic distributions of ( 13) and ( 14) can be easily derived. These are set out in the following theorem.

Theorem 3 (MG estimator -Homogeneous slopes, spatial corr. and no common factors) Consider the panel data model ( 1)-(2). Suppose that Assumptions 1-4 and 5(a) hold, that i = 0 for i = 1; 2; :::; N , and = 0. Then for the mean group estimator, ^ M G , given by (3), as N and/or T ! 1 we have

p N T ^ M G d ! N (0; M G );
where

M G = lim M!1 1 M H 0 "" H ; (15) 
with M = N T , H 0 = (W 0 :1 R 1 ; W 0 :2 R 2 ; :::; W 0 :T R T ); W 0 :t = (w 1t ; w 2t ; :::; w N t ), and w it is the t th column of

W 0 i: = T 1 X 0 i: M D X i: 1 X 0 i: M D .
Theorem 4 (Pooled estimator -Homogeneous slopes, spatial corr. and no common factors) Consider the panel data model ( 1)-(2). Suppose that Assumptions 1-4 and 5(b) hold, and that i = 0 for i = 1; 2; :::; N , and = 0. Then for the pooled estimator, ^ P , given by (5), as N and/or T ! 1 we have p N T ^ P d ! N (0; P );

where

P = Q 1 P Q 1 ; (16) with Q = lim M!1 1 M N X i=1 X 0 i: M D X i: ! ; P = lim M!1 1 M P 0 "" P ; M = N T , P 0 = ( e X 0 :1 R 1 ; e X 0
:2 R 2 ; :::; e X 0 :T R T ), e X :t = (e x 1t ; e x 2t ; :::; e x N t ) 0 , and e x it is the t th column of e X 0 i: = X 0 i: M D .

The asymptotic variances M G and P depend on the particular speci…cations of R t , t = 1; 2; :::; T , and on "" . One important question is to determine whether the robust variance estimators introduced above can still be used under the case of homogeneous slopes. To investigate this issue, one possibility would be to check whether the individual estimators p T ^ i , for i = 1; 2; :::; N (see formula 4), are asymptotically independent and normal across i. Under this condition, using results in [START_REF] Ibragimov | t-statistic based correlation and heterogeneity robust inference[END_REF], it is possible to show that it is still valid to base inference on ^ M G and its robust variance estimator given by (10).

These authors prove that the type I error using a t-test based on ^ M G is not greater than the level of statistical signi…cance chosen for this test, , under the condition that < 0:083 (see also [START_REF] Bakirov | Student's t-test for gaussian scale mixtures[END_REF]).

Note that

p T ^ i = T 1 X 0 i: M D X i: 1 1 p T X 0 i: M D e i: ;
and the covariance between p T ^ i and p T ^ j for i 6 = j, is given by

T E ^ i ^ j 0 = 1 T W 0 i: E e i: e 0 j: W j: = 1 T T X t=1 T X s=1 w it w 0 js E (e it e js ) = 1 T T X t=1 T X s=1 w it w 0 js E r 0 i:;t " t " 0 s r j:;s = 1 T T X t;s=1 " w it w 0 js N X h=1 E (r ih;t r jh;s " ht " hs ) # :
The above covariance is zero for all i 6 = j only under certain conditions. For example, it is zero if the idiosyncratic errors are cross sectionally independent (though possibly serially correlated), or if the elements, r ih;t ; are random and satisfy E (r ih;t r jh;s ) = 0, for for all i 6 = j, h = 1; 2; ::; N and t; s = 1; 2; :::; T . We observe that condition E (r ih;t r jh;s ) = 0 holds if the entries in the i th row in R t are independently distributed of the entries in the j th row of R t , at all time periods. However, these restrictions are unlikely to hold in general.

To obtain robust estimates of the asymptotic variances in the general case one possibility would be to consider a generalized version of the Newey-West procedure that allows for the spatial e¤ects. For purely spatial error processes, heteroskedasticity, spatially-correlated consistent (HSC) estimators have been proposed

by [START_REF] Conley | GMM estimation with cross sectional dependence[END_REF] (see also early contributions by [START_REF] Driscoll | Consistent covariance matrix estimation with spatially dependent panel data[END_REF], and the method suggested in [START_REF] Pinkse | Spatial price competition: a semiparametric approach[END_REF]). More recently, [START_REF] Kelejian | HAC estimation in a spatial framework[END_REF] have proposed a new HSC estimator that approximate the true covariance matrix with a weighted average of cross products of regression errors, where each element is weighted by a function of (possible multiple) distances between cross section units.

Bester, [START_REF] Bester | Inference with dependent data using cluster covariance estimators[END_REF], using results taken from [START_REF] Ibragimov | t-statistic based correlation and heterogeneity robust inference[END_REF], propose to divide the sample in groups so that group-level averages are approximately independent, and accordingly suggest a HSC estimator based on a discrete group-membership metric. However, the validity of this approach relies on the ability of the researcher to construct groups whose averages are approximately independent. In contrast, the [START_REF] Kelejian | HAC estimation in a spatial framework[END_REF] approach stands out as a ‡exible and robust method, as it does not entail high level assumptions, allows for multiple distance measures, and is robust to some measurement errors in the speci…cation of the distance matrix.

Note that ( 15) and ( 16) can be written as

M G = 1 N T N X i;j=1 T X t;s=1
w it w 0 js E (e it e js ) ;

P = Q 1 2 4 1 N T N X i;j=1 T X t;s=1 e
x it e x 0 js E (e it e js )

3 5 Q 1 :
Following [START_REF] Kelejian | HAC estimation in a spatial framework[END_REF], assume that there exists a "meaningful", time-invariant, measure of distance between cross sectional units, summarized in the N N matrix, with elements ij 0.

Let

êit = y it ^ 0 i d t ^ 0 M G
x it (see Section 5 for estimation of i ). A Newey-West SHAC estimator of the variance of ^ M G can be computed as

\ Asy:V ar ^ M G = 1 (N T ) 2 N X i;j=1 T X t;s=1 K ij N ; jt sj p + 1 w it w 0 js êit êjs ; (17) 
where N > 0 is an arbitrary scalar function of N , p is the window size for the time series dimension, and K(:

)
is a kernel function that we set equal to

K ij N ; jt sj p + 1 = K 1 ij N K 2 jt sj p + 1 ;
where K 1 (:) and K 2 (:) satisfy a set of regularity conditions (see, in particular, Assumption 7 in [START_REF] Kelejian | HAC estimation in a spatial framework[END_REF]). Note that K 1 ij N = 0 for ij > N , and K 2 jt sj p+1

= 0 for jt sj > p + 1, and that

K 1 (0) = K 2 (0) = 1.
Similarly, a Newey-West SHAC estimator of the variance of ^ P is

\ Asy:V ar ^ P = Q 1 N T 2 4 1 (N T ) 2 N X i;j=1 T X t;s=1 K ij N ; jt sj p + 1 e x it e
x 0 js êit êjs

3 5 Q 1 N T ; (18) 
where Q N T is given by ( 12), and êit is now given by êit = y it ^ 0 i d t ^ 0 P x it . The rest of the notations are as above. We observe that the above estimators require knowledge of the exact relative position of units across space, although as argued in [START_REF] Kelejian | HAC estimation in a spatial framework[END_REF], the estimator remains valid under certain mis-speci…cations of the distance metric.

Estimating panels with unobserved common factors and spatial error correlation

We now turn to the estimation of the slope coe¢ cients in the context of panels with both common factors and spatial error dependence. We restrict our attention to the CCE approach since, as compared to other existing methods, it is simple to apply and has been shown to be robust to the choice of m (the number of common factors), the temporal dynamics of unobserved common factors, and the idiosyncratic error. The idea underlying this approach is that, as far as estimation of the slope coe¢ cients are concerned, the unobservable common factors can be well approximated by the cross section averages of the dependent variable y :t = N1 P N i=1 y it and individual-speci…c regressors, x :t = N 1 P N i=1 x it . Hence, estimation can be carried out by least squares applied to auxiliary regressions where the observed regressors are augmented with these cross section averages plus the observed common factors, d t .

To model the correlation between the individual-speci…c regressors, x it , and the common factors, it is supposed that

x it = A 0 i d t + 0 i f t + v it ; (19) 
where A i and i are n k and m k factor loading matrices with …xed components, and v it is the individual-

speci…c component of x it .
Let M be de…ned by

M = I T H( H 0 H) H 0 ; (20) 
H = (D; Z); where D and Z are, respectively, the matrices of observations on d t and z :t = ( y :t ; x 0 :t ) 0 . We make the following assumptions on the common factors and their loadings and on the individual, or unit-speci…c, errors:

ASSUMPTION 6 The (n + m) 1 vector g t = (d 0 t ; f 0 t ) 0 is a covariance stationary process, with absolute summable autocovariances, distributed independently of e is and v is for all i; t; s. 1 ASSUMPTION 7 The unobserved factor loadings, i and i are bounded, i.e. k i k 2 < K and k i k 2 < K, for all i. Further, it is assumed that the random deviations, i , for the slope coe¢ cients are independently distributed of i and i .

ASSUMPTION 8 The individual-speci…c errors e it and v js are distributed independently for all i; j; t and s, and for each i; v it follows a linear stationary process with absolute summable autocovariances given by

v it = 1 X `=0 i` i;t `;
where for each i, it is a k 1 vector of serially uncorrelated random variables with mean zero, the variance matrix I k ; and …nite fourth-order cumulants. For each i, the coe¢ cient matrices i`s atisfy the condition

V ar(v it ) = 1 X `=0 i` 0 i`= v i ;
where v i is a positive de…nite matrix, such that

sup i k v i k 2 < K: ASSUMPTION 9 Let ~ = E ( i ; i ) = ( ; ). We assume that Rank ~ = m.
ASSUMPTION 10 Consider the cross section averages of the individual-speci…c variables, z it = (y it ; x 0 it ) 0 de…ned by z :t = 1 N P N i=1 z it , and let M be de…ned by ( 20). Then the following conditions hold:

(a) The matrix lim N !1

1 N P N i=1 v i exists and is non-singular.

(b) There exists T 0 and N 0 , such that for all T T 0 and N N 0 , the k k matrices T 1 X 0 i: MX i: , and

T 1 X 0 i: M g X i:
, where M g = I T G(G 0 G) G 0 , with G = (D; F); exist and are non-singular for all i, and sup i E

X 0 i: MgX i: T 2 < K < 1.
Remark 1 Note that Assumption 10 provides extensions of Assumption 5 to the case where individual-speci…c regressors, x it , are random and correlated with the common factors. These conditions ensure the existence of the probability limits involved in the derivation of the asymptotic distribution of the CCE estimators as

(N; T ) j ! 1.
Following [START_REF] Pesaran | Estimation and inference in large heterogenous panels with multifactor error structure[END_REF], the mean group and pooled estimators for in a panel with spatial correlation and common factors are given by ( 3) and ( 5), applied to a regression equation where the observed regressors are augmented with the cross section averages of the dependent variable, y :t , and of the regressors, x :t . Speci…cally, the CCE mean group estimator is

^ CCEM G = N 1 N X i=1 ^ CCE;i ; (21) 
where

^ CCE;i = (X 0 i: MX i: ) 1 X 0 i: My i: ; (22) 
and the CCE pooled estimator is

^ CCEP = N X i=1 X 0 i: MX i: ! 1 N X i=1 X 0 i My i: ; (23) 
The following theorems apply to the above estimators (proofs are provided in the Appendix).

Theorem 5 (CCE MG estimator -Heterog. slopes, spatial corr. and common factors) Consider the panel data model given by equations ( 1), (2), and ( 19). Suppose that Assumptions 1-3 and 6-10 hold. Then for the common correlated e¤ ects mean group estimator ^ CCEM G given by ( 21), as

(N; T ) j ! 1 we have p N ^ CCEM G ! N (0; CCEM G ); (24) 
where CCEM G = :

Theorem 6 (CCE Pooled estimator -Heterog. slopes, spatial corr. and common factors) Consider the panel data model given by equations ( 1), ( 2) and ( 19). Suppose that Assumptions 1-3 and 6-10 hold. Then for the common correlated e¤ ects pooled estimator ^ CCEP given by ( 23), as

(N; T ) j ! 1, we have p N ^ CCEP ! N (0; CCEP );
where

CCEP = 1 R 1 ; with = lim N !1 1 N N X i=1 v i ! ; R = lim N !1 " 1 N N X i=1 v i v i # :
Consistent estimators for the asymptotic variances of ^ CCEP and ^ CCEM G are (see also Section 3 above)

\ Asy:V ar ^ CCEM G = 1 N (N 1) N X i=1 ^ CCE;i ^ CCEM G ^ CCE;i ^ CCEM G 0 ; (25) \ Asy:V ar ^ CCEP = 1 N ^ 1 R ^ 1 : (26) with ^ = 1 N N X i=1 X 0 i: MX i: T ; R = 1 N 1 N X i=1 X 0 i: MX i: T ^ CCE;i ^ CCEM G ^ CCE;i ^ CCEM G 0 X 0 i: MX i: T :
As in the pure spatial case, if the slope coe¢ cients i are homogeneous the CCE estimators must be multiplied by p N T , rather than by p N , to obtain non-degenerate asymptotic distributions, namely

p N T ^ CCEM G = 1 p N T N X i=1 h T 1 X 0 i: MX i: 1 X 0 i: M (F i + e i: ) i ; (27) p N T ^ CCEP = " N 1 N X i=1 T 1 X 0 i: MX i: # 1 1 p N T N X i=1 X 0 i: M (F i + e i: ) : (28) 
Using results (A.17)-(A.18) and (A.19)-(A.20) in the Appendix, it follows that ^ CCEM G and ^ CCEP continue to be consistent for as N ! 1, for T …xed or T ! 1, although their asymptotic distributions will generally depend on nuisance parameters. Following similar lines of reasoning as in the pure spatial case, we now investigate whether ^ CCEM G together with the non-parametric variance estimator (10) can still be used in the homogeneous slopes case. First note that, using results (A.12)-(A.14) in the Appendix, we have

p T ^ CCE;i = ^ 1 iT X 0 i: M (F i + e i: ) p T = 1 p T W 0 i: e i: + O p p T N ! + O p 1 p N ;
where

W 0 i: = T 1 X 0 i: M g X i:
1 X 0 i: M g . Further, for large N and T with p T =N ! 0,

T ^ CCE;i ^ CCE;j 0 = ^ 1 iT T 1 X 0 i: M (F i + e i: ) 0 j F 0 + e 0 j: MX j: ^ 1 jT T 1 W 0 i: e i: e 0 j: W j :
As in the pure spatial case, the above expression is asymptotically zero only under certain conditions, for example when the idiosyncratic errors are cross sectionally independent, or if the entries of the matrix R t , for t = 1; 2; :::; T , are random and independently distributed across rows. Later in the paper, we will investigate the small sample properties of tests based on robust variances ( 25) and ( 26) both under heterogenous and homogeneous slopes.

Remark 2 The CCE continues to be applicable even if the rank condition outlined in Assumption 9 is not satis…ed. Failure of the rank condition can occur if there is an unobserved factor for which the average of the loadings in the y it and x it equations tends to a zero vector [START_REF] Pesaran | Large panels with common factors and spatial correlation[END_REF]). This could happen if, for example, such a factor carries weak cross section dependence. Another possible reason for failure of Assumption 9 is if the number of unobservable factors, m, is larger than k + 1, where k is the number of regressors. In these cases, common factors cannot be estimated from cross section averages. However, it is possible to show that the cross sectional means of the slope coe¢ cients, i , can still be consistently estimated, under the additional assumption that the unobserved factor loadings, i , in equation ( 1) are independently and identically distributed across i; and of e jt , v jt , and g t = (d 0 t ; f 0 t ) 0 for all i; j and t. No assumptions (other than Assumption 7) are required on the loadings attached to the regressors, x it . The proofs of consistency and asymptotic normality of the CCE estimator in the rank de…ciency case are straightforward extensions of the results provided in [START_REF] Pesaran | Estimation and inference in large heterogenous panels with multifactor error structure[END_REF].

Remark 3 We observe that the CCE estimator does not entail any assumptions on the cumulative e¤ ect of factors on cross section units. This is in contrast to the use of principal components that require errors to display a strong factor structure, namely that

P N i=1 2 i`> p c 2
, for `= 1; 2; :::; m, where c is such that

N T c = o N 1=2
, and 2 is the variance of the idiosyncratic error. In the absence of this condition the principal components estimates of the factors would be inconsistent. See, for example, [START_REF] Onatski | Asymptotics of the principal components estimator of large factor models with weak factors[END_REF][START_REF] Paul | Asymptotics of the leading sample eigenvalues for a spiked covariance model[END_REF].

Remark 4 Kapetanios, Pesaran, and Yagamata (2010) considered the case where the unobservable common factors follow unit root processes and could be cointegrated. They showed that the asymptotic distribution of panel estimators in the case of I(1) factors is similar to that in the stationary case, reported in Theorems 5 and 6 above.

Residuals from CCE regression

We now consider the consistent estimation of regression errors

u it = y it 0 i d t 0 i x it in model (1)
. Estimation of u it is needed for computing tests of error cross section independence, or when the objects of interest are the coe¢ cients of the spatial process, e it . Before continuing, without loss of generality, we specify some further assumptions on the observed and unobserved common factors. In particular:

ASSUMPTION 11 E (f t ) = 0, for t = 1; :::; T , and the n 1 vector of observed common factors, d t , is distributed independently of f t 0 , for all t and t 0 , such that

D 0 F T = O p 1 p T : (29) 
This is an identi…cation condition that allows to separate the e¤ects of observed and unobserved common e¤ects in u it . Note that the cross section averages, z :t , contain information not only on the unobserved factors, f t , but also on the observed factors, d t . Given that the number, nature and the source of the unobserved common factors are unknown, without Assumption 11 it would not be possible to separate the e¤ects of these two sets of common variables. However, since f t is unobserved this assumption can be easily accommodated by a suitable re-de…nition of f t and the associated factor loadings.

Consider the OLS estimates

^ i = D 0 D 1 D 0 y i: X i: ^ CCE;i ; (30) 
where ^ CCE;i is given by ( 22). Under Assumptions 1-3 and 6-10, and given (A.12)-(A.14), we have2 

^ CCE;i i = T 1 X 0 i: MX i: 1 X 0 i: M (F i + e i: ) T = O p 1 N + O p 1 p N T + O p 1 p T ; ^ i i = T 1 D 0 D 1 D 0 X i: T i ^ CCE;i + T 1 D 0 D 1 D 0 F T i + T 1 D 0 D 1 D 0 e i: T ;
and hence

^ i i = O p 1 N + O p 1 p N T + O p 1 p T : (31) 
Note that, unlike in the case of a simple panel data model with …xed e¤ects and no unobserved common factors, consistency of ^ i requires both N and T going to in…nity, due to the additional O p N 1 term in (31). This term arises since the unobserved common factors are approximated by cross section averages. Now, consider

the residuals ûit = y it ^ CCE;i x it ^ 0 i d t .
Given the consistency of ^ CCE;i and ^ i , it follows that

u it = ûit + O p 1 N + O p 1 p N T + O p 1 p T :
Similarly, in the homogenous case, adopting the CCEP estimator, under Assumptions 1-3 and 6-10, from (A.20)

we have 32) and (A.20), we obtain

^ i i = T 1 D 0 D 1 D 0 X i: T ^ CCEP + T 1 D 0 D 1 D 0 F T i + T 1 D 0 D 1 D 0 e i: T = O p 1 p N + O p 1 p T + O p 1 p N T : (32) Let ûit = y it ^ 0 CCEP x it ^ 0 i d t . Given (
u it = ûit + O p 1 p N + O p 1 p T + O p 1 p N T :
Principal components analysis can be applied to the above residuals, ûit , to estimate the common factors, f t , and their loadings, i . Note that these residuals continue to be consistent, as (N; T ) j ! 1; even when the loadings attached to the unobserved factors are set to zero, namely, when the data generating process is (1)-( 2).

In this case, the parameters of the spatial process can be recovered by applying standard spatial econometric techniques to ûit .

6 Monte Carlo experiments

Monte Carlo design

This section provides Monte Carlo evidence on the small sample properties of our estimators, under a range of assumptions on the stochastic process generating the error terms. The study is comprised of three sets of experiments. In the …rst set, we consider a panel where the error term is generated by a SAR process and with no common factors. In the second set, we assume that the error process is the orthogonal sum of a factor structure and a spatial process, and allow the dependent variable and the individual-speci…c regressors to be correlated with the unobserved common factors. In the third set of experiments, we make a number of robustness checks, to see the extent to which our estimators are e¤ective in dealing with various special conditions, such as when errors are serially correlated, there are sizeable spatial error correlations, or when the pattern of cross section dependence varies over time.

For all experiments we considered the following data generating process

y it = i d 1t + i1 x 1it + i2 x 2it + i1 f 1t + i2 f 2t + e it ; x ijt = a ij1 d 1t + a ij2 d 2t + ij1 f 1t + ij3 f 3t + v ijt ; j = 1; 2;
for i = 1; 2; :::; N and t = 1; 2; :::; T . In the above equations, d 1t and d 2t are observed common factors, f 1t , f 2t , and f 3t are unobserved common e¤ects, and e it are idiosyncratic errors. We adopt the following data generating processes: 

d 1t = 1; d 2t = d d 2;t 1 + v dt , t
T; # ijt N (0; 1 2 # ij ); v ij; 50 = 0; # ij
IIDU (0:05; 0:95) for j = 1; 2.

The …rst 50 observations are discarded. The factor loadings of the observed common e¤ects do not change across replications and are generated as i IIDN (1; 1); i = 1; 2; :::; N;

(a i11 ; a i21 ; a i12 ; a i22 ) IIDN (0:5 4 ; 0:5I 4 );

where 4 = (1; 1; 1; 1) 0 and I 4 is a 4 4 identity matrix.

We consider two alternative sets of experiments, that involve di¤erent hypotheses on the data generating process for the loadings of the unobserved common factors, and the way the idiosyncratic errors e it are generated:

A The factor loadings of the unobserved common e¤ects are set to zero, i11 = i13 = i21 = i23 = i1 = i2 = 0, and the individual-speci…c errors, e it , are generated according to the SAR process

e it = t N X j=1
s ij e jt + " it ; for i = 1; 2; :::; N , t = 1; 2; :::; T;

(33)

" it N (0; 2 i ); 2 i
IIDU (0:5; 1:5) ; for i = 1; 2; :::; N;

(34

)
where t is the time-varying spatial autoregressive coe¢ cient, that we set t = = 0:4. s ij , for i; j = 1; 2; :::; N , are elements of a spatial weights matrix S, assumed to be time-invariant. We follow [START_REF] Kelejian | HAC estimation in a spatial framework[END_REF] and assume that units are located on a rectangular grid at locations (r; s), for r = 1; :::; m 1 ; s = 1; 2; :::; m 2 , such that N = m 1 m 2 . 3 The distance ij between units is given by the Euclidean distance, and S is taken to be a rook-type matrix where two units are neighbors if their Euclidean distance is less than or equal to one. The weights matrix is normalized such that the weights in each row sum to one.

B The parameters of the unobserved common e¤ects in the x it and y it equations are generated as and the individual-speci…c errors, e it , are generated as in ( 33) and ( 34), with t = = 0:4. This set of experiments aims at investigating the extent to which the CCE estimators capture the e¤ects of local as well global cross section dependence.

i11 0 i13 i21 0 i23 ! IID N ( 
For each case, we consider two alternative assumptions on the slope coe¢ cients:

(i) The case of heterogeneous slopes where ij = j + ij , with j = 1, and ij IIDN (0; 0:04) ;for i = 1; 2; :::; N and j = 1; 2, varying across replications.

(ii) The case of homogeneous slopes where ij = 1; for i = 1; 2; :::; N and j = 1; 2.

Experiment C: robustness checks

The aim of this set of experiments is to investigate the extent to which the use of robust standard errors are e¤ective in dealing with serially correlated errors, high spatial error correlation, and time variations in the degree and source of error cross section dependence:

1. Serially correlated errors. We allow errors " it in (33) to be serially correlated. In particular, " it are generated as stationary AR(1) processes for half of the cross-section units, and as MA(1) processes for the remaining cross-section units:

" it = i" " i;t 1 + i 1 2 i" 1=2 
it ; i = 1; :::; bN=2c ; " it = i 1 + 2 i"

1=2

it + i" i;t 1 ; i = bN=2c + 1; :::; N:

where it IIDN (0; 1); 2 i IIDU (0:5; 1:5) ; i" IIDU (0:05; 0:95); and i" IIDU (0; 0:8). For this sub-experiment we set t = = 0:4, no unobserved common factors, and consider both cases of heterogeneous and homogeneous slopes.

2. High spatial error correlation. For this sub-experiment we set t = = 0:8. Further, we assume that there are no unobserved common factors and the slope coe¢ cients are heterogeneous (i.e. as in case (i)).

3. Time-varying spatial correlation. The spatial autoregressive coe¢ cients are generated as t IIDU (0; 0:8), for t = 1; 2; :::; T , and …xed across replications. For this sub-experiment we assume no unobserved common factors and heterogeneous slopes (i.e. as in case (i)).

4. Time-varying cross section dependence. We allow the cross dependence to change from weak to strong and back to weak. Speci…cally, for t = 1; 2; :::; bT =3c we assume parameters of the unobserved common e¤ects in the x it and in the y it equations and the errors e it are generated as in Experiment A, with t = = 0:8. For t = bT =3c + 1; :::; b2T =3c parameters of the unobserved common e¤ects in the x it and in the y it equations and the errors e it are generated as in Experiment B, with t = = 0 (i.e., error processes include common factors only). For t = b2T =3c + 1; :::; T parameters of the unobserved common e¤ects in the x it and in the y it equations and the errors e it are generated as in Experiment A, with t = = 0:8.

For this sub-experiment we assume heterogeneous slopes (i.e. as in case (i)). The aim of this set of experiments is to investigate the robustness of our estimators to the possible time variations in the degree of cross section dependence.

Each experiment was replicated 2; 000 times for the (N; T ) pairs with N; T = 20; 30; 50; 100. We report the small sample properties for a number of estimators of the slope coe¢ cients. In particular, we computed the mean group estimator (3), both with robust variance (10) and with SHAC variance (17), the pooled estimator (5) both with robust variance (11) and with SHAC variance (18). The SHAC variance estimators have been computed using both the true distance matrix and a mis-speci…ed version of the distance matrix obtained by incorrectly assuming that units are ordered on a line, rather than on a rectangular grid. Following [START_REF] Kelejian | HAC estimation in a spatial framework[END_REF], we have set the parameter N in ( 17) and ( 18) equal to N 1=4 , and have …xed the window size for the time series part equal to 2T 1=2 . We also computed the ML estimator for a panel containing …xed e¤ects, with spatially correlated and heteroskedastic errors. The likelihood function of this model for a given spatial matrix, S, is derived in a supplement which is available on request. Related derivations are also provided in [START_REF] Anselin | Spatial Econometrics: Methods and Models[END_REF] and [START_REF] Lee | Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models[END_REF]. We refer to this estimator as the ML-SAR estimator. The ML-SAR estimator is computed for two di¤erent spatial weights matrices; a correctly speci…ed one, and a mis-speci…ed version, where units with Euclidean distance less than or equal to two are incorrectly taken as neighbors. This is done with the intent to check the e¤ect of mis-speci…cation of S on the ML-SAR estimator. Finally, we report results for the CCE mean group estimator (21) with variance (25), and the CCE pooled estimator (23) with variance (26).

Monte Carlo results

Results for Experiment A are summarized in Tables A1-A2, for Experiment B in Tables B1-B2, and for Experiment C in Tables C1-C4. Each table provides estimates of bias, root mean squared errors (RMSE), size, and power. The nominal size is set to 5 per cent, while the power of the various tests is computed under the alternative H 1 : 1 = 0:95. In what follows we focus on estimation of 1 ; results for 2 are very similar and are not reported.

Tables A1-A2 summarize the results for the case where the errors are generated by a spatial autoregressive process without any common factors, under heterogeneous slopes (Table A1) and homogeneous slopes (Table A2). We …rst note that, for these experiments, the mean group and pooled procedures provide unbiased estimators for the mean of the slope coe¢ cients, . Accordingly, these estimators display very small biases and their RMSEs decline steadily with increases in N and/or T . Considering the empirical sizes of the tests, the ones based on the robust variance estimators ( 10) and ( 11) display rejection frequencies that are close to the nominal size under heterogeneous slopes, while they slightly over-reject the null under slope homogeneity, namely when i = , for all i.

Indeed, as noted in Section 3, the robust standard errors given by ( 10) and ( 11) are not applicable under slope homogeneity, and consistent estimation of the variance of the pooled and mean group estimators in general requires knowledge of the spatial arrangement of the cross section units. In contrast, the tests based on SHAC variances severely over-reject the null hypothesis in all experiments with heterogeneous slopes, while they do have the correct size when data are generated under i = ; and when N and T are su¢ ciently large. Indeed, when N and T are smaller than 50, the SHAC based tests are slightly over-sized. That the use of Newey-West robust standard errors lead to an over-rejection of the null hypothesis in small samples is well known within the time series literature (see, for example, the Monte Carlo study reported in [START_REF] Smith | Newey-West covariance matrix estimates for models with generated regressors[END_REF]). Our results seem to indicate that adopting the Newey-West procedure jointly with the [START_REF] Kelejian | HAC estimation in a spatial framework[END_REF] variance estimator in a panel data framework may also lead to over-rejection of the null hypothesis in small samples. We note that Kelejian and Prucha, in their Monte Carlo experiments, only report results when N is relatively large (they focus on a single cross section, T = 1, with N = 400 and 1024). Also, they do not report sizes of tests based on their proposed variance estimator (see also the Monte Carlo study reported in Fingleton and Le Gallo ( 2008)). To further investigate this issue, we have run some additional experiments using [START_REF] Kelejian | HAC estimation in a spatial framework[END_REF] Monte Carlo design, with T = 1, N = 100; 200; 400; 1024. The results show that tests based on the non-parametric standard errors proposed by Keleijan and Prucha have empirical sizes close to the 5 per cent nominal size if N 400, but tend to over-reject for smaller values of N .4 However, the results in Table A2 show that errors in the measurement of the distance between cross section units does not seem to have much a¤ect on the properties of SHAC estimators, which is in line with the theoretical results obtained in Keleijan and Prucha.

A number of other interesting …ndings also emerge from the results reported in Table A2. We can see that under the ideal conditions that the spatial process generating the error term and the spatial arrangement of units are both known, the ML estimator has the correct size for large T , and a high power. Also tests based on CCE Mean Group and CCE Pooled estimators have empirical sizes that are very close to the nominal size, under both cases of heterogeneous and homogeneous slopes. These …ndings suggest that augmenting the panel regressions with cross section averages even in the absence of common factors can help deal with spatial error spillover e¤ects. The attraction of the CCE type estimators in these contexts lies in the fact that they do not require a quanti…cation of the exact relative position of the units in space, which is required by the SHAC type estimators. But, not surprisingly a comparison of the power of the CCE type tests with the tests based on the ML-SAR in Table A2 shows that not using information on the spatial ordering of cross section units can result in some loss of power.

In Experiments B (Tables B1-B2), the combination of common factors and spatial correlation in the error term leads to large distortions in the pooled and mean group estimators. The bias and RMSE of the ML-SAR estimator are smaller than those of the pooled estimator, although they remain substantial even for large values of N and T . Further, tests based on the ML-SAR estimator substantially over-reject the null hypothesis.

However, the combination of common factors and spatial correlation in the errors does not a¤ect the empirical size of CCE estimators, which is close to the nominal size of 5 per cent.

Turning to results in Tables C1-C5, we observe that serial correlation in errors does not seem to a¤ect the properties of mean group and pooled estimators with robust variances (10) and ( 11), and of CCE estimators under both heterogeneous and homogeneous slopes (see Tables C1-C2). Another point to note is that the over-rejection tendency of the SHAC estimator is much more pronounced in the presence of residual serial correlation (Table C2). Turning to the experiments with a high value of the spatial coe¢ cient ( = 0:8), we see from Table C3 that tests based on mean group and pooled estimators that use robust standard errors tend to over-reject, in some cases signi…cantly. But it is interesting that the CCE estimators continue to have the correct size even with such high degrees of spatial dependence, although there is some evidence of a loss in power. One explanation for this result is that, when the degree of spatial correlation is high, an unobserved factor structure may better approximate the process generating cross section dependence, and the CCE type estimators that allow for a factor error structure might be more appropriate.

Finally, results reported in Table C5 suggest that CCE estimators are also robust to possible time variations in the degree of cross section dependence. This important property of CCE type estimators is not necessarily shared by estimation methods that use principal components (see [START_REF] Bai | Panel data models with interactive …xed e¤ects[END_REF]), since time variation in the degree of cross section dependence can yield inconsistent estimates of the principal components. We refer to [START_REF] Chudik | Weak and strong cross section dependence and estimation of large panels[END_REF] for a comparison of the CCE method with the principal components approach in the estimation of panel regression models subject to common factors.

Concluding remarks

The main aim of this paper has been to consider estimation of a panel regression model under a number of di¤erent speci…cations of cross section error correlations, such as spatial and/or common factor models. We have derived the asymptotic distributions of the mean group and pooled estimators for a panel regression model where the source of error cross section dependence is purely spatial or results from omitted unobserved factors, or both. In each case we have distinguished between panels when the slopes are homogeneous across the cross section units and when they are not. Our main conclusion (based on theoretical and Monte Carlo results) is that the augmentation of panel regressions with cross section averages together with non-parametric variance estimators associated with the CCE estimators, seem to be most e¤ective in dealing with error cross section dependencies, irrespective of whether they arise from are spatial spillovers of are due to the presence of unobserved common factors. The CCE type estimators also seem to be robust to possible serial correlations in the errors and time variations in the degree and nature of cross section error dependence. Our Monte Carlo results also document the tendency of the tests based on the SHAC type standard errors to over-reject the null hypothesis in small samples even in the case of error cross section dependence which is purely spatial in nature.

A Appendix: proof of Theorems 1-2 and 5-6

The following two Lemmas establish a few key results used in the proofs of Theorems 1-6. where ei: = (ei1; ei2; :::; eiT ) 0 .

Proof. First note that, under Assumption 1, "it has mean zero, …nite variances 0 < 2 i < 2 max < 1, and …nite fourth-order moments, E(" 4 it ) = 0 i4 < K < 1. To prove (A.1), note that

E e 2 :t = 1 N 2 0 Rt "R 0 t 1 N 2 2 max 0 1 RtR 0 t :
where is an N -dimensional vector of ones. But since Rt has bounded row and column norms, 1 (RtR 0 t ) is bounded, and we have E e 2 :t = O(N 1 ):

Let Mt = 1 N 2 1=2 " R 0 t 0 Rt
1=2 " , with elements mij;t, for i; j = 1; :::; N . The diagonal elements of Mt satisfy (denoting the i th column of Rt by r:i;t) 2004)), we have

mii;t = 1 N 2 2 ii r 0 :i;t 0 r:i;t = 1 N 2 2 ii N P j=1 rji;t ! 2 1 N 2 2 ii N P j=1 jrji;tj
V ar e 2 :t = V ar " 1 N 0 Rt":t 2 # = E " 1 N 2 " 0 :t R 0 t 0 Rt":t 2 # E 1 N 2 " 0 :t R 0 t 0 Rt":t 2 = T r 1 N 2 R 0 t 0 Rt " 2 + 2T r " 1 N 2 R 0 t 0 Rt " 2 # + N X i=1 0 i4 3 4 i m 2 ii;t T r 1 N 2 R 0 t 0 Rt " 2 = 2T r " 1 N 2 R 0 t 0 Rt " 2 # + N X i=1 0 i4
3 4 i m 2 ii;t :

But 0 i4 3 4 i < 0 i4 + 3 4 i < K; and therefore V ar e 2 :t 2 1 N 4 T r R 0 t 0 Rt 2 " R 0 t 0 Rt + K N X i=1 m 2 ii;t 2 1 N 4 4 max 0 RtR 0 t 2 + O N 3 2 1 N 4 4 max 1 RtR 0 t 2 0 2 + O N 3 ;
which establishes the second result in (A.1). To establish (A.2) consider the (t; s) th element of the T T matrix E ei:e 0 j: and note that, since for h 6 = q, E (" ht "qs) = 0,

E (eitejs) = E r 0 i:;t ":t" 0 :s rj:;t = N X h=1 N X q=1
r ih;t rjq;sE (" ht "qs) = N X q=1 riq;trjq;sE ("qt"qs) ;

and the largest eigenvalue of E ei:e 0 j: satis…es (using the result that 1(A) kAk 1 )

1 E ei:e 0 given that, by Assumption 1, P T t=1 jE ("qt"qs)j = O(1), and by Assumption 2, jriq;tj = O(1); P N q=1 jriq;sj = O(1), for all s. Therefore, for any process of form (2) with Rt having bounded row and column norms, e 2 :t converges to zero in quadratic mean as N ! 1, and the degree of cross section dependence of ei:will be bounded in N .

Lemma A.2 Consider the general process e:t = Rt":t. Then under Assumptions 1-8 we have

e 0 e T = Op 1 N ; (A.3) F 0 e T = Op 1 p N T ; D 0 e T = Op 1 p N T ; (A.4) V 0 i: e T = Op 1 p N T ; e 0 i: e T = Op 1 N + Op 1 p N T ; (A.5)
where e = ( e:1; :::; e:T ) 0 ; e 2 :t = N 1 P N i=1 eit, D and F are T n and T m matrices on observed and unobserved common factors, and Vi: = (vi1; :::; viT ) 0 .

Proof. Note that T 1 e 0 e = T 1 P T t=1 e 2 :t . From the Markov inequality we have, for every > 0,

P e 0 e T 1 E e 0 e T = 1 T 1 T X t=1 E e 2 :t = O 1 N : (A.6)
which proves (A.3). As for (A.4), consider the `th row of T 1 F 0 e and note that it can be written as T 1 P T t=1 f `t e:t, where f `t and e:t are distributed independently of each other. Then, given (A.1), T 1 P T t=1 f `t e:t has zero mean and variance

V ar T 1 T X t=1 f `t e:t ! = T 2 T X t=1 T X t 0 =1 [E (f `tf `t0 ) E ( e:t e :t 0 )] 2 max O 1 N " T 2 T X t=1 T X t 0 =1 E (f `tf `t0 ) # = O 1 N T :
This establishes (A.4). The second result in (A.4) and the …rst result in (A.5) follow similarly. As for the second result in (A.5), note that

T 1 e 0 i: e = T 1 T X t=1 eit e:t = 1 N T T X t=1 N X j=1 (eitejt) = 1 N T T X t=1 N X h=1 N X j=1 N X q=1 (r ih;t rjq;t" ht "qt) = 1 N T T X t=1 N X h=1 N X q=1
(r ih;t r:q;t" ht "qt) ;

where r:q;t = P N j=1 rjq;t. Its mean is

E T 1 e 0 i: e = 1 N T T X t=1 N X h=1 N X q=1 [r ih;t r:q;tE (" ht "qt)] = 1 N T T X t=1 N X q=1 riq;tr:q;t 2 q K 1 N T T X t=1 N X q=1 riq;t = O 1 N ; since P N q=1 riq;t = O(1)
. Also, under Assumptions 1 and 2, we have

E h T 1 e 0 i: e 2 i = 1 N 2 T 2 T X t=1 T X s=1 N X h=1 N X `=1 N X q=1 N X p=1
[r ih;t r i`;s r:q;tr:p;sE (" ht " `s"qt"ps)]

= 1 N 2 T 2 T X t=1 T X s=1 N X h=1 N X `=1 r ih;t r i`;s r :h;t r :`;s E " 2 ht " 2 `s + 1 N 2 T 2 T X t=1 T X s=1 N X h=1 N X `=1;`6 =h [r ih;t r ih;s r :`;t r :`;s E (" ht " hs " `s" `t)] + 1 N 2 T 2 T X t=1 T X s=1 N X h=1 N X `=1;`6 =h [r ih;t r i`;s r :`;t r :h;s E (" ht " hs " `s" `t)] K 1 N 2 T 2 T X t=1 T X s=1 N X h=1 N X `=1
(jr ih;t r i`;s r :h;t r :`;s j + jr ih;t r ih;s r :`;t r :`;s j + jr ih;t r i`;s r :`;t r :h;s j)

= O 1 N 2 + O 1 N T ;
since the …rst and the third terms of the above are O 1 N 2 , while, denoting r :`= max 1 t T fr :`;t g = O(1), the second term satis…es

1 N 2 T 2 N X h=1 N X `=1 T X t=1 T X s=1 jr ih;t r ih;s r :`;t r :`;s j 1 N 2 T 2 N X `=1 jr :`j N X h=1 T X t=1 T X s=1
(jr ih;t j jr ih;s j jr :`;s j)

K N 2 T 2 N X `=1 jr :`j N X h=1 T X s=1
(jr ih;s j jr :`;s j)

K N 2 T 2 N X `=1 jr :`j N X h=1 T X s=1 jr ih;s j K N 2 T N X `=1 jr :`j = O 1 N T : since N 2 P N `=1 jr :`j = O(N 1 ). It follows that T 1 e 0 i: e = Op 1 N + Op 1 p N T .
The above results can be used to prove further results that are helpful in deriving the asymptotic distribution of CCE estimators. Rewrite equations ( 1) and ( 19) more compactly as

zit = yit xit ! = B 0 i dt + C 0 i ft + it ; (A.7)
where

Bi = i Ai Di, Ci = i i Di, Di = 1 0 i I k ! , it = eit + 0 i vit vit ! :
From Lemma A.2 it follows that (see also Lemmas 2 and 3 in Pesaran ( 2006))

0 T = Op 1 N ; (A.8) F 0 T = Op 1 p N T ; D 0 T = Op 1 p N T ; (A.9) V 0 i: T = Op 1 N + Op 1 p N T ; e 0 i: T = Op 1 N + Op 1 p N T ; (A.10) X 0 i: T = Op 1 N + Op 1 p N T : (A.11)
Under Assumption 9, the above results in turn yield: .14) where Mg = IT G(G 0 G) G 0 . Note that (A.12)-(A.14) are identical to relations ( 40), ( 43) and ( 44) in [START_REF] Pesaran | Estimation and inference in large heterogenous panels with multifactor error structure[END_REF], and will be used to derive the asymptotic distribution of CCE Pooled and CCE Mean Group estimators.

X 0 i: MF T = Op 1 N + Op 1 p N T ; (A.12) X 0 i: MXi: T = X 0 i: MgXi: T + Op 1 N + Op 1 p N T ; (A.13) X 0 i: Mei: T = X 0 i: Mgei: T + Op 1 N + Op 1 p N T ; (A
In what follows we sketch the proofs of Theorems 1-2 and 5-6. Proof of Theorem 1. Consider ( 6), and rewrite it as

p N ^ M G = 1 p N N X i=1 i + 1 p T hNT ;
where

hNT = 1 p N T N X i=1 T 1 X 0 i: MDXi: 1 X 0 i: MDei: = 1 p N T N X i=1 W 0 i: ei: = 1 p N T N X i=1 T X t=1 witeit = 1 p N T T X t=1 W 0 :t e:t = 1 p N T H 0 ";
with W 0 :t = (w1t; w2t; :::; wNt). Under Assumption 1, the N T 1 vector " is a zero mean covariance stationary process, with covariance matrix E ("" 0 ) = "". Since the elements of H are uniformly bounded, using standard results on double array central limit theorem for stationary processes (see, for example, [START_REF] Chung | A Course in Probability Theory[END_REF], Chapter 7), it follows that hNT is asymptotically normally distributed if its variance exists and is positive semi-de…nite. Note that "" is made of T 2 blocks of N N diagonal matrices with elements

i (s) = i ( s) = 1 X j=0
aija i;j+jsj , for i = 1; 2; :::; N , s = 0; 1; 2; :::; that are absolute summable, namely P 1 s=0 j i (s)j < K for all i. It follows that "" has bounded row and column norms and the variance of hNT satis…es5 

V ar (hNT ) = 1 N T H 0 ""H 1 N T 1( "") H 0 H 1 N T K1 H 0 H = 1 N T K1 T X t=1 W 0 :t RtR 0 t W:t 1 N T K1 T X t=1 W 0 :t W:t 1 RtR 0 t K1K2 1 N N X i=1 T 1 X 0 i: MDXi: 1 ; (A.15)
which, under Assumption 5(a), tends to a non-singular matrix with …nite elements. Hence, we have

p N ^ M G = 1 p N N X i=1 i + 1 p T hNT = 1 p N N X i=1 i + Op 1 p T ;
which proves the theorem.

Proof of Theorem 2. Consider ( 7), and let

qNT = 1 p N T N X i=1 X 0 i: MDei: = 1 p N T N X i=1 e X 0 i: ei: = 1 p N T N X i=1 T X t=1 e xiteit = 1 p N T T X t=1 e X 0 :t Rt"t = 1 p N T P 0 ";
where e X:t = (e x1t; e x2t; :::; e xNt) 0 , and P 0 = ( e X 0 :1 R1; e X 0 :2 R2; :::; e X 0 :T RT ). Following similar lines of reasoning as for (A.15), the variance of qNT satis…es V ar (qNT ) = 1 N T P 0

""P

K1 P 0 P N T = K1 1 N T T X t=1 e X 0 :t RtR 0 t e X:t ! K1K2 1 T T X t=1 e X 0 :t e X:t N ! = K1K2 1 N T N X i=1 X 0 i: MDXi:; : (A.16)
which tends, under Assumption 5(b), to a …nite, positive de…nite matrix. It follows that

p N ^ P = N 1 N X i=1 T 1 X 0 i: MDXi: ! 1 1 p N N X i=1 T 1 X 0 i: MDXi: i + 1 p T qNT ! = N 1 N X i=1 T 1 X 0 i: MDXi: ! 1 1 p N N X i=1 T 1 X 0 i: MDXi: i + OP 1 p T ;
which proves the theorem.

Proof of Theorem 5. Consider

p N ^ CCEM G = 1 p N N X i=1 i + 1 N N X i=1 ^ 1 iT p N X 0 i: MF T i + 1 p N N X i=1 ^ 1 iT X 0 i: Mei: T ;
where, by Assumption 10(b), ^ 1 iT = T 1 X 0 i: MXi:

1 exists for all i. First note that, using (A.12), and since, by Assumption 7, factor loadings are bounded, it follows that (see also [START_REF] Pesaran | Estimation and inference in large heterogenous panels with multifactor error structure[END_REF], p. 983)

N 1 N X i=1 ^ 1 iT p N X 0 i: MF T i = Op 1 p N + Op 1 p T ; as N ! 1: (A.17)
Further, given (A.13)-(A.14) we have

1 p N N X i=1 ^ 1 iT X 0 i: Mei T = 1 p N N X i=1 V 0 i: MgVi: T 1 V 0 i: Mgei: T + Op 1 p N + Op 1 p T = 1 p T hNT + Op 1 p N + Op 1 p T ;
where

hNT = 1 p N T N X i=1 V 0 i: MgVi: T 1 V 0 i: Mgei: = 1 p N T N X i=1 T X t=1 witeit = 1 p N T T X t=1 W 0 :t e:t = 1 p N T H 0 ";
where H 0 = (W 0 :1 R1; W 0 :2 R2; :::; W 0 :T RT ); W 0 :t = (w1t; w2t; :::; wNt), and wit is the t th column of W 0 i: = T 1 V 0 i: MgVi: 1 V 0 i: Mg. Using similar lines of reasoning as in the proof of Theorem 1, hNT has zero mean and its variance satis…es

V ar (hNT ) = 1 N T E H 0 ""H K1K2 1 N T N X i=1 E W 0 i: Wi: = K1K2 1 N N X i=1 v i ;
which, under Assumption 10(a) tends to a …nite, positive de…nite matrix. Therefore, we have .18) which proves the theorem.

p N ^ CCEM G = 1 p N N X i=1 i + 1 p T hNT + Op 1 p N + Op 1 p T = 1 p N N X i=1 i + Op 1 p N + Op 1 p T ; (A
Proof of Theorem 6. Consider

p N ^ CCEP = N X i=1 1 N X 0 i: MXi: T ! 1 N X i=1 1 p N X 0 i: M (Xi: i + F i + ei:) T ; Using (A.12)-(A.14) we have N X i=1 1 N X 0 i: MXi: T ! 1 N X i=1 1 p N X 0 i: MF T i = Op 1 p N + Op 1 p T : (A.19) Further, N X i=1 1 p N X 0 i: Mei T = N X i=1 1 p N V 0 i: Mgei: T + Op 1 p N + Op 1 p T : Let qNT = 1 p N T N X i=1 e V 0 i: ei: = 1 p N T N X i=1 T X t=1 e viteit = 1 p N T T X t=1 e V 0 :t Rt"t = 1 p N T P 0 ";
where e Vi: = MgVi:, e V:t = (e v1t; e v2t; :::; e vNt) 0 , P 0 = ( e V 0 :1 R1; e V 0 :2 R2; :::; e V 0 :T RT ). Following similar lines of reasoning developed in the proofs to Theorem 2, qNT has mean zero and its variance satis…es

V ar (qNT ) = 1 N T E P 0 ""P 1 N T K1K2 N X i=1 E f V 0 i: e Vi: = K1K2 1 N N X i=1 v i ;
which, by Assumption 10(a), tends to a …nite, positive de…nite matrix. It follows that

p N ^ CCEP = N X i=1 1 N X 0 i: MgXi: T ! 1 1 p N N X i=1 X 0 i: MgXi: i T + N X i=1 1 N X 0 i: MgXi: T 1 1 p T qNT + Op 1 p N + Op 1 p T = N X i=1 1 N X 0 i: MgXi: T ! 1 1 p N N X i=1 X 0 i: MgXi: i T + Op 1 p N + Op 1 p T : (A.20)
which proves the theorem. 5), ( 21), ( 23), respectively. Robust variances of Mean group and Pooled estimators are ( 10) and ( 11). SHAC variances of Mean group and Pooled estimators are given by ( 17) and ( 18). Variances of CCE Mean group and CCE Pooled estimators are given by ( 25) and ( 26).

(1) -This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.

(2) -This estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid. Notes: see notes to Table A1.

(1) -This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.

(2) -This estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid. Notes: see notes to Table A1.

(1) -This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.

(2) -This estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid. A1.

(1) -This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.

(2) -This estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid. 40 14.00 20.20 18.80 25.10 32.70 47.80 13.70 15.00 17.50 24.40 25.20 29.50 37.70 49.30 50 9.30 9.90 13.20 18.90 20.60 29.20 39.50 56.50 11.80 13.50 18.80 23.20 27.70 33.40 43.50 56.20 100 8.80 10.10 15.30 20.50 33.60 44.30 62.80 77.10 11.50 15.10 21.50 25.60 40.80 51.10 64.60 A1.

(1) -This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.

(2) -This estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid. A1.

(1) -This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.

(2) -This estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid. A1.

(1) -This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.

(2) -This estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid. A1.

(1) -This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.

(2) -This estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid. Notes: see notes to Table A1.

(1) -This estimator is computed under the incorrect assumption that cross section units are neighbours if their Euclidean distance is less than or equal to 2 while in the true S matrix cross section units are neighbours if their Euclidean distance is equal to 1.

(2) -This estimator is computed under the incorrect assumption that cross section units are ordered on a line, rather than on a rectangular grid.

  0:2); i2 IIDN (1; 0:2); i3 = 0;

Lemma A. 1

 1 Consider the process (2), where ":t = ("1t; "2t; :::; "Nt) 0 satis…es Assumption 1, and Rt satis…es Assumption 2. Then for all t E e 2 :t = O(N 1 ); and V ar e 2 :t = O(N 2 );

  = O(1), then mii;t = O N 2 for all i and t. Using results on moments for quadratic forms established in the literature (seeUllah (

Table A1 :

 A1 Small sample properties of estimators for panels with spatially correlated errors ( = 0:4) and no unobserved common factors, under slope heterogeneity.

			Bias ( 100)		RMSE ( 100)			Bias ( 100)			RMSE ( 100)	
	NnT	20	30	50	100	20	30	50	100	20	30	50	100	20	30	50	100
					Mean group							Pooled			
	20	-0.07	0.10	-0.15	-0.38	8.40	6.59	5.72	5.14	0.07	-0.11	0.01	-0.36	7.78	6.61	5.92	5.65
	30	-0.07	-0.29	0.09	-0.07	6.40	5.44	4.52	4.03	-0.06	-0.13	0.06	-0.13	6.02	5.51	4.82	4.38
	50	-0.12	0.09	0.10	0.16	4.94	4.36	3.54	3.09	-0.26	0.15	0.05	0.23	4.74	4.29	3.91	3.46
	100	0.04	0.09	0.01	0.03	3.38	2.89	2.48	2.31	-0.05	0.01	-0.04	-0.01	3.35	3.02	2.74	2.65
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	0.06	0.02	0.06	-0.27	7.70	6.57	5.91	5.67	0.05	0.09	0.02	-0.31	7.89	6.74	5.94	5.63
	30	-0.18	-0.15	0.05	-0.11	5.95	5.42	4.75	4.40	-0.10	-0.17	0.01	-0.08	6.01	5.44	4.71	4.40
	50	-0.23	0.32	0.13	0.22	4.57	4.25	3.81	3.38	-0.23	0.30	0.13	0.24	4.71	4.28	3.90	3.43
	100	0.00	0.02	-0.01	-0.03	3.32	2.90	2.70	2.65	-0.02	0.01	-0.01	-0.04	3.38	2.90	2.75	2.66
					CCE Mean group							CCE Pooled			
	20	0.26	0.15	-0.12	-0.32 10.24	7.61	6.12	5.33	0.40	0.20	-0.23	-0.27	8.92	7.29	6.07	5.40
	30	-0.31	-0.23	0.09	-0.07	8.35	6.05	4.98	4.22	-0.24	-0.19	0.10	0.00	7.19	5.86	5.00	4.30
	50	-0.33	0.27	0.12	0.20	6.24	5.02	3.81	3.25	-0.38	0.25	0.07	0.22	5.42	4.68	3.80	3.30
	100	0.01	0.03	0.02	0.02	4.44	3.44	2.66	2.41	-0.04	-0.01	-0.01	0.01	3.89	3.25	2.67	2.46
			Size ( 100)		Power ( 100)			Size ( 100)			Power ( 100)	
				Robust Mean Group						Robust Pooled			
	20	7.70	6.70	6.50	7.60	13.60 14.40 16.10 16.40	8.90	6.30	7.10	7.10	13.80 14.30 17.20 17.40
	30	7.40	6.60	6.00	6.80	15.40 20.10 20.50 21.00	6.40	6.50	5.00	6.40	15.10 18.80 21.90 22.50
	50	5.50	4.90	5.40	5.20	17.30 24.30 27.40 31.00	4.90	6.70	5.10	4.70	16.60 25.70 29.00 36.60
	100	5.70	5.60	5.50	5.20	33.20 38.80 43.10 51.80	5.10	6.20	5.10	5.30	31.10 42.20 51.10 60.40
					SHAC Mean group							SHAC Pooled			
	20	11.10 11.90 17.80 27.30 18.40 23.20 31.80 46.10 15.40 17.70 20.90 32.40 22.10 26.40 35.10 46.80
	30	10.70 11.80 16.50 23.70 20.10 27.20 39.10 54.80 13.00 17.20 20.30 27.70 24.50 33.00 43.40 53.30
	50	7.20	11.90 15.30 22.50 23.70 36.00 52.50 68.30 12.00 16.00 20.90 26.80 28.20 41.40 52.50 68.00
	100	8.80	11.10 14.60 25.90 40.00 56.40 72.60 85.10 12.10 14.40 17.80 31.60 46.50 57.90 71.20 81.00
			SHAC Mean group, D mis-speci…ed (2)				SHAC Pooled, D mis-speci…ed (2)		
	20	11.60 11.90 18.40 27.30 17.20 22.60 31.60 45.60 15.10 18.00 21.40 31.20 21.40 26.00 35.60 47.20
	30	11.00 11.90 15.70 23.70 19.40 27.60 38.90 53.20 13.70 16.80 19.30 28.00 24.30 32.90 42.90 52.80
	50	7.90	11.60 14.30 22.00 23.20 35.40 52.10 67.80 11.70 15.80 19.80 26.70 27.60 42.10 51.60 68.00
	100	8.80	10.40 14.60 26.00 40.50 56.20 73.10 84.90 11.90 14.10 17.70 31.00 47.70 58.30 71.90 81.10
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	27.50 30.80 39.30 52.50 39.10 42.80 52.90 65.80 25.60 29.90 35.40 50.20 34.80 41.00 50.10 64.00
	30	25.00 31.40 36.90 48.40 36.90 48.50 59.70 70.40 21.80 29.40 33.90 46.30 36.70 43.60 57.00 67.80
	50	22.30 31.30 36.40 48.00 45.00 59.50 69.20 82.00 23.40 30.30 37.40 47.90 43.20 58.50 68.20 81.00
	100	25.50 30.90 37.40 55.00 65.60 74.20 85.00 91.10 25.10 27.80 36.00 52.80 63.80 72.90 84.00 89.60
					CCE Mean group							CCE Pooled			
	20	7.60	7.00	7.80	8.80	9.60	12.80 16.00 18.90	7.50	8.40	7.70	8.50	11.60 13.30 15.50 20.50
	30	6.90	5.30	5.90	6.70	11.80 13.90 19.50 23.50	5.90	5.10	5.50	7.10	12.50 14.80 19.50 23.10
	50	5.10	7.50	5.40	5.10	11.80 23.20 27.70 37.60	5.20	5.60	5.30	5.20	13.70 24.90 26.40 36.20
	100	5.10	5.70	4.70	5.60	20.50 32.60 44.70 58.10	5.70	5.30	5.40	5.50	24.60 34.70 43.90 58.00

Notes: Mean Group, Pooled, CCE Mean group and CCE Pooled are (3), (

Table A2 :

 A2 Small sample properties of estimators for panels with spatially correlated errors ( = 0:4) and no unobserved common factors, under slope homogeneity.

			Bias ( 100)		RMSE ( 100)			Bias ( 100)			RMSE ( 100)	
	NnT	20	30	50	100	20	30	50	100	20	30	50	100	20	30	50	100
					Mean group							Pooled			
	20	-0.10	0.04	-0.03 -0.05	6.25	4.81	3.43	2.30	0.01	0.06	0.02	-0.04	4.98	3.92	2.87	2.03
	30	0.19	0.05	-0.08 -0.03	5.25	3.86	2.87	1.89	0.02	0.03	-0.08	0.00	4.36	3.32	2.59	1.74
	50	-0.26	0.04	-0.01 -0.03	4.31	3.15	2.27	1.48	-0.11 -0.01	0.02	-0.07	3.21	2.65	1.92	1.32
	100	-0.02	0.11	-0.02 -0.04	2.71	2.19	1.47	1.01	-0.05	0.03	-0.03 -0.03	2.16	1.85	1.30	0.92
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	0.06	0.11	0.06	0.03	4.39	3.37	2.47	1.76	-0.04	0.09	0.08	0.01	4.68	3.57	2.63	1.84
	30	-0.01	0.04	-0.09 -0.06	3.73	2.85	2.19	1.45	0.04	0.04	-0.09 -0.06	3.94	3.01	2.28	1.54
	50	-0.03	0.09	0.01	-0.03	2.90	2.34	1.69	1.11	0.02	0.07	0.02	-0.03	3.04	2.45	1.75	1.16
	100	-0.03 -0.02	0.00	-0.04	1.87	1.56	1.11	0.76	-0.03 -0.01 -0.02 -0.04	2.00	1.68	1.18	0.80
					CCE Mean group							CCE Pooled			
	20	-0.25	0.15	0.05	-0.03	8.70	6.19	4.23	2.55	0.05	0.11	0.11	-0.02	7.21	5.38	3.88	2.44
	30	0.46	0.19	-0.08 -0.09	7.19	5.07	3.50	2.24	0.29	0.04	-0.08 -0.12	5.75	4.26	3.19	2.18
	50	-0.18	0.20	-0.03	0.01	5.85	4.00	2.70	1.72	-0.25	0.17	-0.03	0.00	4.49	3.44	2.45	1.63
	100	0.00	0.13	-0.10 -0.04	3.85	2.72	1.80	1.19	-0.03	0.11	-0.10 -0.04	3.03	2.39	1.67	1.13
			Size ( 100)		Power ( 100)			Size ( 100)			Power ( 100)	
					Robust Mean Group						Robust Pooled			
	20	6.10	5.40	5.20	6.80	20.50 27.40 43.50	69.80	6.00	6.00	7.70	5.90	15.80 21.20 33.50	59.50
	30	9.30	7.20	9.00	7.70	28.60 37.90 57.50	84.30	7.60	6.50	6.70	7.70	20.30 30.70 46.10	76.40
	50	5.80	6.30	6.40	6.70	35.00 52.70 75.10	96.40	5.80	6.50	6.70	5.90	22.40 39.10 62.30	91.10
	100	5.50	8.80	6.60	7.30	64.70 83.60 97.00 100.00	5.00	7.40	4.40	5.30	45.10 68.60 90.90	99.90
					SHAC Mean group						SHAC Pooled			
	20	7.50	6.80	7.00	5.20	14.80 22.00 33.80	61.30	7.00	6.10	5.20	5.70	21.90 29.40 44.40	70.90
	30	8.30	6.40	7.30	6.90	20.80 30.70 46.60	76.70	9.40	6.60	7.70	7.10	27.60 39.10 56.60	82.60
	50	7.10	6.50	7.40	6.50	23.60 40.70 64.40	92.40	7.30	7.10	6.20	6.20	35.70 56.00 75.60	96.70
	100	4.80	7.60	5.00	4.70	47.30 69.40 91.80	99.90	6.60	8.60	5.50	5.70	64.80 82.20 96.50 100.00
			SHAC Mean group, D mis-speci…ed (2)				SHAC Pooled, D mis-speci…ed (2)		
	20	6.40	6.80	7.00	4.70	15.70 22.20 34.00	61.20	6.80	6.10	5.50	5.20	22.40 30.10 44.60	71.40
	30	7.90	6.80	7.60	7.00	20.60 32.30 47.30	77.50	9.50	7.00	7.90	6.80	29.90 40.30 57.80	83.80
	50	7.00	6.50	6.70	6.30	23.90 40.70 63.80	92.30	7.10	7.40	6.50	5.80	36.60 56.00 76.00	96.90
	100	4.70	7.80	4.40	5.50	47.20 70.30 92.20	99.90	6.70	8.40	5.90	6.40	66.80 83.30 97.00 100.00
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	8.00	6.20	6.10	5.90	26.50 37.20 56.20	84.70	7.30	5.10	5.40	4.70	23.30 32.80 48.30	78.00
	30	8.30	5.40	5.90	5.00	34.00 46.90 65.60	93.20	7.50	6.30	5.90	4.90	32.60 42.60 61.10	89.20
	50	8.30	8.70	6.30	4.40	46.60 67.10 85.70	99.40	7.70	7.70	6.10	4.70	44.50 63.40 82.90	98.80
	100	6.20	7.10	5.70	4.80	80.00 91.50 99.60 100.00	7.30	8.30	5.90	4.90	75.50 88.80 98.40 100.00
					CCE Mean group							CCE Pooled			
	20	6.40	6.70	7.30	6.10	10.80 18.30 26.60	48.80	6.50	7.00	6.60	5.90	13.20 20.20 30.00	52.40
	30	5.90	6.30	6.10	7.80	14.40 19.80 33.70	63.60	6.40	5.70	6.30	8.10	15.90 21.40 37.70	66.10
	50	6.90	6.50	5.80	5.80	15.30 27.60 47.70	83.80	6.20	6.30	5.90	5.80	18.80 34.60 53.80	87.10
	100	4.40	4.80	5.30	6.20	23.10 46.80 75.60	98.20	4.80	6.20	5.80	6.10	35.40 58.50 82.60	99.30

Table B1 :

 B1 Small sample properties of estimators for panels with spatially correlated errors ( = 0:4) and unobserved common factors, under slope heterogeneity.

			Bias ( 100)		RMSE ( 100)			Bias ( 100)			RMSE ( 100)	
	NnT	20	30	50	100	20	30	50	100	20	30	50	100	20	30	50	100
					Mean group							Pooled			
	20	15.38 14.69 14.86 14.12 20.02 18.48 17.80	16.59	17.12 16.83 17.05 16.63 21.37 20.43 19.83	19.03
	30	15.26 14.50 15.00 14.32 19.35 17.82 17.52	16.06	17.46 17.11 17.70 17.17 21.60 20.41 20.24	18.98
	50	15.86 15.97 15.99 15.75 18.62 17.86 17.48	16.83	18.00 18.13 18.49 18.45 21.00 20.31 20.21	19.60
	100	15.23 14.76 15.23 14.77 17.37 16.33 16.25	15.53	16.87 16.60 17.29 17.13 19.48 18.56 18.55	18.01
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	2.23	2.17	1.75	1.17	8.94	7.90	7.08	6.73	1.41	1.36	0.94	0.44	8.62	7.70	6.76	6.42
	30	1.95	1.88	1.93	1.63	7.40	6.67	6.28	5.88	1.27	0.84	1.09	0.83	6.99	6.25	5.74	5.46
	50	1.56	2.00	1.53	1.80	5.63	5.36	4.86	4.58	0.76	1.12	0.65	0.94	5.29	4.94	4.44	4.17
	100	1.56	1.44	1.52	1.43	4.25	3.85	3.59	3.50	0.71	0.60	0.68	0.64	4.00	3.48	3.24	3.19
					CCE Mean group							CCE Pooled			
	20	0.54	0.16	-0.10	-0.34 10.09	7.54	6.07	5.44	0.51	0.00	-0.23	-0.34	9.06	7.46	6.17	5.62
	30	-0.43	-0.08	0.13	-0.10	8.00	6.05	4.94	4.32	-0.39	-0.17	0.08	-0.06	7.22	5.97	5.03	4.40
	50	-0.27	0.15	0.09	0.21	6.10	4.98	3.85	3.21	-0.28	0.23	0.06	0.22	5.35	4.73	3.84	3.28
	100	0.00	0.07	-0.03	0.00	4.43	3.39	2.67	2.41	-0.02	0.05	-0.05	-0.01	3.92	3.21	2.71	2.46
			Size ( 100)		Power ( 100)			Size ( 100)			Power ( 100)	
					Robust Mean Group						Robust Pooled			
	20	42.90 43.50 50.50 52.20 57.90 60.00 69.70	72.10	32.80 34.50 42.90 43.90 47.40 50.90 61.00	64.20
	30	54.00 58.10 63.20 70.00 69.90 74.20 82.40	87.50	44.40 46.90 54.40 59.00 59.60 66.40 75.90	83.50
	50	68.90 78.10 82.40 89.70 85.00 91.50 95.40	98.20	56.40 69.60 75.50 84.20 78.00 87.40 92.60	97.10
	100	80.60 87.00 93.80 96.60 93.10 95.60 99.00	99.30	76.20 82.80 92.40 94.40 91.60 95.60 99.30	99.70
					SHAC Mean group							SHAC Pooled			
	20	34.30 40.40 53.70 66.40 52.20 61.80 75.60	85.50	45.80 52.70 65.30 78.30 65.70 73.40 84.90	91.30
	30	40.80 49.00 63.60 79.20 60.90 70.20 86.30	94.00	52.50 59.50 74.00 87.00 73.20 80.30 90.70	96.40
	50	57.70 73.70 84.50 94.70 81.00 90.70 96.70	99.60	71.60 81.80 90.70 97.60 87.90 95.40 98.60	99.70
	100	76.60 84.80 95.90 97.50 92.30 96.40 99.80 100.00 81.40 88.50 96.50 98.20 95.10 97.20 99.70 100.00
			SHAC Mean group, D mis-speci…ed (2)				SHAC Pooled, D mis-speci…ed (2)		
	20	35.40 42.70 55.20 67.70 53.40 63.20 76.40	85.90	48.30 54.40 66.50 79.40 66.00 72.80 85.80	91.70
	30	46.30 53.40 67.60 81.70 65.00 73.50 87.50	94.60	59.20 65.00 77.70 88.50 76.50 83.00 91.60	96.60
	50	61.60 76.20 85.90 95.30 83.10 91.80 97.70	99.70	74.70 84.60 91.80 98.00 89.30 95.50 98.70	99.70
	100	78.90 87.00 96.50 98.10 92.70 96.50 99.90 100.00 84.10 90.30 97.00 98.30 95.50 97.40 99.80 100.00
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	40.90 43.20 51.10 62.40 54.30 57.90 65.40	71.40	35.90 38.60 45.90 60.90 48.40 53.80 61.50	69.50
	30	38.80 43.60 53.00 62.30 54.90 63.70 73.60	82.00	35.20 39.40 47.50 59.00 49.50 56.70 67.60	76.00
	50	37.60 46.30 52.30 65.30 62.70 72.60 80.00	87.40	34.20 41.90 49.40 60.60 59.30 67.80 75.30	84.10
	100	41.80 47.30 53.90 68.10 79.40 84.80 92.70	94.40	36.40 41.50 49.70 63.80 70.90 79.70 86.80	91.30
					CCE Mean group							CCE Pooled			
	20	7.80	6.90	7.50	8.40	12.60 12.90 14.80	17.70	8.50	7.80	7.60	8.60	13.50 13.80 14.20	17.30
	30	5.70	5.80	6.10	7.80	12.10 13.50 19.00	22.30	5.70	6.10	6.10	7.80	12.50 14.30 20.00	23.10
	50	4.80	6.90	5.80	5.40	11.80 21.10 27.70	36.60	4.70	6.00	5.60	5.80	14.30 24.60 27.90	35.30
	100	5.20	5.50	4.60	5.20	21.10 34.00 45.00	57.00	5.10	5.60	4.60	5.20	25.40 34.90 43.20	57.50

Table B2 :

 B2 Small sample properties of estimators for panels with spatially correlated errors ( = 0:4) and unobserved common factors, under slope homogeneity.

			Bias ( 100)			RMSE ( 100)			Bias ( 100)			RMSE ( 100)	
	NnT	20	30	50	100	20	30	50	100	20	30	50	100	20	30	50	100
					Mean group							Pooled			
	20	15.36 14.54 15.05 14.85 19.38 17.68 17.37	16.46	17.33 16.81 17.39 17.37 20.95 19.69	19.59	18.82
	30	14.46 14.73 14.43 14.58 18.61 17.53 16.42	15.88	16.62 16.97 17.08 17.28 20.75 19.85	19.07	18.56
	50	16.45 16.13 15.80 15.44 18.85 17.82 17.10	16.29	18.38 18.43 18.24 18.19 20.82 20.18	19.58	19.05
	100	15.43 15.22 14.93 14.77 17.52 16.71 15.93	15.37	17.39 17.17 17.16 17.22 20.11 19.00	18.38	17.89
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	2.14	1.89	1.66	1.65	6.17	5.10	4.32	3.78	1.33	1.16	0.97	1.07	5.82	4.82	4.09	3.51
	30	1.78	1.92	1.57	1.65	5.03	4.53	3.67	3.44	1.00	1.17	0.84	0.85	4.68	4.10	3.32	3.04
	50	1.62	1.82	1.62	1.53	4.14	3.60	3.06	2.68	0.94	0.95	0.80	0.75	3.76	3.08	2.48	2.16
	100	1.77	1.42	1.43	1.32	3.15	2.60	2.36	1.99	0.99	0.71	0.68	0.58	2.68	2.18	1.92	1.56
					CCE Mean group							CCE Pooled			
	20	-0.19	0.05	0.06	0.03	8.29	5.90	4.39	2.87	-0.03	-0.01	0.09	0.07	6.93	5.31	4.13	2.94
	30	0.20	0.07	-0.08	-0.07	7.11	5.06	3.48	2.35	0.00	-0.04	-0.08	-0.10	5.76	4.45	3.20	2.32
	50	-0.15	0.03	-0.03	-0.01	5.57	3.92	2.68	1.72	-0.10	0.08	-0.04	0.00	4.37	3.46	2.44	1.65
	100	0.05	0.18	-0.10	-0.04	3.77	2.79	1.77	1.18	0.03	0.14	-0.09	-0.04	3.08	2.44	1.65	1.13
			Size ( 100)			Power ( 100)			Size ( 100)			Power ( 100)	
					Robust Mean Group						Robust Pooled			
					CCE Mean group							CCE Pooled			
	20	5.10	6.20	7.00	6.10	11.40 17.00 25.50	45.40	6.10	7.00	7.10	6.80	12.60 18.40	29.20	46.50
	30	6.20	5.80	5.90	7.40	12.90 19.70 32.70	58.60	6.20	6.30	6.60	7.30	15.20 22.10	34.80	60.30
	50	6.70	6.10	6.00	4.90	15.10 25.90 46.40	82.40	4.80	6.00	5.70	5.30	19.50 35.40	52.90	85.30
	100	4.60	6.30	4.40	4.50	24.80 48.50 77.00	98.70	4.60	6.10	4.80	4.50	35.00 57.50	83.00	99.40
	Notes: see notes to Table													

Table C1 :

 C1 Small sample properties of estimators for panels with spatially correlated errors ( = 0:4) no unobserved common factors, under slope heterogeneity and serial correlation.

			Bias ( 100)		RMSE ( 100)			Bias ( 100)			RMSE ( 100)	
	NnT	20	30	50	100	20	30	50	100	20	30	50	100	20	30	50	100
					Mean group							Pooled			
	20	0.00	0.12	0.15	-0.05	9.00	7.40	6.32	5.35	0.25	0.16	-0.01	0.01	8.24	7.61	6.69	5.72
	30	0.57	0.06	0.07	0.14	7.41	6.21	5.16	4.33	0.39	-0.01	-0.10	0.18	6.96	6.14	5.37	4.56
	50	-0.22	-0.08	-0.03	-0.07	5.81	4.70	3.94	3.40	-0.31	-0.01	-0.09	-0.05	5.40	4.67	4.20	3.67
	100	-0.01	-0.08	0.16	-0.20	3.91	3.30	2.85	2.42	-0.05	-0.08	0.09	-0.15	3.66	3.31	3.07	2.66
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	0.20	-0.08	0.02	-0.06	8.04	7.74	6.90	6.01	0.24	-0.10	0.04	-0.04	8.24	7.90	6.90	6.00
	30	0.35	0.11	0.09	0.17	6.65	6.29	5.45	4.94	0.27	0.16	0.06	0.16	6.79	6.35	5.50	4.96
	50	-0.10	-0.22	-0.19	0.04	5.23	4.85	4.30	3.80	-0.07	-0.20	-0.18	0.03	5.35	4.85	4.38	3.84
	100	-0.01	0.02	0.10	-0.18	3.66	3.31	3.00	2.70	-0.06	0.00	0.09	-0.18	3.71	3.39	3.02	2.72
					CCE Mean group							CCE Pooled			
	20	-0.24	0.01	0.11	-0.11 11.02	8.47	6.77	5.64	0.18	0.18	0.04	-0.06	9.30	8.13	6.78	5.68
	30	0.51	0.05	0.14	0.10	9.15	6.88	5.77	4.60	0.40	0.08	0.11	0.12	8.01	6.42	5.55	4.69
	50	-0.26	-0.18	0.08	-0.13	7.01	5.24	4.23	3.57	-0.22	-0.09	0.04	-0.09	6.09	4.99	4.24	3.60
	100	0.12	-0.02	0.15	-0.22	4.94	3.85	3.08	2.53	0.13	-0.04	0.13	-0.20	4.29	3.62	3.10	2.53
			Size ( 100)		Power ( 100)			Size ( 100)			Power ( 100)	
				Robust Mean Group						Robust Pooled			
	20	7.00	8.60	8.10	7.50	10.70 15.20 14.70 15.70	6.70	6.80	7.20	6.40	10.80 12.80 15.80 17.70
	30	8.20	7.70	6.70	6.70	14.90 17.70 19.30 22.10	7.50	7.30	6.50	6.60	14.40 16.60 18.90 23.70
	50	5.20	5.50	5.70	5.80	16.00 20.40 24.20 27.40	5.60	5.10	5.60	5.50	15.30 19.50 23.90 31.30
	100	5.40	6.30	5.70	5.40	29.30 34.70 42.40 44.90	6.00	4.80	5.70	5.60	25.40 33.10 45.90 52.70
					SHAC Mean group							SHAC Pooled			
	20	11.00 11.90 15.40 22.00 16.50 20.90 28.30 38.50 12.70 16.80 19.20 27.00 19.20 26.30 31.90 42.30
	30	11.60 14.00 14.10 21.20 20.60 25.70 32.20 47.30 12.40 15.30 17.80 24.80 24.30 29.10 37.40 49.80
	50	10.30	9.90	13.20 18.90 21.40 29.50 40.10 56.90 11.60 14.70 19.90 23.50 27.90 32.90 44.00 57.30
	100	9.20	10.30 16.00 20.70 35.30 44.90 63.30 77.50 11.50 14.70 20.90 25.60 41.10 51.90 64.30 77.10
			SHAC Mean group, D mis-speci…ed (2)				SHAC Pooled, D mis-speci…ed (2)		
	20	11.10 10.90 15.30 22.50 16.00 20.60 28.00 37.90 13.30 16.60 19.00 26.10 18.80 26.10 30.90 42.00
	30	11.00 13.														

Table C2 :

 C2 Small sample properties of estimators for panels with spatially correlated errors ( = 0:4) no unobserved common factors, under slope homogeneity and serial correlation.

			Bias ( 100)		RMSE ( 100)			Bias ( 100)			RMSE ( 100)	
	NnT	20	30	50	100	20	30	50	100	20	30	50	100	20	30	50	100
					Mean group							Pooled			
	20	0.25	-0.15	0.11	0.01	7.83	6.16	4.40	3.10	0.16	-0.11	0.01	0.03	6.23	5.15	3.78	2.72
	30	0.05	0.07	0.17	0.12	6.12	4.54	3.66	2.50	0.08	0.03	0.09	0.14	5.09	4.11	3.27	2.36
	50	-0.11	-0.01	-0.09	0.06	5.20	3.94	2.82	1.90	-0.09	-0.06	-0.09	0.05	4.15	3.32	2.46	1.75
	100	-0.05	-0.08	-0.01	0.03	3.46	2.60	2.01	1.53	-0.02	-0.05	-0.02	0.04	2.78	2.13	1.70	1.10
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	0.09	-0.03	0.00	-0.04	4.65	3.93	3.03	2.22	0.17	-0.08	-0.02	-0.02	5.05	4.22	3.23	2.31
	30	0.14	0.06	0.10	0.02	4.02	3.23	2.50	1.85	0.14	-0.02	0.12	0.02	4.20	3.34	2.67	1.92
	50	-0.04	0.00	-0.07	0.04	3.19	2.62	1.99	1.51	-0.03	0.03	-0.05	0.03	3.29	2.78	2.08	1.55
	100	-0.01	0.05	0.02	0.03	2.07	1.70	1.32	0.94	0.01	0.06	0.01	0.02	2.18	1.76	1.40	0.97
					CCE Mean group							CCE Pooled			
	20	0.66	-0.38	-0.02	0.01	9.55	7.37	5.07	3.46	0.40	-0.20	-0.08	0.03	8.22	6.43	4.72	3.30
	30	0.13	-0.12	-0.02	0.03	8.07	5.82	4.15	2.81	0.39	-0.08	-0.03	0.07	6.72	5.14	3.80	2.72
	50	-0.15	-0.02	-0.01	0.05	6.39	4.64	3.32	2.18	-0.24	-0.13	-0.05	0.06	5.27	4.05	3.01	2.07
	100	0.04	-0.04	0.05	0.00	4.41	3.30	2.38	1.84	-0.02	-0.08	0.02	-0.01	3.66	2.85	2.15	1.78
			Size ( 100)		Power ( 100)			Size ( 100)			Power ( 100)	
				Robust Mean Group						Robust Pooled			
	20	7.30	8.90	7.20	6.70	16.80 19.50 29.50 51.40	6.90	8.10	6.00	7.00	14.70 17.10 26.50 43.10
	30	6.70	7.30	7.30	9.20	23.40 28.10 43.00 67.10	6.10	6.30	7.60	7.90	17.90 20.80 35.40 58.20
	50	6.10	6.80	5.60	5.90	26.50 36.60 53.40 83.00	7.80	7.40	5.30	4.70	18.90 29.10 42.30 75.00
	100	8.30	5.90	6.60	5.60	51.30 65.00 85.80 96.60	6.90	5.80	6.40	5.60	34.00 46.70 73.30 84.20
					SHAC Mean group							SHAC Pooled			
	20	8.30	8.50	6.20	7.40	15.00 18.60 28.10 43.10	8.30	8.30	7.10	6.50	18.80 22.70 32.40 51.50
	30	7.00	7.60	7.60	7.40	19.40 23.40 36.90 59.90	6.70	7.00	7.10	7.40	24.70 28.80 41.20 65.20
	50	9.50	8.50	6.00	5.30	23.10 32.20 45.30 77.20	8.50	7.80	6.90	6.00	30.60 39.90 56.50 83.60
	100	8.90	6.00	8.00	7.70	38.20 51.70 75.60 95.30	9.30	7.50	6.50	7.60	52.90 67.60 86.80 99.60
			SHAC Mean group, D mis-speci…ed (2)				SHAC Pooled, D mis-speci…ed (2)		
	20	7.80	8.20	6.70	6.60	15.60 18.60 26.90 42.70	8.30	8.80	6.90	6.40	19.30 21.50 31.70 51.30
	30	8.20	5.60	8.40	8.70	19.70 22.40 37.40 59.90	8.30	7.30	7.30	8.10	25.60 29.30 43.10 67.30
	50	9.70	8.40	6.60	5.40	22.00 32.10 45.40 76.80	8.20	8.00	6.90	6.00	31.10 38.80 57.20 84.10
	100	8.20	6.80	7.60	7.60	37.80 51.10 75.60 95.00	9.30	7.40	7.30	7.20	54.80 68.10 86.90 100.0
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	17.10 18.00 17.20 16.40 40.60 46.80 60.20 79.80 16.60 17.20 16.10 13.90 37.40 43.40 56.20 75.60
	30	19.00 17.70 14.70 16.80 49.90 56.50 73.20 90.90 17.70 15.40 14.50 13.70 45.30 52.00 68.70 88.00
	50	16.40 17.80 16.70 17.50 60.50 71.70 85.30 98.20 16.50 17.10 14.20 17.60 57.20 69.00 83.30 96.50
	100	17.80 15.80 15.40	5.60	85.40 93.80 99.10 100.0 18.00 15.30 14.60	5.20	83.00 92.30 98.50 100.0
					CCE Mean group							CCE Pooled			
	20	6.70	7.50	5.40	7.10	11.20 13.40 20.80 35.30	6.70	7.00	6.70	6.30	11.80 14.70 21.20 37.30
	30	6.00	6.40	5.20	5.90	13.30 15.20 26.80 47.80	6.30	6.00	5.90	6.80	16.10 18.10 29.10 50.70
	50	6.20	5.40	6.50	5.60	13.70 21.30 34.10 65.00	6.60	7.00	6.60	5.80	17.20 25.30 39.50 67.90
	100	4.60	6.10	5.70	5.00	22.20 33.40 58.30 83.50	5.00	6.40	6.20	5.0	30.60 41.40 66.10 88.30

Notes: see notes to Table

Table C3 :

 C3 Small sample properties of estimators for panels with spatially correlated errors ( = 0:8) no unobserved common factors, under slope heterogeneity.

			Bias ( 100)		RMSE ( 100)			Bias ( 100)			RMSE ( 100)	
	NnT	20	30	50	100	20	30	50	100	20	30	50	100	20	30	50	100
					Mean group							Pooled			
	20	-0.29	0.00	-0.22	-0.46 12.72	9.64	7.61	6.18	-0.15	-0.30	-0.03	-0.42 11.33	9.15	7.48	6.59
	30	-0.12	-0.38	0.21	-0.06 10.57	8.47	6.51	5.02	-0.11	-0.25	0.19	-0.13 10.18	8.67	6.94	5.44
	50	0.10	-0.01	0.09	0.16	7.15	5.75	4.50	3.60	-0.13	0.04	0.06	0.25	6.49	5.50	4.76	3.91
	100	0.01	0.11	0.05	0.05	4.93	4.07	3.19	2.68	-0.08	0.03	-0.02	-0.01	4.94	4.27	3.46	3.04
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	0.09	0.06	0.10	-0.24	7.57	6.51	5.95	5.75	0.07	0.20	0.02	-0.33	8.13	6.97	6.10	5.72
	30	-0.21	-0.08	0.04	-0.12	6.02	5.48	4.86	4.49	-0.04	-0.12	-0.02	-0.06	6.29	5.59	4.83	4.48
	50	-0.24	0.33	0.14	0.19	4.52	4.27	3.77	3.40	-0.25	0.29	0.13	0.23	4.89	4.40	3.99	3.51
	100	0.01	0.01	-0.03	-0.04	3.35	2.93	2.71	2.69	-0.01	-0.01	-0.03	-0.06	3.51	2.96	2.83	2.70
					CCE Mean group							CCE Pooled			
	20	0.10	0.23	-0.11	-0.30 12.97	9.36	7.10	5.79	0.23	0.28	-0.26	-0.24 10.90	8.75	6.94	5.81
	30	-0.32	-0.19	0.16	-0.08 10.83	7.74	6.00	4.72	-0.28	-0.18	0.16	0.00	9.12	7.31	5.84	4.75
	50	-0.20	0.32	0.14	0.22	8.66	6.54	4.72	3.73	-0.31	0.30	0.06	0.23	7.09	5.85	4.59	3.72
	100	-0.01	0.01	0.04	0.05	6.02	4.53	3.27	2.70	-0.05	-0.05	0.01	0.04	5.02	4.13	3.20	2.71
			Size ( 100)		Power ( 100)			Size ( 100)			Power ( 100)	
				Robust Mean Group						Robust Pooled			
	20	10.90 10.90	8.50	10.00 13.80 14.30 16.90 15.70 10.80	8.80	8.50	9.10	11.10 13.10 14.70 15.50
	30	16.00 16.40 12.70	9.30	20.90 22.50 22.70 21.40 12.40 12.70 10.10	8.20	16.60 18.90 21.70 22.30
	50	7.40	5.80	7.70	6.90	15.70 19.50 21.80 28.80	5.20	6.20	6.00	6.10	12.00 16.10 22.20 30.80
	100	10.80 10.60	9.30	8.70	28.50 33.10 38.80 46.30	7.10	8.60	6.70	7.00	21.10 30.10 40.20 52.70
					SHAC Mean group							SHAC Pooled			
	20	10.90 11.10 12.90 17.80 12.10 16.30 20.30 29.80 13.20 15.70 16.20 24.70 17.20 19.80 25.20 35.20
	30	13.00 13.50 15.10 18.30 16.30 20.80 28.20 37.00 16.00 18.10 18.50 21.80 19.80 25.10 32.10 40.30
	50	7.30	9.80	11.20 15.80 15.40 21.20 33.90 53.70	9.90	12.00 15.90 22.00 20.50 26.80 36.80 55.70
	100	8.00	11.50 12.10 18.90 23.90 35.70 51.90 71.20 12.60 14.50 15.60 25.60 30.10 39.90 52.30 68.90
			SHAC Mean group, D mis-speci…ed (2)				SHAC Pooled, D mis-speci…ed (2)		
	20	11.30 11.50 13.40 18.40 12.30 15.60 20.50 29.40 13.20 15.30 17.10 24.10 16.80 19.80 25.90 35.20
	30	14.00 15.20 15.00 19.10 17.50 22.00 28.60 37.60 18.60 21.40 21.10 24.40 22.90 28.20 34.80 43.40
	50	7.40	9.00	11.20 15.10 15.80 21.00 34.80 52.80 11.60 11.50 16.90 21.40 20.50 28.20 38.50 55.30
	100	9.30	11.40 12.80 19.40 25.50 37.00 53.20 72.70 15.40 16.80 17.10 27.80 33.70 42.60 56.00 71.40
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	29.00 31.50 42.60 53.80 41.40 45.30 54.40 68.20 21.90 24.70 30.50 46.50 31.10 36.10 45.70 60.00
	30	27.10 32.00 38.30 51.20 38.60 50.00 60.80 69.80 18.90 24.00 28.80 42.60 31.60 39.00 52.00 63.50
	50	22.70 33.50 37.50 49.40 46.20 60.10 70.00 81.60 21.30 27.80 33.40 45.40 37.90 54.50 65.00 78.80
	100	27.60 33.20 40.30 57.00 66.10 74.40 85.50 91.20 22.60 24.30 32.90 48.90 57.60 69.00 79.80 88.10
					CCE Mean group							CCE Pooled			
	20	7.50	6.60	7.00	7.60	9.80	11.60 13.40 17.30	8.00	7.50	7.30	7.90	9.30	13.90 13.50 18.10
	30	6.40	6.50	5.80	6.50	8.70	12.10 16.20 19.00	6.40	5.70	5.80	6.90	10.20 13.30 15.70 19.80
	50	4.90	6.60	6.40	5.80	9.80	16.90 20.60 31.80	5.40	6.10	6.10	5.90	9.90	18.30 20.70 31.90
	100	5.30	6.90	4.60	6.00	14.40 21.70 34.60 48.60	5.10	6.60	5.40	5.30	16.00 23.70 35.50 50.30

Notes: see notes to Table

Table C4 :

 C4 Small sample properties of estimators for panels with spatially correlated errors ( t IIDU (0; 0:8)) no unobserved common factors, under slope heterogeneity. .7025.20 33.90 51.10 70.70 83.80 10.60 14.70 18.80 30.80 40.60 54.80 68.20 79.40 SHAC Mean group, D mis-speci…ed (2) SHAC Pooled, D mis-speci…ed (2) 20 11.50 10.90 17.80 25.60 16.60 22.10 30.10 41.50 14.60 14.50 20.40 30.30 21.00 25.00 34.30 44.00 30 10.50 14.40 14.20 22.00 17.80 24.30 37.20 51.10 14.00 18.70 20.30 26.90 22.30 29.70 40.60 51.10 50 8.20 11.00 12.10 21.30 20.00 32.10 48.80 64.60 11.70 15.00 17.80 25.90 25.20 37.70 49.90 65.90 100 9.30 11.50 14.60 24.70 34.40 50.70 70.60 83.40 12.60 15.60 19.30 31.10 42.70 55.80 68.90 79.30 ML-SAR ML-SAR, S mis-speci…ed (1) 20 28.20 29.60 39.10 52.50 38.90 41.60 55.10 66.20 25.00 27.10 34.50 50.20 34.10 39.10 50.60 63.60 30 23.90 30.10 34.50 49.30 36.30 46.00 59.10 69.60 19.60 27.80 31.60 44.80 33.30 42.20 55.10 67.40 50 24.10 29.80 34.70 46.60 44.40 56.80 69.80 80.20 24.40 28.80 35.50 46.90 43.70 56.30 67.60 80.20 100 26.60 31.30 36.20 51.30 64.00 73.00 83.90 90.30 23.60 28.20 36.20 49.70 59.90 71.60 81.80 89.50

			Bias ( 100)		RMSE ( 100)			Bias ( 100)			RMSE ( 100)	
	NnT	20	30	50	100	20	30	50	100	20	30	50	100	20	30	50	100
					Mean group							Pooled			
	20	0.20	0.19	-0.13	-0.43	9.31	6.92	6.02	5.27	0.23	-0.14	0.09	-0.37	8.51	6.92	6.21	5.76
	30	-0.21	-0.25	0.05	-0.08	7.37	5.99	4.75	4.13	-0.08	-0.19	0.07	-0.12	6.86	5.96	5.01	4.50
	50	-0.05	0.07	0.17	0.14	5.45	4.50	3.62	3.14	-0.19	0.07	0.11	0.24	5.16	4.48	3.95	3.51
	100	0.08	0.07	0.03	0.03	3.88	3.11	2.58	2.39	-0.07	-0.03	-0.04	0.01	3.68	3.20	2.86	2.70
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	0.31	0.03	0.13	-0.25	7.66	6.62	6.10	5.71	0.35	0.05	0.10	-0.28	8.02	6.77	6.17	5.70
	30	-0.23	-0.10	0.06	-0.17	6.01	5.55	4.78	4.46	-0.14	-0.13	0.01	-0.10	6.07	5.57	4.78	4.45
	50	-0.21	0.22	0.12	0.14	4.68	4.33	3.74	3.41	-0.17	0.18	0.13	0.16	4.90	4.37	3.85	3.47
	100	-0.02	-0.03	-0.06	0.01	3.30	2.97	2.72	2.67	-0.05	-0.04	-0.08	0.00	3.37	2.97	2.76	2.68
					CCE Mean group							CCE Pooled			
	20	0.56	0.19	-0.12	-0.42 11.05	7.92	6.26	5.40	0.47	0.12	-0.17	-0.30	9.70	7.62	6.23	5.43
	30	-0.38	-0.21	0.03	-0.04	8.99	6.52	5.05	4.30	-0.41	-0.19	0.08	0.04	7.56	6.18	5.05	4.37
	50	-0.20	0.21	0.20	0.18	6.90	5.19	3.92	3.27	-0.23	0.25	0.16	0.22	5.81	4.85	3.89	3.33
	100	0.09	0.06	0.03	0.02	4.84	3.59	2.77	2.46	0.01	0.00	-0.02	0.03	4.08	3.35	2.77	2.49
			Size ( 100)		Power ( 100)			Size ( 100)			Power ( 100)	
				Robust Mean Group						Robust Pooled			
	20	9.00	6.70	8.10	7.80	14.50 14.40 16.60 15.10	8.60	6.50	8.10	7.10	12.80 14.60 16.50 15.50
	30	8.50	8.10	6.80	7.30	16.60 20.00 20.40 22.00	8.10	8.30	5.80	6.60	14.50 17.40 21.30 22.80
	50	6.00	6.00	5.90	5.50	17.30 21.90 26.50 30.60	5.40	5.70	4.70	4.30	15.00 22.50 30.60 36.20
	100	6.90	5.60	6.20	5.40	30.10 38.30 43.00 51.50	6.20	6.60	6.00	5.80	27.80 40.50 48.80 59.40
					SHAC Mean group							SHAC Pooled			
	20	10.60 11.00 17.90 26.50 15.90 21.40 30.10 42.20 13.70 15.90 20.80 31.40 20.40 23.90 33.00 44.60
	30	9.90	13.40 14.60 22.30 17.20 24.40 38.10 51.90 13.60 15.70 19.80 26.60 21.60 30.20 40.40 50.50
	50	7.70	12.00 13.00 21.40 19.70 32.00 49.30 64.80 11.70 15.00 18.20 27.40 26.40 37.90 51.00 66.80
	100	9.00	11.50 14CCE Mean group							CCE Pooled			
	20	8.10	6.90	7.20	8.80	11.30 13.70 16.20 17.90	8.40	7.90	7.80	8.40	12.50 14.60 14.90 19.00
	30	6.90	7.00	6.80	6.80	10.20 13.00 18.10 22.90	5.10	6.90	6.20	6.20	10.00 14.70 18.00 22.40
	50	5.90	6.20	5.10	5.10	11.90 20.40 29.30 35.80	5.00	5.90	5.80	6.00	12.20 21.80 28.40 35.30
	100	4.90	6.00	4.70	6.70	18.60 30.50 44.70 56.50	4.80	6.40	4.80	6.40	20.70 32.90 43.40 56.40

Notes: see notes to Table

Table C5 :

 C5 Small sample properties of estimators for panels with cross section dependence switching from spatial processes ( = 0:4) to unbserved common factors, under slope heterogeneity. .10 26.40 26.10 40.80 41.40 48.60 50.80 20.40 20.30 25.00 24.90 36.40 41.00 48.30 52.20 30 32.10 34.00 36.90 36.00 50.00 54.20 63.10 68.00 27.00 28.90 33.80 32.50 45.40 51.50 60.80 68.90 50 39.70 43.00 49.90 54.70 63.40 71.60 79.70 88.00 33.30 40.80 51.60 55.70 60.90 70.60 83.20 91.10 100 53.40 55.60 65.00 69.90 78.10 84.00 90.30 94.30 53.80 56.60 69.70 75.00 79.10 87.20 94.00 98.00 .10 29.50 39.60 37.50 46.10 57.70 71.10 25.20 25.70 33.20 41.60 43.50 48.30 61.70 70.30 30 23.00 27.50 36.20 46.60 43.80 54.40 70.50 83.60 27.80 33.60 41.90 50.50 51.40 58.90 71.40 82.50 50 30.40 40.10 53.90 69.50 62.40 75.30 87.90 96.30 36.50 45.00 55.80 68.90 68.70 77.50 87.80 95.30 100 51.30 55.80 72.30 81.10 80.80 90.00 96.30 99.00 53.60 57.00 70.20 80.40 81.00 88.20 94.90 97.90 SHAC Mean group, D mis-speci…ed (2) SHAC Pooled, D mis-speci…ed (2) 20 20.20 23.10 31.90 40.90 39.00 48.00 59.60 70.90 26.40 27.30 35.20 43.10 43.80 49.40 62.60 71.00 30 27.50 31.50 41.70 51.10 47.70 58.60 72.10 84.80 32.20 38.80 47.30 54.20 55.10 60.60 74.10 84.10 50 34.20 44.50 59.60 72.00 64.60 77.90 89.40 96.60 43.10 50.90 61.30 72.40 69.10 78.50 89.10 95.70 100 55.50 60.60 76.90 83.60 81.90 91.20 96.60 99.40 56.80 61.50 74.00 82.50 81.90 89.80 95.20 98.30 ML-SAR ML-SAR, S mis-speci…ed (1) 20 34.20 35.30 41.00 55.90 49.40 53.20 63.20 73.20 29.70 33.10 38.90 54.40 42.10 48.20 57.00 67.70 30 30.30 36.00 44.60 55.60 51.00 58.30 70.20 80.30 24.70 32.30 40.60 51.10 44.10 52.70 65.10 74.70 50 30.70 40.00 43.70 56.70 60.60 71.20 81.20 90.30 28.20 35.40 40.50 52.60 53.40 66.60 75.00 85.10 100 34.40 40.90 49.20 64.10 79.00 86.30 93.10 96.50 28.90 34.40 43.50 57.50 71.70 80.00 88.50 93.60

			Bias ( 100)		RMSE ( 100)			Bias ( 100)			RMSE ( 100)	
	NnT	20	30	50	100	20	30	50	100	20	30	50	100	20	30	50	100
					Mean group							Pooled			
	20	8.42	7.94	8.07	7.17	13.88 11.91 11.21	9.87	8.60	7.85	8.29	7.45	14.08 12.24 11.78 10.40
	30	8.02	7.55	7.95	7.33	12.87 11.15 10.81	9.28	8.36	7.96	8.51	7.81	13.67 11.96 11.85 10.12
	50	8.75	8.38	8.83	8.49	11.99 10.84 10.59	9.74	9.04	8.63	9.16	8.92	12.70 11.42 11.28 10.47
	100	8.49	7.85	8.20	7.70	11.01	9.80	9.55	8.61	8.42	7.76	8.25	7.80	11.73 10.32 10.04	9.00
					ML-SAR						ML-SAR, S mis-speci…ed (1)		
	20	2.12	1.92	1.88	1.31	8.56	7.29	6.50	6.10	1.28	1.29	1.09	0.61	8.19	7.11	6.24	5.87
	30	1.89	1.88	2.01	1.79	6.82	6.21	5.67	5.15	1.12	0.94	1.10	0.97	6.33	5.77	5.23	4.81
	50	1.70	2.05	1.85	2.02	5.42	5.03	4.46	4.21	0.80	1.18	0.91	1.11	5.02	4.61	4.10	3.78
	100	1.64	1.58	1.67	1.63	4.10	3.67	3.41	3.27	0.78	0.70	0.77	0.75	3.68	3.18	2.98	2.87
					CCE Mean group							CCE Pooled			
	20	0.20	0.20	-0.15	-0.37	9.84	7.46	6.01	5.34	0.31	0.14	-0.30	-0.35	8.94	7.34	6.00	5.43
	30	-0.22	-0.13	0.06	-0.10	7.70	5.98	4.88	4.21	-0.20	-0.20	0.03	-0.05	6.86	5.76	4.97	4.28
	50	-0.22	0.14	0.11	0.22	5.95	4.81	3.80	3.19	-0.21	0.22	0.07	0.22	5.31	4.69	3.79	3.25
	100	-0.01	-0.01	-0.04	0.02	4.22	3.28	2.64	2.37	-0.05	-0.03	-0.06	0.01	3.93	3.15	2.69	2.42
			Size ( 100)		Power ( 100)			Size ( 100)			Power ( 100)	
				Robust Mean Group						Robust Pooled			
	20	23.90 23SHAC Mean group							SHAC Pooled			
	20	19.50 21CCE Mean group							CCE Pooled			
	20	7.50	7.10	7.50	8.30	12.30 14.10 15.00 18.80	7.80	7.80	7.20	8.00	13.70 14.20 15.00 19.50
	30	6.60	4.80	6.20	6.70	10.60 14.70 18.40 23.70	4.60	5.30	6.70	7.30	11.60 15.10 19.40 23.00
	50	4.90	6.70	6.20	5.50	12.70 22.20 29.30 36.70	5.70	6.70	5.80	5.20	15.40 25.70 28.60 36.10
	100	5.30	4.80	5.10	5.10	20.80 33.00 45.80 58.20	5.50	6.40	5.10	5.60	25.90 35.50 45.10 57.90

This assumption can be relaxed to allow for unit roots in the common factors, along the lines set out in[START_REF] Kapetanios | Panels with nonstationary multifactor error structures[END_REF].

Note that under our assumptions T 1 D 0 ei: = Op T 1=2 . Indeed, E T 1 D 0 ei: = 0, since under Assumption 6, D and ei: are independently distributed. Further, under Assumption 6 and from Proposition A.1 (see result (A.2)), the largest eigenvalue of E (ei:e 0 i: ) is bounded. It follows that V ar T 1 D 0 ei: = E T 2 D 0 ei:e 0 i: D K E T 2 D 0 D = O(T 1 ):

d ); d = 0:5; d 2; 50 = 0;f `t = f `f`;t 1 + v f `t , `= 1; 2;

3; t = 49; :::; 0; 1; ::; T;v f `t IIDN (0; 1 2 f `);f `= 0:5; f `; 50 = 0;

For a given value of N = m1m2, we set m1 and m2 such that these are integer numbers and jm1 m2j is minimized. In particular, for N = 20 we set m1 = 5, m2 =

4, for N = 30 we set m1 = 6, m2 = 5, for N = 50, we set m1 = 10, m2 = 5, and for N = 100 we set m1 = m2 = 10.

To save space, we have not reported these results. However, they are available upon request.

We make use of the following result. Let A be an n n symmetric matrix, and B be an n m matrix. Then (B 0 B) 1(A) B 0 AB is a positive semi-de…nite matrix (see[START_REF] Bernstein | Matrix mathematics: theory, facts, and formulas with application to linear systems theory[END_REF], pp. 264 and 271).