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Abstract

We consider optimal stopping problems with finite horizon for one-dimensional diffusions. We assume

that the reward function is bounded and Borel-measurable, and we prove that the value function is

continuous and can be characterized as the unique solution of a variational inequality in the sense of

distributions.
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1. Introduction

In a recent paper with M. Zervos (see [10]), we studied optimal stopping problems with

infinite horizon for one-dimensional diffusions. In particular, we proved that, under very general

conditions, the value function is the unique solution (in the sense of distributions) of a stationary

variational inequality. The purpose of the present paper is to examine optimal stopping problems

with finite horizon and bounded Borel-measurable reward functions. We will prove that the

value function is continuous and can be characterized as the unique solution (in the sense of

distributions) of a suitable variational inequality.

The connection between optimal stopping and variational inequalities goes back to the work of

Bensoussan and Lions [3] and Friedman [6]. This approach is very general and applies to multi-

dimensional problems, but it requires uniform ellipticity of the diffusion and some regularity of
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the reward function. Note that the techniques of viscosity solutions do not require ellipticity, but

generally impose some continuity conditions on the reward function and the coefficients of the

diffusion. For our results, we will not need any regularity assumption on the reward function, and

we will deal with very general one-dimensional diffusions. On the other hand, our analysis will

be limited to one-dimensional situations (cf. Remark 2.3).

The paper is organized as follows. In Section 2, we present our assumptions and the main

results. In particular, we give the proper formulation of the variational inequality. In Section 3,

we prove the continuity of the value function. In Section 4, we essentially relate the value function

to the Snell envelope. Section 5 is devoted to the analytic interpretation of the supermartingale

property. The proof that the value function satisfies the variational inequality is given in Section 6.

Uniqueness of the solution is proved in Section 7. In the last section, we have gathered a number

of auxiliary results, which are classical in somewhat different contexts, but which require some

justification under our assumptions. In particular, we derive regularity estimates for the semi-

group of one-dimensional diffusions (see Theorem 8.11 and Corollary 8.13), which we have not

found in the literature.

2. Assumptions and main results

We consider an open interval I = (α, β) (with −∞ ≤ α < β ≤ +∞) and a stochastic

differential equation

dX t = b(X t ) dt + σ(X t ) dWt , X0 = x ∈ I, (1)

where W is a standard one-dimensional Brownian motion, and b, σ : I → R are Borel-

measurable functions satisfying the following condition.

A1. For all x ∈ (α, β), σ 2(x) > 0, and ∃ε > 0,
∫ x+ε

x−ε
1+|b(y)|
σ 2(y)

dy < ∞.

Under assumption A1, we have existence and uniqueness in law of a weak solution of (1) up to

a possible explosion time (cf. [9, Section 5.5C]). In fact, we will also assume that the diffusion

is non-explosive. This assumption can be expressed in terms of the so-called scale function p(x)

and speed measure m(dx), defined by

p(x) =
∫ x

c

exp

(

−2

∫ y

c

b(z)

σ 2(z)
dz

)

dy, for x ∈ I, (2)

m(dx) = 2

σ 2(x)p′(x)
dx, (3)

where c is an arbitrary fixed element of I . The condition for no explosion can now be written as

follows, according to Feller’s test (see Theorem 5.5.29 in Karatzas and Shreve [9]).

A2. We have limx↓α l(x) = limx↑β l(x) = ∞, where

l(x) =
∫ x

c

[p(x)− p(y)] m(dy), for x ∈ I.

Throughout the paper, assumptions A1 and A2 are in force. A weak solution of (1) is defined by

a triple
[

(Ω ,F, (Ft )t≥0,Px ),W, X
]

, where (Ω ,F, (Ft )t≥0,Px ) is a filtered probability space

with the filtration (Ft )t≥0 satisfying the usual conditions, W = (Wt )t≥0 is a standard (Ft )-

Brownian motion and X is a continuous adapted process satisfying (1). Given such a weak

solution, we denote by (F0
t )t≥0 the natural right-continuous filtration of X .
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We now introduce an optimal stopping problem with a discounting rate (or interest rate) r . The

function r : I → R is assumed to be non-negative, Borel-measurable and locally bounded on I .

We denote by T 0
t (resp. T̄ 0

t ) the set of all stopping times with respect to the filtration (F0
t )t≥0,

with values in the interval [0, t) (resp. [0, t]). Given a bounded Borel-measurable function f on

I , we introduce the functions u f and v f defined on (0,+∞)× I as follows:

u f (t, x) = sup
τ∈T 0

t

Ex

[

e−Λτ f (Xτ )
]

, (4)

v f (t, x) = sup
τ∈T̄ 0

t

Ex

[

e−Λτ f (Xτ )
]

, (5)

where

Λt =
∫ t

0

r(Xs) ds.

Note that, due to the fact that we consider stopping times with respect to the natural filtration, the

functions u f and v f depend only on the law of X , which is uniquely defined under assumptions

A1 and A2. On the other hand, let Tt (resp. T̄t ) be the set of all stopping times with respect to the

filtration (Ft )t≥0, with values in the interval [0, t) (resp. [0, t]). If we define by ū f (resp. v̄ f ) the

value function where T 0
t (resp. T̄ 0

t ) is replaced with Tt (resp. T̄t ), we have ū f = u f and v̄ f = v f

(see Section 8, Remark 8.7).

We obviously have u f ≤ v f . Our first observation is the following result, the proof of which is

quite similar to the one given for infinite horizon problems (see [10], Lemma 7), and is therefore

omitted.

Proposition 2.1. Let f : I → R be a bounded Borel-measurable function on I . Denote by f̂ the

upper semicontinuous envelope of f :

f̂ (x) = lim sup
y→x

f (y), x ∈ I.

Then we have

u f = u
f̂
.

Our next result concerns the joint continuity of the value function. The following theorem will

be proved in Section 3.

Theorem 2.2. We have u f = v f and the function v f is jointly continuous on (0,+∞)× I .

Remark 2.3. The fact that we have a one-dimensional diffusion is essential for the continuity of

the value function. Indeed, consider a two-dimensional Brownian motion (W 1
t ,W 2

t )t≥0 and let

f be the indicator function of the singleton {0}. Since Brownian motion starting from x 6= 0 will

never hit 0 with probability one, we clearly have (with similar notations as above) u f = v f = f ,

so that v f is discontinuous. In fact, crucial to the continuity of the value function is the fact

that the diffusion hits any given point close to the initial point with positive probability. Note

that the regularization procedure that we develop in Section 5 also depends heavily on the one-

dimensional setting.

In order to write the variational inequality satisfied by the value function, we need to introduce

the infinitesimal generator L0 of the diffusion. For a twice continuously differentiable function
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u, L0u is defined by

L0u(x) = σ 2(x)

2
u′′(x)+ b(x)u′(x), x ∈ I.

As should be expected, the variational inequality will involve the operator − ∂
∂t

+ L, where

the operator L is defined by

Lu(t, x) = L0u(t, x)− r(x)u(t, x), (t, x) ∈ (0,+∞)× I.

In fact, in order to be able to apply the operator to possibly non-smooth functions, we will rather

consider the operator A, where

A = 2

σ 2 p′

(

− ∂

∂t
+ L

)

.

The following proposition is the key to the extension of A to irregular functions, in the sense of

distributions.

Proposition 2.4. If u ∈ C1,2((0,+∞) × I ), for any C∞ function Φ, with compact support in

(0,+∞)× R, we have

∫∫

Au(t, x)Φ(t, x)dtdx =
∫∫

u(t, x)

(

∂Φ

∂t
+ LΦ

)

(t, x) dt m(dx).

Proof. It follows from integration by parts with respect to time and from the definition of the

speed measure that

−
∫∫

2

σ 2(x)p′(x)

∂u

∂t
(t, x)Φ(t, x)dtdx =

∫∫

u(t, x)
∂Φ

∂t
(t, x) dt m(dx).

On the other hand, using the fact that the scale function p satisfies

d

dx

(

1

p′

)

= 2b

σ 2

1

p′ ,

we have

L0u = σ 2 p′

2

(

1

p′
∂2u

∂x2
+ 2b

σ 2

1

p′
∂u

∂x

)

= σ 2 p′

2

∂

∂x

(

1

p′
∂u

∂x

)

.

Hence, integrating by parts twice with respect to x ,
∫∫

2

σ 2(x)p′(x)
L0u(t, x)Φ(t, x)dtdx =

∫∫

u(t, x)L0Φ(t, x)dtm(dx).

The result now follows easily. ⋄

In view of Proposition 2.4, it is natural, given a locally bounded measurable function u on

(0,+∞)× I , to define the distribution Au by setting, for any smooth test function Φ,

〈Au,Φ〉 =
∫∫

u(t, x)

(

∂Φ

∂t
+ LΦ

)

(t, x) dtm(dx).
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Remark 2.5. We will also need the distribution Ãu, defined, for u locally bounded on (0, T )× I

(where T is a fixed positive number) by

〈Ãu,Φ〉 =
∫∫

u(t, x)

(

−∂Φ
∂t

+ LΦ

)

(t, x) dtm(dx),

for Φ smooth with compact support in (0, T )× I . Note that one can prove, as in Proposition 2.4

that if u ∈ C1,2((0, T )× I ), Ãu = 2
σ 2 p′

(

+ ∂
∂t

+ L
)

u.

We can now state our main result. Recall that f̂ denotes the upper semicontinuous envelope of f .

Theorem 2.6. The value function v f is the only continuous and bounded function on the open

set (0,+∞)× I satisfying the following conditions.

1. On the set (0,+∞)× I , we have v ≥ f , and the distribution Av satisfies Av ≤ 0.

2. We have Av = 0 on the open set U := {(t, x) ∈ (0,+∞)× I | v(t, x) > f̂ (x)}.
3. For every x ∈ I , limt↓0 v(t, x) = f̂ (x).

3. Continuity of the value function

This section is devoted to the proof of Theorem 2.2. At the end of the section, we also include

a proposition concerning the behaviour of the value function for small time (see Proposition 3.4).

The equality u f = v f is an easy consequence of the following proposition.

Proposition 3.1. Let τ be a stopping time with values in [0, t]. We have

Ex

[

e−Λτ f (Xτ )
]

= lim
s→t,s<t

Ex

[

e−Λτ∧s f (Xτ∧s)
]

.

Proof. We have

Ex

[

e−Λτ∧s f (Xτ∧s)
]

= Ex

[

e−Λτ f (Xτ )1{τ<s}
]

+ Ex

[

e−Λs f (Xs)1{τ≥s}
]

, (6)

and

Ex

[

e−Λs f (Xs)1{τ≥s}
]

= Ex

[

e−Λt f (Xs)1{τ=t}
]

+ Ex

[

f (Xs)
(

e−Λs 1{τ≥s} − e−Λt 1{τ=t}
)]

.

By dominated convergence,

lim
s→t,s<t

Ex

[

e−Λτ f (Xτ )1{τ<s}
]

= Ex

[

e−Λτ f (Xτ )1{τ<t}
]

,

and

lim
s→t,s<t

Ex

[

f (Xs)
(

e−Λs 1{τ≥s} − e−Λt 1{τ=t}
)

= 0
]

.

We now want to prove

lim
s→t,s<t

Ex | f (Xs)− f (X t )| = 0. (7)

This is clearly true if f is continuous. If f is arbitrary, we have

Ex | f (Xs)− f (X t )| ≤ Ex | f (Xs)− ϕ(Xs)| + Ex |ϕ(Xs)− ϕ(X t )|
+ Ex |ϕ(X t )− f (X t )| .
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So, in order to prove (7), we need only prove that, given ε > 0, one can find a bounded continuous

function ϕ such that

sup
t/2≤s≤t

Ex | f (Xs)− ϕ(Xs)| ≤ ε.

From Corollary 8.13 we know that, given x ∈ I, there exists a constant Cx > 0 such that, for all

t > 0 and h ≥ 0,

Pt h(x) ≤ Cx

(

1 + 1√
t

)

‖h‖L2(m). (8)

Now assume that f ∈ L2(m) (the extension to f bounded on I is straightforward). Given ε > 0,

one can find a continuous function ϕ with compact support such that ‖ f − ϕ‖L2(m) < ε, so that

(using (8) with h = | f − ϕ|)

sup
t/2≤s≤t

Ex | f (Xs)− ϕ(Xs)| ≤ Cx

(

1 +
√

2√
t

)

ε,

which completes the proof of (7). ⋄

Remark 3.2. The proof of Proposition 3.1 relies on the convergence (in probability) of f (Xs) to

f (X t ), when s → t , for f bounded and Borel-measurable. As proved in [4], this is related to the

relative weak compactness of the laws of the random variables Xs . The argument we give can be

seen as a way of proving this property.

For the proof of the continuity of the value function, we will also need the following lemma.

Lemma 3.3. Let (Ω ,F, (Ft )t≥0,Px ,W, X) be a weak solution of (1). For y ∈ I , define

τy = inf{t ≥ 0 | X t = y}.
We have limy→x Px (τy < ∞) = 1 and, for all t > 0, limy→x Px (τy ≥ t) = 0. We also have

limy→x Ey(e
−Λτx ) = 1 and limy→x Py(τx ≥ t) = 0, for all t > 0.

Proof. It is well known that the function (x, y) 7→ Ex (e
−τy ) is jointly continuous on I × I (see

for instance [8]). In particular, we have limy→x Ex (e
−τy ) = 1. We have

Px (τy ≥ t) = Px (1 − e−τy ≥ 1 − e−t ) ≤ Ex (1 − e−τy )

1 − e−t
.

Hence, limy→x Px (τy ≥ t) = 0. A similar argument gives limy→x Py(τx ≥ t) = 0. Since

Px (τy = ∞) ≤ Px (τy ≥ t), we have limy→x Px (τy < ∞) = 1.

On the other hand, we have Ey(e
−Λτx ) ≥ Ey(e

−τx −Λτx ) = Ey(e
−
∫ τx

0 (1+r(Xs ))ds) and we also

have that (x, y) 7→ Ex (e
−
∫ τy

0 (1+r(Xs ))ds) is jointly continuous on I × I (see for instance [8]), so

that limy→x Ey(e
−
∫ τx

0 (1+r(Xs ))ds) = 1. Hence, limy→x Ey(e
−Λτx ) = 1. ⋄

Proof of Theorem 2.2. As mentioned above, the equality u f = v f follows easily from Propo-

sition 3.1. On the other hand, since u f = u
f̂

= v
f̂
, we also have v f = v

f̂
. It is known that if f

is upper semicontinuous, so is v f (see [2], Proposition 17 or [5]). It remains to prove that v f is

lower semicontinuous.

Fix (t, x) ∈ (0,+∞) × I and τ ∈ T̄ 0
t . Since τ is a stopping time of (F0

t ), we have {τ = 0}
∈ F0

0 , and we deduce from the zero–one law (cf. Remark 8.4) that Px (τ = 0) ∈ {0, 1}.
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Suppose Px (τ = 0) = 1. We then have Ex

(

e−Λτ f (Xτ )
)

= f (x). On the other hand, we

have, for any (s, y) ∈ (0,+∞)× I , with M = supy∈I | f (y)|,

v f (s, y) ≥ Ey

(

e−Λτx ∧s f (Xτx ∧s)
)

≥ Ey

(

e−Λτx ∧s f (Xτx ∧s)1{τx<s}
)

− MPy(τx ≥ s)

= f (x)Ey(e
−Λτx 1{τx<s})− MPy(τx ≥ s).

Hence v f (s, y)≥ f (x)Ey(e
−Λτx )−2MPy(τx ≥ s). Using Lemma 3.3, we have

limy→x Ey(e
−Λτx ) = 1 and limy→x Py(τx ≥ t/2)= 0. Hence f (x) ≤ lim inf(s,y)→(t,x) v f (s, y).

We now assume that Px (τ = 0) = 0. From Proposition 3.1, we know that, given ε > 0, there

exists δ ∈ (0, t) such that, for all s ∈ [t − δ, t],
∣

∣

∣
Ex (e

−Λτ∧s f (Xτ∧s))− Ex (e
−Λτ f (Xτ ))

∣

∣

∣
≤ ε. (9)

Obviously, this inequality is also true for s ≥ t . Now, we have, for all (s, y) ∈ (0,+∞)× I ,

Ex

(

e−Λτ∧s f (Xτ∧s)
)

= Ex

(

e−Λτ∧s f (Xτ∧s)1{τy≤τ∧s}
)

+ Ex

(

e−Λτ∧s f (Xτ∧s)1{τy>τ∧s}
)

.

We have
∣

∣

∣
Ex

(

e−Λτ∧s f (Xτ∧s)1{τy>τ∧s}
)∣

∣

∣
≤ MPx (τy > τ ∧ s).

On the other hand, with the notation τ s for τ ∧ s, we have

Ex

(

e−Λτ s f (Xτ s )1{τy≤τ s }
)

= Ex

(

e−Λτy 1{τy≤τ s }e
−
∫ (τ s−τy )+

0 r(Xθ )dθ f (Xτy+(τ s−τy)+)

)

≤ Ex

(

1{τy<∞}e
−
∫ (τ s−τy )+

0 r(Xθ )dθ f (Xτy+(τ s−τy)+)

)

= Px (τy < ∞)Ex

(

e−
∫ (τ s−τy )+

0 r(Xθ )dθ f (Xτy+(τ s−τy)+) | τy < ∞
)

.

Note that, conditionally on {τy < ∞},
[

(Ω ,F, (Fτy+θ )θ≥0,P), (Wτy+θ − Wτy ), (Xτy+θ )
]

is a

weak solution of the stochastic differential equation with starting point y, and (τ s − τy)+ is an

(Fτy+θ )θ≥0-stopping time. Hence (using Remark 8.7)

Ex

(

e−Λτ s f (Xτ s )1{τy≤τ s }
)

≤ Px (τy < ∞)v f (s, y).

Therefore, we have

Ex

(

e−Λτ∧s f (Xτ∧s)
)

≤ Px (τy < ∞)v f (s, y)+ MPx (τy > τ ∧ s).

Now, take s ∈ [t − δ,+∞). We have, using (9),

Ex

(

e−Λτ f (Xτ )
)

− ε ≤ Ex

(

e−Λτ∧s f (Xτ∧s)
)

≤ Px (τy < ∞)v f (s, y)+ MPx (τy > τ ∧ s).
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It follows from Lemma 3.3 that limy→x Px (τy < ∞) = 1 and lim(s,y)→(t,x) Px (τy > τ ∧ s) = 0.

Hence

Ex

(

e−Λτ f (Xτ )
)

≤ lim inf
(s,y)→(t,x)

v f (s, y).

We conclude that v f is lower semicontinuous. ⋄

The following Proposition clarifies the asymptotic behaviour of the value function as time

goes to zero.

Proposition 3.4. We have limt↓0 v f (t, x) = f̂ (x).

Recall that f̂ is the upper semicontinuous envelope of f . In view of Proposition 3.4, it is natural

to extend the definition of v f (t, x) at t = 0 by setting v f (0, x) = f̂ (x).

Proof of Proposition 3.4. Note that t 7→ v f (t, x) is clearly non-decreasing, so that the limit

exists. Since v f = v
f̂
, we have v f (t, x) ≥ f̂ (x), so that limt→0 v f (t, x) ≥ f̂ (x). Now, let

τ ∈ T̄ 0
t . For any ε > 0 such that (x − ε, x + ε) ⊂ I , we have

Ex

(

e−Λτ f (Xτ )
)

≤ sup
y∈(x−ε,x+ε)

f (y)+ sup
I

f Px (τx−ε ∧ τx+ε ≤ t).

Hence

v f (t, x) ≤ sup
y∈(x−ε,x+ε)

f (y)+ sup
I

f (Px (τx−ε ≤ t)+ Px (τx+ε ≤ t)) .

Observe that limt→0 Px (τx±ε ≤ t). Therefore limt→0 v f (t, x) ≤ supy∈(x−ε,x+ε) f (y), and by

making ε go to 0, we get limt↓0 v f (t, x) ≤ f̂ (x). ⋄

4. The value function along the paths

The main result of this section is the following.

Theorem 4.1. Fix a positive number T and let f : I → R be a bounded, non-negative and upper

semicontinuous function. For any weak solution (Ω ,F, (Ft )t≥0,Px ,W, X) of (1), the process

V defined by

Vt = e−Λt v f (T − t, X t ), 0 ≤ t ≤ T,

is a supermartingale. Moreover, if τ̂ = inf{t ≥ 0 | v f (T − t, X t ) = f (X t )}, the process

(Vt∧τ̂ )0≤t≤T is a martingale.

This result is not surprising. It appears in various forms in the literature (see for instance [5]).

However, since, under our assumptions, it does not seem to follow directly from known results,

we will give a complete proof.

The proof of Theorem 4.1 will be based on the following lemma.

Lemma 4.2. Let f : I → R be bounded, non-negative and Borel-measurable. For all T > 0

and for all τ ∈ T̄ 0
T , we have

∀x ∈ I, Ex

(

e−Λτ v f (T − τ, Xτ )
)

≤ v f (T, x).
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Proof. For the proof of this lemma, we will need the strong Markov property. So, we will work

with the canonical realization of the process X . More precisely, denote by (Ω ,F0) the canonical

space, where Ω is the set of all continuous functions on R+, with values in I , and F0 is the

σ -algebra generated by the finite-dimensional cylinder sets. We endow this space with the right-

continuous natural filtration (F0
t ) of the coordinate mapping process X defined by X t (ω) = ω(t),

for t ≥ 0 and ω ∈ Ω . This space supports the family of shift operators (θt , t ≥ 0), defined by

θt (ω) = ω(t + ·), for t ≥ 0 and ω ∈ Ω . Given an initial condition x ∈ I , we denote by Px

the (unique) law of a weak solution of (1). The fact that we have the strong Markov property for

the family of probability measures (Px , x ∈ I ) on the canonical space follows from the Markov

property and the fact that the semi-group preserves continuity (the weak Markov property and

the fact that the semi-group preserves continuity are proved in Section 8, and the strong Markov

property can be deduced by classical arguments, see [11], chapter III, Section 3).

For (t, x) ∈ [0, T ]× I , set U (t, x) = v f (T −t, x). Note that, since f is upper semicontinuous,

U (T, x) = f (x). Given a finite subset F of the interval I , we denote by T F
T the set of all stopping

times in T̄ 0
T , such that, on the set {τ < T }, Xτ takes its values in F . We will first prove that

∀τ ∈ T
F

T , Ex

(

e−ΛτU (τ, Xτ )
)

≤ U (0, x). (10)

Suppose F = {a1, . . . , an}, with a1 < · · · < an , and let τ ∈ T F
T . Note that, since XT has a

density (this is an immediate consequence of Corollary 8.13), we have Px (XT ∈ F) = 0, so that,

with probability 1,

e−ΛτU (τ, Xτ ) = e−ΛT U (T, XT )1{τ=T } +
n
∑

i=1

e−ΛτU (τ, ai )1{Xτ=ai }.

Let ρ = (ρ0 = 0 < ρ1 < · · · < ρm−1 < ρm = T ) be a subdivision of the interval [0, T ]. For

i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, define

Ai j = {ρ j−1 ≤ τ < ρ j } ∩ {Xτ = ai }.

We have (using U (T, ·) = f )

e−ΛτU (τ, Xτ ) = e−ΛT f (XT )1{τ=T } +
n
∑

i=1

m
∑

j=1

e−ΛτU (τ, ai )1Ai j

=
n
∑

i=1

m−1
∑

j=1

e−ΛτU (ρ j , ai )1Ai j
+ e−ΛτU (τ, Xτ )1{ρm−1≤τ<T } + e−ΛT f (XT )1{τ=T }

+
n
∑

i=1

m−1
∑

j=1

e−Λτ
(

U (τ, ai )− U (ρ j , ai )
)

1Ai j
. (11)

We have

U (ρ j , ai ) = u f (T − ρ j , ai ) = sup
τ∈T 0

T −ρ j

Eai

(

e−Λτ f (Xτ )
)

.

Fix ε > 0 and denote by τi j a stopping time in T 0
T −ρ j

, such that

U (ρ j , ai ) ≤ Eai

(

e−Λτi j f (Xτi j
)
)

+ ε.
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Let

τ̃ = T 1{ρm−1≤τ≤T } + 1{0≤τ<ρm−1}

(

τ +
n
∑

i=1

m−1
∑

j=1

1Ai j
τi j ◦ θτ

)

.

This clearly defines a stopping time with values in [0, T ]. Therefore

U (0, x) ≥ Ex

(

e−Λτ̃ f (X τ̃ )
)

= Ex

(

e−ΛT f (XT )1{ρm−1≤τ≤T }
)

+
n
∑

i=1

m−1
∑

j=1

Ex

(

1Ai j
e
−Λτ+τi j ◦θτ f (Xτ+τi j ◦θτ )

)

.

Using the strong Markov property and Ai j ∈ F0
τ , we have

Ex

(

1Ai j
e
−Λτ+τi j ◦θτ f (Xτ+τi j ◦θτ )

)

= Ex

[

1Ai j
E

(

e
−Λτ+τi j ◦θτ f (Xτ+τi j ◦θτ ) | F0

τ

)]

= Ex

[

1Ai j
e−ΛτEai

(

e
−Λτi j f (Xτi j

)
)]

≥ Ex

(

1Ai j
e−Λτ

)

(

U (ρ j , ai )− ε
)

.

Hence, using r ≥ 0,

U (0, x) ≥ Ex

(

e−ΛT f (XT )1{ρm−1≤τ≤T }
)

+ Ex

(

n
∑

i=1

m−1
∑

j=1

1Ai j
e−Λτ

(

U (ρ j , ai )− ε
)

)

≥ Ex

(

e−ΛT f (XT )1{ρm−1≤τ≤T }
)

+ Ex

(

n
∑

i=1

m−1
∑

j=1

1Ai j
e−ΛτU (ρ j , ai )

)

− ε.

It follows from (11) that

n
∑

i=1

m−1
∑

j=1

1Ai j
e−ΛτU (ρ j , ai ) = e−ΛτU (τ, Xτ )− e−ΛτU (τ, Xτ )1{ρm−1≤τ≤T }

−
n
∑

i=1

m−1
∑

j=1

e−Λτ
(

U (τ, ai )− U (ρ j , ai )
)

1Ai j
.

Hence

U (0, x) ≥ Ex

(

e−ΛτU (τ, Xτ )
)

+ Ex

[(

e−ΛT f (XT )− e−ΛτU (τ, Xτ )
)

1{ρm−1≤τ<T }
]

− Ex

(

n
∑

i=1

m−1
∑

j=1

e−Λτ
(

U (τ, ai )− U (ρ j , ai )
)

1Ai j

)

− ε.

Let |ρ| = max1≤ j≤m |ρ j −ρ j−1|. By passing to the limit as |ρ| → 0, we get, using the continuity

of U on [0, T )× I , U (0, x) ≥ Ex

(

e−ΛτU (τ, Xτ )
)

− ε, and, since ε is arbitrary, (10) is proved.

Now, suppose τ ∈ T̄ 0
T , and denote by (an)n≥1 a dense sequence of elements in I . Set

Fn = {a1, . . . , an} and

τn = inf{t ≥ τ | X t ∈ Fn} ∧ T .

We have τn ∈ T Fn , so that, according to (10), Ex

(

e−Λτn U (τn, Xτn )
)

≤ U (0, x). On the other

hand, the sequence (τn)n≥1 is non-increasing and limn→∞ τn = τ . Indeed, if we denote the limit



Author's personal copy

D. Lamberton / Stochastic Processes and their Applications 119 (2009) 3253–3284 3263

by τ∞, we clearly have τ∞ ≥ τ , and, if the inequality were strict, X would be constant on the

interval [τ, τ∞), which, with probability one, cannot happen, since, in natural scale, X is a time

changed Brownian motion. Since

Ex

(

e−Λτn U (τn, Xτn )− e−ΛτU (τ, Xτ )
)

= Ex

[(

e−Λτn U (τn, Xτn )− e−ΛτU (τ, Xτ )
)

1{τ<T }
]

,

we have, by dominated convergence and the continuity of U on [0, T )× I ,

lim
n→∞

Ex

(

e−Λτn U (τn, Xτn )
)

= Ex

(

e−ΛτU (τ, Xτ )
)

,

which completes the proof of the lemma. ⋄

Proof of Theorem 4.1. We easily deduce from Lemma 4.2 and the Markov property that V is

a supermartingale. Note that, due to the continuity of v f on (0, T ] × I , limt→t0 Vt = Vt0 for

t0 < T . Introducing the Doob–Meyer decomposition of V , we have, with probability one,

Vt = Mt − At , 0 ≤ t ≤ T,

where M is a martingale and A is a non-decreasing process with A0 = 0.

Now, let (τ j ) j≥1 be a sequence of stopping times in T 0
T , such that lim j→∞ Ex

(

e
−Λτ j f (Xτ j

)
)

= v f (T, x). We have Vτ j
≥ e

−Λτ j f (Xτ j
). Therefore

Ex

(

e
−Λτ j f (Xτ j

)
)

≤ Ex

(

Vτ j

)

= Ex (Mτ j
)− Ex (Aτ j

) = Ex (M0)− Ex (Aτ j
).

On the other hand, Ex (V0) = Ex (M0) = v f (T, x) = lim j→∞ Ex

(

e
−Λτ j f (Xτ j

)
)

. Therefore,

we have lim j→∞ Ex

(

e
−Λτ j

(

v f (T − τ j , Xτ j
)− f (Xτ j

)
)

)

= 0 and lim j→∞ Ex

(

Aτ j

)

= 0.

By extracting a subsequence, we can assume that, with probability one, lim j→∞ Aτ j
= 0 and

lim j→∞ e
−Λτ j

(

v f (T − τ j , Xτ j
)− f (Xτ j

)
)

= 0, so that Alim sup τ j
= 0 and τ̂ ≤ lim inf τ j .

Hence Aτ̂ = 0 and Vt∧τ̂ = Mt∧τ̂ a.s., which proves that (Vt∧τ̂ )0≤t≤T is a martingale. ⋄

5. Analytic interpretation of the supermartingale property

We first introduce some notations. For t ≥ 0 and q > 0 and for f : I → R bounded and

Borel-measurable, define the functions PΛ
t f and UΛ

q by

PΛ
t f (x) = Ex

(

e−Λt f (X t )
)

and UΛ
q f (x) = Ex

(∫ ∞

0

e−qs−Λs f (Xs)ds

)

.

It is easy to prove that

PΛ
t UΛ

q f (x) = UΛ
q PΛ

t f (x) = Ex

(∫ ∞

0

e−qs−
∫ t+s

0 r(Xθ )dθ f (X t+s)ds

)

.

Theorem 5.1. Let F : (t, x) 7→ F(t, x) be a continuous and bounded function on [0, T ) × I

such that, for all s, t ∈ [0, T ) with 0 ≤ s ≤ t , PΛ
t−s F(t, ·) ≤ F(s, ·). Then, the distribution ÃF

(defined in Remark 2.5) satisfies ÃF ≤ 0 in the open set (0, T )× I .
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For the proof of Theorem 5.1, we will need to approximate F by more regular functions. Given a

time interval [t1, t2], with 0 ≤ t1 < t2, we will denote by W([t1, t2]×I ) the set of all continuously

differentiable functions F on [t1, t2]× I such that for all t ∈ [t1, t2], the partial derivative F ′
x (t, ·)

is absolutely continuous and its derivative F ′′
xx (t, ·) satisfies the following condition, for every

compact subset K of I :
∫

K

sup
t∈[t1,t2]

|F ′′
xx (t, x)|dx < ∞ and lim

δ→0

∫

K

sup
|t−s|≤δ

|F ′′
xx (t, x)− F ′′

xx (s, x)|dx = 0. (12)

For functions in W([0, T ] × I ), we have the following version of Itô’s formula.

Proposition 5.2. If F ∈ W([0, T ] × I ) and if (Ω ,F, (Ft )t≥0,Px ,W, X) is a weak solution

of (1), we have, with probability one, for t ∈ [0, T ],

F(t, X t ) = F(0, X0)+
∫ t

0

F ′
t (s, Xs)ds +

∫ t

0

F ′
x (s, Xs)dXs + 1

2

∫ t

0

F ′′
xx (s, Xs)d〈X, X〉s .

Proof. Let ∆ = (t0 = 0 < t1 < · · · < tn = t) be a subdivision of the interval [0, t]. We have

F(t, X t )− F(0, X0) =
n
∑

i=1

F(ti , X ti )− F(ti−1, X ti )+
n
∑

i=1

F(ti−1, X ti )− F(ti−1, X ti−1).

Note that F(ti , X ti )− F(ti−1, X ti ) =
∫ ti

ti−1
F ′

t (s, X ti )ds. Applying the generalized Itô formula to

the function F(ti−1, ·), we have

F(ti−1, X ti )− F(ti−1, X ti−1) =
∫ ti

ti−1

F ′
x (ti−1, Xs)dXs + 1

2

∫ ti

ti−1

F ′′
xx (ti−1, Xs)d〈X, X〉s .

Hence

F(t, X t )− F(0, X0) = A∆ + B∆ + 1

2
C∆,

where

A∆ =
n
∑

i=1

∫ ti

ti−1

F ′
t (s, X ti )ds, B∆ =

n
∑

i=1

∫ ti

ti−1

F ′
x (ti−1, Xs)dXs

and

C∆ =
n
∑

i=1

∫ ti

ti−1

F ′′
xx (ti−1, Xs)d〈X, X〉s .

If we let the mesh size |∆| = sup1≤i≤n |ti − ti−1| go to zero, we have

A∆ + B∆ →
∫ t

0

F ′
t (s, Xs)ds +

∫ t

0

F ′
x (s, Xs)dXs

in probability. Therefore, it suffices to prove that C∆ →
∫ t

0 F ′′
xx (s, Xs)d〈X, X〉s in probability.

We have, using the local time La
t of X and the occupation times formula,

∣

∣

∣

∣

C∆ −
∫ t

0

F ′′
xx (s, Xs)d〈X, X〉s

∣

∣

∣

∣

≤
n
∑

i=1

∫ ti

ti−1

∣

∣F ′′
xx (ti−1, Xs)− F ′′

xx (s, Xs)
∣

∣ d〈X, X〉s

=
∫

La
t sup

|θ−θ ′|≤|∆|

∣

∣F ′′
xx (θ, a)− F ′′

xx (θ
′, a)

∣

∣ da.
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The local time a 7→ La
t is locally bounded and vanishes outside the compact set X ([0, t]), so

that, using (12), we have lim|∆|→0 C∆ = 0 almost surely. ⋄

Proposition 5.3. Let h : (t, x) 7→ h(t, x) be continuous and bounded on [t1, t2] × I (where

0 ≤ t1 < t2) with a partial derivative ∂h/∂t continuous and bounded on [t1, t2] × I . Fix a

positive number q and, for each t ∈ [t1, t2], let F(t, ·) = UΛ
q h(t, ·). Then, the function F is in

W([t1, t2] × I ).

Proof. We have

F(t, x) = Ex

(∫ ∞

0

e−qs−Λs h(t, Xs)ds

)

,

and, by differentiating under the integral,

F ′
t (t, x) = Ex

(∫ ∞

0

e−qs−Λs h′
t (t, Xs)ds

)

.

It is now clear that F ′
t is bounded on [t1, t2] × I . On the other hand, we also know (cf. for

instance [8]) that F(t, ·) is the unique bounded solution of the ordinary differential equation

u′′ + 2b

σ 2 u′ − 2(r+q)

σ 2 u + 2h(t,·)
σ 2 = 0. This means that F(t, ·) is continuously differentiable, that its

derivative is absolutely continuous and that we have

F ′′
xx (t, x)+ 2b(x)

σ 2(x)
F ′

x (t, x)− 2(r(x)+ q)

σ 2(x)
F(t, x)+ 2h(t, x)

σ 2(x)
= 0, dx-a.e. (13)

We also have the following representation

F(t, x) = φ(x)

∫ x

α

ψ(y)h(t, y)m(dy)+ ψ(x)

∫ β

x

φ(y)h(t, y)m(dy), x ∈ I,

where φ and ψ are the fundamental increasing and decreasing solutions of the homogeneous

ODE u′′ + 2b

σ 2 u′ − 2(r+q)

σ 2 u = 0. The partial derivative with respect to x is then given by

F ′
x (t, x) = φ′(x)

∫ x

α

ψ(y)h(t, y)m(dy)+ ψ ′(x)
∫ β

x

φ(y)h(t, y)m(dy), x ∈ I,

and the time derivative by

F ′
t (t, x) = φ(x)

∫ x

α

ψ(y)h′
t (t, y)m(dy)+ ψ(x)

∫ β

x

φ(y)h′
t (t, y)m(dy), x ∈ I.

It is now clear that F is C1 on [t1, t2] × I . Moreover, it follows from (13) that

F ′′
xx (t, x) = − 2b(x)

σ 2(x)
F ′

x (t, x)+ 2(r(x)+ q)

σ 2(x)
F(t, x)− 2h(t, x)

σ 2(x)

dx-almost everywhere, so that we have F ′′
xx (t, x) =

∑3
i=1 ϕi (x)Fi (t, x), where ϕ1, ϕ2 and ϕ3

are locally integrable, and F1, F2, F3 are continuous on [t1, t2] × I . The condition (12) is now

easy to check and we conclude that F ∈ W([t1, t2] × I ). ⋄

We are now in a position to construct a suitable approximation procedure for a function

satisfying the assumptions of Theorem 5.1.
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Lemma 5.4. Under the assumptions of Theorem 5.1, for any decreasing sequence of positive

numbers (ε j ) j≥1, with ε j ∈ (0, T ) and lim j→∞ ε j = 0, one can construct a sequence of

functions (F j ) j≥1 satisfying the following conditions.

1. For each j ≥ 1, F j ∈ W([ε j , T − ε j ] × I ), and sup(t,x)∈[ε j ,T −ε j ]×I |F j (t, x)| ≤ ‖F‖∞.

2. For each j ≥ 1, and for all t ∈ [ε j , T − ε j ], we have (∂F j/∂t)(t, x) + LF j (t, x) ≤ 0

dx-almost everywhere and (∂F j/∂t)+ LF j is bounded on [ε j , T − ε j ] × I .

3. For all (t, x) ∈ (0, T )× I , lim j→∞ F j (t, x) = F(t, x).

Before proving the lemma we will prove Theorem 5.1.

Proof of Theorem 5.1. Take F j as in Lemma 5.4 and let U j = (ε j , T − ε j ) × I . Given a test

function with compact support in (0, T )× I , for j large enough, the support of Φ lies in U j and

we easily deduce from the definition of the distribution ÃF and the regularity properties of F j

〈ÃF j ,Φ〉 =
∫∫

F j (t, x)

(

−∂Φ
∂t

+ LΦ

)

(t, x) dt m(dx)

=
∫∫

U j

2

σ 2(x)p′(x)

(

∂F j

∂t
+ LF j

)

(t, x)Φ(t, x)dtdx ≤ 0, if Φ ≥ 0, (14)

because (∂F j/∂t) + LF j ≤ 0 a.e. on U j . On the other hand we have, using (14) and the

convergence of F j to F , lim j→∞〈ÃF j ,Φ〉 = 〈ÃF,Φ〉. Hence 〈ÃF,Φ〉 ≤ 0 for Φ ≥ 0. ⋄

Proof of Lemma 5.4. For each positive integer j , let ρ j be a non-negative C∞ function with

support in the interval (0, ε j ), such that
∫ ε j

0 ρ j (s)ds = 1. For t ∈ [0, T ) and θ ∈ [0, T − t), we

have

PΛ
θ F(t + θ, ·) ≤ F(t, ·).

Therefore, if t ∈ [ε j , T − ε j ] and s ∈ (0, ε j ), we have, for all θ ∈ [0, ε j ], PΛ
θ F(t − s + θ, ·) ≤

F(t − s, ·), hence

∀t ∈ [ε j , T − ε j ],∀θ ∈ [0, ε j ],
∫

PΛ
θ F(t − s + θ, ·)ρ j (s)ds ≤

∫

F(t − s, ·)ρ j (s)ds.

Now, for t ∈ [ε j , T − ε j ] and x ∈ I , let

Fρ j (t, x) =
∫

F(t − s, x)ρ j (s)ds.

The function Fρ j satisfies PΛ
θ Fρ j (t + θ, ·) ≤ Fρ j (t, ·) for t ∈ [ε j , T − ε j ] and θ ∈ [0, ε j ].

It is continuous on [ε j , T − ε j ] × I , and admits a partial derivative ∂Fρ j /∂t , which is also

continuous on [ε j , T −ε j ]× I . Now, let (q j ) j≥1 be a sequence of positive real numbers satisfying

lim j→∞ q j = +∞. Define

F j (t, ·) = q jU
Λ
q j

Fρ j (t, ·).

It follows from Proposition 5.3 that F j ∈ W([ε j , T − ε j ] × I ). Note that, since ρ j ≥ 0 and
∫

ρ j (s)ds = 1, we have |Fρ j (t, x)| ≤ ‖F‖∞, and |F j (t, x)| ≤ ‖F‖∞, because qUΛ
q is a

contraction on L∞.

Since PΛ
θ UΛ

q = UΛ
q PΛ

θ and f ≥ 0 ⇒ UΛ
q f ≥ 0, we also have PΛ

θ F j (t + θ, ·) ≤ F j (t, ·),
for t ∈ [ε j , T − ε j ] and θ ∈ [0, ε j ].
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Now, fix t ∈ [ε j , T − ε j ) and note that the function (θ, x) 7→ F j (t + θ, x) is in the space

W
(

[0, T − ε j − t] × I
)

, so that, using Proposition 5.2 and the stochastic differential equation

satisfied by X , we have, for θ close to 0,

e−Λθ F j (t + θ, Xθ ) = F j (t, X0)+
∫ θ

0

e−Λs

(

∂F j

∂t
+ LF j

)

(t + s, Xs)ds + Mt , (15)

with Mt =
∫ θ

0 e−Λs
∂F j

∂x
(t + s, Xs)σ (Xs)dWs . Observe that LF j = q j

(

F j − Fρ j
)

, so that LF j

is bounded. Since F j and ∂F j/∂t are also bounded, the process (Mt ) in (15) is a martingale and,

by taking expectations, we get

PΛ
θ F j (t + θ, x)− F j (t, x) = Ex

(∫ θ

0

e−Λs

(

∂F j

∂t
+ LF j

)

(t + s, Xs)ds

)

.

Since PΛ
θ F j (t +θ, ·) ≤ F j (t, ·), we deduce that Ex

(

∫ θ

0 e−Λs

(

∂F j

∂t
+ LF j

)

(t + s, Xs)ds
)

≤ 0.

Note that, by construction, ∂F j/∂t is continuous and LF j = q j

(

F j − Fρ j
)

, so that LF j is

continuous as well. Now, divide by θ and let θ → 0 to conclude that
(

∂F j

∂t
+ LF j

)

(t, x) ≤ 0.

We now prove that lim j→∞ F j (t, x) = F(t, x). Fix (t, x) ∈ (0, T ) × I . For j large enough,

we have ε j < t < T − ε j and F j − F = q jU
Λ
q j

Fρ j − q jU
Λ
q j

F + q jU
Λ
q j

F − F. Now, by an

obvious change of variable,

(q jU
Λ
q j

Fρ j − q jU
Λ
q j

F)(t, x) = Ex

(∫ ∞

0

e
−s−Λs/q j

(

Fρ j (t, Xs/q j
)− F(t, Xs/q j

)
)

ds

)

.

Due to the continuity of F , we have, for any compact subset K of I ,

lim
j→∞

sup
x∈K

|Fρ j (t, x)− F(t, x)| = 0.

Therefore, lim j→∞
(

Fρ j (t, Xs/q j
)− F(t, Xs/q j

)
)

= 0 for all s ≥ 0 a.s., so that, by dominated

convergence lim j→∞(q jU
Λ
q j

Fρ j − q jU
Λ
q j

F)(t, x) = 0. We also easily have

lim j→∞ q jU
Λ
q j

F(t, x) = F(t, x), which completes the proof. ⋄

6. The value function solves the variational inequality

The proof that the value function solves the variational inequality is based on Theorem 5.1

and the following result.

Theorem 6.1. Let F : [0, T )× I → R satisfy the assumptions of Theorem 5.1, and let U be an

open subset of (0, T )× I such that

∀(t, x) ∈ U, ∀θ ∈ T
0

T −t , Ex

(

e
−Λ

θ∧τ t
U F

(

t + θ ∧ τ t
U , Xθ∧τ t

U

))

= F(t, x),

where τ t
U = inf{s ≥ 0 | (t + s, Xs) 6∈ U }.

Then, the distribution ÃF is null in the open set U.

Before proving Theorem 6.1, we will show that the value function v f satisfies the three

conditions in Theorem 2.6. Without loss of generality, we can assume that f is upper

semicontinuous. Note that the proof of the third condition (limt↓0 v f (t, x) = f (x)) follows from

Proposition 3.4. For the first condition, the inequality v f ≥ f is trivial, so we need to prove that
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Av f ≤ 0 on (0,+∞)× I . It suffices to prove this property on the set (0, T )× I for all T > 0. For

t ∈ [0, T ), let F(t, x) = v f (T −t, x). We know from Theorem 4.1 that, for all T > 0, the process

V , defined by Vt = e−Λt v f (T −t, X t ), is a supermartingale, so that PΛ
θ v f (T −θ, x) ≤ v f (T, x),

for θ ∈ [0, T ]. Therefore, we have PΛ
s v f (t − s, x) ≤ v f (t, x), for all s, t with 0 ≤ s ≤ t .

Apply this with T − t instead of t and θ instead of s to get PΛ
θ F(t + θ, ·) ≤ F(t, ·), where

F(t, x) = v f (T − t, x), which means that F satisfies the assumptions of Theorem 5.1. Hence

ÃF ≤ 0, which gives Av ≤ 0.

We also know from Theorem 4.1 that (Vt∧τ̂ ) is a martingale, where τ̂ = inf{t ≥ 0 |
v f (T − t, X t ) = f (X t )}, so that for all θ ∈ T 0

T , Ex

(

e−Λθ∧τ̂ v f (T − θ ∧ τ̂ , Xθ∧τ̂ )
)

= v f (T, x).

Applying this with T − t instead of T , we obtain that F(t, x) = v f (T − t, x) satisfies the

assumptions of Theorem 6.1, with U = {(t, x) ∈ (0, T ) × I | F(t, x) > f (x)} (U is open

because f is upper semicontinuous and F is continuous). Therefore, we have ÃF = 0 on U , so

that Av f = 0 on the set {v f > f }, and we have established that v f satisfies the three conditions

of Theorem 2.6.

Proof of Theorem 6.1. Fix (t0, x0) in U . We will prove that the distribution ÃF vanishes in a

neighborhood of (t0, x0). Let ε be a positive number such that (t0−2ε, t0+2ε)×(x0−ε, x0+ε) ⊂
U . Let

τε = inf {s ≥ 0 | Xs 6∈ (x0 − ε, x0 + ε)} .

For (t, y) ∈ (t0 − ε, t0 + ε)× (x0 − ε, x0 + ε), we have ε ∧ τε ≤ τ t
U . Without loss of generality,

we assume that ε < (T − t0)/2, so that t < t0 + ε ⇒ T − t > ε and the stopping time ε ∧ τε is

in T 0
T −t . We then have, according to the assumptions of Theorem 6.1,

∀(t, y) ∈ (t0 − ε, t0 + ε)× (x0 − ε, x0 + ε),

Ey

(

e−Λε∧τε F(t + ε ∧ τε, Xε∧τε )
)

= F(t, y).

Since F satisfies the assumptions of Theorem 5.1, we can take an approximating sequence

(F j ) j≥1 as in Lemma 5.4. For j large enough, we have (t0 − ε, t0 + 2ε) ⊂ (ε j , T − ε j ). Let

α j (t, y) = Ey

(

e−Λε∧τε F j (t + ε ∧ τε, Xε∧τε )
)

− F j (t, y).

Denote Vε = (t0 − ε, t0 + ε)× (x0 − ε, x0 + ε). For (t, y) ∈ Vε, we have

lim
j→∞

α j (t, y) = Ey

(

e−Λε∧τε F(t + ε ∧ τε, Xε∧τε )
)

− F(t, y) = 0.

On the other hand, we have, using Proposition 5.2,

α j (t, y) = Ey

(∫ ε∧τε

0

e−Λs

(

∂F j

∂t
+ LF j

)

(t + s, Xs)ds

)

.

Now, let ψ be the unique continuous function on [x0 − ε, x0 + ε] satisfying

ψ(x0 − ε) = ψ(x0 + ε) = 0 and Lψ + 1 = 0 a.e. on (x0 − ε, x0 + ε).

We have, for y ∈ [x0 − ε, x0 + ε], ψ(y) = Ey

(∫ τε
0 e−Λs ds

)

, so that, for all y ∈ (x0 − ε, x0 + ε),

ψ(y) > 0. By dominated convergence, we have

∀t ∈ (t0 − ε, t0 + ε), lim
j→+∞

∫ x0+ε

x0−ε
m(dy)ψ(y)α j (t, y) = 0.
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On the other hand,
∫ x0+ε

x0−ε
m(dy)ψ(y)α j (t, y)

=
∫ x0+ε

x0−ε
m(dy)ψ(y)Ey

(∫ ε∧τε

0

e−Λs

(

∂F j

∂t
+ LF j

)

(t + s, Xs)ds

)

=
∫ ε

0

ds

∫ x0+ε

x0−ε
m(dy)ψ(y)Ey

(

e−Λs

(

∂F j

∂t
+ LF j

)

(t + s, Xs)1{s<τε}

)

.

The process X is symmetric with respect to the speed measure (cf. Proposition 8.9). Using the

symmetry of the killed process at the exit time of (x0 − ε, x0 + ε) (cf. [7], Lemmas 4.1.2 and

4.1.3), we deduce
∫ x0+ε

x0−ε
m(dy)ψ(y)α j (t, y)

=
∫ ε

0

ds

∫ x0+ε

x0−ε
m(dy)

(

∂F j

∂t
+ LF j

)

(t + s, y)Pεs ψ(y), (16)

where we use the notation Pεs ψ(y) = Ey

(

e−Λsψ(Xs)1{s<τε}
)

, for y ∈ (x0 − ε, x0 + ε).

Note that

Pεs ψ(y) = ψ(y)+ Ey

(∫ s∧τε

0

e−ΛθLψ(Xθ )dθ

)

= ψ(y)− Ey

(∫ s∧τε

0

e−Λθ dθ

)

≥ ψ(y)− s.

Let K be a compact subset of (x0 −ε, x0 +ε) and δ = infy∈K ψ(y). Note that, since ψ is positive

on (x0 − ε, x0 + ε), δ > 0. For y ∈ K and s ∈ [0, δ/2], we have Pεs ψ(y) ≥ δ/2. Hence (recall

that (∂F j/∂t)+ LF j ≤ 0)

∫ δ∧ε
2

0

ds

∫

K

m(dy)

(

∂F j

∂t
+ LF j

)

(t + s, y)Pεs ψ(y)

≤ δ

2

∫ δ∧ε
2

0

ds

∫

K

m(dy)

(

∂F j

∂t
+ LF j

)

(t + s, y).

Now take t = t0 − δ′, with δ′ = (δ ∧ ε)/4. Going back to (16), we have

−
∫ x0+ε

x0−ε
m(dy)ψ(y)α j (t0 − δ′, y) ≥ − δ

2

∫ t0+δ′

t0−δ′
ds

∫

K

m(dy)

(

∂F j

∂t
+ LF j

)

(s, y).

Now, if Φ is a smooth test function with support in [t0 − δ′, t0 + δ′] × K , we have

〈ÃF j ,Φ〉 =
∫ t0+δ′

t0−δ′
ds

∫

K

m(dy)

(

∂F j

∂t
+ LF j

)

(s, y)Φ(s, y),

so that, for Φ ≥ 0, we have lim j→∞〈ÃF j ,Φ〉 = 0. Hence 〈ÃF,Φ〉 = 0, which proves that ÃF

is null in a neighborhood of (t0, x0). Since (t0, x0) is arbitrary in U , we conclude that ÃF = 0

on U . ⋄
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7. Uniqueness

The proof of uniqueness in Theorem 2.6 will be based on essentially two steps: the first step is

to relate the condition Au ≤ 0 to the supermartingale property (cf. Theorem 7.1). The second step

is to relate the condition Au = 0 to the martingale property: this will be done in Theorem 7.4.

Theorem 7.1. Suppose F : [0, T ) × I → R is bounded and continuous and satisfies ÃF ≤ 0

on (0, T )× I . Then we have, for all s ∈ [0, T ) and t ∈ [0, T − s),

Ex

(

e−Λt F(s + t, X t )
)

≤ F(s, x).

Given an open subset O of R or R
2, we denote by D(O) the set of all C∞ functions with compact

support in O, and by D+(O) the set of all non-negative functions in D(O).

Lemma 7.2. Let J be an open subinterval of I and µ a Radon measure on J . A continuous

function F : J → R satisfies the equation

d

dx

(

1

p′
dF

dx

)

= µ (17)

in the sense of distributions if and only if F has the following form

F(x) =
∫ x

d

p′(y)M(y)dy + kp(x)+ l, x ∈ J,

for some d ∈ J and constants k, l ∈ R, where M(y) = µ((d, y]) for y ≥ d and M(y) =
−µ((y, d]) for y < d.

Proof. First note that the meaning of (17) in the sense of distributions is that for all ψ ∈ D(J ),
∫

J
F(x) d

dx

(

1
p′

dψ
dx

)

(x)dx =
∫

J
ψ(x)µ(dx).

We will first prove that the function F0 : J → R, defined by

F0(x) =
∫ x

d

p′(y)M(y)dy, x ∈ J,

is a solution of (17). Note that

F0(x) =
∫ x

d

p′(y)µ((d, y])dy if x ≥ d and

F0(x) =
∫ d

x

p′(y)µ((y, d])dy if x < d,

so that

F0(x) =
∫

J

∫

J

(

1{d<z≤y≤x} + 1{x≤y<z≤d}
)

p′(y)dyµ(dz).

From this expression, we easily derive that, for ψ ∈ D(J ),
∫

J

F0(x)
d

dx

(

1

p′
dψ

dx

)

(x)dx =
∫

J

ψ(z)µ(dz),
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which proves that F0 solves (17). To complete the proof of the lemma, it suffices to prove that a

continuous function F satisfies the homogeneous equation

d

dx

(

1

p′
dF

dx

)

= 0 (18)

if and only if F = kp + l for some constants k and l. It is clear that functions of that form

satisfy (18). Conversely, suppose F satisfies (18). Note that we cannot directly state that F ′/p′

is constant, because the definition of the distribution F ′/p′ is not clear if p′ is not C∞. So, we

have to start from the fact that for all ψ ∈ D(J ),

∫

J

F(x)
d

dx

(

1

p′
dψ

dx

)

(x)dx = 0. (19)

Fix an open relatively compact subinterval J1 = (α1, β1) of J and a function u ∈ D(J ) such

that u = 1 on K = [α1, β1]. Since the second derivative of p in the sense of distributions is

locally integrable, we can construct a sequence (pn)n≥1 of C∞ functions on J such that (pn)

(resp. (p′
n)) converges uniformly to p (resp. p′) on K and limn→∞

∫

K
|p′′

n(x)− p′′(x)|dx = 0.

Now, given g ∈ D(J1), let ψn(x) = u(x)
∫ x

α1
p′

n(y)g(y)dy. We have ψn ∈ D(J ). Therefore,
∫

J
F(x) d

dx

(

1
p′

dψn

dx

)

(x)dx = 0. We have, using the fact that u = 1 in a neighborhood of the

support of g,

ψ ′
n(x) = u′(x)

∫ x

α1

p′
n(y)g(y)dy + u(x)p′

n(x)g(x)

= u′(x)
∫ x

α1

p′
n(y)g(y)dy + p′

n(x)g(x).

Note that, for x ≤ β1, u′(x)
∫ x

α1
p′

n(y)g(y)dy = 0, and, for x > β1, u′(x)
∫ x

α1
p′

n(y)g(y)dy =
u′(x)

∫

J
p′

n(y)g(y)dy. Hence, introducing a function ū ∈ D(J ) such that ū(x) = u′(x) for

x > β1 and ū(x) = 0 for x ≤ β1,

ψ ′
n(x) = ū(x)

∫

J

p′
n(y)g(y)dy + p′

n(x)g(x),

and

d

dx

(

ψ ′
n

p′

)

(x) = d

dx

(

ū

p′

)

(x)

∫

J

p′
n(y)g(y)dy

+ p′
n(x)

p′(x)
g′(x)+ p′′

n p′ − p′
n p′′

p′2 (x)g(x).

We deduce from
∫

J
F(x) d

dx

(

1
p′

dψn

dx

)

(x)dx = 0 that

k

∫

J

p′
n(y)g(y)dy +

∫

J

F(x)

(

p′
n(x)

p′(x)
g′(x)+ p′′

n p′ − p′
n p′′

p′2 (x)g(x)

)

(x)dx = 0,

where k =
∫

J
F(x) d

dx

(

ū
p′

)

(x)dx . By taking the limit as n → ∞, we derive, for all g ∈ D(J1),

k

∫

J

p′(y)g(y)dy +
∫

J

F(x)g′(x)dx = 0,
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which means that F ′ = kp′ (in the sense of distributions) on J1. Since J1 is an arbitrary relatively

compact open subinterval of the interval J , we have F ′ = kp′ on J , so that F−kp is constant. ⋄

Remark 7.3. Take J = I in Lemma 7.2 and suppose F solves (17). From the representation

of F , we easily deduce that the derivative of F is given by F ′(x) = p′M + kp′, so that the

second derivative of F in the sense of distributions is a Radon measure (which means that F is

the difference of two convex functions on I ). This measure is defined by

F ′′(da) = p′′(a)M(a)da + p′(a)µ(da)+ kp′′(a)da,

so that, using p′′ = −2(b/σ 2)p′, F ′′(da) = p′(a)µ(da)− 2(b/σ 2)(a)F ′(a)da. Given any weak

solution X of (1), we can apply the Itô–Tanaka formula and write

F(X t ) = F(X0)+
∫ t

0

F ′(Xs)σ (Xs)dWs +
∫ t

0

b(Xs)F
′(Xs)ds + 1

2

∫

L t
a F ′′(da).

Using the occupation times formula, we have

∫ t

0

b(Xs)F
′(Xs)ds =

∫

L t
a

b(a)

σ 2(a)
F ′(a)da,

where L is the local time of X . Therefore

F(X t ) = F(X0)+
∫ t

0

F ′(Xs)σ (Xs)dWs + 1

2

∫

L t
a

(

F ′′(da)+ 2
b(a)

σ 2(a)
F ′(a)da

)

= F(X0)+
∫ t

0

F ′(Xs)σ (Xs)dWs + 1

2

∫

L t
a p′(a)µ(da).

Proof of Theorem 7.1. We first regularize F with respect to time. Fix ε ∈ (0, T ) and

ρ ∈ D((0, ε)), with ρ ≥ 0 and
∫ ε

0 ρ(s)ds = 1. For t ∈ (ε, T ) and x ∈ I , let

Fρ(t, x) =
∫ T

0

ρ(t − s)F(s, x)ds.

Note that Fρ is continuous and bounded on (ε, T ) × I and its time derivative (given by

(∂Fρ/∂t)(t, x) =
∫ T

0 ρ′(t − s)F(s, x)ds) is also continuous and bounded on (ε, T ) × I . We

easily deduce from ρ ≥ 0 and ÃF ≤ 0 on (0, T )× I that ÃFρ ≤ 0 on (ε, T )× I . In particular,

if φ ∈ D+((ε, T )) and ψ ∈ D+(I ), we have

−
∫

dt

∫

m(dx)Fρ(t, x)φ′(t)ψ(x)+
∫

dt

∫

m(dx)Fρ(t, x)φ(t)Lψ(x) ≤ 0.

An integration by parts with respect to time gives

−
∫

dt

∫

m(dx)Fρ(t, x)φ′(t)ψ(x) =
∫

dt

∫

m(dx)
∂Fρ

∂t
(t, x)φ(t)ψ(x).

Using the continuity of Fρ and ∂Fρ/∂t , we deduce that for all t ∈ (0, T − ε) and for all

ψ ∈ D+(I ),
∫

m(dx)
∂Fρ

∂t
(t, x)ψ(x)+

∫

m(dx)Fρ(t, x)Lψ(x) ≤ 0,
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or, equivalently,

∫

m(dx)

(

∂Fρ

∂t
− r Fρ

)

(t, x)ψ(x)+
∫

dx Fρ(t, x)
d

dx

(

ψ ′

p′

)

(x) ≤ 0. (20)

This means that, for each t ∈ (0, T −ε), the distribution
(

∂Fρ

∂t
− r Fρ

)

(t, ·)dm+ d
dx

(

(d/dx)F(t,·)
p′

)

is a non-positive Radon measure on I . Using Lemma 7.2 and Remark 7.3, we have, for each

t ∈ (0, T − ε), and for s ≥ 0,

Fρ(t, Xs) = Fρ(t, X0)+
∫ s

0

∂Fρ

∂x
(t, Xθ )σ (Xθ )dWθ

+1

2

∫

Ls
a p′(a)

∂

∂x

(

(∂Fρ/∂x)

p′

)

(t, da).

It follows from (20) that
(

∂

∂x

(∂Fρ/∂x)

p′

)

(t, da) ≤ 2

σ 2(a)p′(a)

(

r(a)Fρ(t, a)− ∂Fρ

∂t
(t, a)

)

da.

Therefore, for any two s1, s2, with 0 ≤ s1 ≤ s2,

Fρ(t, Xs2)− Fρ(t, Xs1) ≤
∫ s2

s1

∂Fρ

∂x
(t, Xθ )σ (Xθ )dWθ

+
∫ s2

s1

(

r(Xs)F
ρ(t, Xs)− ∂Fρ

∂t
(t, Xs)

)

ds. (21)

Note that this inequality is valid for all t ∈ (0, T − ε). We are now in a position to prove that if

s ∈ (0, T − ε) and t ∈ [0, T − ε − s),

Ex

(

e−Λt F(s + t, X t )
)

≤ F(s, x). (22)

Denote by τ a stopping time such that the random variable
∫ τ

0 r(Xθ )dθ is bounded. We have, for

s ∈ (0, T − ε) and t ∈ [0, T − ε − s)

e−Λt∧τ Fρ(s + t ∧ τ, X t∧τ )− Fρ(s, X0) =
n
∑

i=1

Ui − Ui−1,

where Ui = e
−Λτn

i Fρ(s + τ n
i , Xτ n

i
) and τ n

i = τ ∧ (i t/n). Note that

Ui − Ui−1 = e
−Λτn

i Fρ(s + τ n
i , Xτ n

i
)− e

−Λτn
i−1 Fρ(s + τ n

i−1, Xτ n
i
)+ e

−Λτn
i−1 ∆i ,

where

∆i = Fρ(s + τ n
i−1, Xτ n

i
)− Fρ(s + τ n

i−1, Xτ n
i−1
).

Hence

Ui − Ui−1 =
∫ τ n

i

τ n
i−1

e−Λθ

(

∂Fρ

∂t
(s + θ, Xτ n

i
)− r(Xθ )F

ρ(s + θ, Xτ n
i
)

)

dθ + e
−Λτn

i−1 ∆i .
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It follows from (21) (applied with t = s + τ n
i−1, s1 = τ n

i−1, and s2 = τ n
i ), that

∆i ≤
∫ τ n

i

τ n
i−1

∂Fρ

∂x
(s + τ n

i−1, Xθ )σ (Xθ )dWθ

+
∫ τ n

i

τ n
i−1

(

r(Xθ )F
ρ(s + τ n

i−1, Xθ )− ∂Fρ

∂t
(s + τ n

i−1, Xθ )

)

dθ.

Using the fact that Fρ , ∂Fρ

∂t
and the random variable

∫ τ

0 r(Xθ )dθ are bounded, we easily derive

from this inequality that

E

(

∆i | Fτ n
i−1

)

≤ E

(

∫ τ n
i

τ n
i−1

(

r(Xθ )F
ρ(s + τ n

i−1, Xθ )− ∂Fρ

∂t
(s + τ n

i−1, Xθ )

)

dθ | Fτ n
i−1

)

.

Introduce the function G : [0, T − ε)× I × I → R defined by

G(θ, x, y) = ∂Fρ

∂t
(θ, x)− r(y)Fρ(θ, x).

We now have, by conditioning with respect to Fτ n
i−1

,

Ex (Ui − Ui−1) = Ex

(

∫ τ n
i

τ n
i−1

e−Λθ G(s + θ, Xτ n
i
, Xθ )dθ

)

+ Ex

(

e
−Λτn

i−1 ∆i

)

≤ Ex

(

∫ τ n
i

τ n
i−1

e−Λθ G(s + θ, Xτ n
i
, Xθ )dθ

)

− Ex

(

e
−Λτn

i−1

∫ τ n
i

τ n
i−1

G(s + τ n
i−1, Xθ , Xθ )dθ

)

= Ex

(

∫ τ n
i

τ n
i−1

(

e−Λθ G(s + θ, Xτ n
i
, Xθ )− e

−Λτn
i−1 G(s + τ n

i−1, Xθ , Xθ )
)

dθ

)

.

It follows that

Ex

(

e−Λt∧τ Fρ(s + t ∧ τ, X t∧τ )− Fρ(s, X0)
)

≤ Ex

(

n
∑

i=1

∫ τ n
i

τ n
i−1

(

e−Λθ G(s + θ, Xτ n
i
, Xθ )− e

−Λτn
i−1 G(s + τ n

i−1, Xθ , Xθ )
)

dθ

)

.

Due to the continuity of Fρ , ∂Fρ/∂t and to the boundedness of the random variable
∫ τ

0 r(Xθ )dθ ,

the right-hand side clearly goes to 0 as n → ∞. Hence

Ex

(

e−Λt∧τ Fρ(s + t ∧ τ, X t∧τ )
)

≤ F(s, x).

Since this is true for any stopping time such that
∫ τ

0 r(Xθ )dθ is bounded and r is locally

bounded, we get (22). By taking a sequence (ε j ) j≥1 of positive numbers such that lim j→∞ ε j

and ρ j ∈ D+((0, ε j )) such that
∫ ε j

0 ρ j (s)ds = 1, we have

Ex

(

e−Λt∧τ Fρ j (s + t ∧ τ, X t∧τ )
)

≤ Fρ j (s, x)

and lim j→∞ Fρ j = F on (0, T ) × I and we obtain, in the limit as j → ∞, the inequality of

Theorem 7.1 for s ∈ (0, T ), t ∈ (0, T − s), and also for s ∈ [0, T ) by continuity. ⋄
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Theorem 7.4. Suppose F : [0, T ) × I → R is bounded and continuous and satisfies ÃF = 0

on an open subset U of (0, T ) × I . Then, for all (t, x) ∈ U and for any stopping time θ with

values in [0, T − t), we have

Ex

(

e
−Λ

θ∧τ t
U F(t + θ ∧ τ t

U , Xθ∧τ t
U
)
)

= F(t, x),

where τ t
U = inf{s ≥ 0 | (t + s, Xs) 6∈ U }.

Proof. We introduce a distance d on [0, T ] × R by setting d(ξ1, ξ2) = max{|t1 − t2|, |x1 − x2|},
where ξi = (ti , xi ). For ε > 0, define

Uε = {ξ ∈ U | d(ξ,U c) > ε}.

We assume ε small enough so that Uε 6= ∅. Now, given ρ ∈ D+((0, ε)), with
∫ ε

0 ρ(s)ds = 1, we

denote by Fρ the function defined on Uε by

Fρ(t, x) =
∫ T

0

F(t − s, x)ρ(s)ds, (t, x) ∈ Uε.

Note that the function Fρ is bounded and continuous on Uε and that its time derivative ∂Fρ/∂t

is also bounded and continuous on Uε. It is easy to check that ÃFρ = 0 in Uε.

Fix (t0, x0) ∈ Uε and δ > 0 such that (t0 − δ, t0 + δ) × (x0 − δ, x0 + δ) ⊂ Uε. We will use

the notation Vδ = (t0 − δ, t0 + δ) × (x0 − δ, x0 + δ). We have, for all ϕ ∈ D((t0 − δ, t0 + δ)),

ψ ∈ D((x0 − δ, x0 + δ)),

−
∫

dt

∫

m(dx)Fρ(t, x)ϕ′(t)ψ(x)+
∫

dt

∫

m(dx)Fρ(t, x)Lψ(x) = 0.

This implies (as in the proof of Theorem 7.1) that, for all t ∈ (t0 − δ, t0 + δ) and for all

ψ ∈ D((x0 − δ, x0 + δ))
∫

Fρ(t, x)
d

dx

(

ψ ′

p′

)

+
∫ (

2

σ 2 p′ (x)
∂Fρ

∂t
(t, x)− 2r

σ 2 p′ (x)F
ρ(t, x)

)

ψ(x)dx = 0.

This means that, for each t ∈ (t0 − δ, t0 + δ), Fρ(t, ·) solves the equation

d

dx

(

∂Fρ/∂x

p′

)

= j (t, ·),

on the interval (x0 − δ, x0 + δ), where

j (t, x) = 2r

σ 2 p′ (x)F
ρ(t, x)− 2

σ 2 p′ (x)
∂Fρ

∂t
(t, x).

Using Lemma 7.2, we have

Fρ(t, x) =
∫ x

x0

p′(y)M(t, y)dy + k(t)p(x)+ l(t),

where M(t, y) =
∫ y

x0
j (t, z)dz. We deduce from the continuity of Fρ and ∂Fρ/∂t that M is

jointly continuous, so that t 7→ k(t) and t 7→ l(t) must be continuous. We also have, for

(t, x) ∈ Vδ ,

∂Fρ

∂x
(t, x) = p′(x)M(t, x)+ k(t)p′(x),
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and

∂2 Fρ

∂x2
(t, x) = 2r

σ 2
(x)Fρ(t, x)− 2b

σ 2
(x)

∂Fρ

∂x
(t, x)− 2

σ 2
(x)

∂Fρ

∂t
(t, x)

dx-almost everywhere. Note that, on Vδ , we have LFρ = 0 and

∂2 Fρ

∂x2
(t, x) =

3
∑

i=1

ϕi (x)Φi (t, x), (23)

where Φi is continuous on Vδ and ϕi is locally integrable on I .
Now, let V be a relatively compact open subset of Uε. One can find a finite number of points

(t j , x j ) and positive numbers δ j , j = 1, . . . , N , such that V̄ ⊂
⋃N

j=1 V j ⊂ Uε, where V̄ is the

closure of V and V j = (t j − δ j , t j + δ j ) × (x j − δ j , x j + δ j ). Now, let (α j ) be a partition of

unity associated with the V j ’s, that is a sequence of functions α j ∈ D(V j ), with 0 ≤ α j ≤ 1 and
∑N

j=1 α j = 1 on V̄ . Let

F̃ρ(t, x) =
N
∑

j=1

α j (t, x)Fρ(t, x), (t, x) ∈ (0, T )× I.

We have Fρ = F̃ρ on V̄ . On the other hand, since Fρ is C1 on each V j , with a second derivative

with respect to x of the form (23), with Φi continuous on V j and ϕi locally integrable on I , we

have F̃ρ ∈ W([ε, T − ε] × I ) (see the beginning of Section 5 for the definition of the space W).

We can apply Proposition 5.2 and write, for ε < t < T − ε, s ∈ [0, T − t − ε),

e−Λs F̃ρ(t + s, Xs) = F̃ρ(t, X0)+
∫ s

0

e−Λa
∂ F̃ρ

∂x
(t + a, Xa)σ (Xa)dWa

+
∫ s

0

e−Λa

(

∂ F̃ρ

∂t
+ LF̃ρ

)

(t + a, Xa)da.

Now, let τ t
V = inf{s ≥ 0 | (t + s, Xs) 6∈ V }. Observe that, since (∂ F̃ρ/∂t)+LF̃ρ = 0 on V , we

have

e
−Λ

s∧τ t
V F̃ρ(t + s ∧ τ t

V , Xs∧τ t
V
) = F̃ρ(t, X0)+

∫ s∧τ t
V

0

e−Λa
∂ F̃ρ

∂x
(t + a, Xa)σ (Xa)dWa,

so that, for any stopping time θ with values in [0, T − t − ε), we have

Ex

(

e
−Λ

θ∧τ t
V Fρ(t + θ ∧ τ t

V , Xθ∧τ t
V
)
)

= Fρ(t, x).

Since V is an arbitrary relatively compact open subset of Uε, we can replace V by Uε in the above

equality, and by taking the limit as ε goes to 0, the proof of Theorem 7.1 is easily completed. ⋄
We can now prove the following verification theorem, from which uniqueness in Theorem 2.6

follows easily.

Theorem 7.5. Let f be a bounded Borel-measurable function on I and f̂ its upper semi-

continuous envelope. Let T > 0. Suppose F : [0, T ) × I → R is a continuous and bounded

function satisfying the following conditions:

1. On (0, T )× I , we have F ≥ f and the distribution ÃF satisfies ÃF ≤ 0.
2. On the open set U = {(t, x) ∈ (0, T )× I | F(t, x) > f̂ (x)}, we have ÃF = 0.
3. For all x ∈ I , limt↑T F(t, x) = f̂ (x).
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Then we have

∀(t, x) ∈ [0, T )× I, F(t, x) = u f (T − t, x).

Lemma 7.6. Under the assumptions of Theorem 7.5, we have, for s ∈ [0, T ) and x ∈ I ,

limt→T −s Ex

∣

∣

∣
F(s + t, X t )− f̂ (XT )

∣

∣

∣
= 0.

Proof. We prove the result for s = 0 (the argument is the same for s > 0). We have

Ex

∣

∣

∣
F(t, X t )− f̂ (XT )

∣

∣

∣
≤ Ex

∣

∣

∣
F(t, X t )− f̂ (X t )

∣

∣

∣
+ Ex

∣

∣

∣
f̂ (X t )− f̂ (XT )

∣

∣

∣
.

As we have seen in the proof of Proposition 3.1 (cf. (7)), limt →T
Ex

∣

∣

∣
f̂ (X t )− f̂ (XT )

∣

∣

∣
= 0. On

the other hand, if K is a compact subinterval of I , we have

Ex

∣

∣

∣
F(t, X t )− f̂ (X t )

∣

∣

∣

≤ Ex 1{X t 6∈K }
∣

∣

∣
F(t, X t )− f̂ (X t )

∣

∣

∣
+ Ex 1{X t ∈K }

∣

∣

∣
F(t, X t )− f̂ (X t )

∣

∣

∣
.

Using Corollary 8.13 and the boundedness of F and f , we have, for some Cx > 0,

Ex 1{X t ∈K }
∣

∣

∣
F(t, X t )− f̂ (X t )

∣

∣

∣
≤ Cx

(

1 + 1√
t

)

‖1K (F(t, ·)− f̂ )‖L2(m).

Since limt→T F(t, y) = f̂ (y) for all y ∈ I , we have, by dominated convergence,

lim
t→T

‖1K (F(t, ·)− f̂ )‖L2(m) = 0.

Moreover

Ex 1{X t 6∈K }
∣

∣

∣
F(t, X t )− f̂ (X t )

∣

∣

∣
≤ CPx ({∃s ∈ [0, T ] | Xs 6∈ K }),

with C = ‖F‖∞ + ‖ f ‖∞. Therefore

lim sup
t→T

Ex

∣

∣

∣
F(t, X t )− f̂ (XT )

∣

∣

∣
≤ CPx ({∃s ∈ [0, T ] | Xs 6∈ K }).

The right-hand side can be made arbitrarily small by choosing K large enough. ⋄
Proof of Theorem 7.5. According to Theorem 7.1, the condition ÃF ≤ 0 implies

∀s ∈ [0, T ),∀t ∈ [0, T − s), Ex

(

e−Λt F(s + t, X t )
)

≤ F(s, x).

We easily deduce from this estimate, combined with the Markov property, that, given s0 ∈ [0, T ),

the process (Vt )0≤t<T −s0 , defined by Vt = e−Λt F(s0 + t, X t ) is a (bounded) supermartingale.

Therefore, for all τ ∈ T 0
T −s0

, Ex

(

e−Λτ F(s0 + τ, Xτ )
)

≤ F(s0, x), and, since F ≥ f ,

Ex

(

e−Λτ f (Xτ )
)

≤ F(s0, x). Hence

u f (T − s0, x) ≤ F(s0, x).

Now define the stopping time

τ = inf{t ≥ 0 | (s0 + t, X t ) 6∈ U } = inf{t ≥ 0 | F(s0 + t, X t ) = f̂ (X t )},
with the convention inf ∅ = T −s0. Since ÃF = 0 in U , we deduce from Theorem 7.4 that, for all

ε > 0, we have (with the notation Tε = T − s0 − ε), Ex

(

e−Λτ∧Tε F(s0 + τ, Xτ∧Tε )
)

= F(s0, x),

so that Ex

(

Vτ∧Tε

)

= F(s0, x).
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Note that, since (Vt )0≤t<T −s0 is a bounded supermartingale, the limit limt→T −s0 Vt exists

almost surely, and we deduce from Lemma 7.6 that limt→T −s0 Vt = e−ΛT f̂ (XT ). Hence

limε→0 Vτ∧Tε = e−Λτ f̂ (Xτ ) a.s. and, by dominated convergence, Ex

(

e−Λτ f̂ (Xτ )
)

= F(s0, x).

Hence F(s0, x) ≤ v
f̂
(T − s0, x) = u f (T − s0, x). ⋄

8. Auxiliary results

8.1. Resolvent and semi-group

Proposition 8.1. Let h : I → R be a bounded Borel-measurable function on I and ρ a positive

number. Denote by Uρh the unique bounded solution of the ordinary differential equation

1

2
σ 2(x)u′′(x)+ b(x)u′(x)− ρu(x)+ h(x) = 0. (24)

For any weak solution (Ω ,F, (Ft )t≥0,Px ,W, X) of (1), we have, for all t ≥ 0,

Uρh(X t ) = E

(∫ +∞

0

e−ρsh(X t+s)ds | Ft

)

a.s.

Proof. By a solution of (24), we mean a continuously differentiable function u, with an

absolutely continuous derivative u′, such that (24) holds dx almost everywhere. We refer to [8]

for the existence and uniqueness of a bounded solution of (24). If u is this solution, we have,

using the generalized Itô formula,

e−ρt u(X t ) = u(X0)+
∫ t

0

e−ρsu′(Xs)σ (Xs)dWs −
∫ t

0

e−ρsh(Xs)ds.

Since u and h are bounded, the stochastic integral on the right-hand side of this equality is a true

martingale, so that, for 0 ≤ t < t ′, we have

e−ρt u(X t ) = E

(

∫ t ′

t

e−ρsh(Xs)ds | Ft

)

+ E

(

e−ρt ′u(X t ′) | Ft

)

.

By letting t ′ go to infinity, we derive

u(X t ) = E

(∫ +∞

t

e−ρ(s−t)h(Xs)ds | Ft

)

= E

(∫ +∞

0

e−ρsh(X t+s)ds | Ft

)

a.s. ⋄

We now define, for a Borel-measurable and bounded f : I → R,

Pt f (x) = Ex f (X t ),

where X is a weak solution of (1). The following proposition relates Pt to the operators Uρ ,

ρ > 0.

Proposition 8.2. For ρ > 0, let Vρ = ρUρ , where the operator Uρ is defined in Proposition 8.1.

For t > 0 and for any bounded and continuous function f : I → R, we have

∀x ∈ I, Pt f (x) = lim
n→+∞

(

Vn/t

)n
f (x).
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Moreover, for any weak solution (Ω ,F, (Ft )t≥0,P,W, X) of (1), we have, for t, t ′ > 0,

Pt f (X t ′) = E
(

f (X t+t ′) | Ft ′
)

a.s. (25)

Proof. We first observe that if ρ1,. . . , ρn are n positive numbers, we have

Uρ1 . . .Uρn f (X t ) =
∫

R
n
+

ds1 . . . dsne−(ρ1s1+···+ρnsn)E
(

f (X t+s1+···+sn ) | Ft

)

a.s.,

as follows from Proposition 8.1 and a straightforward induction. We deduce thereof that, for

t, t ′ > 0,

(

Vn/t

)n
f (X t ′) =

∫

R
n
+

e−t1/t dt1

t
. . . e−tn/t dtn

t
E

(

f
(

X
t ′+ t1+···+tn

n

)

| Ft ′
)

. (26)

Take t ′ = 0, so that
(

Vn/t

)n
f (x) = EPT1+···Tn

n

f (x), where T1, . . . , Tn are independent

exponential variables with mean t , and note that, if f is continuous, t 7→ Pt f (x) is continuous.

Therefore, by the law of large numbers limn→∞
(

Vn/t

)n
f (x) = Pt f (x). Going back to (26),

and taking limits as n goes to infinity, we get (25). ⋄

Remark 8.3. By taking expectations in (25), we have the semi-group property: Pt+t ′ f =
Pt ′ Pt f , for f bounded and continuous, and, by a monotone class argument, for f bounded

and Borel-measurable.

Remark 8.4. By a monotone class argument, (25) can be extended to all Borel-measurable and

bounded functions f . We also deduce from this property that for any Borel subset A of the space

of all continuous functions on I , we have P(X ∈ A | Ft ) = P(X ∈ A | F X
t ) a.s., where F X

t

is the σ -algebra generated by the random variables Xs , 0 ≤ s ≤ t . Since the filtration (Ft )t≥0

satisfies the usual conditions, it follows that the completion of the filtration (F X
t )t≥0 is right-

continuous, so that F X
t and F0

t coincide, up to negligible events. As a consequence, we have the

zero–one law: Px (A) ∈ {0, 1} for all A ∈ F0
0 .

8.2. Randomized stopping times

Definition 8.5. Let (Ω ,F, (Ft )t≥0,P) be a filtered probability space. A randomized (Ft )-

stopping time is a mapping T : Ω × [0, 1] → [0,+∞], which is a stopping time on the filtered

probability space (Ω × [0, 1],F ⊗ B, (Ft ⊗ B)t≥0,P ⊗ λ), where B is the Borel σ -algebra on

[0, 1], and λ is the Lebesgue measure on [0, 1].

Proposition 8.6. Let (Ω ,F, (Ft )t≥0,Px ,W, X) be a weak solution of (1). Denote by (F̄0
t )t≥0

the completion of the natural filtration of X. For any (Ft )-stopping time T , there exists a

randomized (F̄0
t )-stopping time T̂ , such that the pairs (T, X) and (T̂ , X̂) have identical laws,

where X̂ is the process defined on Ω × [0, 1] by X̂ t (ω, u) = X t (ω).

Proof. This is a classical result. A proof can be found in [1]. Since this reference is not easily

accessible, we sketch the proof. First, note that, for t ≥ 0, the event {T ≤ t} is conditionally

independent of F X
∞, given F X

t (where F X
∞ is the σ -algebra generated by all the random variables

X t , t ≥ 0). Indeed, if A is a Borel-measurable subset of C(R+; I ), we have, with probability one,

E

(

1{T ≤t}1{X∈A} | F X
t

)

= E

(

1{T ≤t} | F X
t

)

E

(

1{X∈A} | F X
t

)

,

as can be seen using P(X ∈ A | Ft ) = P(X ∈ A | F X
t ) (cf. Remark 8.4).
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Now, if 0 ≤ s ≤ t , we have

E

(

E

(

1{T ≤t}|F X
t

)

| F X
s

)

≥ E

(

E

(

1{T ≤s}|F X
t

)

| F X
s

)

= E

(

1{T ≤s} | F X
s

)

.

This proves that the process
[

E
(

1{T ≤t}|F X
t

)]

t≥0
is a submartingale with respect to the fil-

tration (F̄0
t )t≥0. Since its expectation (equal to P(T ≤ t)) is a right-continuous function of

t , this process has a right-continuous modification, which we denote by At . The process A

is in fact non-decreasing. Indeed, we have At = E
(

1{T ≤t}|F X
t

)

≥ E
(

1{T ≤s}|F X
t

)

a.s., and

E
(

1{T ≤s}|F X
t

)

= E
(

1{T ≤s}|F X
s

)

a.s., because {T ≤ s} is conditionally independent of F X
t

given F X
s . Now, define, for (ω, u) ∈ Ω̂ = Ω × [0, 1], T̂ (ω, u) = inf{t ≥ 0|At (ω) ≥ u}

and U (ω, u) = u. Note that we can embed the space Ω into Ω̂ , and that the random variable

U is independent of F , when (Ω̂ ,F ⊗ B) is endowed with the probability P ⊗ λ. We have

{T̂ ≤ t} = {At ≥ U } ∈ F̄0
t ⊗ B and E

(

1{T̂ ≤t} | F̄0
t

)

= At , because U is independent of F̄0
t .

Hence, for t ≥ 0 and for any Borel-measurable subset B of C(R+; I ),

E

(

1{T̂ ≤t}1{X̂∈B}

)

= E
(

At 1{X∈B}
)

= E

(

E

(

1{T ≤t}1{X∈B}|F X
t

))

= E
(

1{T ≤t}1{X∈B}
)

,

where we have used the fact that {T ≤ t} and X are conditionally independent given F X
t . ⋄

Remark 8.7. Let (Ω ,F, (Ft )t≥0,P,W, X) be a weak solution of (1) and let T be an (Ft )-

stopping time, and T̂ be a randomized (F̄0
t )-stopping time as in Proposition 8.6. For a fixed

u ∈ [0, 1], let Tu = T̂ (·, u). Clearly, Tu is an (F̄0
t )-stopping time and, therefore is almost surely

equal to an (F0
t )-stopping time. Moreover, if T takes on values in [0, t] (resp. [0, t)), the same

is true for Tu with probability 1. It follows that, for any Borel-measurable and bounded function

f : I → R, we have Ex ( f (XTu )) ≤ u f (t, x) (resp. Ex ( f (XTu )) ≤ v f (t, x)) if T ∈ Tt (resp. T ∈
T̄t ). Since Ex f (XT ) =

∫ 1
0 Ex ( f (XTu ))du, we conclude that supT ∈Tt

Ex ( f (XT )) ≤ u f (t, x) and

supT ∈T̄t
Ex ( f (XT )) ≤ v f (t, x).

8.3. Symmetry with respect to the speed measure

Proposition 8.8. Let g, h : I → R be bounded Borel-measurable, which vanish in the

complement of a compact subset of I . We have, for all ρ > 0,

∫ β

α

g(x)Uρh(x)m(dx) =
∫ β

α

h(x)Uρg(x)m(dx).

Proof. It is well known (cf. [8]) that the ordinary differential equation 1
2σ

2(x)u′′(x) +
b(x)u′(x) − ρu(x) = 0 admits two fundamental positive solutions φρ and ψρ , with φρ strictly

decreasing and ψρ strictly increasing and that, with a suitable normalization of φρ and ψρ , Uρh

can be represented as follows:

Uρh(x) = φρ(x)

∫ x

α

ψρ(y)h(y)m(dy)+ ψρ(x)

∫ β

x

φρ(y)h(y)m(dy), x ∈ I.
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An equivalent formulation of this representation is

Uρh(x) =
∫ β

α

h(y)uρ(x, y)m(dy), where uρ(x, y) =
{

φρ(x)ψρ(y), if x ≥ y,

φρ(y)ψρ(x), if x < y.

Note that uρ is continuous and positive on I × I , and that uρ(x, y) = uρ(y, x). The proposition

follows easily from this symmetry property. ⋄

Proposition 8.9. For t > 0, the operator Pt can be extended as an operator mapping L2(m)

into itself and we have, for f, g ∈ L2(m),

〈Pt f, g〉L2(m) = 〈 f, Pt g〉L2(m),

where 〈·, ·〉L2(m) denotes the inner product on the Hilbert space L2(m).

This can be deduced from Proposition 8.8 by standard arguments. We omit the proof.

8.4. Regularity estimates

Proposition 8.10. We have the following estimate, for h non-negative, bounded and square

integrable with respect to the speed measure, and for all ρ > 0.

∫ β

α

(

d

dx
(Uρh)(x)

)2 dx

p′(x)
≤ 〈h,Uρh〉L2(m) − ρ‖Uρh‖2

L2(m)
.

Proof. Fix ρ > 0 and, for simpler notation, set u = Uρh. The differential equation satisfied by

u can be rewritten as follows

d

dx

(

u′

p′

)

− ρu
2

σ 2 p′ + h
2

σ 2 p′ = 0.

Multiplying by u and integrating from a1 to b1, where α < a1 < b1 < β, we get
∫ b1

a1

d

dx

(

u′

p′

)

(x)u(x)dx =
∫ b1

a1

(

ρu2(x)− h(x)u(x)
)

m(dx).

By integration by parts, we have
∫ b1

a1

d

dx

(

u′

p′

)

(x)u(x)dx = u′(b1)u(b1)

p′(b1)
− u′(a1)u(a1)

p′(a1)
−
∫ b1

a1

(u′(x))2

p′(x)
dx .

Hence
∫ b1

a1

(u′(x))2
dx

p′(x)
=
∫ b1

a1

(hu − ρu2)dm + u′(b1)u(b1)

p′(b1)
− u′(a1)u(a1)

p′(a1)
.

We know that we can write, for x ∈ I ,

u(x) = φ(x)

∫ x

α

h(y)ψ(y)m(dy)+ ψ(x)

∫ β

x

h(y)φ(y)m(dy),

where φ is positive and strictly decreasing and ψ is positive and strictly increasing. Now assume

that h is null outside a subinterval [α0, β0], with α < α0 < β0 < β. Then we have, for a1 < α0,

u(a1) = ψ(a1)

∫ β0

α0

h(y)φ(y)m(dy) and u′(a1) = ψ ′(a1)

∫ β0

α0

h(y)φ(y)m(dy),
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so that u(a1) ≥ 0 and u′(a1) ≥ 0, and, by a similar argument, for b1 > β0, u(b1) ≥ 0 and

u′(b1) ≤ 0. Hence
∫ b1

a1
(u′(x))2 dx

p′(x) ≤
∫ b1

a1
(hu − ρu2)dm. Note that, with our assumptions on h,

we have h ∈ L2(m) and u ∈ L2(m) and, by making a1 → α and b1 → β, we obtain
∫ β

α

(u′(x))2
dx

p′(x)
≤
∫ β

α

(hu − ρu2)dm.

We have assumed that h was null outside a subinterval [α0, β0]. For an arbitrary bounded, Borel-

measurable and non-negative h, we can approximate h by an increasing sequence of functions

hn which have compact supports, and extend the inequality by approximation. ⋄

From the estimate for the resolvent given by Proposition 8.10, we can derive the following

estimate for the semi-group Pt (where Pt f (x) = Ex f (X t )). This estimate seems to follow from

a formal integration by parts (see Remark 8.12), but, for a complete justification, we found it

easier to deduce it from Proposition 8.10.

Theorem 8.11. If h is non-negative, square integrable with respect to the speed measure, the

function x 7→ Pt h(x) is absolutely continuous on (α, β) and its derivative satisfies

∫ β

α

(

d

dx
(Pt h)(x)

)2 2dx

p′(x)
≤ 1

t
‖h‖2

L2(m)
. (27)

Proof. We first observe that the set L2
+(m) of all non-negative functions in L2(m) is stable under

Uρ . By iterating the estimate of Proposition 8.10, we get, for h ∈ L2
+(m) and for any positive

integer n,
∫ β

α

(

d
dx

U n
ρ h(x)

)2
dx

p′(x) ≤ 〈U n−1
ρ h − ρU n

ρ h,U n
ρ h〉L2(m). In terms of the operator

Vρ = ρUρ , we obtain

∫ β

α

(

d

dx
V n
ρ h(x)

)2 dx

p′(x)
≤ ρ〈V n−1

ρ h − V n
ρ h, V n

ρ h〉L2(m). (28)

We deduce from Remark 8.3 and Proposition 8.9 that the family of operators (Pt )t≥0 defines

a strongly continuous and symmetric semi-group on the space L2(m). Therefore, it admits

a spectral representation Pt =
∫

[0,+∞)
e−tλdEλ, and the operator Vρ can be represented as

Vρ =
∫

[0,+∞)
ρ
ρ+λdEλ. With this representation, we have

ρ〈V n−1
ρ h − V n

ρ h, V n
ρ h〉L2(m) = ρ〈h − Vρh, V 2n−1

ρ h〉L2(m)

=
∫

[0,+∞)

λρ

ρ + λ

(

ρ

ρ + λ

)2n−1

〈dEλh, h〉L2(m).

Now, take ρ = n/t . We then have λρ
ρ+λ

(

ρ
ρ+λ

)2n−1
≤ 1

t
n

2n−1 . Hence n
t
〈h − Vn/t h, V 2n−1

n/t h〉L2(m)

≤ 1
t

n
2n−1‖h‖2

L2(m)
, and, going back to (28),

lim sup
n→∞

∫ β

α

(

d

dx
V n

n/t h(x)

)2 2dx

p′(x)
≤ 1

t
‖h‖2

L2(m)
. (29)

Now, fix t > 0 and assume h is continuous and bounded. For n ≥ 1, Let vn = V n
n/t h. We

know that vn is continuously differentiable on I and that, for x ∈ I , limn→∞ vn(x) = Pt h(x)
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(cf. Proposition 8.2). It follows from (29) that the sequence (v′
n)n≥1 is bounded in L2(dx/p′).

Therefore, Pt h must be absolutely continuous and its derivative satisfies (27). We have proved

(27) for h continuous and bounded. The extension to h ∈ L2
+(m) follows from a straightforward

approximation argument. ⋄

Remark 8.12. Using the expression L0u = σ 2 p′
2

d
dx

(

1
p′

du
dx

)

for the generator of the semi-group,

we have 〈L0u, u〉L2(m) =
∫ β

α
d

dx

(

1
p′

du
dx

)

udx , so that, at least for a function u with compact

support,
∫ β

α
1
p′

(

du
dx

)2
dx = −〈L0u, u〉L2(m). By applying this with u = Pt h, we would be

able to deduce (27) from the classical estimate ‖L0 Pt h‖L2(m) ≤ (C/t)‖h‖L2(m). However, the

justification of the integration by parts in the case u = Pt h does not seem completely obvious.

Corollary 8.13. If h : I → R is non-negative and square integrable with respect to the speed

measure, we have, for α < α0 < β0 < β, x ∈ [α0, β0] and t > 0,

Pt h(x) ≤ ‖h‖L2(m)

(

1√
m([α0, β0])

+
√

p(β0)− p(α0)√
t

)

.

Proof. Set g = 1
m([α0,β0])1[α0,β0]. Since

∫

gdm = 1, we have, for x ∈ [α0, β0],

Pt h(x) =
∫

Pt h(y)g(y)m(dy)+
∫

(Pt h(x)− Pt h(y)) g(y)m(dy)

=
∫

h(y)Pt g(y)m(dy)+
∫ β0

α0

(∫ x

y

P ′
t h(z)dz

)

g(y)m(dy)

≤ ‖h‖L2(m)‖g‖L2(m) +
∫ β0

α0

∣

∣P ′
t h(z)

∣

∣ dz,

where we have used the symmetry of Pt with respect to m and the notation P ′
t h for d

dx
(Pt h).

By writing P ′
t h as the product (P ′

t h/
√

p′) ×
√

p′, using the Cauchy–Schwarz inequality and

Theorem 8.11, we easily conclude. ⋄
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[11] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 2nd edition, Springer-Verlag, 1994.


