
HAL Id: hal-00796646
https://hal.science/hal-00796646v1

Submitted on 7 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward an Optimal Fixed-Priority Algorithm for
Energy-Harvesting Real-Time Systems

Yasmina Abdeddaïm, Younès Chandarli, Damien Masson

To cite this version:
Yasmina Abdeddaïm, Younès Chandarli, Damien Masson. Toward an Optimal Fixed-Priority Algo-
rithm for Energy-Harvesting Real-Time Systems. RTAS 2013 WiP, Apr 2013, United States. pp.45–48.
�hal-00796646�

https://hal.science/hal-00796646v1
https://hal.archives-ouvertes.fr

Toward an Optimal Fixed-Priority Algorithm

for Energy-Harvesting Real-Time Systems

Yasmina Abdeddaïm1, Younès Chandarli1,2, and Damien Masson1

Université Paris-Est, LIGM UMR CNRS 8049,

1ESIEE Paris, 2 bld Blaise Pascal, BP 99,

93162 Noisy-le-Grand CEDEX, France

2Université Paris-Est Marne-la-vallée, 5 bld Descartes,

77454 Marne-la-Vallée Cedex 2, France

March 7, 2013

Abstract

This paper addresses the real-time �xed-priority scheduling problem

for battery-powered embedded systems whose energy storage unit is re-

plenished by an environmental energy source. In this context, a schedul-

ing policy should account for incoming energy, capacity of the battery

and tasks cost of energy. Thus, classical �xed-priority schedulers are no

longer suitable for this model. Some algorithms were proposed in prece-

dent works to solve this problem, however, none of them has been proved

optimal for concrete tasksets1. Based on this motivation, we propose

FPCASAP a scheduling algorithm that handles both energy and timing

constraints by predicting future possible failure. Such kind of algorithm

is said to be clairvoyant. We expect this algorithm to be optimal.

1 Introduction and Related work

In this paper, we investigate a real-time system model for embedded systems
that collect and store energy from their environment. Such systems are com-
posed, in addition to classical embedded system components, by an energy har-
vester unit (e.g. a solar panel) and an energy storage unit (e.g. a battery). These
harvesting embedded systems are more and more present in our lives: sensor
networks in structures such as bridges that collects vibration energy, medical
implants that collect energy from the human body, mobile or �x devices with

1a concrete taskset is a set of real-time tasks whose o�sets are known o�-line

1

solar panel or windmill etc. Despite of their energy supply particularity, some
of these systems need to satisfy strict timing constraints. Therefore, it is impor-
tant to consider both the time and the energy costs of tasks for the scheduling
operations, since both the energy and the CPU times resources of the system
have to be shared by the tasks.

The �rst work addressing the scheduling problem of energy harvesting sys-
tems was presented by Mossé in [1]. The problem was solved under a very
restrictive task model: the frame-based model where all the tasks have exactly
the same period and the same deadline. Later in [2], Moser et al. proposed an
optimal algorithm called LSA (Lazy Scheduling algorithm) for periodic and ape-
riodic tasks. However, in their hypotheses, the CPU frequency can be changed
to adjust the Worst Case Execution Time (WCET) of the tasks depending on
their energy consumption. Thus, the results of this work rely on the assumption
that tasks energy consumption is directly linked to their WCET. A recent work
shows that this hypothesis is not suitable for embedded systems [3].

Later, a clairvoyant algorithm called EDeg has been proposed in [4, 5]. The
authors expect that this algorithm may be optimal but as far as we know this
property has not been proved. The algorithm EDeg relies on a generalizable
meta policy: as long as the system can perform without energy failure, a stan-
dard policy such as EDF is used. Then, as soon as future energy failures is
detected, the system is suspended as long as timing constraints are met or until
the energy storage unit is full. To detect such future energy failure, the notion
of slack time [6] was extended to the notion of slack energy. Another approach
based on model checking for dealing with this problem has been proposed in [7].

Recently, in a paper under review process [8], we proposed PFPASAP , a
�xed-priority algorithm that schedules jobs as soon as possible and we proved
its optimality for non concrete tasksets.

The aim of this paper is to study the possibility of extending the optimality
of PFPASAP algorithm to concrete tasks by introducing clairvoyance.

The remaining part of the paper is organized as follow. We present the model
in Section 2. In Section 3, we explain why we need a clairvoyant algorithm, then,
we propose a new algorithm that we call FPCASAP . Finally, we discuss future
work and we conclude in Section 4.

2 Model

2.1 Taskset Model

We consider a concrete real-time taskset in a renewable energy environment
de�ned by a set of n periodic and independent tasks {τ1, τ2, . . . , τn}. Each
task τi is characterized by its priority Pi, its worst case execution time Ci, its
period Ti, its deadline Di, its o�set Oi and its worst case energy consumption
Ei. The execution time Ci and the energy consumption Ei of a task are fully
independent. A task τi releases an in�nite number of jobs which are separated
by Ti time units, its jth job is denoted Ji,j and must execute during Ci time

2

units and consume Ei energy units. All the tasks consume energy linearly,
i.e. a constant amount of energy for each execution time unit. Deadlines are
constrained or implicit. The taskset is priority-ordered, task τn being the task
with the lowest priority.

2.2 Target Application Description

We consider an embedded system connected to an energy harvesting device. An
energy harvesting device is a system collecting energy from its environment (e.g.
with a solar panel). The collected energy is stored in an energy storage unit
with �xed capacity (e.g. chemical battery or capacitor). We suppose that the
quantity of energy that arrives in the storage unit is a function of time which is
either known or bounded.

The replenishment of the storage unit is performed continuously even during
the execution of tasks, and the energy level of the battery �uctuates between two
thresholds Emin and Emax where Emax is the maximum capacity of the storage
unit and Emin is the minimum energy level that keeps the system running.
The di�erence between these two thresholds is the part of the battery capacity
dedicated to tasks execution, denoted C. We suppose that C is as large as
needed to never reach Emax during replenishment periods. For the sake of
clarity, we can consider without loss of generality that Emin = 0 and that
C = Emax. The battery level at time t is denoted E(t). We note Pr(t) the
replenishment function of the battery. Then, in order to simplify the problem,
we assume Pr(t) to be a linear function, i.e. Pr(t) = Pr × t, Pr being a positive
integer.

Below, we use Pr instead of Pr(t) to denote the replenishment function. The
replenishment process in energy harvesting systems is usually slower than the
dissipation, for this reason we suppose that tasks consume more energy than
the one which is replenished during executions, i.e. ∀i, Ei ≥ Ci × Pr.

3 The FPCASAP Algorithm

3.1 The PFPASAP algorithm

The PFPASAP algorithm schedules tasks as soon as possible when there is
energy available in the battery, and suspends execution to replenish the energy
needed to execute one time unit. A proof of the optimality of this algorithm
for non concrete tasksets is proposed in [8] and experiments showed that is has
a low overhead. However, the algorithm is no longer optimal when we deal
with concrete taskset. Figure 1 shows an example where PFPASAP fails to
schedule a taskset while a valid schedule exists. We can see in Figure 1(b) that
PFPASAP schedules task τ2 before τ1 which has no time to replenish enough
energy. The PFPASAP algorithm decides to execute τ2 without having any
information about what will happen later. When τ1 is activated, the energy
available in the storage unit is not su�cient because τ2 consumed it and the

3

- Oi Ci Ei Ti Di Pi

τ1 2 2 12 10 3 1
τ2 0 3 15 15 15 2

(a) Emax = 10, Emin = 0 and Pr = 3

0 2 4 6
0

2

4

6

8

10Emax

Emin

deadline_missed

0 2 4 6

τ1

0 2 4 6

τ2

(b) PFPASAP schedule

0 2 4 6 8 10 12 14
0

2

4

6

8

10Emax

Emin

0 2 4 6 8 10 12 14

τ1

0 2 4 6 8 10 12 14

τ2

(c) A feasible schedule

Figure 1: PFPASAP is not optimal

available slack-time is not su�cient to replenish enough energy. However, if
PFPASAP had checked whether the future jobs meet their constraints or not,
deadline misses could be avoided, Figure 1(c) illustrates such a decision. This
leads us to say that PFPASAP fails to schedule some feasible tasksets because
it does not measure the impact of its decisions on future jobs.

3.2 As Soon As Possible Clairvoyant Fixed-Priority Algo-

rithm

We aim to �nd a scheduling algorithm that can be optimal for concrete tasksets.
PFPASAP is not optimal but it can be enhanced to extend its optimality. The
algorithm has to be clairvoyant in order to avoid potential future failure or
deadline misses.

We propose to study a new clairvoyant algorithm that we call As Soon As
Possible Clairvoyant Fixed-Priority Algorithm (FPCASAP). An algorithm is
said to be clairvoyant when it takes scheduling decisions according to the future
state of the system, i.e. future processor and energy load, future battery level,
and the future amount of incoming energy to the storage unit. The clairvoyance
must be limited to a �nite interval of time that we call Clairvoyance window.

The FPCASAP algorithm inherits the behavior of PFPASAP and add clair-
voyance capabilities. It schedules jobs as soon as possible whenever the two
following conditions are met:

• there is enough energy available in the storage unit to execute at least one

4

Algorithm 1 FPCASAP Algorithm

1: t← 0
2: loop

3: A← set of active jobs at time t
4: if A 6= ∅ then
5: Ji,j ← the highest priority job of A
6: di(t)← the next absolute deadline of Ji,j
7: if ResponseT imePFPASAP

(t+ 1, Ji,j , E(t+ 1)) > di(t) then

8: execute Ji,j for one time unit at time t
9: else

10: if ClairvoyancePFPASAP
(t, Ji,j , di(t), E(t)) then

11: execute Ji,j for one time unit at time t
12: else

13: suspend the system for one time unit
14: end if

15: end if

16: end if

17: t← t+ 1
18: end loop

time unit,

• the execution of the current job does not lead to a deadline miss of jobs
of higher priority levels which are requested during clairvoyance window
(see below).

If these conditions are not satis�ed, the algorithm suspends all executions for
one time unit.

Algorithm 1 shows how FPCASAP takes decisions at time t when a job of
priority level i is ready to run. The FPCASAP algorithm checks �rst if the
execution of jobs of priority level higher or equal to t according to PFPASAP

rules meet theirs deadlines. Algorithm 1 �rst checks if it is possible to delay
the current job by comparing its response time at time t + 1 with its deadline
(line 7), then, it repeats the process for higher priority jobs. This prevent from
delaying the current job uselessly, because in the case where it is impossible
to delay, if a deadline miss occurs in a higher priority level in the clairvoyance
window, the failure cannot be avoided and the system is not schedulable with
FPCASAP .

The �rst question is: which jobs should be considered in the clairvoyance
computation ? In other words, which job can su�er from the energy consumed
by the current job of priority level i at time t ?

In �xed-priority context, when a higher priority task is requested, it cannot
be delayed by lower priory ones. However, since the energy is a common re-
source, lower priority tasks can consume the energy needed for higher priority
ones and can so delay them. The aim of clairvoyance is to delay lower priority

5

tasks when such a problem is detected. Knowing that a job cannot be delayed
more than its deadline, the jobs which are a�ected by the execution or the de-
lay of Ji,j at time t, are the ones of priority levels higher or equal to i which
are requested between time t and the absolute deadline of Ji,j . This de�nes
our clairvoyance window. If a deadline miss occurs after the deadline of Ji,j ,
the system is not feasible and clairvoyance cannot avoid that because whatever
happens, Ji,j must �nish executing before its deadline.

The second question is: how can we check if future jobs meet their deadlines
?

A simple way is to compute their response times and compare their termi-
nation dates with their absolute deadlines. Since FPCASAP uses PFPASAP

algorithm for clairvoyance, we have to compute response times according to
PFPASAP rules. Algorithm 2 shows how to compute the response time of a job
Ji,j at time t with the following notations:

• xi(t): next activation of task τi,

• wei(t): energy demand of priority level i at time t,

• wpi(t): processor demand of priority level i at time t,

• wi(t): time demand of priority level i at time t,

• ci(t): is the remaining time cost of job Ji,j at time t,

• ei(t): is the remaining energy cost of job Ji,j at time t,

• di(t): is the absolute deadline of job Ji,j at time t.

Algorithm 2 ResponseT imePFPASAP

1: INPUT : t, Ji,j , E(t)
2: w′i(t)← t+ ε
3: repeat

4: wi(t)← w′i(t)

5: wei(t) =
∑
l≤i

(
el(t) +

⌈
wi(t)− xl(t)

Tl

⌉
× El

)
− E(t)

6: wpi(t) =
∑
l≤i

(
cl(t) +

⌈
wi(t)− xl(t)

Tl

⌉
× Cl

)
7: w′i(t) = t+max

(⌈
wei(t)

Pr

⌉
, wpi(t)

)
8: if w′i(t) > di(t) then
9: return w′i(t)

10: end if

11: until wi(t) = w′i(t)
12: return wi(t)

6

Algorithm 2 behaves like the classical �xed-priority response time algorithm
and include tasks energy cost in calculations. It computes analytically the
response time of a job Ji,j of priority level i by computing progressively the
time demand w′i(t) which is the maximum time needed to satisfy both of the
processor demand wpi(t) and the energy demand wei(t). The energy demand
wei(t) is derived from the notion of processor demand. It represents the sum of
the energy cost of all the jobs of priority equal or higher than i requested during
the time interval [t, wi(t)[. Then, the initial battery level E(t) is removed to
�t the exact amount of energy to be replenished (Equation is given in line 5 of
Algorithm 2).

We deal with the maximum of wei(t) and wpi(t) to get the real response time
which includes all higher priority interferences and the replenishment periods
necessary for a PFPASAP schedule. Algorithm 2 supposes that the current bat-
tery level E(t) and the remaining value of both energy cost ei(t) and processor
cost ci(t) are known at time t.

3.3 Clairvoyance computation

At time t, when the FPCASAP algorithm has to decide whether to execute or
not the current job Ji,j , it uses clairvoyance to predict potential future failure.
The clairvoyance consists of computing the response time of all the jobs which
are requested during the clairvoyance window, i.e. [t, di(t)[and checking if they
meet their deadlines. Algorithm 3 shows how to do that.

Algorithm 3 ClairvoyancePFPASAP
Algorithm

1: INPUT : t, Ji,j , di(t), E(t)
2: R ← set of jobs Jk,j of priority level higher than i which are requested

during interval [t, di(t)[
3: for all Jk,j ∈ R do

4: rk,j ← the activation date of Jk,j
5: if ResponseT ime(Jk,j , rk,j , E(rk,j)) > dk(rk,j) then
6: return False
7: end if

8: end for

9: return True

Algorithm 3 supposes that the remaining cost of tasks and the battery level
at each job request are known. This assumption simpli�es the clairvoyance
computation, however, computing these values need heavy calculations and may
complexify the clairvoyance algorithm and consequently the overhead of the
FPCASAP Algorithm. This concern remains an open problem.

3.4 Complexity

The main goal of this work is to provide an optimal algorithm. The complexity of
this algorithm is crucial but in this stage of research we �rst focus on optimality,

7

then, we will study the possibility of reducing the complexity. The computations
of clairvoyance and response time algorithms are thus the major keys to the
operations performed by FPCASAP algorithm. The response time of a job at
a given instant is given by Algorithm 2 with complexity O(K.n) where n is
the number of tasks, and K the number of iterations. In the worst case, K
corresponds to the number of interfering jobs and thus is bounded by R/p,
where R and p are respectively the longest deadline and the shortest period
of tasks. The clairvoyance computation of a periodic taskset at a given time
instant can be obtained on-line by computing the PFPASAP schedule. This is
performed with complexity O(K2.n) by computing the response time of each job
activated during the clairvoyance window. The number of these jobs coincides
with the number of interfering jobs in the worst case, i.e. K. Therefore, the
complexity of FPCASAP in the worst case is O(K2.n).

4 Conclusion and Future work

The aim of this work was to �nd an optimal algorithm to schedule �xed-priority
tasksets in energy-harvesting environment. The PFPASAP algorithm is optimal
but only for non concrete taskset. In this paper we presented FPCASAP a new
algorithm that inherits the behavior of PFPASAP and add failure predictability
capabilities. We explained why we need clairvoyance and we gave a su�cient
clairvoyance window length that allow us to verify whether or not there will be
future failures caused by early executions.

To continue this work, we plan to explore the following points.

• Optimality: the most important future work is to prove that FPCASAP is
optimal. This algorithm is expected to keep the optimality of PFPASAP

for non concrete

8

tasksets because it behaves the same when there is no future deadline
misses and extends it to concrete ones by delaying lower priority jobs as
long as needed when a future problem is detected.

• Battery size: in this paper we supposed that the battery is as large as
needed to never reach Emax. First, we have to �nd the minimal capacity
satisfying this condition. Then, we will study the impact of Emax on our
algorithm when the battery size is set by the designer.

• Clairvoyance: we will try to �nd a clairvoyance algorithm that computes
the exact response times of jobs with a reasonable complexity.

• Preemptions: we will study the possibility of optimizing the number of
preemptions and we will evaluate the performance of a non preemptive
version of FPCASAP .

• Priority assignment: we will study the e�ect of priority assignment policies
on FPCASAP behavior and clairvoyance complexity, for example reversed
Rate Monotonic policy (RM−1) can reduce the number of higher priority
interferences which can enhance sensitively the complexity. We will try
also to provide a su�cient and necessary feasibility condition that can be
used to build an optimal priority assignment (OPA) based on Audsley's
algorithm [9] and Davis' criteria [10].

• Assumptions: �nally, we will be interested in measuring the e�ect of the
assumptions we set on both replenishment and task consumption func-
tions, indeed, we will try to �nd the worst case of both consumption and
replenishment models.

References

[1] A. Allavena and D. Mossé, �Scheduling of frame-based embedded systems
with rechargeable batteries,� in Workshop on Power Management for Real-
Time and Embedded Systems (in conjunction with RTAS), 2001.

[2] C. Moser, D. Brunelli, L. Thiele, and L. Benini, �Real-time scheduling
with regenerative energy,� in Proceedings of 18th Euromicro Conference on
Real-Time Systems, 2006.

[3] R. Jayaseelan and T. Mitra, �Estimating the Worst-Case Energy Consump-
tion of Embedded Software,� in Proceedings of the 12th IEEE Real-Time
and Embedded Technology and Applications Symposium, 2006.

[4] H. EL Ghor, M. Chetto, and R. H. Chehade, �A real-time scheduling frame-
work for embedded systems with environmental energy harvesting,� Com-
puters and Electrical Engineering, vol. 37, pp. 498�510, July 2011.

9

[5] M. Chetto, D. Masson, and S. Midonnet, �Fixed Priority Scheduling Strate-
gies for Ambient Energy-Harvesting Embedded systems,� in Proceedings of
IEEE/ACM International Conference on Green Computing and Commu-
nications, 2011.

[6] J. P. Lehoczky and S. Ramos-Thuel, �An optimal algorithm for scheduling
soft-aperiodic tasks �xed priority preemptive systems,� in Proceedings of
the 13th IEEE Real-Time Systems Symposium, 1992.

[7] Y. Abdeddaïm and D. Masson, �Real-time scheduling of energy harvesting
embedded systems with timed automata,� in RTCSA, 2012.

[8] Y. Abdeddaïm, Y. Chandarli, and D. Masson, �The Optimality of PFPasap
Algorithm for Fixed-Priority Energy-Harvesting Real-Time Systems,� Re-
port, Feb. 2013.

[9] N. Audsley, Optimal Priority Assignment and Feasibility of Static Priority
Tasks with Arbitrary Start Times, ser. Technical report. University of
York, Department of Computer Science, 1991.

[10] R. I. Davis and A. Burns, �Priority assignment for global �xed priority pre-
emptive scheduling in multiprocessor real-time systems,� in Proceedings of
the 2009 30th IEEE Real-Time Systems Symposium, 2009.

10

	Introduction and Related work
	Model
	Taskset Model
	Target Application Description

	The FPCASAP Algorithm
	The PFPASAP algorithm
	As Soon As Possible Clairvoyant Fixed-Priority Algorithm
	Clairvoyance computation
	Complexity

	Conclusion and Future work

