Yasmina Abdeddaïm

Younès Chandarli

Damien Masson

Toward an Optimal Fixed-Priority Algorithm for Energy-Harvesting Real-Time Systems

This paper addresses the real-time xed-priority scheduling problem for battery-powered embedded systems whose energy storage unit is replenished by an environmental energy source. In this context, a scheduling policy should account for incoming energy, capacity of the battery and tasks cost of energy. Thus, classical xed-priority schedulers are no longer suitable for this model. Some algorithms were proposed in precedent works to solve this problem, however, none of them has been proved optimal for concrete tasksets 1 . Based on this motivation, we propose F P CASAP a scheduling algorithm that handles both energy and timing constraints by predicting future possible failure. Such kind of algorithm is said to be clairvoyant. We expect this algorithm to be optimal.

Introduction and Related work

In this paper, we investigate a real-time system model for embedded systems that collect and store energy from their environment. Such systems are composed, in addition to classical embedded system components, by an energy harvester unit (e.g. a solar panel) and an energy storage unit (e.g. a battery). These harvesting embedded systems are more and more present in our lives: sensor networks in structures such as bridges that collects vibration energy, medical implants that collect energy from the human body, mobile or x devices with 1 a concrete taskset is a set of real-time tasks whose osets are known o-line 1 solar panel or windmill etc. Despite of their energy supply particularity, some of these systems need to satisfy strict timing constraints. Therefore, it is important to consider both the time and the energy costs of tasks for the scheduling operations, since both the energy and the CPU times resources of the system have to be shared by the tasks.

The rst work addressing the scheduling problem of energy harvesting systems was presented by Mossé in [START_REF] Allavena | Scheduling of frame-based embedded systems with rechargeable batteries[END_REF]. The problem was solved under a very restrictive task model: the frame-based model where all the tasks have exactly the same period and the same deadline. Later in [START_REF] Moser | Real-time scheduling with regenerative energy[END_REF], Moser et al. proposed an optimal algorithm called LSA (Lazy Scheduling algorithm) for periodic and aperiodic tasks. However, in their hypotheses, the CPU frequency can be changed to adjust the Worst Case Execution Time (WCET) of the tasks depending on their energy consumption. Thus, the results of this work rely on the assumption that tasks energy consumption is directly linked to their WCET. A recent work shows that this hypothesis is not suitable for embedded systems [START_REF] Jayaseelan | Estimating the Worst-Case Energy Consumption of Embedded Software[END_REF].

Later, a clairvoyant algorithm called EDeg has been proposed in [START_REF] El Ghor | A real-time scheduling framework for embedded systems with environmental energy harvesting[END_REF][START_REF] Chetto | Fixed Priority Scheduling Strategies for Ambient Energy-Harvesting Embedded systems[END_REF]. The authors expect that this algorithm may be optimal but as far as we know this property has not been proved. The algorithm EDeg relies on a generalizable meta policy: as long as the system can perform without energy failure, a standard policy such as EDF is used. Then, as soon as future energy failures is detected, the system is suspended as long as timing constraints are met or until the energy storage unit is full. To detect such future energy failure, the notion of slack time [START_REF] Lehoczky | An optimal algorithm for scheduling soft-aperiodic tasks xed priority preemptive systems[END_REF] was extended to the notion of slack energy. Another approach based on model checking for dealing with this problem has been proposed in [START_REF] Abdeddaïm | Real-time scheduling of energy harvesting embedded systems with timed automata[END_REF].

Recently, in a paper under review process [START_REF] Abdeddaïm | The Optimality of PFPasap Algorithm for Fixed-Priority Energy-Harvesting Real-Time Systems[END_REF], we proposed P F P ASAP , a xed-priority algorithm that schedules jobs as soon as possible and we proved its optimality for non concrete tasksets.

The aim of this paper is to study the possibility of extending the optimality of P F P ASAP algorithm to concrete tasks by introducing clairvoyance.

The remaining part of the paper is organized as follow. We present the model in Section 2. In Section 3, we explain why we need a clairvoyant algorithm, then, we propose a new algorithm that we call F P C ASAP . Finally, we discuss future work and we conclude in Section 4.

Model

Taskset Model

We consider a concrete real-time taskset in a renewable energy environment dened by a set of n periodic and independent tasks {τ 1 , τ 2 , . . . , τ n }. Each task τ i is characterized by its priority P i , its worst case execution time C i , its period T i , its deadline D i , its oset O i and its worst case energy consumption E i . The execution time C i and the energy consumption E i of a task are fully independent. A task τ i releases an innite number of jobs which are separated by T i time units, its j th job is denoted J i,j and must execute during C i time units and consume E i energy units. All the tasks consume energy linearly, i.e. a constant amount of energy for each execution time unit. Deadlines are constrained or implicit. The taskset is priority-ordered, task τ n being the task with the lowest priority.

Target Application Description

We consider an embedded system connected to an energy harvesting device. An energy harvesting device is a system collecting energy from its environment (e.g.

with a solar panel). The collected energy is stored in an energy storage unit with xed capacity (e.g. chemical battery or capacitor). We suppose that the quantity of energy that arrives in the storage unit is a function of time which is either known or bounded.

The replenishment of the storage unit is performed continuously even during the execution of tasks, and the energy level of the battery uctuates between two thresholds E min and E max where E max is the maximum capacity of the storage unit and E min is the minimum energy level that keeps the system running.

The dierence between these two thresholds is the part of the battery capacity dedicated to tasks execution, denoted C. We suppose that C is as large as needed to never reach E max during replenishment periods. For the sake of clarity, we can consider without loss of generality that E min = 0 and that C = E max . The battery level at time t is denoted E(t). We note P r (t) the replenishment function of the battery. Then, in order to simplify the problem, we assume P r (t) to be a linear function, i.e. P r (t) = P r × t, P r being a positive integer.

Below, we use P r instead of P r (t) to denote the replenishment function. The replenishment process in energy harvesting systems is usually slower than the dissipation, for this reason we suppose that tasks consume more energy than the one which is replenished during executions, i.e. ∀i, E i ≥ C i × P r .

3 The F P C ASAP Algorithm

3.1

The P F P ASAP algorithm

The P F P ASAP algorithm schedules tasks as soon as possible when there is energy available in the battery, and suspends execution to replenish the energy needed to execute one time unit. A proof of the optimality of this algorithm for non concrete tasksets is proposed in [START_REF] Abdeddaïm | The Optimality of PFPasap Algorithm for Fixed-Priority Energy-Harvesting Real-Time Systems[END_REF] and experiments showed that is has a low overhead. However, the algorithm is no longer optimal when we deal with concrete taskset. Figure 1 shows an example where P F P ASAP fails to schedule a taskset while a valid schedule exists. We can see in Figure 1(b) that P F P ASAP schedules task τ 2 before τ 1 which has no time to replenish enough energy. The P F P ASAP algorithm decides to execute τ 2 without having any information about what will happen later. When τ 1 is activated, the energy available in the storage unit is not sucient because τ 2 consumed it and the (c) A feasible schedule Figure 1: P F P ASAP is not optimal available slack-time is not sucient to replenish enough energy. However, if P F P ASAP had checked whether the future jobs meet their constraints or not, deadline misses could be avoided, Figure 1(c) illustrates such a decision. This leads us to say that P F P ASAP fails to schedule some feasible tasksets because it does not measure the impact of its decisions on future jobs.

O i C i E i T i D i P i τ 1 2 2 12

3.2

As Soon As Possible Clairvoyant Fixed-Priority Algorithm

We aim to nd a scheduling algorithm that can be optimal for concrete tasksets.

P F P ASAP is not optimal but it can be enhanced to extend its optimality. The algorithm has to be clairvoyant in order to avoid potential future failure or deadline misses.

We propose to study a new clairvoyant algorithm that we call As Soon As Possible Clairvoyant Fixed-Priority Algorithm (F P C ASAP). An algorithm is said to be clairvoyant when it takes scheduling decisions according to the future state of the system, i.e. future processor and energy load, future battery level, and the future amount of incoming energy to the storage unit. The clairvoyance must be limited to a nite interval of time that we call Clairvoyance window.

The F P C ASAP algorithm inherits the behavior of P F P ASAP and add clairvoyance capabilities. It schedules jobs as soon as possible whenever the two following conditions are met:

• there is enough energy available in the storage unit to execute at least one • the execution of the current job does not lead to a deadline miss of jobs of higher priority levels which are requested during clairvoyance window (see below).

If these conditions are not satised, the algorithm suspends all executions for one time unit.

Algorithm 1 shows how F P C ASAP takes decisions at time t when a job of priority level i is ready to run. The F P C ASAP algorithm checks rst if the execution of jobs of priority level higher or equal to t according to P F P ASAP rules meet theirs deadlines. Algorithm 1 rst checks if it is possible to delay the current job by comparing its response time at time t + 1 with its deadline (line 7), then, it repeats the process for higher priority jobs. This prevent from delaying the current job uselessly, because in the case where it is impossible to delay, if a deadline miss occurs in higher priority level in the clairvoyance window, the failure cannot be avoided and the system is not schedulable with F P C ASAP . The rst question is: which jobs should be considered in the clairvoyance computation ? In other words, which job can suer from the energy consumed by the current job of priority level i at time t ?

In xed-priority context, when a higher priority task is requested, it cannot be delayed by lower priory ones. However, since the energy is a common resource, lower priority tasks can consume the energy needed for higher priority ones and can so delay them. The aim of clairvoyance is to delay lower priority tasks when such a problem is detected. Knowing that a job cannot be delayed more than its deadline, the jobs which are aected by the execution or the delay of J i,j at time t, are the ones of priority levels higher or equal to i which are requested between time t and the absolute deadline of J i,j . This denes our clairvoyance window. If a deadline miss occurs after the deadline of J i,j , the system is not feasible and clairvoyance cannot avoid that because whatever happens, J i,j must nish executing before its deadline.

The second question is: how can we check if future jobs meet their deadlines ? A simple way is to compute their response times and compare their termination dates with their absolute deadlines. Since F P C ASAP uses P F P ASAP algorithm for clairvoyance, we have to compute response times according to P F P ASAP rules. Algorithm 2 shows how to compute the response time of a job J i,j at time t with the following notations:

• x i (t): next activation of task τ i ,
• we i (t): energy demand of priority level i at time t,

• wp i (t): processor demand of priority level i at time t,

• w i (t): time demand of priority level i at time t,

• c i (t): is the remaining time cost of job J i,j at time t,

• e i (t): is the remaining energy cost of job J i,j at time t,

• d i (t): is the absolute deadline of job J i,j at time t.

Algorithm 2 ResponseT ime P F P ASAP

1: INPUT : t, J i,j , E(t)

2: w i (t) ← t + 3: repeat 4: w i (t) ← w i (t) 5: we i (t) = l≤i e l (t) + w i (t) -x l (t) T l × E l -E(t) 6: wp i (t) = l≤i c l (t) + w i (t) -x l (t) T l × C l 7: w i (t) = t + max we i (t) P r , wp i (t) 8: if w i (t) > d i (t) then 9:
return w i (t) 10:

end if 11: until w i (t) = w i (t) 12: return w i (t) Algorithm 2 behaves like the classical xed-priority response time algorithm and include tasks energy cost in calculations. It computes analytically the response time of a job J i,j of priority level i by computing progressively the time demand w i (t) which is the maximum time needed to satisfy both of the processor demand wp i (t) and the energy demand we i (t). The energy demand we i (t) is derived from the notion of processor demand. It represents the sum of the energy cost of all the jobs of priority equal or higher than i requested during the time interval [t, w i (t)[. Then, the initial battery level E(t) is removed to t the exact amount of energy to be replenished (Equation is given in line 5 of Algorithm 2).

We deal with the maximum of we i (t) and wp i (t) to get the real response time which includes all higher priority interferences and the replenishment periods necessary for a P F P ASAP schedule. Algorithm 2 supposes that the current battery level E(t) and the remaining value of both energy cost e i (t) and processor cost c i (t) are known at time t.

Clairvoyance computation

At time t, when the F P C ASAP algorithm has to decide whether to execute or not the current job J i,j , it uses clairvoyance to predict potential future failure. if ResponseT ime(J k,j , r k,j , E(r k,j)) > d k (r k,j) then

Complexity

The main goal of this work is to provide an optimal algorithm. The complexity of this algorithm is crucial but in this stage of research we rst focus on optimality, then, we will study the possibility of reducing the complexity. The computations of clairvoyance and response time algorithms are thus the major keys to the operations performed by F P C ASAP algorithm. The response time of a job at a given instant is given by Algorithm 2 with complexity O(K.n) where n is the number of tasks, and K the number of iterations. In the worst case, K corresponds to the number of interfering jobs and thus is bounded by R/p, where R and p are respectively the longest deadline and the shortest period of tasks. The clairvoyance computation of a periodic taskset at a given time instant can be obtained on-line by computing the P F P ASAP schedule. This is performed with complexity O(K 2 .n) by computing the response time of each job activated during the clairvoyance window. The number of these jobs coincides with the number of interfering jobs in the worst case, i.e. K. Therefore, the complexity of F P C ASAP in the worst case is O(K 2 .n).

Conclusion and Future work

The aim of this work was to nd an optimal algorithm to schedule xed-priority tasksets in energy-harvesting environment. The P F P ASAP algorithm is optimal but only for non concrete taskset. In this paper we presented F P C ASAP a new algorithm that inherits the behavior of P F P ASAP and add failure predictability capabilities. We explained why we need clairvoyance and we gave a sucient clairvoyance window length that allow us to verify whether or not there will be future failures caused by early executions.

To continue this work, we plan to explore the following points.

• Optimality: the most important future work is to prove that F P C ASAP is optimal. This algorithm is expected to keep the optimality of P F P ASAP for non concrete tasksets because it behaves the same when there is no future deadline misses and extends it to concrete ones by delaying lower priority jobs as long as needed when a future problem is detected.

• Battery size: in this paper we supposed that the battery is as large as needed to never reach E max . First, we have to nd the minimal capacity satisfying this condition. Then, we will study the impact of E max on our algorithm when the battery size is set by the designer.

• Clairvoyance: we will try to nd a clairvoyance algorithm that computes the exact response times of jobs with a reasonable complexity.

• Preemptions: we will study the possibility of optimizing the number of preemptions and we will evaluate the performance of a non preemptive version of F P C ASAP .

• Priority assignment: we will study the eect of priority assignment policies on F P C ASAP behavior and clairvoyance complexity, for example reversed Rate Monotonic policy (RM -1) can reduce the number of higher priority interferences which can enhance sensitively the complexity. We will try also to provide a sucient and necessary feasibility condition that can be used to build an optimal priority assignment (OPA) based on Audsley's algorithm [START_REF] Audsley | Optimal Priority Assignment and Feasibility of Static Priority Tasks with Arbitrary Start Times[END_REF] and Davis' criteria [START_REF] Davis | Priority assignment for global xed priority preemptive scheduling in multiprocessor real-time systems[END_REF].

• Assumptions: nally, we will be interested in measuring the eect of the assumptions we set on both replenishment and task consumption functions, indeed, we will try to nd the worst case of both consumption and replenishment models.

 T rue Algorithm 3 supposes that the remaining cost of tasks and the battery level at each job request are known. This assumption simplies the clairvoyance computation, however, computing these values need heavy calculations and may complexify the clairvoyance algorithm and consequently the overhead of the F P C ASAP Algorithm. This concern remains an open problem.

 ResponseT ime P F P ASAP (t + 1, J i,j , E(t + 1)) > d i (t) then Clairvoyance P F P ASAP (t, J i,j , d i (t), E(t)) then

	Algorithm 1 F P C ASAP Algorithm
	1: t ← 0
	2: loop
	3:	A ← set of active jobs at time t
	4:	if A = ∅ then
	5:	J i,j ← the highest priority job of A
	6:	d i (t) ← the next absolute deadline of J i,j
	7: if 8:	execute J i,j for one time unit at time t
	9:	else
	10: if 11:	execute i,j for one time unit at time t
	12:		else
	13:		suspend the system for one time unit
	14:		end if
	15:	end if
	16:	end if
	17:	t ← t + 1
	18: end loop
		time unit,

 The clairvoyance consists of computing the response time of all the jobs which are requested during the clairvoyance window, i.e. [t, d i (t)[and checking if they meet their deadlines. Algorithm 3 shows how to do that.

	Algorithm 3 Clairvoyance P F P ASAP Algorithm
	1: INPUT : t, J i,j , d i (t), E(t)
	2: R ← set of jobs J k,j of priority level higher than i which are requested
		during interval [t, d i (t)[
	3: for all J k,j ∈ R do
	4:	r k,j ← the activation date of J k,j
	5: