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Abstract

In this paper, we consider the problem of selecting the most appropriate model

from many possible models to describe datasets involving mixtures of distributions.

The proposed method consists of finding the maximul likelihood estimators (MLEs)

of different assumed mixture models that describe a dataset, using the Expectation-

Maximization (EM) algorithm, and subsequently using bootstrap sampling technique

to identify the distance between the empirical cumulative distribution function (cdf)

of the dataset and the MLE fitted cdf. To test the goodness of fit, a new metric,

the Integrated Cumulative Error (ICE) is proposed and compared with other existing

metrics for accuracy of detecting the appropriate model. The ICE metric shows a
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markedly improved performance, from the existing metrics, in identifying the correct

mixture model. The method is applied to model the distribution of indicators of the

fatigue crack formation potency, obtained from numerical experiments.

1 Introduction

Statistical practitioners are frequently interested in fitting mixture models to univariate

datasets for which nonparametric density estimates show several clear departures from

a description assumed to be accurate using one probability density function. Assuming

the existence of a mixture model accurately describing the dataset, a difficult proposition

nevertheless arises of defining a criterion for the best model among all the plausible

scenarios, i.e. possible numbers of components and collection of mixed parametric density

families. If the mixed densities are supposed to belong to the same parametric density

family, the above problem turns into estimating the number of components that best

describes the mixture model. This order determination problem has been studied in several

ways, see for instance Henna [1], Izenman and Sommer [2], Roedner [3], for various non-

parametric techniques or Lindsay [4], Dacunha-Castelle and Gassiat [5], for moment-based

methods, Keribin [6] for a penalized maximum likelihood selection method, or Berkhof and

al. [7] for a Bayesian approach.

To our knowledge, when the mixed densities possibly arise from different parametric

families, inducing the exploration of a possibly high number of combinatory models, there

is no existing specific methodology. We nevertheless mention the work of Vuong [8], who

proposed asymptotic likelihood tests to select the closest model to fit the given dataset

from among a set of competing models based on the Kullback-Leibler information criterion.

However, it is important to note that the methodology developed in that paper fails in

providing a total order on the set of competing models, the KL information criterion being

a Statistical divergence and not a true probability-distance (lack of symmetry).

The aim of this paper is to develop a finite-sample oriented methodology that can

order the models in competition, based on their ability to resample the dataset of interest.

For this purpose, we suppose that for each model in competition, we can identify its

quasi-maximum likelihood estimator (QMLE), the true model being found at most one

time among the competing models. The basic idea is to build a true distance for the

models in competition from the dataset, based, for each model, on the comparison between
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the QMLE-fitted cdf and the empirical cdf from the dataset of interest. In this paper,

the motivation for developing a method to identify mixtures of distributions arises from

observations of fatigue life distributions of metals.

Fatigue damage is defined as the degradation of material properties due to the repeated

application of stresses and strains leading to material failure [9]. Metallic materials and

alloys are typically composed of structural units called grains, whose size ranges from a few

to a few hundred microns (1 micron = 10−6 metres). The crystalline structure i.e. atomic

arrangement, within each grain can be assumed to be uniform. However, the crystalline

structure leads to non-isotropic material response (stiffness) for imposed deformation along

different directions, termed as anisotropy. Further, the directions describing the atomic

arrangement (orientation) are different for different grains in the metal. The irreversible

motion of defects along specific crystallographic directions, determined by the crystalline

structure and orientation and the resultant accumulation of damage in the material is one

of the primary mechanisms of fatigue crack formation in metals in the high cycle fatigue

regime (fatigue life of tens to hundreds of millions of loading cycles). The accumulation

of damage with fatigue loading in a material is due to a combination of microstructural

features (grain size, orientation, inter-granular interactions) and applied loading. The

probability of damage accumulation and subsequent crack formation in a given volume

of material is governed by the extreme value probability of such a favorable combination

existing in the given material volume [12]. Thus, the fatigue life of a material manifests as

a distribution rather than a unique value for multiple experimental realizations of identical

applied loading conditions.

The variation in distribution of fatigue life in metals is observed to a greater extent in

the regimes described as high cycle and very high cycle fatigue life than for low cycle fatigue

life (thousands to tens of thousands of fatigue cycles) [10, 11]. This has been experimentally

observed for a wide variety of metal alloys [13, 14, 15, 16, 17]. The distribution of the

fatigue life also varies with the mechanism of crack initiation in the material [14, 17]. Due

to the probability of crack formation being governed by the extreme values of the driving

forces in a material volume, extreme value distributions can be used to chararacterize the

distributions of both the observed driving forces and the resultant fatigue life. Przybyla

and McDowell [12] used a Gumbel distribution to quantify the variation of fatigue indicator

parameters obtained from numerical experiments. Other extreme value distributions, 2

or 3 parameter Weibull distributions, have been used by various researchers to model the
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scatter in the observed fatigue life [16, 17, 18, 19]. Mixtures of extreme value distributions

have been used to model fatigue life distributions when multiple mechanisms for crack

formation have been observed [17, 19] with the scatter associated with each crack formation

mechanism described by an extreme value distribution. It is to be noted that an approach

to describing the fatigue life observations using a mixture of distributions for a given crack

formation mechanism has not been considered in any of the above studies i.e. the above

works assume that the fatigue life distributions for a given crack initiation mechanism can

be accurately described by a single extreme value distribution function.

In the present work, we confine ourselves to quantifying the distribution of the extreme

values of stresses (that act as driving forces for the motion of defects along the specific

crystallographic directions) in a given material volume, sampled from multiple instantia-

tions of numerical experiments. It is to be noted that the mechanism mentioned above,

is one of several for crack formation in a material in the high cycle fatigue regime. For

a more detailed discussion on crack initiation mechanisms in materials, the reader is re-

ferred to Suresh [9]. For the mechanism of crack formation considered here: accumulation

of damage along crystallographic planes in the high cycle fatigue regime, the majority of

the fatigue life of the material is spent in forming a crack of the size of a grain. Thus,

the distribution of extreme values of stresses that drive the motion of defects in these

crystallographic directions resulting from applied loading within a given material volume

serve as indicators of the distribution of the material fatigue life. For a material which is

subjected to fatigue loading, since the extreme values of the stresses in a given material

volume are influenced by the grains neighbouring the grain in which the extremal values

occur, the possibility of a corrupted/ mixture of extreme value distributions to describe

the distribution of fatigue life, for the same applied mechanical loading, arises. The ap-

proach taken here is to develop a generalized framework of identifying the ”best” mixture

model, not all of which might be extreme value distributions.

The paper is organized as follows. Section 2 is devoted to a detailed description of the

model choice problem wich is to be adressed and the methodology proposed in answer,

while Section 3 is dedicated to the statement of the asymptotic properties of our method

(convergence rate and consistency). The finite-sample performance of the proposed model

selection method is studied for various scenarios through Monte Carlo experiments in

Section 4. In Section 5 the proposed method is applied to real datasets obtained from

numerical experiments where mixture of Gumbel and Gaussian distributed are suspected.
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Appendix A1 is dedicated to a brief description of the QMLE and its asymptotic con-

vergence properties while we show in Appendix A2 that technical assumptions insuring

the validity of our method are fully satisfied when considering mixtures of Gumbel and

Gaussian distributions as it is done on the christallograpy examples Section 5.

2 Problem and methodology

Let us suppose that we observe an univariate i.i.d. sample X = (X1, . . . , Xn) distributed

according to an unknown probability distribution function (pdf) f0 which is possibly a

mixture of pdfs belonging to the collection

M :=



fj(x, ϑj) =

Kj�

k=1

πj,kfj,k(x|θj,k), x ∈ R, j = 1, . . . , J



 , (1)

where, for all j ∈ J := {1, . . . , J}, respectively, the Euclidean parameter

ϑj := (πj,1, . . . , πj,Kj
; θj,1, . . . , θj,Kj

),

is supposed to belong to a parametric space Θj := S(Kj)
�Kj

k=1Φj,k, where S(Kj) :=�
πj,k > 0, 1 ≤ k ≤ K :

�K
k=1 πj,k = 1

�
, Φj,k is a parametric space associated specific

to each θj,k, and {fj,k(·|θj,k), k = 1, · · · ,Kj} is a set of given pdfs with respect to the

Lebesgue measure, denoted by λ, on R.

For simplicity we suppose that there are no embedded models in the collection M, which

is stated in the following assumption.

(NE). We suppose that in the collection M there do not exist two indices j1 and j2 such

that Kj1 < Kj2 and

fj1(x, ϑj1) = fj2(x, ϑj2) x ∈ R,

when considering

πj2 = (πj1,1, . . . , πj1,Kj−1, 0, . . . , 0� �� �
K2−K1

).

Such a framework can be ensured by assuming that the components of vector forming the

weights of the mixture are all uniformly minorized over the collection of models M.
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We denote, for all j ∈ J , by ϑ̂j(X
n
1 ) := ϑ̂j := (π̂j,1, . . . , π̂j,K−1; θ̂j,1, . . . , θ̂j,K) the

Quasi-Maximum Likelihood Estimator (QMLE) of ϑj,∗, i.e., the minimizer of the Kullback-

Leibler divergence K(f0, fj(·, ϑ)) over Θj , respectively defined by (25) and (26) when con-

sidering the model with label j in the family M. Note that these estimators are generally

computed by using the Expectation Maximization (EM) algorithm, see e.g. Dempster et.

al. [21] and Wu [20], which is by far the most efficient and essential fitting method in

missing data problems.

Next, we define the QMLE plug-in mixture estimate of fj(·, ϑj,∗), also denoted for

convenience fj,∗, by

f̂j(x) := fj(x; ϑ̂(X
n
1 )) =

Kj�

k=1

π̂j,kfj,k(x|θ̂j,k), x ∈ R. (2)

Our goal is to decide, among the J models of interest considered in M and fitted by

a QML approach, the one that fits the dataset X best, the true density f0 of which is

unknown. For this purpose, let us introduce the finite collection of pdf M∗ defined by

M∗ := {f0(x), fj,∗(x), x ∈ R, j = 1, . . . , J} , (3)

and the Integrated Cumulative Error (ICE) quantity on M∗ defined for all (f1, f2) ∈ M2
∗

by

ICE(f1, f2) :=
1

2

�

R

|F1(x)− F2(x)|dFM∗
(x), x ∈ R, (4)

where Fi(x) =
� x

−∞ fi(t)dt, i = 1, 2, and FM∗
:= 1/(J + 1)

�J
j=0 Fj,∗ with the convention

F0,∗ = F0. To differentiate the behavior of the method when f0 truly belongs to the family

M or the contrary, we propose to introduce two additional assumptions.

(S1). The density f0 does not belong to the collection M, or equivalently K(f0, fj,∗) > 0

for all j ∈ J .

(S2). The collection M contains the true density f0 , i.e. there exists a unique j0 and a

unique parameter ϑ0 ∈ Θj0 such that

f0(x) = fj0(x, ϑ0) x ∈ R,

or equivalently K(f0, fj,∗) = 0, if and only if j = j0 anf ϑj,∗ = ϑ0.
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To use a QML based approach in choosing the most appropriate model, we suggest se-

lecting among the collection of models (1), the one, with label j∗ ∈ J , that minimizes the

ICE distance to f0 in the collection M∗, i.e.,

j∗ := argmin
j∈J

ICE(fj,∗, f0). (5)

Note that under (S2), we have j∗ = j0.

We introduce, for all x ∈ R and j ∈ {1, · · · , J},

F̄0(x) := 1/n

n�

q=1

IXq≤x, F̂j(x) :=

� x

−∞
f̂j(t)dt, and F̄j(x) := 1/n

n�

q=1

IYj,q≤x.

where Yj := (Yj,1, · · · , Yj,n) is an i.i.d. sample drawn from f̂j , and denote for convenience

Y0 := (Y0,1, · · · , Y0,n) = (X1, · · · , Xn). An empirical estimator of ICE(fj,∗, f0) is then

naturally defined by

�ICE(fj,∗, f0) :=
1

n(J + 1)

J�

l=0

n�

i=1

|F̂j(Yi,l)− F̄0(Yi,l)|

=
1

n(J + 1)

J�

l=0

n�

i=1

����F̂j(Yl,(i))−
nX,Yl

(i)

n

���� , x ∈ R, (6)

where for all l = 0, . . . , J , Yl,(1) < · · · < Yl,(n), and nX,Yl
(i) = #

�
Xq ≤ Yl,(i); q = 1, · · · , n

�
.

Finally, to estimate j∗ by ĵ defined by:

ĵ := argmin
j∈J

�ICE(fj , f0). (7)

Remark. This resampling idea, the so-called parametric-Bootstrap, see e.g. Babu [24], has

beenextensively studied in goodness of fit test problems based on various test statistics such

as the Kolmogorov-Smirnov, the Cramer-von Mises or Anderson-Darling statistics. How-

ever, to our knowledge, employing the parametric bootstrap technique to rank the fitting-

performance among a finite collection of mixture models by using a true distribution-

distance estimator (see Theorem 1), and not a test-statistic has not been attempted be-

fore.

3 Assumptions and asymptotic results

We introduce a basic assumption dealing with the resampling step of our method.

7



(G). For all (j, k) ∈ J × {1, . . . ,Kj} and all θj,k ∈ Φj,k, there exists a pdf fj,k and

an analytic function ρj,k(·, θj,k) such that for any random variable Yj,k ∼ fj,k we have

ρj,k(Yj,k, θj,k) ∼ fj,k(·|θj,k). In addition there exists a constant C independent from (j, k) ∈
J × {1, . . . ,Kj} such that for all (θ, θ�) ∈ Φ2

k we have

|ρj,k(x, θ)− ρj,k(x, θ
�)| ≤ C[|x|+ 1]× |θ − θ�|, x ∈ R. (8)

For simplicity, we endow the space Rs, s ≥ 1, with the � · �s norm defined for all v =

(v1, . . . , vs) by �v�s =
�s

j=1 |vj | where | · | denotes the absolute value. To reduce wastefully

heavy expressions dur to the dependence on s, we omit to mention it by considering, equally

on s, � · �s = � · �. In addition, we define forall j ∈ J and all k = 1, . . . ,Kj :

Ḟj,k(x, θ) :=

�
∂Fj,k(x, θ)

∂θ1
, . . . ,

∂Fj,k(x, θ)

∂θdj,k

�T

, θ ∈ Φj,k,

where dj,k := dim(Φj,k).

(R). For all j ∈ J and all k = 1, . . . ,Kj , the cdf Fj,k(x, θ) is a continuously differentiable

function of θ ∈ Φj,k for each x ∈ R. Moreover, we suppose that there exists a constant

M > 1 such that

sup
x∈R,θ∈Φj,k

�Ḟj,k(x, θ)� < M, j ∈ J and k = 1, . . . ,Kj .

Let us recall some basic results on the empirical cdf F̄ (x) = 1/n
�n

k=1 IXk≤x. From

well known results on empirical processes (see, e.g., Shorack and Wellne [33]), for general

distribution function f0, we have

√
n�F̄ − F�∞ = OP (1). (9)

Lemma 1 Under assumption (R) we have, for all j ∈ J ,

�F̂j − Fj,∗�∞ = O(�ϑ̂− ϑ∗�).

Proof. Consider the following decomposition

|F̂j(x)− Fj,∗(x)| ≤
K�

k=1

�
π̂k|Fj,k(x, θ̂k)− Fj,k(x, θk,∗)|+ Fj,k(x, θ∗)|π̂j,k − πj,k|

�

≤
K�

k=1

�
sup

x∈R,θk∈Θk

�Ḟk(x, θk)�k × �θ̂k − θk,∗�+ |π̂j,k − πj,k|
�

≤ max(M, 1)�ϑ̂− ϑ∗�.
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Theorem 1 Under assumption R the ICE quantity is a distance on the finite collection

M∗ (inducing a total ordering), i.e. for all pdf fj j = 1, 2, 3 belonging to M∗ we have

i) ICE(f1, f2) ≥ 0, and ICE(f1, f2) = 0 ⇔ f1 = f2 λ-a.e. (definite positiveness),

ii) ICE(f1, f2) = ICE(f2, f1) (symmetry),

iii) ICE(f1, f3) ≤ ICE(f1, f2) + ICE(f2, f3) (subadditivity).

Proof. i) Let us suppose that f1 �= f2 on a set E with λ(E) > 0, then there exists at least

one point x0 ∈ R such that F1(x0) �= F2(x0), and (F1, F2) being continuous functions over

R, there also exists ε > 0 such that |F1(x) − F2(x)| > 0 on ]x0 − ε, x0 + ε[. To conclude,

it can be deduced that

ICE(f1, f2) ≥
� x0+ε

x0−ε

|F1(x)− F2(x)|
dF1 + dF2

J + 1
> 0.

ii) The symmetry property is straightforward by noticing |F1 − F2| = |F2 − F1| and
that FM∗

∝ �J
j=0 Fj,∗ is invariant by permutation of indices.

iii) The subadditivity is a direct consequence of the triangular inequality for the abso-

lute value and the fact that FM∗
equally considers all the Fj belonging to M∗.

Theorem 2 i) If all the parametric mixture models belonging to the collection M satisfy

conditions A1-6 (given in Appendix 1) and assumptions NE, S1 or S2, G, R hold, then

√
n
����ICE(fj , f0)− ICE(fj , f0)

��� = OP (1) .

ii) Under S1, if conditions A1-6 and assumptions NE, G, R hold, then the ICE criterion

defined in (7) is quasi-consistent in Probability, i.e.

P
�
ĵ = j∗

�
→ 1, as n → ∞. (10)

iii) Under S2, if conditions A1-6 and assumptions NE, G, R hold, then the ICE crite-

rion defined in (7) is consistent in Probability, i.e.

P
�
ĵ = j0

�
→ 1, as n → ∞. (11)
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Proof. i) For simplicity, let us drop the dependence on j in our expression, i.e., fj,∗ := f∗,

Fj,∗ := F∗, f̂j := f̂ , F̂j := F̂ . Now, denote Ψ(·) := |F∗(x) − F (x)|, and consider the

following decomposition

∆(f̂ , f) := |�ICE(f̂ , f)− ICE(f∗, f)| ≤
1

J + 1
(T1 +

J�

l=1

T2(l)),

where

T1 :=

�����
1

n

n�

i=1

�
|F̂ (Xi)− F̄0(Xi)|

�
− Ef0(Ψ)

����� ,

T2(l) :=

�����
1

n

n�

l=1

�
|F̂ (Yi,l)− F̄0(Yi,l)|

�
− Efl,∗(Ψ)

����� .

with Ef0(Ψ) :=
�
R
Ψ(x)dF0(x), Ef∗(Ψ) :=

�
R
Ψ(x)dF∗(x). Wel denote by Fn the σ-algebra

generated by the random variables (X1, . . . , Xn).

We note that

T1 ≤ D1 +R1,1 +R1,2, (12)

where

D1 :=

�����
1

n

n�

i=1

[Ψ(Xi)− Ef (Ψ)]

����� , R1,1 :=
1

n

n�

i=1

���F̂ (Xi)− F∗(Xi)
��� ,

R1,2 :=
1

n

n�

i=1

��F̄0(Xi)− F0(Xi)
�� .

According to the central limit theorem, we have D1 = OP (1/
√
n), and from (9) and sub-

sequently Lemma 1, we obtain R1,1 ≤ |ϑ − ϑ∗| = OP (1/
√
n) and R1,2 ≤

��F̄0 − F0

��
∞

=

OP (1/
√
n). Let us bear that M1 := D1 +R1,1 +R1,2 = OP (1/

√
n).

For the treatment of T2(l), l ∈ J , we drop, for simplicity and without loss of generality,

the dependence on l in our expressions, i.e., (Y1, . . . , Yn) := (Y1,l, . . . , Yn,l), fl,∗ := f∗,

K := Kl, and for k = 1, . . . ,K, ρk(·, ·) := ρk,l(·, ·), (π̂k, θ̂k) := (π̂k,l, θ̂k,l), and (πk,∗, θ̂k,∗) :=

(πk,l,∗, θ̂k,l,∗).

We propose to couple now the sample (Y1, . . . , Yn) with a sample (Ỹ1, . . . , Ỹn) which is

i.i.d. according to f∗, in the following way:
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Yi =
�K

k=1 Ip̂k−1<U≤p̂kρk(Zk,i, θ̂k),

Y̌i =
�K

k=1 Ipk−1<U≤pkρk(Zk,i, θ̂k),

Ỹi =
�K

k=1 Ipk−1<U≤pkρk(Zk,i, θk,∗),

(13)

where pk =
�k

l=0 πl and p̂k =
�k

l=0 π̂l, with the convention π0 = 0 and π̂0 = 0. Then the

term T2 can be treated as follows:

T2 ≤ D2 +R2,1 +R2,2 +R2,3 +R2,4, (14)

where

D2 :=

�����
1

n

n�

i=1

�
Ψ(Ỹi)− Ef∗(Ψ)

������ ,

R2,1 :=
1

n

n�

i=1

���F̂ (Yi)− F∗(Yi)
��� , R2,2 :=

1

n

n�

i=1

��F̄ (Yi)− F (Yi)
�� ,

R2,3 :=

�����
1

n

n�

i=1

�
Ψ(Yi)−Ψ(Y̌i)

�
����� , R2,4 :=

�����
1

n

n�

i=1

�
Ψ(Y̌i)−Ψ(Ỹi)

������ ,

The three first terms in the right hand side of (14) being similar to the three first terms

in (12) we can state that M2 := D2 +R2,1 +R2,2 = OP (1/
√
n).

Term R2,3. We note that

R2,3 ≤
1

n

n�

i=1

IYi �=Y̌i
,

where, denoting ∆π :=
�K

k=1 |π̂k − πk|,

IYi �=Y̌i
=

K�

k=1

(Ip̂k−1∧pk−1<Ui<p̂k−1∨pk−1
+Ip̂k∧pk<Ui<p̂k∨pk), and L

�
IYi �=Y̌i

Fn

�
∼ B(∆π).

Term R2,4. Using the mean value Theorem and the fact that Ψ� is uniformly bounded on

R, we obtain

R2,4 :=
1

n

n�

i=1

�Ψ��∞|Y̌i − Ỹi|,

where

|Y̌i − Ỹi| ≤
K�

k=1

|ρk(Zk,i, θ̂k)− ρk(Zk,i, θk,∗)| ≤ C

K�

k=1

[|Zk,i|+ 1]× |θ̂k − θk,∗|.

11



Let us denote Wi :=
�K

k=1(E(|Zk,i| + 1), m := E(W1) and V := Var(W1). To conclude,

we prove that there exists a constant γ > 0 such that for all ε > 0 there exists an integer

Nε such that P (
√
n∆(f̂ , f)| ≥ γ) ≤ ε, for all n ≥ Nε. Since

���ϑ̂− ϑ∗

��� = OP (1/
√
n) there

exists κ > 0 such that for all δ > 0 there exists Nδ ensuring P (Ac
n) ≥ δ for all n ≥ Nδ

where An,κ :=
�√

n
���ϑ̂− ϑ∗

��� < κ
�
. Let us consider γ > 0 large enough such that:

κ

(γ − κ)2
≤ ε

4J
, and

V
� γ

Cκ
−m

�2 ≤ ε

4J
. (15)

Then,

P (
√
n∆(f̂ , f)| ≥ γ) = P

��√
n∆(f̂ , f)| ≥ γ

�
∩An,κ

�
+ P

��√
n∆(f̂ , f)| ≥ γ

�
∪Ac

n,κ

�

≤ P
��√

n∆(f̂ , f)| ≥ γ
�An,κ

�
+ P

�
Ac

n,κ

�
. (16)

SinceD1 = OP (1/
√
n) andR1,2 = OP (1/

√
n), we can choose ξ such that 2ξ/1−δ = ε/4(J+

1) and there exists a non-negative integer Nξ, such that for all n ≥ Nξ, P (
√
nD1 ≥ γ) ≤ ξ

and P (
√
nR1,2 ≥ γ) ≤ ξ (we suppose here that γ is large enough to satisfy these two

conditions).

We now establish an upper bound the first term in the right hand side of (16) by

P
��√

n∆(f̂ , f)| ≥ γ
�An,κ

�
(17)

≤ P (
√
nM1 ≥ γ|An,κ)

+
J�

l=1

�
P (

√
nM2(l) ≥ γ|An,κ) + P (

√
nR2,3(l) ≥ γ|An,κ) + P (

√
nR2,4(l) ≥ γ|An,κ)

�
.

Using similar reasoning for establishing bounds on the terms involving M2 (as used for

terms involving M1 in (17) ), we note that:

P (
√
nM1 ≥ γ|An,κ) ≤ P (

√
nD1 ≥ γ|An,κ) + P (

√
nR1,1 ≥ γ|An,κ) + P (

√
nR1,2 ≥ γ|An,κ)

≤ P (
√
nD1 ≥ γ)

P (An,κ)
+ P

�
Ac

n,γ |An,κ

�
+

P (
√
nR1,2 ≥ γ)

P (An,κ)

≤ 2ξ

1− δ
≤ ε

4(J + 1)
. (18)
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The terms involving R2,3 in (17) are handled by applying the Tchebychev’s inequality:

P (
√
nR2,3 ≥ γ|An,κ)

≤ P

�
1√
n

n�

i=1

IYi �=Y̌i
≥ γ|An,κ

�

= P

�
1√
n

n�

i=1

�
IYi �=Y̌i

− E(IY1 �=Y̌1
|Fn)

�
≥ γ −√

nE(IY1 �=Y̌1
|Fn)

An,κ

�

≤
var

��n
i=1 IYi �=Y̌i

An,κ

�

n(γ −√
nE(IY1 �=Y̌1

|An,κ))2

≤ κ

(γ − κ)2
≤ ε

4J
. (19)

The R2,4-depending terms in (17) are handled in a similar manner by using again the

Tchebychev’s inequality:

P (
√
nR2,4 ≥ γ|An,κ)

≤ P

�
C �|ϑ̂k − ϑk,∗|√

n

n�

i=1

Wi ≥ γ

An,κ

�

≤ P

�
n�

i=1

(Wi −m) ≥ γ

√
n

C �|ϑ̂k − ϑk,∗|
−m

An,κ

�

≤ P

�
n�

i=1

(Wi −m) ≥ γn

Cκ
−m

�

≤ Var (
�n

i=1Wi)

n
� γ

Cκ
− m

n

�2

≤ V
� γ

Cκ
−m

�2 ≤ ε

4J
. (20)

The proof of i) is ended by collecting results (15–20) and taking δ = ε/4.

ii) First we have:

P (ĵ �= j∗) = P
�
∪1≤j �=j∗≤J

�
�ICE(f̂j∗ , f) > �ICE(f̂j , f)

��

≤
�

1≤j �=j∗≤J

P
�
�ICE(f̂j∗ , f) > �ICE(f̂j , f)

�
. (21)

13



Next, for all 1 ≤ j �= j∗ ≤ J , since ∆j∗,j := ICE(fj , f) − ICE(fj∗ , f) > 0 (possibly

“arbitrarily” small), we suggest to write

�
�ICE(f̂j∗ , f) > �ICE(f̂j , f)

�

=
�
�ICE(f̂j∗ , f)− ICE(fj∗ , f) + ICE(fj , f)− �ICE(f̂j , f) > ∆j∗,j

�

⊇
�
|�ICE(f̂j∗ , f)− ICE(fj∗ , f)|+ |ICE(fj , f)− �ICE(f̂j , f)| > ∆j∗,j

�

⊇
�
|�ICE(f̂j∗ , f)− ICE(fj∗ , f)| >

∆j∗,j

2

�
∪
�
|ICE(fj , f)− �ICE(f̂j , f)| >

∆j∗,j

2

�

Finally noticing that, according to i) in Theorem 1, for all j ∈ J , there exists K > 0

such that for all δ := ε/2(J − 1) > 0, there exists an integer Nδ such that for all n ≥ Nδ:

P (|�ICE(f̂j , f)− ICE(fj , f)| ≥ K/
√
n) ≤ δ, we can define

nj := min

�
n ∈ N :

∆j∗,j

2
≥ K√

n

�
,

which provides us, for all ε > 0, the existence of an integer Nε := max(Nδ, n1, . . . , nJ)

such that, according to (21), for all n ≥ Nε:

P (ĵ �= j∗) ≤
�

1≤j �=j∗≤J

�

k=j∗,j

P (|�ICE(f̂k, f)− ICE(fk, f)| >
K√
n
)

≤
�

1≤j �=j∗≤J

�

k=j∗,j

ε/2(J − 1) = ε.

which concludes the proof.

iii) The proof is entirely similar to the proof of ii) when replacing j∗ by j0 and noticing

that ICE(fj0 , f) = 0

3.1 A Monte Carlo finite sample size approach

When there is no hope to get large observed datasets xn1 := (x1, . . . , xn), (e.g., if n ≤ n0

for some technical reasons) the spirit of the method previously described can nevertheless

be used in a very natural way. Indeed, denoting by ϑ̂j(x
n
1 ) the QMLE of ϑj,∗, j ∈ J ,

based on the observed sample xn1 , we can figure out to evaluate the accuracy of model

f̂j(x, ϑ̂j(x
n
1 )) with f0 , the unknown pdf of the observations (x1, . . . , xn), by generating

independently N i.i.d. samples of size n, Y n
1,� := (Y1,�, . . . , Yn,�), for � = 1, . . . , N , and

estimate the mean value of criterion ICE conditionally on {Xn
1 = xn1}, i.e. mICEj(x

n
1 ) :=

E
�
�ICE(f̂j , f))

 {Xn
1 = xn1}

�
, by the empirical mean
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�mICEj(x
n
1 ) :=

1

N

N�

�=1

�ICE�(f̂j , f)), (22)

where �ICE� corresponds to expression (6) when taking Y n
1,� instead of Y n

1 . Moreover

since the samples (Y n
1,�)1≤�≤N are mutually independent and the random variables 0 ≤

�ICE�(f̂j , f) ≤ 1 we have the Central Limit Theorem (CLT):

√
N( �mICEj(x

n
1 )−mICEj(x

n
1 ))

L−→ N (0,Σj(x
n
1 )), as N → ∞,

which allows us to derive classically parametric bootstrap confidence intervals.s In the

next section dedicated to a simulation study, we will compare the �mICE quantity to its

counterpart based on the Kolmogorov-Smirnov satistics (KS) and the Jensen Shannon

distance (JS), defined respectively by

�mKS(xn1 ) =
1

N

N�

�=1

�KS�(f̂j , f)), �mJS(xn1 ) =
1

N

N�

�=1

�JS�(f̂j , f)). (23)

4 Simulation Study

4.1 Large sample Monte Carlo study

In order to study the qualitative finite sample properties of criterion ICE, we suggest to

test and compare this method to the Kolmogorov-Smirnov (KS) and Shannon-Jensen (SJ)

criteria. Let us use the notation NG[n1, n2](ϑn1,n2
) to define a generic mixture of n1 Gaus-

sian distributions and n2 Gumbel distributions where ϑn1,n2
:= (πn1,n2

, (θi)
n1

i=1, (φj)
n2

j=1) is

composed by πn1,n2
:= (π1, . . . ,πn1+n2−1) the weights vector of the mixture, and (θi)

n1

i=1,

respectively (φj)
n2

j=1, the collections of parameters corresponding to the Gaussian and

Gumbel distributions respectively. We propose to test our criterion on two benchmark

models:

(M1): NG[1, 2](ϑ1,2), with π1,2 = (1/2, 1/4), θ1 = (2, 0.5), φ1 = (0, 2), φ2 = (4, 3).

(M2): NG[2, 1](ϑ1,2), with π1,2 = (1/3, 1/3), θ1 = (0, 1), θ2 = (2, 0.5), φ1 = (3, 2).

For these two models we consider three models in competition labelled by j: when

j = 1, 2, 3 we consider respectively NG[1, 1], NG[2, 1], NG[1, 2].
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The motivation for prescribing the aforementioned mixtures is two fold. First, the

mixtures specified are a combination of symmetric (Gaussian) and asymmetric (Gumbel)

distributions. Also, the parameters have been specified to ensure overlap of individual

populations of components of the mixture i.e. the heterogeneity of the mixed symmetric

and asymmetric densities is not trivial to detect compared to datasets where individual

populations are location separate. Second, we expect a similar qualitative nature of the

mixture to be applicable to the real dataset considered in Section 4. For each mixture,

an intial random variable of size n is generated with the corresopnding parameters. The

parameters of each of the three models in competition are estimated using the iterative

EM algorithm. The initial values for the parameters, for the EM algorithm, of each

of the three models in competition are assumed to coincide with the parameters of the

mixtures being prescribed. In the absence of a closed form solution for updating the

parameters during each iteration of the maximisation step, we employ a method in which

a descretized search in the neighborhood of the current parameters is performed. The

search is performed over a grid of uniformly spaced points and the weighted log-likelihood

of each component is calculated at each of these points. The limits of the grid are defined

as ±0.1 with increments of 0.01 for the location parameter and ±0.01 with increments

of 0.001 for the scale parameter. The parameters of a component of the mixture are

updated, if necessary, by identifying the argument of the maximum of the weighted log-

likelihood evaluated over the grid of points specified. The support of the area/ grid over

which the weighted log-likelihood of a component is maximised, is also updated along

with the updated parameters. The weights of the components of the model are updated

in the successive iteration based on the updated values of the parameters. The method is

assumed to have converged when the global log-likelihood of the model being estimated

varies within a tolerance of 10−10 for fifty successive iterations. Note that the maximisation

of the global log-likelihood implies the maximization of the likelihood of the individual

components of the mixture.

The resulting estimate of the mixture model is used to generate a sample of size

n, whose distance from the initial random variable is indicative of the accuracy of the

estimated parameters. An example of the non-parametric density distributions of the

initial random variable and a sample generated by estimating parameters of different

models from the EM algorithm is shown in Figure 1.

Subsequent to estimation of the model parameters using the EM algorithm, multiple
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(a) (b)

(c)

Figure 1: Nonparametric densities of random variables generated using parameters of

mixture M1 and parameters estimated using the EM algorithm (a) model 1, (b) model 2

and (c) model 3. The mixture corresponds to model 3.

(100) samples are generated using these parameters.The objective of generating multiple

samples with the same estimated parameter set for a given model is to account for the

inherent inaccuracies in the random variable generation. Each of these samples is compared

to the initial random variable using the three metrics - KS, SJ and ICE criteria. The

average of these realizations is assumed to smear out the uncertainities associated with

one realization of random variable generation. For each metric (KS, SJ and ICE), the

average metric is compared for each of the models. A metric is deemed to have selected

a model correctly if the average of the metric for the correct model, known apriori, is the

lowest. This exercise is repeated for 100 such initially generated random variables of the

same assumed mixture model. The success rate i.e. thus number of times each metric

identifies the correct model for different initial random variable sizes (n) is plotted in Fig.
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2. It can be seen that the success rate of all metrics seems to increase with the sample

size. However, the ICE criterion identifies the correct model most of the times.

(a) (b)

Figure 2: Success rates of the metrics in identifying the correct model for (a) Mixture

(M1) and (b) Mixture (M2).

4.2 Simulation methodology

We attempt to relate the distribution of fatigue life typically observed in materials through

numerical simulations that take into account the material anisotropy displayed at the scale

of individual grains. More precisely, we characterize the distribution of the extreme values

of the shear stress resolved along specific crystallographic (slip) directions, averaged over

a grain. For simplicity, we have considered an idealized grain structure (cubes) subject

to monotonic deformation with linear elastic material properties. A schematic of the mi-

crostructure generated is shown in Fig. 3. Previous studies in quantifying the distribution

of fatigue indicator parameters [12] have considered volume averages of driving forces that

include microscale cyclic plasticity in the microstructure obtained from computational ex-

periments. Also, the distribution of the microscale cyclic plasticity in a computational

volume has also been shown to vary with the imposed deformation amplitude [25]. In the

present context of using linear elastic material models subject to tension i.e. no cyclic

plasticity, the simulations would qualitatively approach the high cycle and very high cycle

fatigue regime where the plasticity averaged over the volume of the computational cell
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would be very low. Further, since crack initiation mechanisms that occur on favorably

oriented crystallographic directions (along which the grain averaged resolved shear stresses

are calculated) are being considered, the extremal value of this grain averaged resolved

shear stress would be an indicator of the potency of fatigue crack formation in a particular

grain. Also, while inter-granular interactions are being considered here, the effect of grain

size distribution will not be accounted for due to the simplified microsctructure assumed.

A detailed analysis of the effect of grain size variation and deformation amplitude on the

nature of the distributions indicating fatigue crack potency is left to a later study.

Figure 3: Realization of the idealized microstructure used for the finite element simula-

tions.

The computational cell, shown in Fig. 3, serves as a statistical volume element (SVE)

i.e. a given computational cell is not large enough to capture all the statististical varia-

tions of the fatigue crack formation potency for all combinations of orientation descriptions

for the grains and inter-granular interactions. Thus, multiple realizations are required to

obtain the distribution of the extremal values indicative of the fatigue crack formation

potency. In the computational cell shown in Fig. 3, the different color codes of each grain

indicate that different orientations are assigned to each grain. The orientation of each

grain is specified by a set of Euler angles, using the Bunge notation, which determine the

direction in which the crystallographic directions of each grain are oriented with respect to

a reference frame. Here, the reference frame coincides with the axes describing the com-
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putational cell and the Euler angles are sampled from a uniform orientation distribution

function. Since linear elastic behavior is being considered, only the elastic constants for

the material need to be specified to define the material properties. We have considered the

elastic properties of a material with a face centered cubic crystalline structure (austenitic

stainless steel) for the purpose of these simulations, i.e. the material has three indepen-

dent elastic constants defined in the orientation frame of each grain. The grain averaged

resolved shear stresses are found along each of the possible 12 octahedral slip directions.

The single crystal elastic constants have been adopted from [26].

The boundary value problem is solved by the finite element method [27] using the

software ABAQUS [28]. We explore the distribution of the extreme values of the grain

averaged resolved shear stresses for different boundary conditions and computational cell

size. In this study, the computational cell is subject to uniaxial tension using two bound-

ary conditions viz. free surface boundary condition and generalized periodic boundary

conditions. For the free surface boundary conditions, the top and bottom faces of the

computational cell shown in Fig. 3 remain horizontal with displacement imposed on the

top face along the z direction and the bottom face fixed. No restrictions are placed on the

lateral faces i.e. these faces act as free surfaces. For the periodic boundary conditions,

displacement is imposed along the z direction on the top face of the computational cell

with the constraint that opposing faces of the computational cell remain parallel to each

other. The computational cell size is varied from 5 grains in each dimension to 10 grains

in each dimension with 27 finite elements for each grain. The grain averaged values of

resolved shear stress along all possible slip directions at the peak tensile strain (0.2%)

form the random variable, referred to as the real data set in the subsequent subsection,

from which the extremal value is selected.

4.3 Application to real data set: Results and discussion

Let consider a set of r3 Input random variables

U(r) :=
�
Uk,l,m, (k, l,m) ∈ Sr

3
�
,

with Sr := {1, . . . , r} , valued in a measurable space (U,BU ), where for each triplet

(k, l,m) ∈ S3
r , Uk,l,m represents the resolved shear stresses averaged over a grain in a

particular realization of the numerical experiments. Thus, the set of grain averaged re-
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solved stresses obtained for all the grains from a realization are given by:

Rk,l,m := ξ(k, l,m, U(r), ∂B),

where ξ(·) is treated as a black-box function whose entries are the location of a grain in

the computational cell (k, l,m), the random input in the block U(r), and the boundary

condition ∂B. The input U(r) is considered random since each computational realization

has randomly assigned grain orientations. We denote by

X(r) := max
1≤k,l,m≤r

Rk,l,m.

Let us suppose that we repeat the experiment n times and collect n extreme values

Xn
1 (r) := (X1(r), . . . , Xn(r)), which forms the dataset. Our aim is to statistically model

the distribution of X(r)’s for different levels of discretization r, and boundary conditions

∂B. For our simulations, (k, l,m) vary from 5 to 10 yielding a computational cell size of

125 to 1000 grains and n = 300. The method of identifying the best model to estimate

the underlying mixture of X(r) is similar to the one outlined in the previous section. We

start by assuming various possible models that would describe the underlying mixture and

estimate the parameters of the model using the EM algorithm. The limits and increments

of the location and scale parameters used to define the grid of points over which the

search is performed to optimize the weighted log-likelihood remain the same. However,

the tolerance used as criterion for the convergence of the method, based on the variation of

the global log-likelihood of the model being estimated for fifty successive iterations of the

EM algorithm, is changed to 10−6. A comparison of the pdfs of the dataset and a random

variable of size n = 300 generated from the estimated parameters, using non-parametric

density estimates, is shown in Figs. 4 and 5, for different assumed mixture models. It can

be seen that the EM algorithm estimates the parameters of the mixture model accurately,

not only for the location and scale parameters for the dominant distribution, but also

the parameters of the smaller components of the mixture that present as perturbations

(bumps). From the non-parametric density estimates (Figs. 4 and 5), it can be seen that

the dataset is a mixture of many distributions (possibly 3 - 4).

To explain the existence of a mixture of distributions, we recall that the dataset is a

collection of the extreme values of the grain averaged resolved shear stresses for multiple

realizations of numerical experiments. Consider a computational cell (assembly of grains)

where the entire assembly is deformed homogenously i.e. the deformation of each grain
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(a) (b)

Figure 4: Comparison of the non-parametric density estimates for the dataset X300
1 (5),

the set of extreme values of the grain averaged resolved shear stress from 300 numerical

experiments for the 125 grain assembly with free surface BC and the random sample with

parameters estimated from EM algorithm. Assumed model (a) NG[0, 3] and (b) NG[1, 3].

(a) (b)

Figure 5: Comparison of the non-parametric density estimates for the dataset X300
1 (10),

the set of extreme values of the grain averaged resolved shear stress from 300 numerical

experiments for the 1000 grain assembly with periodic BC and the random sample with

parameters estimated from EM algorithm. Assumed model (a) NG[1, 3] and (b) NG[0, 4].

is equal to the imposed macroscopic deformation. In this case, the extreme value of the
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resolved shear stress would be a function of the grain orientations alone and a collection of

such extreme values would converge to a unique distribution. However, in the present case,

the interaction of grains, more specifically, the kinematic constraints resulting from the

difference in the grain orientations, coupled with the boundary conditions introduce per-

turbations from homogenous deformation of the assembly. This results in the convergent

extreme value distribution being corrupted that manifests as a mixture of distributions.

We present a conjecture later for multiple distributions acting as domains of attraction.

Nevertheless, assuming the existence of a model that has mixture of distributions, an

approach to order the different possible mixture models is presented next.

Since the exact model describing the underlying mixture is not known apriori, a number

of models are considered, in competetion, to obtain the best fit to the dataset, X(r).

The models being considered for the estimation of the mixture are model 1: NG[0, 1],

model 2: NG[1, 1], model 3: NG[0, 2], model 4: NG[1, 2], model 5: NG[0, 3], model

6: NG[2, 2], model 7: NG[1, 3] and model 8: NG[0, 4]. The parameters of each model

are estimated using the EM algorithm outlined earlier. Subsequent to determining the

parameters of each model, a random sample of size n is generated to find the distance

(ICE) from the dataset, X(r). This process is repeated for 100 samples generated to

yield the average distance, �ICE, for each model. The rationale for using multiple sample

to arrive at an averaged metric is similar to the one presented in the earlier study - to

smear out the inherent randomness of one realization of sample generation. This approach

assumes significance in the current context of a small sample size (n = 300). The model

that most accurately fits the dataset is assessed based on the minimum �ICE for all the

models considered. The accuracy of �ICE in identifying the correct model that describes

the underlying mixture of datasets has already been demonstrated. This approach of

considering models in competetion allows the ranking of the different models considered.

The �ICE for all the models considered for different sizes of the computational cell is plotted

in Fig. 6. The values of the �ICE for all the models and combinations of computational

cell size and boundary conditions are listed in Table 3.

From Fig. 6, it is apparent that a better fit to the data is obtained by using a higher

number of distributions. In almost all cases, a single Gumbel distribution provides the least

accurate description of the observed distribution. This is particularly important since the

fatigue life distributions are often fit to a single extreme value distribution [16, 17, 18, 19].

The accuracy of a single Gumbel distribution in describing the distribution is dependent
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(a) (b)

Figure 6: Variation of �ICE of different assumed mixture models for computational cells

consisting of (a) 125 grains and (b) 1000 grains.

on the nature of the boundary conditions and the computational cell size. The periodic

BC show a marked increase in the accuracy of a single Gumbel distribution describing

the distribution, compared to free surface BC, for an increased computational cell size.

We theorize that the extent of perturbation from a homogenously deformed assembly, and

the consequent deviation from a single extreme value distribution describing the data, is

dependent on both the inter-granular interactions and the boundary conditions. For the

case of the 1000 grain assembly with periodic BC, we have noticed that in more than half

of the realizations, the location of the grains where the extreme values of the resolved shear

stresses occur, do not lie on any of the boundaries. It can be argued that the increase

in the computational cell size for the periodic BC reduces the deviation of the observed

extreme value from the idealized scenario (one extreme value distribution describing the

dataset) by mitigating one of causes - boundary conditions.

It is also noteworthy that the same mixture model predicts the distribution most ac-

curately for both boundary conditions for a given size of the computational cell - model 7

(NG[1, 3]) for the 125 grain assembly and model 8 (NG[0, 4]) for the 1000 grain assembly.

We conjecture that a normal distribution acts as an attractor since the extreme values

are being sampled from a smaller population of outliers, as explained later. Note that

the models involving the normal distribution are identified as the best descriptors of the

distribution for the smaller computational cell size (125 grains).
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Conjecture on multi-regime model. One possible physical explanation regarding the mix-

ture of Gumbel and Normal distributions selected by the ICE criterion, should be the

existence of a multi-regime model. Let us define, for simplicity, a generic model with L

so-called regimes. We conjecture that there exist two types of attraction domains, i.e., the

so-called Gumbel attraction domain AGumbel = {Ci}i=1,...,L1
and Normal attraction domain

ANormal = {Ci}i=L1+1,...,L, justified as follows:

• given {U(r) ∈ Ci}, i = 1, . . . , L1, the set of resolved shear stresses from a numer-

ical realization, Rk,l,m, (k, l,m) ∈ S3, is quasi-homogeneous (mixing enough and

marginally approximately equally distributed) in a such a way that the Dabrowski’s

[29] convergence theorem for extreme value of mixing random sequences applies, i.e.

L(X(r)|U(r) ∈ Ci) � G(µi,βi), i = 1, . . . , L1.

• given {U(r) ∈ Cj}, j = L1+1, . . . , L, the set of resolved shear stresses from a numer-

ical realization, Rk,l,m, (k, l,m) ∈ S3, is not quasi-homogeneous, as it is supposed

to hold under AGumbel, and contains a small collection of Gaussian outliers. In such

a case, the extreme values being taken from among a small population of Gaussian

random variables, and the convergence for extreme values of Gaussian samples being

known to converge at a (possibly) slower rate, i.e. O(log(n)−1), see Han and Fer-

reira [30], we suppose that these maxima are themselves approximately Gaussian,

i.e. L(X(r)|U(r) ∈ Ci) � N (mi,σ
2
i ), j = L1 + 1, . . . , L.

In conclusion, we have the following mixture model structure:

X(r) =

L1�

i=1

max
1≤k,l,m≤r

Rk,l,m

� �� �
IU(r)∈Ci� �� �

+
L�

j=L1+1

max
1≤k,l,m≤r

Rk,l,m

� �� �
IU(r)∈Cj� �� �

distribution�
L1�

i=1

fG(µi,βi) × πi +
L�

j=L1+1

fN (mj ,σ
2

j )
× πj ,

where πj = P (U(r) ∈ Cj), j = 1, . . . , L.

Comment. Recall that the EM algorithm computes for each Xi(r), i = 1, . . . , n, the

probabilities to belong to the groups characterized by conditions (Cj)1≤j≤L, providing a

very useful exploratory tool to posteriorly investigate the particular structure of each block

based on its extreme value observation.
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5 Summary and conclusions

In this work, we have addressed the problem of identifying the model that best fits datasets

containing a mixture of distributions. The parameters of the model are identified using

the EM algorithm. A generalized approach has been presented for the maximization step

of the EM algorithm through a neighborhood search method that is valid for models

with a mixture of distributions from different families, for which closed form solutions to

update the parameters do not exist. It is to be noted that the approach is also valid for

mixtures from the same family of distributions. To test the accuracy of the models in

describing the mixture, a novel metric, the Integrated Cumulative Error (ICE) has been

defined. The ICE metric has been shown to be more efficient in identifying the correct

model that describes the underlying mixture than commonly used approaches, such as the

Kolmogorov-Smirnov statistic.

The approach developed is used to identify the underlying mixture of the distribution

of indicators of fatigue crack formation potency (grain averaged resolved shear stresses),

based on linear elastic analysis for polycrystals with idealized grain structure and elastic

anisotropy. The observations indicate that a mixture model characterizes the distribution

more accurately than a single extreme value distribution, which is commonly followed. It

is to be noted that the methods developed in this work have not been applied, yet, to

experimentally observed fatigue life distributions. The solution in this case is direct, since

observations of significant deviations from an assumed unique extreme value distribution

that characterizes the fatigue life distributions are widely found in literature. The use of

computational models is motivated from the numerous constraints of performing a large

number of experiments in the regime of very high cycle fatigue life of a material. However,

correlating distributions from computational models with experimental observations for

the same material would improve predictions of fatigue life distributions. Further, refining

the computational models to (a) better describe the variation of microstructure and (b)

account for damage accumulation through cyclic plasticity might provide more insight into

the fatigue life distribution of a material. Nevertheless, the use of the methods developed

in this work would better characterize the tails of the distributions which would be infor-

mative for minimum life based design approaches. Finally, since the approach developed

here is general to the number and types of distributions that form a mixture, it can be

used for characterizing fatigue life distributions through multiple failure mechanisms.
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7 Appendix 1. Behavior of the MLE when the model is

possibly misspecified

In this section, we briefly recall some basic material, from White[38], regarding the asymp-

totic behavior of the MLE when the model is possibly misspecified. The first assumption

defines the structure which generates our observations.

Assumption (A1). The i.i.d. sample Xn
1 = (X1, . . . , Xn), n ≥ 1, is distributed according

to a cdf f0 on R whose density, with respect to the Lebesgue measure, is denoted f0.Since

F0 is not known apriori, we choose a family of cdfs which may or may not contain the

true structure of F0. It is usually easy to choose this family to satisfy the next assumption.

Assumption (A2). The family of cdfs F (·, ϑ) admits a density f(·, ϑ) (which will some-

times be denoted for convenience fϑ(·)) with respect to the Lebesgue measure on R, which

is measurable in x for all ϑ in Θ a compact subset of Rp, and continuous in ϑ for all x ∈ R.

Next, we define the quasi-log-likelihood of the sample as

Ln(X
n
1 , ϑ) :=

1

n

n�

i=1

log f(Xi, ϑ), (24)

and we define a quasi-maximum likelihood estimator (QMLE) as the parameter ϑ̂n which

solves the maximization problem

ϑ̂n = argmax
ϑ∈Θ

Ln(X
n
1 , ϑ). (25)

In Theorem 2.1, White [38] establishes, under Assumptions A1 and A2, the existence, for

all n ≥ 1, of a measurable QMLE ϑ̂n. Given the existence of a QMLE, let us precisely define

its properties. It is well that known when {F (·, ϑ), ϑ ∈ Θ} contains the true structure

(F (·) := F (·, ϑ0) for some ϑ0 in the interior of Θ), the MLE is consistent for ϑ0 under

suitable conditions, see e.g. Theorem 2 in Wald [37], Theorem 5.a in LeCam [32]. Without
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this restriction Akaike [23] has noted that since Ln(X
n
1 , ϑ) is a natural estimator for

E(log(f(X1, ϑ)), ϑ̂n is a natural estimator of ϑ∗ that minimizes the Kullback Leibler [31]

divergence (K), i.e.

ϑ∗ := argmin
ϑ∈Θ

K(f, fϑ), where K(f, fϑ) := E

�
log

�
f(X1)

f(X1, ϑ)

��
. (26)

To support the Akaike’s observation that ϑ̂n is a natural estimator for ϑ∗, White [38]

impose the additionnal condition.

Assumption (A3).

i) E(log(f0(X1)) exists.

ii) | log(f(x, ϑ))| ≤ m(x) for all ϑ ∈ Θ, where m is integrable with repect to f0.

iii) K(f, fϑ) has a unique minimum at point ϑ∗ in Θ.

When assumption (A3) ii) holds, ϑ∗ is globally identifiable. In Theorem 2.2, White [38]

establishes, under assumptions A1–A3, the strong ϑ∗-consistency of the QMLE defined in

(25), i.e.

ϑ̂n
a.s.−→ ϑ∗, as n → ∞. (27)

With additionnal conditions (given below), White [38] also shows that the QMLE is asymp-

totically normally distributed. When the partial derivatives exist, we define the matrices

An(ϑ) :=

�
1

n

n�

i=1

∂2 log(f(Xi, ϑ))

∂ϑk∂ϑl

�

k,l=1,...,p

,

Bn(ϑ) :=

�
1

n

n�

i=1

∂ log(f(Xi, ϑ))

∂ϑk

× ∂ log(f(Xi, ϑ))

∂ϑl

�

k,l=1,...,p

.

If expectation also exists, we define the matrices

A(ϑ) :=

�
E

�
∂2 log(f(X1, ϑ))

∂ϑk∂ϑl

��

k,l=1,...,p

,

B(ϑ) :=

�
E

�
∂ log(f(X1, ϑ))

∂ϑk

× ∂ log(f(Xi, ϑ))

∂ϑl

��

k,l=1,...,p

.

Finally, when the appropriate inverse exists, define

Cn(ϑ) := An(ϑ)
−1Bn(ϑ)An(ϑ)

−1,

C(ϑ) := A(ϑ)−1B(ϑ)A(ϑ)−1.
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Assumption (A4). The collection {∂ log((f(x, ϑ))/∂ϑk, k = 1, . . . , p} are measurable

functions of x for each ϑ ∈ Θ and continuously differentiable functions of ϑ for each x in

R.

Assumption (A5). The two collections
���∂2 log((f(x, ϑ))/∂ϑk∂ϑl

�� , k, l = 1, . . . , p
�
and

{|∂ log((f(x, ϑ))/∂ϑk × ∂ log((f(x, ϑ))/∂ϑl| , k, l = 1, . . . , p}, are dominated by functions

integrable with respect to f0 for all x ∈ R and ϑ ∈ Θ.

Assumption (A6).

i) The parameter ϑ∗ is an interior point of Θ. ii) The p×p matrix B(ϑ∗) is nonsingular.

iii) The parameter ϑ∗ is a regular point of A(ϑ).

Under assumptions A1–6, White (1982, Theorem 3.2) establishes the asymptotic nor-

mality of the QMLE, i.e.

√
n(ϑ̂n − ϑ∗)

d−→ N (0, C(ϑ∗)), as n → +∞. (28)

Remark. It is important to recall that if we suppose g(·) = f(·, ϑ0) for ϑ0 ∈ Θ, then the

QMLE ϑ̂n is simply called MLE and if assumptions A1-A6 hold, the MLE is consistent

and asymptotically normally distributed according to (25) and (28) when replacing ϑ∗ by

ϑ0.

8 Appendix 2. Mixtures of Gaussian and Gumbel distribu-

tions

8.1 Identifiability

In this section, we propose to establish the identifiability of finite univariate mixtures of

Gaussian and Gumbel distributions. Let us first establish a more general result on two-

group univariate mixtures. Consider L and G two families of distribution functions defined

by:

L := {L(x; θ) : x ∈ R, θ ∈ Θ} , G := {G(x;φ) : x ∈ R,φ ∈ Ψ} (29)
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where Θ and Ψ denote parametric spaces. We consider the set H of all finite mixtures

sourcing their distributions in groups L and G defined by:

H :=



H(x) =

n1�

i=1

ciLi(x) +

n1+n2�

j=n1+1

cjGj(x),

n1+n2�

i=1

ci = 1, ci > 0, (n1 + n2) ∈ N∗ × N∗



 .(30)

The class of mixture models H is said identifiable if and only if H has the unique repre-

sentation property:

n1�

i=1

ciLi(x) +

n1+n2�

j=n1+1

cjGj(x) =

n�

1�

k=1

c�kL
�
k(x) +

n�

1
+n�

2�

l=n�

1
+1

c�lG
�
l(x)

which implies n1 = n�
1, n2 = n�

2, and for each i, 1 ≤ i ≤ n1 and respectively, each j,

1 ≤ j ≤ n2, there is some 1 ≤ k ≤ n1 and respectively, some 1 ≤ l ≤ n2, such that Fi = F �
k

and Gj = G�
l.

Theorem 3 Let F and G two families of cdfs with respective transforms α(t) and γ(t)

defined for t respectively in Dα and Dβ (the domains of definition of α and γ) such that

the mappings L → α and G → γ are linear and one-to-one. We denote by Iα and Iγ, the

largest interval contained respectively in Dα and Dβ. Let us denote for all F ∈ F ∪ G by

ρF , its associated transform. Suppose that there exists a total ordering of F ∪ G, denoted
by � and satisfying G ≺ F if (F,G) ∈ F × G, such that for all (F1, F2) ∈ (F ∪ G)2 the

condition F1 ≺ F2 implies (i) IρF1
⊆ IρF2

(ii) the existence of a certain t1 in the closure

of DρF1
(t1 being independent of ρF2

) such that

lim
t→t1

ρF1
(t)

ρF2
(t)

= 0,

then the class of finite mixture H is identifiable.

Proof. The proof of this result is entirely similar to the proof of Theorem 2 in Teicher

(1963).

Corollary 4 Let F be the family of Gaussian cdfs and G, the family of Gumbel cdfs, then

the class of finite mixtures sourcing their distributions in groups F and G is identifiable.

Proof. Let us consider α(·) and γ(·) the respective moment generating functions of

F and G, where Dα = R and Dγ ⊂ R. We order each family lexicographically by:
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F1 ∼ N (m1, σ
2
1) ≺ F2 ∼ N (m2, σ

2
2) if σ1 > σ2 or if σ1 = σ2 but m1 < m2, and

G1 ∼ G(µ1,β1) ≺ F2 ∼ G(µ2,β2) if β1 > β2 or if β1 = β2 but µ1 < µ2. We cross or-

der families F and G by: G ∈ G ≺ F ∈ F since DψG
⊂ DαF

.

Case (F1, F2) ∈ G × G. The moment generating function of a Gumbel distribution G(µ,β)
is given by

γ(t) = eµtΓ(1− βt), βt /∈ N∗,

and, for i = 1, 2, the largest interval contained in DρFi
is IρFi

= (−∞, 1/βi), which implies

IρF1
⊆ IρF2

if F1 ≺ F2. If β2 < β1 then there exist t1 = 1/β1 such that

lim
t→t1

ρF2
(t)

ρF1
(t)

= lim
t→ 1

β1

eµ2tΓ(1− β2t)

eµ1tΓ(1− β1t)
= 0.

If β2 = β1 and µ1 < µ2 there exists t1 = −∞ such that

lim
t→t1

ρF2
(t)

ρF1
(t)

= lim
t→−∞

eµ2t

eµ1t
= 0.

Case (F1, F2) ∈ F × F . The moment generating function of a Normal distributionN (m,σ2)

is given by

α(t) = emt+ 1

2
σ2t2 , t ∈ R,

and for i = 1, 2, DρFi
= IρFi

= (−∞,+∞). In that case, application of Theorem 3 is

straightforward by taking t1 = +∞ (the calculations are similar to Teicher (1963) who

considers the Laplace transform instead of the moment generating function).

Case (F1, F2) ∈ G × F . Since our total ordering is completed by DρF1
⊂ DρF2

⇒ F1 ≺ F2,

we have for all F1 ∼ G(µ1,β1) ∈ G and all F2 ∼ N (m2,σ
2
2), IρF1

= (−∞, 1/β1) ⊆ IρF2
=

(−∞,+∞), and there exists t1 = 1/β1 such that

lim
t→t1

ρF2
(t)

ρF1
(t)

= lim
t→ 1

β1

emt+ 1

2
σ2t2

eµ1tΓ(1− β1t)
= 0,

which concludes the proof.
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8.2 Checking the assumptions

Assumption G. For the Normal distribution and the Gumbel distribution, it is enough to

simulate random variables according to N (0, 1) and respectively, G(0, 1) distribution, and
consider the transformation ρ(y,m, σ) := (y−m)/σ and ρ(y, µ,β) := (y−µ)/β. Moreover

the condition (8) is clearly satisfied in the Gaussian and Gumbel case since generically for

all (m,m�) ∈ [m,m]2 and (σ,σ�) ∈ [σ,σ]2 we have

|ρ(x,m,σ)− ρ(y,m�,σ�)| =

����
x−m

σ
− x−m�

σ�

����

≤ (|x|+m)

����
σ� − σ

σσ�

����+
����
m−m�

σ�

����

≤ (|x|+m)

����
σ� − σ

σ2

����+
����
m−m�

σ

����

≤ max(1,m)

min(σ,σ2)
(|x|+ 1)(|σ − σ�|+ |m−m�|)

= C(|x|+ 1)�θ − θ��.

for C := max(1,m)/min(σ,σ2).

Assumption R. For the Gaussian pdf FN (m,σ2)(·) := FN (·, θ) where θ = (m,σ) ∈ [m,m]×
[σ,σ] we have, for all x ∈ R,

����
∂

∂m
FN (x, θ)

���� =

����fN (0,1)

�
x−m

σ

�
1

σ

���� ≤
1√
πσ2

≤ 1√
πmin(σ2,σ3)

,

����
∂

∂σ
FN (x, θ)

���� =

����fN (0,1)

�
x−m

σ

�
1

σ2

���� ≤
1√
πσ3

≤ 1√
πmin(σ2,σ3)

.

For the Gumbel pdf FG(µ,β)(·) := FG(·, θ) where θ = (µ,β) we have, for all x ∈ R,

����
∂

∂µ
FG(x, θ)

���� =

����fG(0,1)
�
x− µ

β

�
1

β

���� ≤
1

eβ2
≤ 1

emin(β2,β3)
,

����
∂

∂β
FG(x, θ)

���� =

����fG(0,1)
�
x− µ

β

�
1

β2

���� ≤
1

eβ3
≤ 1

emin(β2,β3)
.

Assumption A3 ii). For any Gaussian pdf fN (m,σ2) with parameters (m,σ) ∈ [m,m] ×
[σ,σ], we have the following upper-bound:

fN (m,σ2)(x) ≤ 1�
2πσ2

�
Im≤x≤m + exp

�
−1

2

�
x−m

σ

�2
�
Ix≤m

+exp

�
−1

2

�
x−m

σ

�2
�
Ix≥m

�
:= bN (x).
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For any Gumbel pdf fG(µ,β) with parameters (µ,β) ∈ [µ, µ]× [β,β], we can propose a

similar upper-bound whose construction is detailed hereafter. For this purpose, we note

that for u ∈ (0,+∞), the function r(u) := exp(−u)u is strictly increasing on (0, 1] and

strictly decreasing on (1,+∞). Thus for all x > 0, since exp(x/β) > exp(x/β) > 1 we

obtain r(exp(x/β)) > r(exp(x/β)). Next for all x ≤ 0, since exp(x/β) < exp(x/β) ≤ 1 we

also obtain r(exp(x/β)) > r(exp(x/β)). Using this observation, we establish easily that:

fG(µ,β)(x) ≤
1

β

�
Iµ≤x≤µ + r

�
exp

�
x− µ

β

��
Ix≤µ + r

�
exp

�
x− µ

β

��
Ix≥µ

�
:= bG(x).

In conclusion, we have

log

�
n1�

i=1

fN (mi,σ
2

i )
(x) +

n2�

i=n1+1

fG(µi,βi)(x)

�

≤ log (n1bN (x) + n2bG(x))

≤ log(n1 + n2) + log (bN (x)) + log (bG(x)) := m(x),

which implies that f0 must have to integrate exp(x/β̄) over R. Note that this condition

always holds if f0 is a mixture of Normal and Gumbel distributions.

Assumption A3 iii). The identifiability property established in Section 8 is a necessary

condition but cannot insure that A3 iii) is automatically satisfied.

Assumption A4-5. Checking assumption A4 is straightforward. We can prove, similar to

the result established for A3, that A5 is satisfied if f0 admits exponential moments.

The remaining standard assumptions involving f0, i.e. A1, A3 i) and iii), A6, are generally

imposed.
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Model j n Mean Std Dev %-selection

j = 1 100 (0.0141, 0.0980, 0.0392) [0.0034, 0.0046, 0.0071] {13, 25, 1}
j = 2 100 (0.0120, 0.0967, 0.0344) [0.0022, 0.0043, 0.0071] {36, 43, 56}
j = 3 100 (0.0116, 0.0969, 0.0351) [0.0021, 0.0044, 0.0065] {51, 32, 43}
j = 1 300 (0.0083, 0.0582, 0.0108) [0.0021, 0.0031, 0.0016] {13, 21, 2}
j = 2 300 (0.0069, 0.0571, 0.0094) [0.0015, 0.0025, 0.0018] {29, 37, 52}
j = 3 300 (0.0064, 0.0568, 0.0096) [0.0011, 0.0025, 0.0016] {58, 43, 46}
j = 1 1000 (0.0050, 0.0326, 0.0039) [0.0014, 0.0014, 0.0005] {8, 14, 2}
j = 2 1000 (0.0039, 0.0317, 0.0034) [0.0008, 0.0014, 0.0005] {17, 45, 46}
j = 3 1000 (0.0035, 0.0316, 0.0034) [0.0006, 0.0015, 0.0005] {75, 41, 52}

Table 1: (M1) Mean and Std. Dev. of 100 estimates of �ICE, �KS, �SJ and rate of

selection.

Model j n Mean Std Dev %-selection

j = 1 100 (0.0187, 0.1070, 0.0313) [0.0065, 0.0134, 0.0068] {2, 10, 5}
j = 2 100 (0.0103, 0.0951, 0.0250) [0.0013, 0.0037, 0.0048] {54, 42, 58}
j = 3 100 (0.0106, 0.0953, 0.0254) [0.0018, 0.0035, 0.0050] {44, 48, 37}
j = 1 300 (0.0151, 0.0706, 0.0094) [0.0068, 0.0141, 0.0027] {1, 6, 2}
j = 2 300 (0.0056, 0.0553, 0.0064) [0.0009, 0.0021, 0.0011] {70, 66, 55}
j = 3 300 (0.0061, 0.0566, 0.0064) [0.0011, 0.0025, 0.0010] {29, 28, 43}
j = 1 1000 (0.0146, 0.0512, 0.0053) [0.0068, 0.0169, 0.0020] {0, 1, 0}
j = 2 1000 (0.0031, 0.0309, 0.0023) [0.0005, 0.0012, 0.0003] {87, 75, 61}
j = 3 1000 (0.0039, 0.0323, 0.0024) [0.0007, 0.0017, 0.0003] {13, 24, 39}

Table 2: (M2) Mean and Std. Dev. of 100 estimates of �ICE, �KS, �SJ and rate of

selection.
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Model label Model 125-FS 125-PBC 1000-FS 1000-PBC

1 NG[0, 1] 0.015154 0.023928 0.014659 0.010650

2 NG[1, 1] 0.008158 0.007290 0.008982 0.009624

3 NG[0, 2] 0.010069 0.008906 0.008480 0.012682

4 NG[1, 2] 0.007748 0.008262 0.006828 0.008576

5 NG[0, 3] 0.009824 0.007076 0.006731 0.008937

6 NG[2, 2] 0.007598 0.006328 0.006679 0.007552

7 NG[1, 3] 0.005013 0.005218 0.006713 0.008418

8 NG[0, 4] 0.005018 0.007088 0.006239 0.006226

Table 3: �ICE of 100 estimates of ICE of different mixtures for various computational

cell sizes and boundary conditions. FS denotes free surface and PBC denotes periodic

boundary conditions. The number denotes the number of grains in the computational

cell.
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