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Abstract: We present a theoretical and experimental comparison of three 
X-ray phase-contrast techniques: propagation-based imaging, analyzer-
based imaging and grating interferometry. The signal-to-noise ratio and the 
figure of merit are quantitatively compared for the three techniques on the 
same phantoms and using the same X-ray source and detector. Principal 
dependencies of the signal upon the numerous acquisition parameters, the 
spatial resolution and X-ray energy are discussed in detail. The sensitivity 
of each technique, in terms of the smallest detectable phase shift, is also 
evaluated. 
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1. Introduction 

X-ray phase-contrast imaging is a rapidly evolving research field. As opposed to conventional 
radiology, which derives image contrast from the differences in the X-ray attenuation 
properties of the imaged materials, phase-contrast techniques also rely on the wave phase 
shifts undergone by X-rays passing through an object. This possibility is particularly attractive 
for the imaging of samples made of light elements (e.g. soft biological tissues) and/or when 
high X-ray energies are used, which can result in very small attenuation contrast but non-
negligible X-ray phase shift. Phase-contrast imaging methods are therefore very promising, in 
particular for applications in biology, medicine and materials science. 

A number of phase-contrast techniques have been proposed and applied over the last 
twenty years [1–10], differing both in the setup and in the physical principles exploited for 
detecting the phase signal. In a recent publication [11], we have presented a comparison 
between different key parameters of the image formation in three phase-contrast techniques 
among the most applied and promising for biomedical applications: propagation-based 
imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GI). In particular, 
analytical expressions relating the signal-to-noise ratio (SNR) and the figure of merit (FoM) 
to the experimental and acquisition conditions were theoretically derived and compared. 

A quantitative experimental comparison between these phase-contrast imaging methods in 
terms of detail visibility and clinically relevant parameters does not exist yet. Additionally, 
from published works using a single technique, it is not possible to extrapolate data for an a-
posteriori comparison because of the large variety of experimental conditions applied to the 
different techniques. In principle, these parameters should be optimized in order to maximize 
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the sensitivity of the technique depending on the characteristics of both the sample to be 
investigated and the source/X-ray beam (e.g. source size and divergence, spatial and temporal 
coherence, energy etc). The objective of this work was to compare the three methods by using 
the same X-ray source and beam characteristics, the same imaging detector and test objects, 
and to study how the sensitivity would change if these parameters were to be modified. This 
work can help in choosing, among the three considered phase-contrast techniques, the most 
suitable one for given sample characteristics and experimental setup. 

In the present article, we first recall the expressions for SNR and FoM and their validity 
conditions, and use them to derive analytical expressions for the phase sensitivity. Then we 
provide numerical estimates of the SNR and FoM for our PBI, ABI and GI experimental 
setups, and study the dependency of these quantities upon relevant acquisition parameters 
such as the system spatial resolution and the X-ray energy. An experimental comparison of 
the achievable FoM for the three considered phase-contrast imaging techniques is finally 
presented, which confirms the theoretical predictions. 

2. Theory 

We will briefly review the main features of the three techniques, and recall the expressions for 
the intensity registered by the detector as a function of the object attenuation, object phase 
shift and used acquisition parameters. Only the case of parallel beam geometry and of 
monochromatic radiation, characterized by a definite value of the wavelength λ, is considered 
here. The theoretical treatment for the ABI and GI techniques refers to their typical one-
dimensional (1-D) implementation. However, the extension of the obtained formulas to 2-D 
geometries is straightforward. For sake of simplicity, we assume the case of a photon 
counting detector and a 100% detection efficiency. 

In the following, we will indicate with z the optical axis, while the (x,y) coordinates define 
the object and detector planes. 

Propagation-based imaging (PBI) [2, 3]. The sample is irradiated with highly spatially 
coherent X-rays, and the detector is set at a certain distance d from the sample. The perturbed 
wave interferes upon free-space propagation after the sample, according to Fresnel diffraction. 
This gives rise to typical interference fringes, localized at the edges of the different sample 
structures where variations in the phase shift arise. The intensity on the detector can be 
expressed by the transport of intensity equation (TIE) [12] in the near-field diffraction regime. 
The latter is valid when the absorption and phase shift are sufficiently slowly varying in the 
object plane (x,y) and/or when the propagation distance d is small [13]. In the case of quasi-
homogeneous absorption in the object plane, the TIE can be further simplified and becomes: 

 2
0 1

2
⊥= − ∇ 

 
 PBI

d
I I T

λ
φ

π
 (1) 

where the dependence upon the spatial variables (x,y) has been omitted for simplicity, and 
where IPBI is the X-ray intensity incident on the detector, I0 is the intensity incident on the 
sample, T is the sample transmission, and 2

⊥∇ φ  indicates the Laplacian in the (x,y) plane of the 

phase shift introduced by the sample. 
The PBI technique requires the use of highly spatially-coherent radiation. However, as 

shown by Wilkins and associates [3], it is largely insensitive to even broad polychromaticity 
in the near-field diffraction regime, so that laboratory microfocus sources can be efficiently 
used. 

Analyzer-based imaging (ABI) [4–6]. The sample is irradiated with parallel and quasi-
monochromatic X-rays and a perfect crystal, placed downstream the sample and set at an 
angular position very close to the Bragg angle for diffraction, is used to analyze the radiation 
transmitted, scattered and refracted through the sample. Only X-rays incident in a very narrow 
angular range, defined by the so-called rocking curve (RC) of the analyzer crystal (which 
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features a full-width at half maximum on the order of several microradians), are diffracted 
onto the detector [6]. We will only consider here the case of a symmetrically-cut crystal, and 
we will assume that its diffraction plane corresponds to the plane (y,z). Under the geometrical 
optics approximation, which is valid for large values of the Takagi number [5, 14], the 
intensity incident on the detector can be expressed as: 

 ( )0= + ΔABI an yI I T R θ θ  (2) 

where R is the analyzer RC [11], θan is the angular position of the analyzer crystal and 
( )2Δ = − ∂ ∂y yθ λ π φ  is the component of the refraction angle in the direction y parallel to the 

crystal diffraction plane. 
The ABI technique requires a parallel and quasi-monochromatic beam incident onto the 

sample. Although the perfect crystal usually placed before the sample provides the necessary 
collimation/monochromatization of the beam, this goes at the expense of the available flux, 
which is significantly reduced. For this reason, until now the technique has been mainly used 
with synchrotron radiation. 

Grating interferometry (GI) [7–9]. The sample is irradiated with highly spatially coherent 
X-rays, and the radiation transmitted through the object is analyzed by a pair of gratings. The 
first is generally a phase grating, made of lines of period p1 which introduces a periodic phase 
shift onto the beam. Downstream of it, at one of the fractional Talbot distances dTalbot for the 
considered wavelength λ, the pattern created by the phase grating gives rise to periodic 
fringes. These are analyzed by a second grating made of absorbing lines that have the same 
periodicity p2 of the fringe pattern. Assuming that the grating lines are oriented in the x 
direction, and denoting with yG the relative position of the two gratings in the perpendicular 
direction y, the intensity on the detector can be expressed as [15]: 

 ( )0 0
2

2 2
1 sin ;= + + + Δ = Δ
  

  
  

GI GR G y GR G yI I T T V y I T TG y
p S

π π
ψ θ θ  (3) 

where TGR is the average transmission factor of the gratings, V is the fringe visibility, ψ is the 
shift of the sinusoidal fringe profile measured when no object is present in the beam and 

2= TalbotS p d  is the angle corresponding to one grating period. 

The fringe visibility is strongly dependent on the projected source size 
= src Talbotproj d Lσ σ , where srcσ  is the standard deviation of the source intensity distribution 

(assumed Gaussian shaped) and L is the distance of the first grating from the source. If we 
assume that the gratings are defect-free and the transmission through their absorbing lines is 
equal to zero, V can be expressed as [16]: 

 ( )
( )

( ) ( ) ( )22 22 22 2
22 22 4 42 2

22 2
1

8 1 8

2 1

− −− −
∞

= −
=  projproj projp n np p

n

e e e
n

V
π σπ σ π σ

π π
 (4) 

where the approximation on the right-hand side of Eq. (4) is valid if 2 1 2>proj pσ π  (all the 

higher-order terms can be discarded in this case). High spatial coherence is therefore required, 
while moderate beam polychromaticity is less critical to image quality degradation in GI. 

However, as demonstrated by Pfeiffer and associates [9], even conventional X-ray sources 
can be used for GI provided that an appropriate “source grating” is introduced. This grating 
has the effect of creating a multitude of self-coherent beams whose fringes sum 
constructively. 

Thermal and mechanical stabilities are an important issue for both the ABI and GI setups 
because they make use of additional optical elements (perfect crystals and gratings, 
respectively) to analyze the radiation transmitted through the sample. This can be particularly 
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relevant especially when long acquisitions are carried out, like in computed tomography or 
multiple-image processing for phase retrieval. 

2.1 Signal-to-noise ratio and figure of merit for an edge signal: definitions 

While the absorption signal depends on the point-wise sample absorption properties and is 
characteristic of the sample bulk regions, the phase-contrast signal, due its differential nature, 
is formed at the boundaries between structures of the sample showing different refractive 
indices. In order to quantify the amplitude of this type of signal, it is useful to introduce the 
edge signal-to-noise ratio (SNR). Among the possible definitions, we chose the following two 
complementary SNRs [11]. The first quantity, that we will call peak edge SNR, can be 
defined as: 

 
( )

( )
( )max min max min

2 22

− −
≡ edge peak

backback

A I I A I I
SNR

Istd I
 (5) 

where Imin and Imax are the minimum and maximum intensities of a mean intensity profile 
across the edge, obtained by averaging the signal over n pixel rows in the direction parallel to 
the edge; A is the area defined as = ⋅A np p , where p is the pixel size (assumed square). Iback is 

the average intensity in a background region of area A, and ( )backstd I  indicates its standard 

deviation. The right side of Eq. (5) is derived under the assumption that the noise is Poisson 
distributed (pure statistical noise). 

The SNR is strongly dependent on the number of photons used for the image acquisition. 
To compare images acquired with different X-ray fluxes, a more appropriate quantity is the 

figure of merit ≡FoM SNR D , corresponding to the SNR normalized to the radiation dose 

D delivered to the sample during the acquisition. The latter is proportional to the X-ray 
intensity incident on the sample, so that it can be written as dose 0D = K I , where doseK  is a 

constant depending on the X-ray energy and on the sample geometry and composition. In the 
general case, doseK  cannot be calculated analytically but needs to be estimated with the use of 

Monte Carlo simulations. The FoM is independent of the X-ray flux, under the hypothesis that 
the noise is Poisson distributed, and can be expressed as: 

 
( )max min

02

−
=edge peak

dose back

A I I
FoM

K I I
 (6) 

A second definition for the SNR can be introduced if, instead of the minimum and maximum 
values of the intensity, the integral of all the intensity values on a profile across the edge is 
considered. Let us assume that the edge is parallel to the axis x, i.e. that it is perpendicular to 
the sensitivity direction y of both the ABI and GI techniques. In analogy to Eq. (5), the 
integral edge SNR can then be defined as: 

 
( )1

0

1

0

t .

,

2

+

−

+

−

−
≡
 

 

a x

backa x
in edge a x

backa x

dy dx I x y I
SNR

dy dx I

 (7) 

where 2a is the length of the considered profile and Lx = x1-x0 is its width in the direction 
parallel to the edge. The integral edge SNR has the advantage of taking into account also the 
extent of the edge, which is an important parameter for quantifying its visibility. The 
corresponding FoM is then given by: 
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( )1

0

1

0
0

int .

,

2

+

−

+

−

−
=
 

 

a x

backa x
edge a x

dose backa x

dy dx I x y I
FoM

K I dy dxI

 (8) 

2.2 Theoretical expressions for signal-to-noise ratio and figure of merit 

In our previous work, we derived theoretical expressions for both the peak and integral edge 
FoMs for the three considered techniques, by combining Eqs. (1-3) with Eqs. (6) and (8) [11]. 
In the case of ABI and GI, the additional assumption of small refraction angles is considered, 
so that the functions R and G can be safely replaced by their linear approximation around Δθy 
= 0 [6, 15]. 

The following expressions for the peak edge FoM can then be obtained [11]: 

 ( )2 2
, max min

2 2
− ∇ − ∇PBI peak

dose

d A
FoM

K

λ
φ φ

π
 (9) 
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'

2
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ABI peak y
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K R

θ
θ

θ
 (10) 
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,
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' ; 0
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1 sin

+
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Δ = Δ
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+ +
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 

 
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 


G

GR G y GR Talbot
GI peak y y

dosedose G y
G

y
AT G y AT Vd p

FoM
pKK G y

V y
p

π
ψ

θ
θ π θ

θ π
ψ

 (11) 

The peak edge FoM for PBI is proportional to the difference of the phase Laplacian at the two 
sides of the edge, while the ABI and GI FoMs are proportional to the refraction angle. In the 
practical case of an extended source and a detector with finite spatial resolution, it must be 
noted that the measured refraction angle and phase are the convolution of their actual values 
with the point-spread function (PSF) of the imaging system, i.e., in Eqs. (9-11), 

,Δ = Δ ∗y y ideal PSFθ θ , ( )2 2
max max∇ = ∇ ∗ideal PSFφ φ  and ( )2 2

min min∇ = ∇ ∗ideal PSFφ φ . 

ABI shows a strong dependence upon the angular position of the analyzer. In fact, the 

quantity ( ) ( )an anR θ R θ′  is maximized at the end of the slopes of the RC, while it is 

minimum at the peak of the rocking curve (which we will henceforth call the ‘top’ position). 
This is shown in Fig. 1, where the RC (Fig. 1(a)), its first derivative (Fig. 1(b)) and the 

quantity ( ) ( )an anR θ R θ′  (Fig. 1(c)) are reported, together with the plot of the RC second 

derivative (Fig. 1(d)). In the plots, the X-ray energy is 26 keV and the Si(333) reflection has 
been considered for both the monochromator crystal (placed before the sample) and the 
analyzer crystal. These correspond to the acquisition parameters used in our experimental 
setup (see section 3). The reported profiles have been calculated with XOP [17]. Under the 
considered experimental conditions, the FoM is strongly peaked at positions θan ~2 µrad (Fig. 
1(c)). 
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Fig. 1. (a) Theoretical ABI RC in the case of monochromator and analyzer in Si(333) Bragg 
reflection geometry, and for an X-ray energy of 26 keV. (b) First derivative of the RC, (c) ratio 
between the first derivative of the RC and its square root, (d) second derivative of the RC. The 
RC values have been calculated with XOP [17]. 

The expression derived for the FoM in GI is in agreement with the results presented in 

previous works [18–20]. The GI, peak 0 dose GI, peakSNR = I K FoM  in fact, increases with photon 

statistics, being proportional to the square root of the photon intensity (see Eq. (11)). Besides, 
the SNR and FoM also increase with the fringe visibility V and with the ratio dTalbot/p, as 
obtained by Revol and associates [19] and Modregger and associates [20]. However, the 
image noise was shown to be independent of the used gratings positions when the phase 
stepping method is applied to separate the absorption, refraction and scattering contributions 
[19,20]. This is not the case if a single image is considered. Similarly to ABI, in fact, in GI the 
FoM is strongly dependent upon the gratings position yG through the quantity 

( ) ( )G GG y G y′  (see Eq. (11)). In Fig. 2, the plots of G (Fig. 2(a)), G′  (Fig. 2(b)), 

( ) ( )G GG y G y′  (Fig. 2(c)) and G′′  (Fig. 2(d)) are reported, as a function of G Talboty d . A 

period of the second grating p2 = 2 μm, a Talbot distance dTalbot = 125 mm and a visibility V = 
0.34 have been considered, which correspond to the parameters of our experimental setup (see 
section 3). For simplicity, the shift of the sinusoid ψ has been set to zero in the plots in Fig. 2. 
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Fig. 2. (a) Plot of the function G in the GI technique, for a second grating period p2 = 2 µm, a 
Talbot distance dTalbot = 125 mm, a visibility V = 0.34 and a shift of the sinusoid ψ = 0. (b) First 
derivative of G, (c) ratio between the first derivative of G and its square root, (d) second 
derivative of G. 

The quantity ( ) ( )G GG y G y′  assumes its highest value at positions that are very close to 

the slopes of the function G, where the first derivative is maximized (see Fig. 2(c)). More 
precisely, we can observe from Eq. (11) that the FoM is highest when the function: 
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is minimized. It is easy to verify that this occurs when 

 ( )2

2

2 1
sin 1 1+ = − − −

 
 
 

Gy V
p V

π
ψ  (13) 

and that, in this case, the function f is equal to: 
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2 2

1

2 1 1

−
=

− + −

V V
f

V V
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The maximum obtainable value for the peak edge FoM is therefore: 

 
2 2

, ,max 24
2

1 1
2

1

− + −
= Δ

−
GR Talbot

GI peak y

dose

AT d V V
FoM

pK V
π θ  (15) 

The linear approximation of the functions R and G (here used to derive Eqs. (10) and (11), 
respectively in the ABI and GI techniques) is best satisfied at the slopes of these functions. At 
these positions, in fact, their first derivative is maximized (see Figs. 1(b) and 2(b)) and their 
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second derivative is equal to zero (see Figs. 1(d) and 2(d)). However, at the top position of the 
RC in ABI and at the top and bottom positions of the fringe period in GI, the first derivative is 
equal to zero and the second derivative is maximized. As it will also be shown on 
experimental images in section 4.2, the linear approximation is not appropriate in this case. A 
more accurate approximation is provided by a second-order Taylor expansion of the functions 
R and G. The following modified expressions for the peak edge FoM can thus be found for 
the top and bottom positions: 

 
( )
( )

( )2

, ,
2 2
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Δ an
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dose an
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θ

θ
 (16) 
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G ydose
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The FoM is in this case proportional to the squared value of the refraction angle and to the 
second derivative of the functions R and G. 

In our previous work [11] analytical expressions for the integral edge FoM were also 
derived. We assume that the phase profile across the edge can be described as 

( ) ( ) ⋅obj step= - H * P yφ φ , where stepφ  is the total step in the phase shift across the edge, H is the 

Heavyside step function and ( ) 1/22 2 2
, ,2 exp 2

−
= −  obj obj y obj yP yπσ σ  is a normalized Gaussian 

function defining the smoothness of the object edge. 
Analytical expressions for the integral edge FoM can be obtained by convolving the ideal 

intensity distribution (Eqs. (1-3) with the PSF of the imaging system, 

( ) 1 2 2 2 2
, , , ,2 exp 2 2

−
= − −  sys sys x sys y sys x sys yP x yπσ σ σ σ , and by developing Eq. (8): 
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where we have introduced the quantities: 2 2

PBI sys.PBI,y obj,yσ σ + σ≡ , 2 2

ABI sys.ABI,y obj, yσ σ + σ≡  and 

≡ 2 2
GI sys.GI,y obj,yσ σ +σ , with σsys.PBI,y, σsys.ABI,y and σsys.GI,y being the standard deviations in the y 

direction of the PBI, ABI and GI imaging system PSFs, respectively. The quantities σPBI, σABI 
and σGI take into account the effect of both the imaging system PSF and the edge smoothness 
in increasing the width of the edge profiles. For all the techniques, the integral edge FoM is 
proportional to the edge phase step (see Eqs. (18-20). 

2.3 Phase sensitivity 

The integral edge FoM provides a way to directly compare the signal in the three phase-
contrast techniques. It is in fact dependent on the same object parameter (i.e. the phase shift) 
in all three techniques. By making use of this important result (Eqs. (18-20), we will now 
proceed to a quantitative comparison of the PBI, ABI and GI sensitivities, by estimating in 
particular the smallest phase shift detectable by each of these techniques. 
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Let us consider an object detail providing a very weak phase signal and, for simplicity, 
negligible absorption. Therefore, the linear approximation for the RC and for the function G 
will be valid for ABI and GI, respectively. Let us also assume the case of near-field 
diffraction regime for PBI. Equations (18-20) can thus be used to describe the detail integral 
edge FoM. 

Similarly to the case of conventional absorption imaging, the object detail is visible in the 
image if the modulus of the SNR associated to its boundaries is large enough to allow 
distinguishing the detail from the surrounding region (background). We can thus write, for 
instance in the case of PBI (see Eq. (18)): 

 02
,int. 0 ,int . 3.88 10−= = ⋅ ≥x

PBI edge dose PBI edge step SNR

PBI PBI

d L I
SNR I K FoM K

λ
φ

σ σ
 (21) 

where KSNR is an arbitrary threshold. By inverting Eq. (21) we obtain: 

 min,

0

25.76≥ ⋅ SNR PBI PBI
step PBI

x

K

d L I

σ σ
φ φ

λ
 (22) 

The condition for the visibility of the detail is that the absolute value of the phase shift is 
larger than a certain minimum value; the latter, for a given setup, is inversely proportional to 
the square root of the beam intensity incident onto the object. This is not surprising since the 
image noise is directly related to the number of photon counts: if the exposure time is 
increased, smaller features in the object will therefore become visible. 

In a similar way we obtain, for ABI and GI respectively: 
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If we now assume the intensity of the beam incident onto the object to be the same in the three 
cases, in order to deliver the same radiation dose to the sample, the ratio of the smallest 
detectable phase shift in PBI and ABI is given by: 
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The last part of Eq. (25) denotes the fact that the ratio between the two sensitivities is also 
equal to the ratio between the ABI and PBI integral edge FoMs obtainable for the same object 
detail (see Eqs. (18) and (19)). 

The ratio of the smallest detectable phase shift in GI and ABI can be expressed by: 
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 (26) 

for a generic working point respectively on the RC and on the function G. Note that 

ABI,int.edge GI,int.edgeFoM FoM  is also equal to the ratio between the two peak edge 

FoMs, ABI,peak GI,peakFoM FoM , if sys,ABI,y sys,GI,yσ σ  (see Eqs. (10) and 11). If we consider only 

the positions where the sensitivity is maximized in ABI and GI, we can write: 
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where θan,max indicates the analyzer position corresponding to the highest value of the FoM. In 
section 4.1, we will use Eqs. (25) and (27) to calculate the ratio of the smallest detectable 
phase shift in PBI, ABI and GI techniques for the parameters used in our experimental 
implementation. We will also describe how the sensitivities and their ratios for the different 
techniques (Eqs. (25-27) can be changed when the various acquisition parameters are 
modified. 

3. Experimental setup and conditions 

The experimental verification was carried out at the BM5 beamline of the European 
Synchrotron Radiation Facility (ESRF). The X-ray beam is produced by a bending magnet 
characterized by a magnetic field of 0.82 T; the source full-width at half maximum (FWHM) 
is about 270 µm (horizontal) × 80 µm (vertical) and the detector was placed at about 55 m 
from the source. X-rays with an energy of 26 keV (energy resolution ΔE/E ≈10−4) were 
selected with a fixed-exit Bragg-Bragg double-crystal monochromator. The three different 
setups required by the PBI, ABI and GI techniques were mounted in turn, in order to image 
the same test objects in similar acquisition conditions. In all cases, images were recorded with 
the FReLoN CCD camera [21]. The effective pixel size at the sample position was about 7.5 
μm. 

The first test phantom consisted of two horizontal nylon wires with diameters of 200 μm 
and 350 μm, respectively. The values of the real and imaginary parts of the complex refractive 
index for nylon at 26 keV are: δ = 3.50·10−7, β = 1.29·10−10 [22]. The beam attenuation at the 
centre of the two wires is therefore very low, respectively 0.7% and 1.2%, while the 
corresponding phase shifts are respectively 9.2 rad and 16.1 rad. 

The second phantom was a Lucite parallelepiped of section 40 × 40 mm2 and thickness 2.9 
mm, in which a small groove is made (300 μm deep and 825 μm wide). The section of the 
hole can be well approximated by a circumference arc. Like the polymer wires, this groove 
produces very low absorption contrast (1.1%) with respect to the Lucite matrix, but a phase 
shift of 15.6 rad (δ = 3.94·10−7 and β = 1.39·10−10 for Lucite at 26 keV [22]). The phantom 
was imaged with the groove oriented in the horizontal direction. 

In the case of PBI, three sample-detector distances were considered: (7 ± 0.5) cm (almost 
pure absorption regime), (57 ± 1) cm, (150 ± 1) cm. When acquiring images with the ABI and 
GI techniques, the distance between the sample and the detector was set to (57 ± 1) cm. In 
order to avoid the contribution from “inline” phase-contrast, the propagation distance should 
be very small. However, this was not possible due to ABI and GI setups constraints. The 
propagation distance was chosen to be the same for ABI and GI for working under similar 
experimental conditions. 

In ABI, two Si(333) crystals were used to further monochromatize the incoming beam and 
to analyze the beam exiting the object, respectively. The rotation axis (x) of the crystals was 
perpendicular to both the optical axis (z) and the vertical direction (y). The phantoms were 
imaged at the following positions of the analyzer RC (expressed as percentage of the 
maximum RC intensity): ± 10%, ± 50% and 100% (top) positions for the nylon wires, and ± 
10%, ± 50% and + 90% positions for the groove. 

For the GI acquisitions, a silicon π-shifting grating (G1), with period p1 = 3.99 μm and 
thickness t1 = 34 μm, and a gold absorption grating (G2) with period p2 = 2.00 μm were used. 
The exact thickness of the gold lines in G2 is unknown, but a conservative assumption is that 
it corresponds to an X-ray absorption of at least 90% at 26 keV. The two gratings were set 
with their lines oriented horizontally, so that the refraction sensitivity direction is vertical like 
in the case of ABI. The average intensity transmission through both gratings was calculated 
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theoretically to be about 50%. G1 and G2 were set at a mutual distance of 12.5 cm (3rd 
fractional Talbot distance for X-rays of 26 keV). It must be noted that this is not the optimal 
acquisition condition for GI, as larger distances would have provided a larger sensitivity (see 
section 4.1 below) at the used beamline. This choice, however, was determined by the 
geometry of the available pair of gratings. The periods p1 and p2 (designed in order to account 
for the beam divergence), together with the distance from the source (~55 m) dictate in fact a 
spacing between the gratings of about 125 mm. The measured fringes visibility (see Eq. (3)) 
was 34% in these experimental conditions. Phase-stepping acquisitions were performed by 
considering 9 equispaced grating positions along one fringe period. 

The dose estimation was performed by using a calibrated ionization chamber (PTW 
semiflex 31002, PTW Freiburg, Germany) that was scanned through the incoming X-ray 
beam. The measured values for the skin dose in air are reported in Table 1 for all sets of 
acquisitions. The uncertainty in each measurement is ± 0.1 mGy. The variations of the dose 
for the three propagation distances in PBI and the two sides of the RC in ABI are due to 
variations over time of the X-ray beam flux. 

Table 1. Measured values of the skin dose in air for the images acquisition 

Measured skin dose in air (mGy)  
PBI ABI GI 

 7 cm 57 cm 150 cm −10% −50% top  + 90%  + 50%  + 10%  

Wires 93.6 49.7 73.1 62.5 32.8 26.4  37.2 80.2 183.0 
Groove 89.6 56.3 72.5 76.6 35.6  25.6 39.5 76.6 79.6 

4. Results and discussion 

4.1 Estimation of the FoM 

In the experimental conditions above described, the theoretical ratio between the ABI and PBI 
integral edge FoMs is 11.6 (see Eq. (25)), while that between ABI and GI ones is 8.7 (cf. 
Equation (27)). This means that, for the same dose delivered to the sample, ABI can detect 
phase variations 11.6 times smaller than those visible in PBI, and 8.7 times smaller than those 
visible in GI. In calculating these values, we have assumed the widths σPBI, σABI and σGI 
(taking into account both the effect of the imaging system PSF and the smoothness of the 
object edge) to be essentially determined by the PSF of the detector, which is estimated to be 
around 15 µm (i.e. two pixels). As pointed out in section 2.3, the ratio between the ABI and 
GI integral edge FoMs is also equal to the ratio between the respective peak edge FoMs, if 

ABI GIσ σ  (see Eqs. (10-11) and (19-20). A general value for ABI,peak PBI,peakFoM / FoM , instead, 

cannot be calculated because the two terms depend on different quantities that are related to 
the imaged object ( ∝ABI,peak yFoM Δθ  and ∝ ∇2

PBI,peakFoM φ ) (see Eqs. (9-10). 

For the considered experimental parameters, the ratio between the ABI and GI sensitivities 
at the “top” (and also “bottom”, for GI) positions of the RC and of the function G, 
respectively, can be calculated from Eqs. (16) and (17). ABI at these positions is in principle 
able to detect refraction angles that are 6.7 times smaller than those detectable in GI, for the 
same radiation dose to the sample. 

It is important to remark that the sensitivities above estimated are dependent on the 
particular setup that was used and on the chosen acquisition parameters. The FoM for GI may 
be improved for higher-order Talbot distances, and the PBI FoM for higher sample-to-
detector distances. The optimal working condition, however, is dependent on the source size, 
as we will discuss in the following. The ABI sensitivity can change as well if a different 
crystal reflection is chosen. A low-order reflection, for instance Si(111), would give a lower 
sensitivity, while higher-order ones, like Si(444), would provide larger sensitivities. In this 
case, in fact, the width of the RC will be smaller and its first derivative larger. As a 

#172142 - $15.00 USD Received 10 Jul 2012; revised 2 Sep 2012; accepted 8 Sep 2012; published 29 Nov 2012
(C) 2012 OSA 3 December 2012 / Vol. 20,  No. 25 / OPTICS EXPRESS  27681



consequence, appropriate controller systems may be needed for improving the crystal 
stability. 

Other relevant quantities affecting the sensitivity are the source projected size σproj, the 
width σ of the total object edge – imaging system PSF and the X-ray energy. 

The effect of the smoothing operated by the parameter σ is more critical for PBI than it is 
for ABI and GI: ∝ -3 / 2

PBI,intFoM σ , while ∝ -1/ 2
ABI and GI,intFoM σ  (see Eqs. (18-20). However, 

the GI sensitivity is also affected by the source size through the dependency of the visibility 
upon σproj (see Eq. (4)). While a larger distance dTalbot should improve the FoM as it decreases 
the angle corresponding to one grating period, 2 TalbotS = p d  (see Eq. (11)), this effect is 

counterbalanced by the increase of the projected source size (which decreases V). The optimal 
distance providing maximum sensitivity can be calculated numerically, and is equal to 

0.17 opt 2 src 2 srcd 0.4 p L FWHM p L σ  [20]. This implies for the BM5 beamline of the ESRF 

an optimal inter-grating distance of about 55 cm, if we assume perfect optical elements and 
grating lines oriented in the horizontal direction. At 26 keV, the 13th fractional Talbot 
distance (equal to 54 cm) can provide, in theory, a sensitivity 2.6 times better than that 
obtainable for the distance 12.5 cm used in the experiment. 

It is useful to point out that, in the case a third “source grating” is used to shape the X-ray 
beam from an extended source, only the width of the produced small beams affects the 
visibility, while the total width of the source contributes to the blurring parameter σ. 

The dependence of the sensitivity upon the X-ray energy is different for the three 

techniques. In PBI, according to Eq. (18), ∝ -2
PBI,int 0 dose PBI,intSNR = I K FoM E  (the phase shift 

being inversely proportional to the energy, i.e. -1
Eφ ∝ ). In ABI, instead, 

∝ -1
ABI,int 0 dose ABI,intSNR = I K FoM E  because the analyzer angular sensitivity increases with the 

energy, approximately as ( ) ( )′ ∝an anR θ R θ E  (Eq. (19)). In fact, the RC first derivative is 

approximately inversely proportional to the Darwin width of the crystal, which is in turn 
inversely proportional to the energy [23]. For GI, if the distance between the gratings is kept 
fixed (the optimal distance being independent of the energy) and if the visibility is assumed to 

be constant, again ∝ -2
GI,int 0 dose GI,intSNR = I K FoM E  like in the PBI case. In a real 

experimental setup, however, the dependence of the visibility upon the energy cannot be 
neglected in general. The transmission through the absorbing lines in the second grating, 
indeed, can substantially differ from 0 in the case of high energies. This is a well-known 
problem: very high aspect-ratio gratings that are thick enough to absorb high energetic X-rays 
are technically challenging to be manufactured. A non-zero transmission through the 
absorbing lines can largely affect the fringe visibility and therefore the system sensitivity can 
be considerably decreased with respect to its theoretical values. 

When very high X-ray energies are used, ABI may more easily provide high sensitivities 
compared to other phase-contrast imaging techniques. It therefore presents a big advantage for 
all those applications in which thick or high atomic number materials have to be investigated 
(e.g. some biomedical applications, such as imaging of whole and large human organs). 

4.2 Experimental results 

PBI, ABI and GI planar images of the two test phantoms (wires and groove) were acquired 
under the experimental and acquisition conditions described in section 3. All images have 
been normalized by using the corresponding “whitefield” and “darknoise” images (the first 
taken without the object in the beam, the latter with the detector not being illuminated). 
Expanded views of the 350 µm diameter wire and of the groove from PBI images recorded at 
the three considered sample-to-detector distances are reported in Fig. 3. For each object, the 
grayscale is the same for the three distances. It can be noted that the absorption and phase-
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contrast signals for the groove and for the wire are reversed given the “reversed” shapes of the 
two objects. 

When the propagation distance increases, the visualization of the object is improved 
because the magnitude of the X-ray interference fringes becomes larger. This is in agreement 
with what predicted by theory (Eq. (1)) in the case of propagation distances that are 
sufficiently small for the near-field diffraction regime to hold. 

Groove  in 
Lucite

d=7 cm d=57 cm d=150 cm

350 μm
nylon wire

 

Fig. 3. PB images acquired at 3 different sample-to-detector distances: expanded views in 
small regions of interest in the 350 µm diameter nylon wire and in the groove in the Lucite 
phantom. 

In order to quantitatively estimate the strength of the signal produced by the object edges 
relative to the background noise, we calculated the peak edge SNR following the definition in 
Eq. (5). The integral edge SNR definition is not appropriate in this case, because the full edge 
signal can be very wide due to the shape of the imaged objects and thus it can mix up with the 
absorption signal. 

The maximum and minimum values for the intensity at the edges were calculated by 
averaging each of them over horizontal lines of 30 pixels. The average of several values of the 
background intensity, each one being the mean of the pixel counts over a different region of 
30 pixels, and the related standard deviation, were also computed. The used SNRs (and their 
associated uncertainties) are the results of averaging calculations of the SNR (based on Eq. 
(5)) done in different regions of the image. Finally, the corresponding FoM was calculated by 
using the measured skin doses in air reported in Table 1. Results are shown in Fig. 4, for the 
top and bottom edges of the 200 µm diameter wire (Fig. 4(a)), of the 350 µm diameter wire 
(Fig. 4(b)) and of the small groove in Lucite (Fig. 4(c)). We can see that the increase of the 
FoM with the propagation distance is linear for all the considered objects, in agreement with 
Eq. (9), valid under the assumption of near-field diffraction regime. In the case of the groove, 
the FoM assumes negative values, since the edge signals are negative. The largest absolute 
values for the FoM are observed for the wires (slightly larger in the case of the thinner wire), 
while the smallest values are obtained for the groove. 
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Fig. 4. Calculated values of the figure of merit (FoM) of the PBI edge signal for three different 
objects: (a) the 200 μm diameter nylon wire, (b) the 350 µm diameter nylon wire, (c) the 
groove in the Lucite phantom. Values at both the top and bottom edges are reported. 

Images of the same test objects acquired with the ABI technique are presented in Fig. 5, 
for five different positions of the analyzer along its RC. The grayscale level has been adjusted 
independently for each of the images in order to optimize the object visualization. All images, 
(with the exception of the “top position” one) show opposite contrast at the two object edges. 
Unlike PBI, in ABI the signal is to a first approximation proportional to the refraction angle, 
which has opposite signs at the two edges. At the “top position”, instead, as we have seen (Eq. 
(12)), the signal is proportional to the square of the refraction angle, which has the same value 
at the two object sides: the X-rays undergoing refraction at the two edges, in fact, are 
attenuated by the analyzer by the same amount. 

Contrary to PBI, in ABI the objects absorption can hardly be evaluated from the raw 
unprocessed images, because the refraction signal is both very strong and more extended 
compared to that obtained in PBI. This is directly related to the signal dependence on the first 
derivative of the phase (different from zero almost everywhere in the considered objects) 
rather than on its Laplacian (which has large values only at the very edges) (see Eqs. (1) and 
(2)). 
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Fig. 5. AB images acquired at 5 different orientations of the analyzer crystal: expanded views 
in small regions of interest in the 350 µm diameter nylon wire and in the groove in the Lucite 
phantom. 
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Fig. 6. Calculated values of the figure of merit (FoM) of the ABI edge signal for three different 
objects: (a) the 200 μm diameter nylon wire, (b) the 350 µm diameter nylon wire, (c) the 
groove in Lucite. Values at both the top and bottom edges are reported. The zero on the x axis 
corresponds to the Bragg condition (top) for the analyzer crystal. 

For all phantoms the calculation of the FoM was carried out like in the case of PBI, 
independently for both the bottom and top objects edges (Figs. 6(a,b,c)). In all the three cases 
the highest FoM is achieved at the two positive and negative RC slopes, in agreement with 
what foreseen by the theory (Eq. (10) and Fig. 1(c)). The values are instead minimized at the 
top position and at the tails of the RC, where the RC first derivative is small. These results are 
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in agreement with previous experimental studies [24]. The reversed sign of the FoM values 
for the wires and the groove are due to the opposite directions of the refraction angles at their 
edges. Note that the positive values of the shown FoM are always slightly larger in modulus 
than the negative ones, differently from what predicted theoretically. One possible 
explanation is that the linear approximation of the RC is not very accurate when the refraction 
angles are large (like at the edges of the objects). In that case, the variations in the intensity 
for positive or negative displacements on the RC are not the same: they are in fact bigger 
when moving to angles corresponding to larger RC derivatives. 

In ABI, the FoM presents the largest values in the case of the 350 µm nylon wire and its 
smallest values for the 200 µm wire and for the groove, while in PBI the largest values are 
provided by the 200 µm wire. This is again due to the different dependence of the two 
techniques on the phase shift (see Eqs. (1) and (9)). As a result, PBI ( ∝ ∇2

PBIFoM φ ) is more 

sensitive to high object frequencies, while ABI ( ∝ ∂ ∂ABIFoM yφ ) is more sensitive to lower 

ones, as it was also experimentally shown by Pagot and associates [25]. Moreover, we also 
wish to remark that the FoM for ABI is considerably larger than that obtained in PBI (this fact 
is already evident from the images). 

GI images of the horizontal 350 µm nylon wire and of the groove are reported in Fig. 7, 
for nine relative positions of the two gratings along one fringe period (note that the first and 
the last images have been acquired at exactly one period displacement, p2 = 2.00 µm). Also in 
this case, the grayscale level has been adjusted independently for each image in order to 
optimize the object visualization. 

yG= 0 μm

Groove  in 
Lucite

350 μm
nylon wire

0.25 μm 0.75 μm 1 μm 1.25 μm 1.50 μm 1.75 μm 2 μm0.50 μm

 

Fig. 7. GI images acquired at 9 different relative positions of the two gratings along one fringe 
period: expanded view in small regions of interest in the 350 µm diameter nylon wire and in 
the groove in the Lucite phantom. 

The image contrast varies considerably depending on the corresponding position on the 
intensity curve G and in particular on the first and second derivatives of G. Images similar to 
those obtained at the RC slopes with the ABI technique can be observed at positions 
corresponding to the slopes of the intensity function G (yG = 0.25 µm and yG = 1.25 µm for 
the nylon wire and yG = 0.75 µm and yG = 1.75 µm for the groove) (Fig. 2(a)). Like for ABI, 
also in this case the contrast is reversed when moving from one slope to the other one since 
the first derivative of G has opposite signs at these points. Images acquired at the “top 
position” of the function G (at yG = 0.75 µm and yG = 1.00 µm for the nylon wire and at yG = 
0.25 µm for the groove) show a contrast similar to that obtained at the “top position” of the 
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RC since in this case the refracted X-rays are preferentially attenuated with respect to those 
that were not deviated. Interestingly, images showing an opposite type of contrast are 
obtained in GI at the “bottom position” of the intensity function G (for instance, image at yG = 
1.75 µm for the nylon wire). In this case, in fact, the X-rays refracted in both directions give 
rise to positive intensity variations in the image compared to the undeviated X-rays, as 
foreseen from the intensity curve in Fig. 2(a). This type of contrast is to some extent similar to 
the so-called dark-field imaging obtained in the variant of ABI employing Laue diffraction 
[26,27]. The “bottom position” image is also visible in the case of the groove (yG = 1.25 µm) 
but the white GI refraction signal is here superposed to the black “propagation” contrast due 
to the finite sample-to-detector distance. Note that the various positions on the fringe period 
are shifted for the groove with respect to the wire because of a long term drift of the gratings 
over time (the two series of images were acquired a few hours apart). 

The calculation of the FoM for the GI images was performed as for the PBI and ABI 
techniques. Results are presented in Fig. 8. The experimental FoM profiles resemble those 
obtained theoretically by using a linear approximation for the intensity function G (see Eq. 
(11) and Fig. 2(c)). Unlike the theoretical case, however, the experimental FoM values never 
go to zero because at both the “top” and “bottom” positions, where the first derivative of the 
function G vanishes, the linear approximation is inaccurate. In this case the equation for the 
FoM derived from a second-order Taylor expansion of the function G (Eq. (17)) can provide a 
better estimate. 
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Fig. 8. Calculated values of the figure of merit (FoM) of the GI edge signal for three different 
objects: (a) the 200 μm diameter nylon wire, (b) the 350 µm diameter nylon wire, (c) the 
groove in the Lucite phantom. Values at both the top and bottom edges are reported. 

Like in the ABI case, the largest FoM values are obtained for the thickest wire, while the 
thinner wire and the groove provide the smallest. This is not surprising since the two 
techniques are expected to be sensitive to the same physical quantity (the one-directional first 
derivative of the phase shift, to first approximation). Therefore the objects that give the largest 
signals for ABI are expected to provide the largest signals also for GI. By comparing the 
amplitude of the FoM values in the different techniques, we see that the values computed in 
GI are larger than those obtained from PB images but 3 to 5 times smaller than those obtained 
in ABI. By using Eq. (27), we had previously calculated (see section 4.1) the maximum 
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achievable FoM to be theoretically 8.7 times larger in ABI than in GI in our setup. The 
experimental values present, instead, smaller differences. This can be attributed to two causes: 
1) the refraction angles at the edges of the considered objects are not small, thus the linear 
approximations of the RC and of the function G used to derive Eq. (27) are not fully accurate 
in this case; 2) the images, especially the ABI ones, have not been acquired at exactly the 
points of highest theoretical sensitivity (the curve of the theoretical ABI sensitivity is rather 
steep close to the maximum position, see Fig. 1(c)). 

It is important to remark that the obtained results are dependent on the beam spatial 
coherence and on the spatial resolution of the used detector, in particular in the case of PBI. 
The measured intensity can be in fact expressed as a convolution between the ideal intensity 
and the imaging system PSF, as seen in section 2.2. This effect becomes important in phase-
contrast images if the width of the PSF is comparable or larger than the typical size of the 
object edges. The smoothing due to the PSF is expected to affect the PBI signal to a higher 
degree with respect to the ABI and GI ones for two main reasons: a) the PBI edge signal, due 
its dependence upon the phase Laplacian, is narrower and b) the contiguous positive and 
negative peaks present in PBI tend to cancel each other (while this effect is not encountered in 
ABI and GI, where only one peak is present at the edge). This means for example that, if a 
smaller pixel size had been used, the SNR values in the case of PBI could have been much 
higher, while this would have presumably affected ABI and GI to a much lesser degree. 

Finally, refraction angle images of the samples have been calculated from the ABI and GI 
images by using respectively the “Gaussian curve fitting” algorithm [28] and the phase-
stepping method [8]. All the five images acquired at different positions of the RC have been 
used for ABI, and eight of the images acquired at different grating positions for GI. The 
results are presented in Fig. 9 for the 350 μm nylon wire and the groove in Lucite. The 
vertical profiles across the wire and the groove slightly differ for ABI and GI. In particular, 
the lowering and broadening of the edge peaks in the ABI profiles suggest in this case a 
degradation of the spatial resolution. This is compatible with the effect of the analyzer crystal 
PSF. The width of the analyzer PSF projected onto the detector, in fact, is equal to 
2p⋅cos(θan), where p is the extinction depth of the crystal [29]. At a photon energy of 26 keV 
and for the Si(333) reflection, 2p⋅cos(θan) is equal to about 8.1 μm [17]. 

No artefacts related to setup instabilities could be detected in the obtained refraction 
images and in the extracted profiles, because of the very short duration of the image 
acquisition. However, these effects may be an issue and should be carefully considered when 
long acquisitions (e.g. tomography) are carried out. In this case the periodic recording of 
“whitefield” images (ABI and GI) and the retuning of the analyzer (ABI) may be necessary. 

Peak edge FoMs have been calculated from these images, using the same method 
employed for the single PBI, ABI and GI images. The total radiation dose delivered to acquire 
the set of images used for extracting the refraction map has been considered. The calculated 
values are listed in Table 2. The largest FoMs are obtained for the 350 µm nylon wire and the 
lowest for the groove in Lucite. The calculated values are 2.7 to 3.7 times larger in ABI with 
respect to GI. These results are in agreement with those obtained for the single unprocessed 
images (see Figs. 4, 6 and 8). 

#172142 - $15.00 USD Received 10 Jul 2012; revised 2 Sep 2012; accepted 8 Sep 2012; published 29 Nov 2012
(C) 2012 OSA 3 December 2012 / Vol. 20,  No. 25 / OPTICS EXPRESS  27688



(a)

ABI

(d)

(b) (e)

Groove  in Lucite350 μm nylon wire

GI

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

0 200 400 600 800 1000 1200 1400

Re
fr

ac
tio

n 
an

gl
e 

(µ
ra

d)

Position (µm)

ABI

GIFM

-2,0

-1,0

0,0

1,0

2,0

0 100 200 300 400 500 600

Re
fr

ac
tio

n 
an

gl
e 

(µ
ra

d)

Position (µm)

ABI
GIFM

(c) (f)

 

Fig. 9. Refraction angle maps calculated from AB images (with “Gaussian Curve Fitting” 
algorithm) and from GI images (phase-stepping method). a) 350 μm diameter nylon wire in 
ABI and b) in GI, c) vertical profiles across the wire, d) groove in Lucite in ABI and e) in GI, 
f) vertical profiles across the groove. 

Table 2. Peak edge FoMs calculated for the refraction signal 

 Refraction angle peak edge FoM (mGy-1/2) 

 ABI GI 

350 µm wire 41 ± 8 15 ± 3 
200 µm wire 28 ± 6 8 ± 2 
Groove 19 ± 3 5 ± 1 

5. Conclusions 

We have presented a quantitative theoretical and experimental comparison of the signal-to-
noise ratio (SNR) and figure of merit (FoM) for the edge signal in the PBI, ABI and GI phase-
contrast techniques. 

The two definitions for the SNR introduced in our previous work [11], the peak and the 
integral edge SNRs, have been recalled. Theoretical expressions for the corresponding peak 
and integral edge FoMs as a function of the experimental parameters and object properties 
have been derived. 

The near-field regime approximation has been used in the derivation of expressions for 
PBI, while the linear approximation of the RC and of the function G have been considered 
respectively in ABI and GI. The latter approximation is only valid for small refraction angles 
and the condition for its validity is best satisfied at the slopes of the RC and G functions: at 
these points, in fact, their first derivative is maximized and the second derivative is equal to 
zero. At the “top” and “bottom” positions, however, the first derivative of these functions is 
equal to zero and the second derivative maximized, which results in inaccuracies in the linear 
approximation. For this reason, simple expressions for the FoM based on a second-order 
Taylor approximation have been proposed, which are expected to provide better results at 
these positions. 

The expression for the peak edge FoM in PBI is dependent on the Laplacian of the phase 
shift induced by the object, while the ABI and GI FoMs are sensitive to the refraction angle 
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(which is proportional to the 1-D first derivative of the phase shift in the sensitivity direction). 
For this reason, PBI is expected to be more sensitive to higher object frequencies than ABI 
and GI. The integral edge FoM, instead, is proportional in all cases to the same object 
quantity, the phase shift, and thus provides a way to directly compare the signal obtainable in 
the three techniques. By using the theoretical expressions for the integral edge FoM, the 
sensitivities of the three techniques, in terms of the smallest phase shift that they can detect, 
have been compared and their dependence upon the different acquisition parameters analyzed. 

The expected FoM values achievable under the experimental and acquisition conditions 
used for our experiment have been theoretically calculated. It results that ABI provides a 
better sensitivity with respect to the PBI and GI techniques. We have discussed how the FoM 
can vary by changing the acquisition parameters in each of the techniques. The considered 
parameters include the propagation distance in PBI, the crystal reflection in ABI and the 
distance between the gratings in GI. The dependence upon the projected source size, the 
system-object smoothing parameter σ and the X-ray energy have been also investigated. In 
particular, PBI can provide large FoM values when high spatial resolutions are considered 
(small projected source size, high-resolution detector and objects with sharp edges), but for 
low spatial resolution the interference fringes are rapidly smeared out and the sensitivity of 
the method decreased. The dependence of GI upon the smoothing parameter σ is weaker than 
in PBI; however, it is strongly affected by the projected source size. ABI sensitivity, instead, 
is affected to a lower extent by the two parameters. Also the dependence on the energy is 
different for the three phase-contrast techniques. In particular, the decrease of the signal with 
the X-ray energy is slower for ABI than for the other two techniques. At high X-ray energies, 
therefore, ABI is expected to provide much larger sensitivity than PBI and GI. 

An experimental verification has been carried out on test objects of known materials and 
geometry. Results are in agreement with the theoretical predictions. The PBI FoM increases 
linearly with the propagation distance in the near-field diffraction regime, while ABI and GI 
FoMs appear to be strongly dependent upon the chosen working position along the RC and 
the function G, respectively. The largest values are obtained around the slopes of these 
functions, where the first derivative reaches the largest values. As theoretically predicted, the 
ABI technique provided the largest and the PBI technique the smallest FoM values in our 
experimental setup. 

Finally, it is remarkable that the largest FoMs are not achieved for the same test object by 
the three techniques. In PBI the largest signal is obtained with the smallest wire, while in ABI 
and GI the largest signal is obtained with the biggest wire. This can be attributed to the fact 
that, due to its different dependence upon the object phase shift, PBI is sensitive to higher 
object frequencies than both ABI and GI do. 

Future work will focus on extending this comparison to different kinds of biological 
samples, with the aim of analyzing and investigating the potential of these different phase-
contrast techniques for various biomedical applications. 
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