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GEOMETRIC LOCAL THETA CORRESPONDENCE FOR DUAL REDUCTIVE PAIRS OF
TYPE II AT THE IWAHORI LEVEL

BANAFSHEH FARANG-HARIRI

Abstract. In this Paper we are interested in the geometric local theta correspondence at the Iwahori level for
dual reductive pairs (G,H) of type II over a non-Archimedean field of characteristic p , 2 in the framework of
geometric Langlands program. We consider the geometric version of the IH × IG-invariants of the Weil represen-
tation SIH×IG as a bimodule under the of action Iwahori-Hecke algebrasHIG andHIH and we give some partial
geometric description of the corresponding category under the action of Hecke functors. We also define geomet-
ric Jacquet functors for any connected reductive group G at the Iwahori level and we show that they commute
with the Hecke action of theHIL -subelgebra ofHIG for some Levi subgroup L.
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1. Introduction

Let k be a finite field Fq of characteristic different from 2, let F = k((t)) and O = k[[t]]. All representations
will be assumed to be smooth and will be defined over Q`, where ` is a prime number different from the
characteristic of F. The basic notions of the Howe correspondence from the classical point of view have
been presented in [25], see also [16]. Let (G,H) be a split dual reductive pair in some symplectic group
S p(W) over k and let S̃ p(W) be the metaplectic group which is the twofold topological covering of the
symplectic group S p(W). Let S be the Weil representation of S̃ p(W). Assume that the metaplectic cover
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S̃ p(W) → S p(W) admits a section over G(F) and H(F), then Howe correspondence becomes a correspon-
dence between some classes of representations of G(F) and H(F). It is well-known that Howe correspon-
dence realizes Arthur-Langlands functoriality in some special cases [1], [3], [16] [26], [21], [10]. It is of
great interest to understand the geometry underlying the Howe correspondence and establish its analogue in
the framework of the geometric Langlands program (see [11], [7], [21], [17], [10]). The unramifed geometric
Howe correspondence has been studied in [17] and [21]. One of our motivations is to extend the results of
[21] to the Iwahori (tamely ramfied) case in the geometric setting and complete the description of the Howe
correspondence for dual reductive pairs of type II already initiated in [10]. This will be a new step towards
proving the relation between Howe correspondence and Arthur-Langlands functoriality conjecture for dual
reductive pairs of type II announced in [9, Conjecture 1.2].

In the sequel we will restrict ourselves to the dual reductive pairs of type II. More Precisely, let L0 (resp. U0)
be a n-dimensional (resp. m-dimensional) k-vector space with n ≤ m, and let G = GL(L0) and H = GL(U0).
Denote by Π(F) the space (U0 ⊗ L0)(F) and S(Π(F)) the Schwartz space of locally constant functions with
compact support on Π(F). This space realizes the restriction of the Weil representation to G(F) × H(F).
According to Howe and [22], we know that the Howe correspondence associates to any smooth irreducible
representation of G(F) appearing as a quotient of the restriction of the Weil representation a unique smooth
irreducible non-zero representation of H(F), denoted by θn,m(π), such that π ⊗ θn,m(π) is a quotient of the
restriction of the Weil representation to G(F) × H(F).

One of the most interesting classes of representations to be considered for the study of the Howe corre-
spondence is the class of tamely ramified representations. A representation of G(F) is said to be tamely
ramified if it admits a non zero vector fixed under an Iwahori subgroup IG of G(F). Let us consider the
functor sending any tamely ramified representation V of G(F) to its space of invariants V IG under IG. Then,
the latter is naturally a module over the Iwahori-Hecke algebra HIG . According to [8, Theorem 4.10] this
functor is an equivalence of categories between the category of tamely ramified admissible representations
of G and the category of finite-dimensional modules over HIG . Moreover, this functor is exact over the
category of smooth representations of G(F). Hence, in the tamely ramified case, we can interpret the Howe
correspondence in the language of modules over Iwahori-Hecke algebras. The space S(Π(F))IH×IG of IH×IG-
invariants in the Schwartz space S(Π(F)) is naturally a module over each Iwahori-Hecke algebra HIG and
HIH . We would like to understand this module structure by geometric means. The geometric analogue of the
Schwartz space S(Π(F))IH×IG and the action of Iwahori-Hecke algebras of G and H on it have been already
constructed in [10, §3]. Namely, in the geometric setting the space S(Π(F))IH×IG is the category PIH×IG (Π(F))
of IH× IG-equivariant perverse sheaves on Π(F), its precise definition involves some limit procedure. Denote
by DIH×IG (Π(F)) the derived category of `-adic IH × IG-equivariant sheaves on Π(F) constructed in [10]. The
action of Iwahori-Hecke algebras is geometrized to an action of Hecke functors. Denote by F lG the affine
flag variety of G and by PIG (F lG) the category of IG-equivariant perverse sheaves on F lG. These Hecke
functors define an action of PIG (F lG) and PIH (F lH) on PIH×IG (Π(F)). This geometrization has actually been
done in a more general setting of any dual reductive pair and at the level of derived categories in [10]. While
in [10, §7] we gave an explicit description of the bimodule PIH×IG (Π(F)) in the case of n = 1 and m ≥ 1, in
this article, we obtain some partial results towards the description of the category PIH×IG (Π(F)) as a module
over the Hecke functors for GLn and GLm for any n ≤ m.



GEOMETRIC LOCAL THETA CORRESPONDENCE FOR (GLn,GLm) 3

One of the key steps in [10] is the description of the simple objects of the category PIH×IG (Π(F)). Let us
recall this result. Let S n,m denote the set of pairs: a subset Is ⊂ {1, . . . ,m} of n elements and a bijection
s : Is → {1, . . . , n}. For N, r two integers such that N + r > 0, let ΠN,r = t−NΠ/trΠ. Fix a maximal torus T
in G and a Borel subgroup B containing T . Denote XG the lattice of cocharacters of T . For each pair (λ, s)
in XG × S n,m, we have introduced some subvarieties Πw

N,r in ΠN,r for N, r large enough and we obtained the
following result in [10, Theorem 6.7]: the simple objects of the category PIH×IG (Π(F)) are parametrized by
XG × S n,m. For any element w = (λ, s) in XG × S n,m, the irreducible object of PIH×IG (Π(F)) indexed by w
is the intersection cohomology sheaf Iw of Πw

N,r for N, r large enough. We also introduced the objects Iw!,
which are extensions by zero of the constant perverse sheaf under Πw

N,r ↪→ ΠN,r. Our aim is to understand
as possible as we can the action of Hecke functors on these simple objects. In this direction we construct
a filtration on the category PIH×IG (Π(F)) which is compatible with the action of Hecke functors. We study
some submodules of PIH×IG (Π(F)) and give a precise description of those under the action of Hecke functors.
Particularly we construct the geometric version of the first term of Kudla’s filtration and we show that it can
be identified with the induced representation from a parabolic subalgebra of HIH by geometric means. We
also construct the geometric version of Jacquet functors at the Iwahori level and show that they commute
with the action of the subalgebraHIL ofHIG for some Levi subgroup L.

Let us briefly discuss how the paper is organized. In section 3, assuming n ≤ m, we introduce a filtration
on PIH×IG (Π(F)) indexed by Z and show that it is compatible with the natural grading of PIG (F lG) given
by the connected components of F lG and by Hecke functors. This filtration on PIH×IG (Π(F)) is expected to
be compatible with the filtration already studied in the conjectural bimdule K(X) in [10, §8] describing the
geometric local Arthur-Langlands functoriality at the Iwahori level for some map between corresponding
dual Langlands groups.

Consider the element w = (0, (I,w0)) ∈ XG ×S n,m, where I = {1, . . . , n} and w0 : I → {1, . . . , 0} is the longest
element of the finite Weyl group of G. We obtain some results on the submodule in PIH×IG (Π(F)) generated by
Iw0 (resp., Iw0!). In subsection 4.1, we consider the case n = m. The submodule in DIH×IG (Π(F)) generated
by Iw0! over PIG (F lG) is free of rank one (and is also preserved by PIH (F lH)). We also precise an equivalence
of categories σ̃ : PIH (F lH) →̃ PIG (F lG) which defines at the level of functions an anti-involution of Iwahori-
Hecke algebras HIG and HIH . By means of this equivalence we relate the actions of Hecke functors for
H and G on the submodule generated by Iw0 (resp. Iw0!). In subsection 4.2, we assume n ≤ m and we
consider the submodule Θ in the Grothendieck group K(DIH×IG (Π(F))) of DIH×IG (Π(F))) under the action
of K(PIG (F lG)) generated by the elements Iµ!, where Iµ runs through all possible subsets of n elements in
{1, . . . ,m}. We show that the submodule Θ is free of rank Cn

m over K(PIG (F lG)). The elements Iµ! form a
basis of this module over K(PIG (F lG)). The submodule Θ is a key object in the proof of the classical Howe
correspondence. It is indeed the first term of the Kudla’s filtration defined over the Weil representation in
[25]. The considerations in this subsection are essentially on the level of Grothendieck groups, we formulate
them on the level of derived categories however when this is possible. One may assume that we work over
a finite field with pure complexes only. More precisely, let S0 be the Q̄`-subspace of K(DIH×IG (Π(F)) ⊗ Q̄`
generated by elements of the form I(w�w0)!, where w runs through W̃G the affine extended Weyl group of G.
The module S0 is a free module of rank one over HIG . We consider the standard Levi subgroup M of H
corresponding to the partition (n,m − n) of m and we recall briefly the construction of the subalgebra HIM

of the Iwahori-Hecke algebra HIH and some properties according to [24]. Then we endow S0 with a right
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action of HIM and by parabolic induction we construct an induced module. We obtain the two following
results: The space S0 is a submodule of K(DIG×IH (Π(F))) ⊗ Q` for the right action of HIM . The adjunction
map α : S0 ⊗HIM

HIH → S
IH×IG (Π(F)) is injective and it’s image equals Θ⊗Q`. In the rest of this subsection

we show that the action of the Iwahori-Hecke algebra of the factor GLn of M identifies with the action of
HIG via the anti-involution σ̃ defined in Theorem 4.11. The action of the Iwahori-Hecke algebra of GLm−n

is by shifting by [−`(w)], where ` denotes the length function on W̃G.

At last in section 5, we construct a geometric analogue of Jacquet functors for any connected split reduc-
tive group G over k in the Iwahori case.These functors are a key step in the geometric proof of the Howe
correspondence in the unramified case in [21]. Moreover, we prove that they are compatible with the Hecke
action of theHIL -subelgebra ofHIG . We also show that they preserve pure perverse sheaves of weight zero.

In Appendix 6 we recall the construction of Hecke functors from [10] and in Appendix 7 we present a
complete calculation of the Hecke functor corresponding to H in the special case of objects Iµ.

Aknowledgement: The author would like to thank her advisor Sergey Lysenko for initiating her to this
subject and sharing his insights and ideas.

2. Notation and set up

Let k be an algebraically closed field of characteristic p > 2 and let F = k((t)) be the field of Laurent series
with coefficients in k and O = k[[t]] be its ring of integers. Denote by ` a prime number different from p. Let
L0 (resp. U0) be a n-dimensional (resp. m-dimensional) k-vector space with n ≤ m, and let G = GL(L0) and
H = GL(U0). Denote by {e1, . . . , en} the standard basis of L0 and {u1, . . . , um} the standard basis of U0 and
{u∗1, . . . , u

∗
m} its dual basis. Denote by Π(F) the space (U0 ⊗ L0)(F) and S(Π(F)) the Schwartz space of Q`-

valued locally constant functions with compact support on Π(F). Let TG (resp. TH) be the standard maximal
torus of diagonal matrices in G (resp. H) and BG (resp. BH) be the Borel subgroup of upper triangular
matrices containing TG (resp. TH). Denote by IG (resp. IH) the Iwahori subgroup of G(F) (resp. H(F))
corresponding to the standard Borel subgroup BG (resp. BH). Denote by (X̌G, Ř, XG,R,∆) the root datum
associated with (G,TG, BG). Throughout this article we denote by X̌G the characters of TG and XG denotes
the cocharacter lattice of TG. The set Ř is the set of roots and R is the set of coroots and ∆G is the basis
formed by simple roots. If there is no ambiguity we will omit the subscript G. We denote by WG the finite
Weyl group associated with he root datum (X̌G, Ř, XG,R). Let W̃G be the affine extended Weyl group which
is the semi-direct product WG n XG. Denote by ` the length function on W̃G. Let X+

G be the set of dominant
elements in XG.

For any scheme or stack locally of finite type over k, we denote by D(S ) the bounded derived category of
constructible Q`-sheaves over S . Write D for the Verdier duality functor and we denote by P(S ) the full
subcategory of perverse sheaves in D(S ). Denote by K(P(S )) the Grothendieck group of the category P(S ).
Let X be a scheme of finite type over k. For Z a smooth d-dimensional irreducible locally closed subscheme
of X and i : Z → X the corresponding immersion, we define the intersection cohomology sheaf (IC-sheaf
for short), IC(Z) as the perverse sheaf iZ!∗(Q`)[d].

Assume temporary that the ground field k is the finite field Fq. Denote byHIG the Iwahori-Hecke algebra of
G which is the space of locally constant, IG-bi-invariant compactly supported Q`-valued functions on G(F)
endowed with the convolution product. There are two well-known presentations of this algebra by generators
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and relations. The first is due to Iwahori-Matsumoto [14] and the second is by Bernstein in [20] and [18].
We will use the second one.

Denote by GrG the affine Grassmanian associated with G. The G(O)-orbits on GrG are parametrized by WG-
orbits in XG and for a given λ in XG, the G(O)-orbit associated to WG.λ is G(O).tλ denoted by GrλG, where tλ

is the image of t under the map λ : F∗ → G(F). The IG-orbits on GrG are parametrized by cocharacters λ in
XG. For any λ in XG, denote by Oλ the IG-orbit through tλG(O) in GrG and by Oλ its closure. Each orbit is an
affine space. Denote by F lG the affine flag variety associated with G and denote by PIG (F lG) the category of
IG-equivariant perverse sheaves on F lG. This category is endowed with the geometric convolution denoted
by ?, see [12], and we have K(PIG (F lG)) ⊗ Q`−̃→HIG .

Let R be a k-algebra. A complete periodic flag of lattices inside R((t))n is a flag

L−1 ⊂ L0 ⊂ L1 ⊂ . . .

such that each Li is a lattice in R((t))n, each quotient Li+1/Li is a locally free R-module of rank one and
Ln+k = t−1Lk for any k in Z. For 1 ≤ i ≤ n, set

Λi,R = (⊕i
j=1t−1R[[t]]e j) ⊕ (⊕n

j=i+1R[[t]]e j).

For all i in Z, we set Λi+n,R = t−1Λi,R. This defines the standard complete lattice flag

Λ−1,R ⊂ Λ0,R ⊂ Λ1,R ⊂ . . .

denoted by Λ•,R in R((t))n. For any k-algebra R, the set F lG(R) is naturally in bijection with the set of
complete periodic lattice flags in R((t))n and is an ind-scheme. The affine flag variety decomposes as a
disjoint union

F lG =
⋃

w∈W̃G

IGwIG/IG.

The closure of each Schubert cell, IGwIG/IG is a union of Schubert cells and the closure relations are given
by the Bruhat order:

IGwIG/IG =
⋃

w′≤w

IGw
′

IG/IG.

For any w ∈ W̃G we will denote the Schubert cell IGwIG/IG by F lwG which is isomorphic to A`(w). For
w ∈ W̃G, denote by jw the inclusion of F lwG in F lG, and let Lw = jw!∗Q`[`(w)](`(w)/2), the IC-sheaf of
F lwG. We write Lw! = jw!Q`[`(w)](`(w)/2) and Lw∗ = jw∗Q`[`(w)](`(w)/2) for the standard and costandard
objects. They satisfy D(Lw∗) = Lw!. Remark that in the notation of Lw! and Lw∗ we wrote the Tate twists.
When working over an algebraically closed field, we will forget the Tate twists.

Assume that k is finite. To G in PIG (F lG) we attach a function [G] : G(F)/IG −→ Q` given by [G](x) =

Tr(Frx,Gx), for x a point in G(F)/IG and Frx is the geometric Frobenius at x. The function [G] is an element
of the HIG . In particular [Lw!] = (−1)`(w)q−1/2

w Tw and [Lw∗] = (−1)`(w)q1/2
w T−1

w−1 , where qw = q`(w). Here Tw

denotes the characteristic function of the double coset IGwIG. The map sending λ to Ltλ∗, for any λ in X+
G

extends naturally to a monoidal functor

R(T ) −→ DIG (F lG).

The image of λ under the above functor is usually called a Wakimoto sheaf. There are two conventions
for defining the Wakimoto sheaves. The first convention is due to Bezrukavnikov in [2]. We will use the
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convention due to Prasad in [24] by letting Θλ = Ltλ! for λ dominant and Θλ = Ltλ∗ for λ anti-dominant. In
any case Wakimoto sheaves verify the following: λ ∈ X, if λ = λ1 − λ2 where λi are dominant for i = 1, 2,
then Θλ ' Θλ1 ? Θ−λ2 . According to [2, Theorem 5], these are actually objects of the category PIG (F lG) (a
priori they are defined as objects of the triangulated category DIG (F lG))).

As mentioned above the space S(Π(F))IH×IG is naturally a module over Iwahori-Hecke algebras HIG and
HIH of G and H. The action is defined by convolution. The geometric analogue of the (HIG ,HIH )-bimodule
S(Π(F))IH×IG is constructed in [10, §3] which is PIH×IG (Π(F)) the category of IH × IG-equivariant perverse
sheaves on Π(F) in the derived cateogyr DIH×IG (Π(F)) under the action of the two Hecke functors:

←

HG : PIG (F lG) × DIH×IG (Π(F)) −→ DIH×IG (Π(F))

and
←

HH : PIH (F lH) × DIH×IG (Π(F)) −→ DIH×IG (Π(F)).

For the sake of the reader, we recall briefly the construction of these Hecke functors in Appendix 6. The goal
is to underestand these two Hecke functors as much as possible.

For any two integers N, r such that N + r > 0, let ΠN,r = t−NΠ/trΠ. Let U∗ be the dual of U. A point v in
Π(F) may be seen as a O-linear map v : U∗ → L(F). For v in ΠN,r, let Uv,r = v(U∗) + trL. Then Uv,r is
a O-module in L(F) and may be seen as a point of GrG. Let ω̌1 = (1, 0 . . . , 0) be the higest weight of the
standard representation of G, let w0 be the longest element of the finite Weyl group WG. For λ ∈ XG such
that for any ν in WG.λ

(2.1) 〈ν, ω̌1〉 ≤ r and 〈−ν, ω̌1〉 ≤ N.

let Πλ,r ⊂ ΠN,r be the locally closed subscheme of v ∈ ΠN,r such that Uv,r lies in IGtλG(O). According to
[10], the H(O) × IG-orbits on ΠN,r are parameterized by elements λ in XG satisfying (2.1) and are exactly
Πλ,r. Let S n,m be the set of pairs: a subset Is ⊂ {1, . . . ,m} of n elements and a bijection s : Is → {1, . . . , n}. Let
w = (λ, s) ∈ XG × S n,m, where λ = (a1, . . . , an) and assume ai < r for all i. Denote by Πw

N,r the IH × IG-orbit
on ΠN,r through an element v given by

(2.2)
{

v(u∗i ) = tasi esi for i ∈ Is;
v(u∗i ) = 0 for i < Is.

The closure of Πw
N,r in ΠN,r will be denoted by Π

w
N,r. The somple objects of the category PIH×IG (Π(F)) are

parametrized by XG × S n,m, [10, Theorem 6.7]. For any element w = (λ, s) in XG × S n,m, the simple object
of PIH×IG (Π(F)) indexed by w is the intersection cohomology sheaf Iw of Πw

N,r for N, r large enough. The
object of PIH×IG (Π(F)) so obtained is independent of N, r, so our notation is unambiguous. We denote Iw!

the objects which are extensions by zero of the constant perverse sheaf under Πw
N,r ↪→ ΠN,r.

3. Filtration and grading

Denote by π1(G) the algebraic fundamental group of G which is formed by the elements of length zero in
the affine extended Weyl group of G. The connected components of GrG and F lG are indexed by π1(G). This
yields a following grading ⊕

θ∈π1(G)

PIG (F lθG) −̃→ PIG (F lG).
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Denote by ω̌n the character by which the group G acts on det(L0), i.e. ω̌n = (1, . . . , 1). We may identify
π1(G) −̃→Z via the map θ 7→ 〈θ, ω̌n〉. This grading is compatible with the convolution product on PIG (F lG).
There is also a grading Hk

IG
, k ∈ Z of the Iwahori-Hecke algebra HIG , see [20]. Besides the isomorphism

between K(PIG (F lG)) ⊗ Q` andHIG becomes a graded isomorphism.

There exists a filtration on the category PIH×IG (Π(F)) indexed by Z. Indeed, for an integer a in Z, let Filta

be the full subcategory in PIH×IG (Π(F)) defined as the Serre subcategory generated by the objects Iw, where
w = tλτ are elements of XG × S n,m satisfying 〈λ, ω̌n〉 ≥ a. We are going to show that this filtration is
compatible with the action of PIG (F lG) and the grading on it.

Let w = tλτ and u = tµν be two elements in XG × S n,m. The condition that Πu
N,r lies in the closure of Πw

N,r
implies that 〈µ, ω̌n〉 ≥ 〈λ, ω̌n〉. Indeed, for any point v of ΠN,r, the dimension of Uv,r/trL can only decrease
under specialization. For the orbit Πu

N,r lying in the closure of Πw
N,r the number 〈µ, ω̌n〉 can be arbitrary large.

This number depends on r is not uniformly bounded.

Lemma 3.1. Let w1 = tλ1τ1, and w2 = tλ2τ2, be two elements in XG × S n,m. For i = 1, 2 choose two integers
Ni and ri such that the following conditions are satisfied : for any

ν ∈ WGλi, 〈ν, ω̌1〉 ≤ r1, 〈ν, ω̌1〉 < r2, and 〈−ν, ω̌1〉 ≤ Ni.

Let v be an element in Π
w2
N2,r2

⊂ Πλ2,r2 and gIG be an element in F lw1
G . For i = 1, 2 let µi be a dominant

cocharacter lying in WGλi. Then there exists a cocharacter µ smaller than or equal to µ1 + µ2 such that gv
belongs to Πµ,r1+r2 .

Proof. The lattice Uv,r2 = v(U∗) + tr2 L lies in Oλ2 ⊂ Grµ2
G . Thus g(Uv,r2 ) lies in gOλ2 . Since gG(O) ∈ Oλ1 ⊂

Grµ1
G , we have

IGtλ1G(O)tλ2G(O)/G(O) ⊂ Gr
µ1+µ2

G

and this implies the assertion. �

Proposition 3.2. Let w1 = tλ1τ1, and w2 = tλ2τ2, be two elements in XG × S n,m. For i = 1, 2 choose two
integers Ni and ri such that the following conditions are satisfied : for any

ν ∈ WGλi, 〈ν, ω̌1〉 ≤ r1, 〈ν, ω̌1〉 < r2, and 〈−ν, ω̌1〉 ≤ Ni.

Then
←

HG(Lw1 ,I
w2 ) lies in Filtd with d = 〈λ1 + λ2, ω̌n〉.

Proof. The sheaf Iw2 is the IC-sheaf of the orbit Π
w2
N,r which is a subspace of Πλ2,r2 . In the notation of

Appendix 6, we have F lw1
G ⊂ r1 ,N1

F lG. Choose r ≥ r1 + r2 and s ≥ N2 + r2. The space ΠN2,r2 ×̃F lw1
G is

the scheme classifying pairs (v, gIG), where gIG is in F lw1
G and v is in t−N2 gΠ/trΠ. We have the following

diagram

ΠN1+N2,r
π
←− ΠN2,r2 ×̃F lw1

G

actq,s
−→ Ks\(ΠN2,r2 ),

where π is the projection sending (v, gIG) to v. Let Iw2 �̃Lw1 be the twisted exterior product of Iw2 and Lw1

over ΠN2,r2 ×̃F lw1
G which is normalized to be perverse. Then by definition

←

HG(Lw1 ,I
w2 )−̃→π!(Iw2 �̃Lw1 ).
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In our case Iw2 �̃Lw1 is the IC-sheaf of act−1
q,s(Π

w2

N2,r2
). For a point v in ΠN1+N2,r, let µ be in XG such that Uv,r

lies in Oµ. The part of the fibre of the map π over v that contributes to π!(Iw2 �̃Lw1 ) is

{gIG ∈ F lw1
G |g

−1v ∈ Π
w2

N2,r2
}.

The latter scheme is empty unless 〈µ, ω̌n〉 ≥ 〈λ1 + λ2, ω̌n〉. It follows that
←

HG(Lw1 ,I
w2 ) lies in Filtd with

d = 〈λ1 + λ2, ω̌n〉. �

Theorem 3.3. Assume n ≤ m. The filtration Filtd on PIH×IG (Π(F)) is compatible with the grading on
PIG (F lG) defined by the connected components. Namely set w1 = tλ1τ with τ in S n,m, λ1 in XG, and let

m1 = 〈λ1, ω̌n〉. Then
←

HG(Lw1 , .) sends an irreducible object of Filtd to a direct sum of shifted objects of
Filtd+m1 .

Proof. We use the notation of Lemma 3.1. For gIG in F lw1
G , let L

′

= gL and equip L
′

with the flag L
′

i = gLi

for i = 1, . . . , n. Let v be the map from U∗ to t−N2 L
′

/trL such that its composition with

t−N2 L
′

/trL −→ t−N2 L
′

/tr2 L
′

lies in the closure of the orbit (UN2r2 ⊗ L
′

)w2 . The latter scheme is the corresponding orbit on UN2,r2 ⊗ L
′

. The
relative dimension formula gives us

dim(L, L
′

) + dim(L
′

, v(U∗) + tr2 L
′

) = dim(L, v(U∗) + tr2 L
′

).

Moreover, we have
dim(L

′

, v(U∗ + tr2 L
′

)) ≥ 〈λ2, ω̌n〉

and
dim(L, L

′

) = 〈λ1, ω̌n〉.

This leads to dim(L, v(U∗+tr2 L
′

)) ≥ 〈λ1+λ2, ω̌n〉.On the other hand we have trL ⊂ tr2 L
′

so dim(L, v(U∗)+trL)
can not be strictly smaller than dim(L, v(U∗) + tr2 L

′

). �

As a consequence of this proposition K(PIH×IG (Π(F))) is a filtered module over HIG , so that graded part
⊕d∈ZFiltd/Filtd+1 is a leftHIG -module.

4. Kudla’s filtration and some sub-modules

4.1. Case n = m. We will assume n = m in this subsection. Denote by w0 the longest element of WG. Let
Iw0 be the IC-sheaf of the orbit Π

w0
0,1. Let ΠIw0 be subscheme of Hom(U∗0, L0) consisting of elements v such

that v sends Vect(u∗n, . . . , u
∗
n−i+1) to Li = Vect(e1, . . . , ei), for i = 1, . . . , n. Note that ΠIw0 is an affine space,

the closure of Π
w0
0,1. Thus Iw0 is the constant perverse sheaf on ΠIw0 . For any w in the affine extended Weyl

group W̃G, let us describe
←

HG(Lw,I
w0 ). Let w = tλτ, where τ ∈ WG and λ ∈ XG. Let N, r be two integers with

N + r ≥ 0 such that the following condition is verified: for any ν in WG.λ we have

(4.1) 〈ν, ω̌1〉 < r and 〈−ν, ω̌1〉 ≤ N.

For any element gIG of F lwG, we put L′ = gL and we equip L′/tL′ with the flag L′i = gLi, for i = 1, . . . , n. Let
ΠIw0 ,r×̃F lwG be the scheme classifying pairs (v, gIG), where gIG is in F lwG and v is a map U∗ → L′/trL such
that the induced map

(4.2) v : U∗/tU∗ −→ L′/tL′
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sends Vect(u∗n, . . . , u
∗
n−i) to L′i+1, for i = 0, . . . , n − 1. Let

π : ΠIw0 ,r×̃F lwG −→ ΠN,r

be the map sending (v, gIG) to v. The second projection pr : ΠI,r×̃F lwG −→ F lwG is a locally trivial fibration
with fibres isomorphic to the affine space. Let Q`�̃Lw be the perverse sheaf pr∗Lw[dim. rel(pr)]. Then by
definition

←

HG(Lw,I
w0 )−̃→π!(Q`�̃Lw).

Remark that the condition (4.1) initially appears in the construction of the irreducible objectsIw in PIH×IG (Π(F))
in [10].

Lemma 4.3. For any w ∈ W̃G the perverse sheaf Iww0 appears in
←

HG(Lw,I) with multiplicity one.

Proof. Consider the open subscheme V in ΠI,r×̃F lwG given by the condition that gI ∈ F lwG, and the map (4.2)
is surjective. Clearly, π(V) is contained in Π

ww0
N,r . So, π can be viewed as a map

π : ΠI,r×̃F lwG −→ Π̄
ww0
N,r

The restriction of the complex
←

HG(Lw,I
w0 ) to Πλ,r ⊂ ΠN,r identifies with Iww0 . �

Proposition 4.4. For any w in W̃G there is a canonical isomorphism
←

HG(Lw!,I
w0!) →̃Iww0!.

Proof. Let Π0
Iw0 ,r×̃F lwG ⊂ ΠIw0 ,r×̃F lwG be the open subscheme of pairs (v, gIG) such that gIG is in F lwG and

the map v in (4.2) is an isomorphism. For any points (v, gIG) in this subscheme the map v is an isomorphism
between Vect(u∗1, . . . , u

∗
n−i) and L′i+1, for i = 0, . . . , n − 1. Let

π0 : Π0
Iw0 ,r×̃F lwG −→ ΠN,r

be the restriction of π to Π0
Iw0 ,r×̃F lwG. Thus by definition we have

←

HG(Lw!,I
w0!)−̃→π0

! (Q`�̃Lw)

The image of π0 is equal to Π
ww0
N,r and the map π0 is an isomorphism onto its image. �

Definition 4.5. For λ in XG and τ in WG, let w −→ w be the map W̃G → W̃G defined by

tλτ −→ tτ
−1(λ)τ−1

This is an anti-automorphism of W̃G. Note that w0 = w0.

The following analogue of Proposition 4.4 for H instead of G is proved similarly.

Proposition 4.6. For w in W̃H , the complex
←

HH(Lw!,I
w0!) is canonically isomorphic to Iww0!. The sheaf

Iww0 occurs in
←

HH(Lw,I
w0 ) with multiplicity one. �

The following example shows that
←

HG(Lw,I
w0 ) is not always irreducible and gives us some interesting

objects in DIH×IG (Π(F)).

Corollary 4.7. Let 1 ≤ i < n. Let w be the transposition (i, i + 1) in WG, λ = (0, . . . , 0, 1, 0, . . . , 0), where 1
appears on the ith position, and w′ = tλw0. Then

←

HG(Lw,I
w0 )−̃→Iww0 ⊕ Iw

′

.
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Proof. The variety F lwG classifies lattices L
′

0 endowed with a complete flag of lattices L
′

−1 ⊂ L
′

0 ⊂ L
′

1 ⊂ . . .

such that L′i+n = t−1Li for all i, and L
′

j = L j unless j = i mod n. Here L j is the standard flag on L(F). So,

F lwG identifies with the projective space of lines in Li+1/Li−1. Let Yi be the closed subscheme of Π0,1 given
by v(W j) ⊂ L j for j , i. Here {W j} is the flag on U∗0 preserved by BH . Note that Yi is an affine space. Define
a closed subscheme Y

′

i of Yi consisting of elements v of Yi such that v(Li) ⊂ Li−1. Then Y
′

i is also an affine
space.
Let ΠI×̃F lwG be the scheme classifying pairs (v, gIG), where gIG is in F lwG and v : U∗0 → L0 such that
v(W j) ⊂ gL j, for all 1 ≤ j ≤ n. We have the diagram

Yi
π
←− ΠI×̃F lwG

pr
−→ F lwG.

By definition of the Hecke operators one has

←

HG(Lw,I
w0 ) = π!(Q`�̃Lw).

For a point v in Yi\Y
′

i the fibre of the map π over v is reduced to a point and the map π is an isomorphism over

Yi\Y
′

i . The restriction of
←

HG(Lw,I
w0 ) to Yi\Y

′

i is isomorphic to IC(Yi) = Q`[dim(Yi)]. On the other hand, the
space Yi identifies with Π

ww0
N,r . The fibre of π over a point v of Y

′

i is isomorphic to P1. Since Y ′i is an affine
space of codimension 2 in Yi, we are done. �

Proposition 3.3 in the special case of Iw0 yields the following.

Corollary 4.8. Let w = tλτ, where λ in XG and τ is in WG. Then if d = 〈λ, ω̌n〉, there exists K in Filtd+1 such

that
←

HG(Lw,I
w0 ), →̃Iww0 ⊕ K. �

It also follows that for n = m, the space ⊕d∈ZFiltd/Filtd+1 is a free module of rank one over HIG generated

by Iw0 . Note that the homomorphism of HIG -algebras HIG −→ S(Π(F))IH×IG sending S to
←

HG(S,Iw0!) is
injective. The submodule generated by Iw0! is a free module of rank one over each one of the Iwahori-Hecke
algebraHIG andHIH .

We may stratify ΠN,r in a slightly different way. Let θ be any element of π1(G) and let λ be a lift of θ in XG

satisfying condition (4.1). We define a locally closed subscheme Πθ
N,r of ΠN,r as follows:

v : U∗ → t−N L/trL such that dim(Uv,r/trL) = dim(tλL/trL).

This definition is in fact independent of the lift λ.

For a given w = tλτ in W̃G, let θ be the image of λ in π1(G). Let Ĩw be the extension by zero of Iw|Πθ
N,r

on
ΠN,r. Then we have the following result:

Proposition 4.9. For any w in W̃G, we have two canonical isomorphism

←

HG(Lw,I
w0!)−̃→Ĩww0

←

HH(Lw,I
w0!)−̃→Ĩww0 ,

where the anti-involution w is defined in Definition 4.5.
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Proof. We show the assertion for
←

HG, the case of
←

HH may be proved similarly. As in Proposition 4.4,
consider the open subscheme Π0

Iw0 ,r ×̃F lwG inside ΠIw0 ,r×̃F lwG given by the additional condition that the map

v : U∗/tU∗ → L
′

/tL
′

is an isomorphism. Thus the restriction

π0 : Π0
Iw0 ,r ×̃F lwG −→ ΠN,r

of the map π is locally a closed immersion. Therefore by definition
←

HG(Lw,I
w0!)−̃→π0

! (Q`�̃Lw)−̃→Ĩww0 . �

The map from G(F) to G(F) sending g an element of G(F) to g−1 induces an equivalence of categories

?] : PIG (F lG)−̃→PIG (F lG).

The similar equivalence of categories holds for PIH (F lH). Hence for w in the affine extended Weyl group,
we have canonical isomorphisms

?](Lw)−̃→Lw−1 , ?](Lw!)−̃→Lw−1!, ?](Lw∗)−̃→Lw−1∗.

At the level of Iwahori-Hecke algebras ?] : HIG → HIG is an anti-isomorphism of algebras.

Definition 4.10. Assume that n ≤ m. For any T in PIH (F lH) and K in PIH×IG (Π(F)), we define the right

action functor
→

HH(T ,K) of PIH (F lH) on PIH×IG (Π(F)):
→

HH(T ,K) =
←

HH(?](T ),K).

Theorem 4.11. Remind that n = m. There exists an equivalence of categories

σ : PIG (F lG)−̃→PIH (F lH)

Lw −→ Lw0ww0 ,(4.12)

Additionally it verifies the following properties: for any w and w
′

in W̃G we have
←

HG(Lw,I
w0!)−̃→

←

HH(σ(Lw),Iw0!)

and
σ(Lw ? Lw′ ) = σ(Lw′ ) ? σ(Lw),

where ? is the convolution product in PIG (F lG).

Proof. The anti-automorphism defined over W̃G in Definition 4.5 sending any w to w may be extended to
an anti-automorphism of the group G(F) itself. It suffices to take the morphism sending any g an element
of G(F) to its transpose tg. Denote by σ the anti-involution defined over G(F) sending g to w0

tgw0. This
anti-involution preserves the Iwahori subgroup IG and induces an equivalence of categories (still denoted by
σ):

σ : PIG (F lG)−̃→PIG (F lG).

The assertion follows from Propositions 4.4 and 4.6 and Proposition 4.9. �

The two anti-isomorphisms σ and ?] defined above commute and their composition is an algebra isomor-
phism. We will denote this composition by σ̃, i.e. for any g in G(F) σ̃(g) = w0

tg−1w0.
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4.2. Sub-modules Θ and S0. We assume in this section that n ≤ m. We let the affine extended Weyl group
W̃G of G act on the set XG × S n,m in the following way:

Definition 4.13. Let w = tλ1τ1 be an element of W̃G and (λ, s) in XG × S n,m then we define a left action:

w � (λ, s) = (λ1 + τ1(λ), τ1s),

where τ1s is the composition Is
s
−→ {1, . . . , n}

τ1
−→ {1, . . . , n}.

We will consider the affine extended Weyl group W̃G as a subset of XG × S n,m. More precisely to a given
w = tλτ we associate the element (λ, τ) in XG × S n,m with Iτ = {1, . . . , n}. Let Iw0 = {1, . . . , n} be a subset of
{1, . . . ,m} and w0 : Iw0 → {1, . . . , n} be the longest element of the Weyl group WG. By the above convention
the element w0 becomes the element (0,w0) in XG × S n,m.

For any strictly decreasing map ν from {1, . . . , n} to {1, . . . ,m}, denote by Iµ the image of ν and denote by
µ : Iµ → {1, . . . , n} the inverse of ν. Thus µ can be viewed as an element of XG × S n,m by assuming that the
corresponding term on XG vanishes. Let Π

µ

0,1 be the closure of IH × IG-orbit Π
µ
0,1 in ΠN,r, Π

µ

0,1 is an affine
space. Denote by Iµ the IC-sheaf of Π

µ
0,1, it is the constant perverse sheaf on its support.

Denote by U1 ⊂ U2 ⊂ · · · ⊂ Um = U0 the standard flag on U/tU. We consider Π0,1 the space of maps
v : L∗ → U/tU such that the domain and the range are both equipped with a flag preserved by v. Thus
Π
µ

0,1 is the space of maps v : L∗ → U/tU such that v(e∗i ) lies in Uν(i) for all i = 1, . . . , n. In other terms the
map v sends Vect(e∗n, . . . , e

∗
n−i) to Uν(n−i) for all i = 0, . . . , n − 1. An element v lies in Π

µ
0,1 if additionally the

map sending Vect(e∗n, . . . , e
∗
n−i) to Uν(n−i)/Uν(n−i)−1 is non-zero for all i = 1, . . . , n. We may also consider the

element v in Π0,1 as a map from U∗ to L/tL, so v lies in Π
µ

0,1 if and only if v sends Vect(u∗m, . . . , u
∗
1+ν( j)) to

L j−1 for all j = 1, . . . , n. Moreover, the map v lies in Π
µ
0,1 if in addition v(u∗ν( j)) < L j−1 for all j = 1, . . . , n.

Let w = tλτ be an element of W̃G. Choose two integers N and r with N + r > 0 such that for any ν in WG.λ

the following condition is satisfied (condition (4.1)):

〈ν, ω̌n〉 < r and 〈−ν, ω̌n〉 ≤ N.

For a point gIG in F lwG, we set L
′

= gL and equip L
′

/tL
′

with the complete flag L
′

i = gLi for i = 1, . . . , n.
Here (L1 ⊂ . . . ⊂ Ln = L/tL) is the complete flag on L/tL preserved by BG. Let Π

µ

r ×̃F lwG be the scheme
classifying pairs (v, gIG), where gIG is in F lwG, and v : U∗ → L

′

/trL such that the induced map

v : U∗/tU∗ −→ L
′

/tL
′

sends Vect(u∗m, . . . , u
∗
ν( j)+1) to L

′

j−1 for all j = 1, . . . , n. We have a proper map

π : Π
µ

r ×̃F lwG −→ ΠN,r

sending any element (v, gIG) to v. By definition of
←

HG,
←

HG(Lw,I
µ)−̃→π!(Q`�̃Lw),

where Q`�̃Lw is normalized to be perverse.

Proposition 4.14. Let w be an element of W̃G. Then
←

HG(Lw!,I
µ!) is canonically isomorphic to Iw�µ!.
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Proof. Let w = tλτ with λ = (a1, . . . , an) in XG and τ in WG. Let Π
µ
r ×̃F lwG be the open subscheme of Π

µ

r ×̃F lwG
given by the additional condition that gIG lies in F lwG and the map v : Vect(u∗m, . . . , u

∗
ν( j)) → L

′

j is surjective
for j = 1, . . . , n. Denote by π0 the restriction of π to this open subscheme. The image of π0 consist of the
IH × IG-orbit on ΠN,r through v such that v(u∗ν( j)) = taτ( j) eτ( j) for all j = 1, . . . , n and v(u∗k) = 0 for k ∈ Iµ.
Therefore the image of the map π0 is Π

w�µ
N,r and π0 is an isomorphism onto its image. Thus
←

HG(Lw!,I
µ!)−̃→I(w�µ)!.

�

Definition 4.15. Let Θ be K(PIG (F lG))-module in K(DIH×IG (Π(F))) generated by the elements Iµ!, where Iµ
runs through all possible subsets of n elements in {1, . . . ,m}.

It is understood that for each such subset Iµ there is a unique strictly decreasing map µ : Iµ → {1, . . . , n}, so
we may view µ as the element (0, µ) in XG × S n,m as above.

The subspace Θ⊗Q̄` ⊂ K(DIH×IG (Π(F)))⊗Q̄` is different from the group K(DIH×IG (Π(F)))⊗Q̄`. For example,
each function from Θ ⊗ Q̄` vanishes at 0 in Π(F). Actually, Θ is the geometrization of the first term of the
filtration of Kudla on K(DIH×IG (Π(F))) ⊗ Q̄` introduced in [25].

Our calculation yields the following generalization:

Proposition 4.16. The module Θ is free module of rank Cn
m over K(PIG (F lG)). The elements Iµ!, where Iµ

runs through all possible subsets of n elements in {1, . . . ,m}, form a basis of this module over K(PIG (F lG)).

Our purpose now is to show that Θ is a submodule with respect to the right action of K(PIH (F lH)) ⊗ Q`
on K(DIH×IG (Π(F))) and identify Θ as the induced representation from a parabolic subalgebra. The con-
siderations are essentially on the level of Grothendieck groups (we formulate them on the level of derived
categories however when this is possible. Let us simply denote K(DIH×IG (Π(F)) ⊗ Q̄` by S. Let S0 be the
Q̄`-subspace of S generated by the elements I(w�w0)!, where w runs through W̃G.

Denote by M a standard Levi subgroup of H, and by WM the corresponding finite Weyl group. IM = M(F)∩
IH . Denote by Tw the characteristic function of the double coset IwI for any w in W̃H . The algebra HIM

is the subalgebra of HIH generated by (Tw)w∈WM , and by the Bernstein functions (θλ)λ∈XH . Remind that our
convention for the Wakimoto objets is the one in [24], already mentioned in §2. According to [24, § 5.4],
each coset WM\WH has a unique element of minimal length. Let MWH be the set of such elements. If ∆M

denotes the simple roots of M then
MWH = {w ∈ WH |w(α̌) > 0 for each α̌ in ∆M}.

Any w in WH can be written as w
′′

w
′

, where w
′′

and w
′

are respective elements of WM and MWH satisfying
`(w) = `(w

′′

) + `(w
′

). Therefore Tw equals Tw′′Tw′ . We recall that HIH is a free module overHIM generated
by {Tw′ |w

′

in MWH}. We are going to prove the two following results:

Theorem 4.17. The space S0 is a submodule of S for the right action ofHIM .

The inclusion of S0 in S is a homomorphism of right HIM -modules and left HIG -modules. By adjoinction,
we get a morphism

α : S0 ⊗HIM
HIH → S

of rightHIH -modules and leftHIG -modules.
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Theorem 4.18. The map α : S0 ⊗HIM
HIH → S is injective, and it’s image equals Θ ⊗ Q`.

The rest of the section is devoted to the proof of these two theorems. The following lemma proves that S0 is
a free module of rank one overHIG .

Lemma 4.19. For any element w in W̃G, we have
←

HG(Lw!, Iw0!)−̃→I(w�w0)!.

Proof. For a point gIG in F lwG, let L′ = gL and equip L′/tL′ with the flag L
′

i = g(Li), for 1 ≤ i ≤ n. Let
ΠIw0 ,r×̃F lwG be the scheme classifying pairs (v, gIG), where gIG is in F lwG, and v is a map from U∗ to L′/trL
such that the induced map

v : U∗/tU∗ −→ L′/tL′

sends u∗m, . . . , u
∗
n+1 to zero and Vect(u∗n, . . . , u

∗
n−i) to L′i+1 for i = 0, . . . , n − 1. Let

(4.20) π : ΠIw0 ,r×̃F lwG −→ ΠN,r

be the proper map sending a couple (v, gIG) to v. By definition we have
←

HG(Lw,I
w0 )−̃→π!(Q`�̃Lw). Let

Π0
Iw0 ,r×̃F lwG be the open subscheme of ΠIw0 ,r×̃F lwG consisting of pairs (v, IG) such that gIG is in F lwG, and the

map v : Vect(u∗n, . . . , u
∗
n−i) −→ L′i+1 is an isomorphism for i = 0, . . . , n−1. Thus

←

HG(Lw!,I
w0!)−̃→π0

! (Q`�̃Lw),
where π0 : Π0

I,r×̃F `
w
G −→ ΠN,r is the restriction of π. The image of π0 equals Π

w�w0
N,r and π0 is an isomorphism

onto its image. Thus we have
←

HG(Lw!,I
w0!)−̃→I(w�w0)!. �

Now let w = tλτ be an element of W̃H . The cocharacter λ in XH is of the form (a1, . . . , am) with ai in Z.
Choose two integers N, r such that −N ≤ ai < r for all i. Denote by U1 ⊂ U2 ⊂ · · · ⊂ Um the standard flag
over U/tU. We define the scheme ΠIw0 ,r × F lwH in the same way we did for G. For any point hIH in F lwH , we
put U

′

= hU and equip U
′

/tU
′

with the complete flag U
′

i = hUi. Then ΠIw0 ,r×F lwH is the scheme classifying
pairs (v, hIH), where hIH is in F lwH and v is a map from L∗ to U

′

/trU such that the induced map

v : L∗/tL∗ −→ U
′

/tU
′

sends Vect(e∗n, . . . , e
∗
n−i) to U

′

i+1 for all i = 1, . . . , n − 1. Let π be the projection

π : ΠIw0 ,r × F lwH −→ ΠN,r

then by definition we obtain
←

HH(Lw,I
w0 )−̃→π!(Q`�̃Lw). Let Π0

Iw0 ,r ×F lwH be the open subscheme of ΠIw0 ,r ×

F lwH defined by the additional condition that the above map v : L∗/tL∗ −→ U
′

n above is an isomorphism. Let

(4.21) π0 : Π0
Iw0 ,r × F lwH −→ ΠN,r

be the restriction of π. Then we have
←

HH(Lw!,I
w0!)−̃→π0

! (Q`�̃Lw).

Lemma 4.22. Assume that λ = (0, . . . , 0, an+1, . . . , am) and that the coefficients ai are non negative. If τ is a
permutation acting trivially on {1, . . . , n} and permuting {n + 1, . . . ,m}, we have

←

HH(Lw!,I
w0!)−̃→Iw0![n〈λ, ω̌m〉 − `(w)].
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Proof. In this case, the image of the map π0 (4.21) is exactly the orbit Π
w0
0,r and the fibre of π0 is an affine

space. We need to compute the dimension of the fibres. Note that Π
w0
0,r has dimension (r − 1)mn +

n(n+1)
2 . The

scheme Π0
Iw0 ,r×̃F `

w
H is of dimension `(w)− n〈λ, ω̌m〉+ (r − 1)nm +

n(n+1)
2 . This implies that the dimension of

the fibre of π0 equals `(w) − n〈λ, ω̌m〉. This yields the result. �

Proposition 4.23. Let τ be in WH . Then
←

HH(Lτ!,I
w0!)−̃→Iν![r],

where ν = (0,w0τ
−1) is an element of XH × S n,m and r is the dimension of the fibre of the map π0 in (4.21).

Before proving this proposition we will need the following lemma:

Lemma 4.24. Let U1 ⊂ · · · ⊂ Um = U0 be a complete flag on U0. Consider a partial flag

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ U0

inside U0. Let τ be a reflection in the finite Weyl group WH of H. Denote by Y the variety of complete flags

V
′

1 ⊂ · · · ⊂ V
′

m

which are in relative position τ with respect to the standard complete flag U1 ⊂ · · · ⊂ Um such that V
′

i = Vi

for all i = 1, . . . , n. Then the variety Y is isomorphic to a finite dimensional affine space.

Proof. The stabilizer of the complete flag U1 ⊂ · · · ⊂ Um = U0 in H is the Borel subgroup BH . For
i = 1, . . . ,m fix a basis ui of U0 such that Ui = Vect(u1, . . . , ui). The variety H/BH is identified with the
complete flags in U0. Given a vector subspace V of U0 of dimension k, we associate to this subspace a
subset I(V) of k elements in {1, . . . ,m} defined by I(V) = {1 ≤ i ≤ m| dim(V ∩ Ui) > dim(V ∩ Ui−1)}. Thus,
for w in WH , the orbit BHwBH/BH is the variety of complete flags

U
′

1 ⊂ · · · ⊂ U
′

m

on U0 such that 1 ≤ i ≤ m we have I(U
′

i ) = {w(1), . . .w(i)}.

Let Vn be a flag V1 ⊂ · · · ⊂ Vn ⊂ U0 such that dim(Vi) = i. The space Y is the variety of complete flags
V
′

1 ⊂ · · · ⊂ V
′

m lying in the orbit BHwBH/BH and satisfying V
′

i = Vi for all 1 ≤ i ≤ n. In order that the
space Y be non-empty, we must have I(Vn) = {w(1), . . .w(n)}. Assume that this is true. Given a subset of k
elements Ik in {1, . . .m}, denote by ZIk the variety of subspaces V of U0 such that I(V) = Ik (in particular we
have dim(V) = k). Given another subset Ik+1 of k + 1 elements containing Ik, let ZIk ,Ik+1 be the variety of pairs
(V ⊂ V

′

), where V lies in ZIk and V
′

lies in ZIk+1 . Denote by π the projection from ZIk ,Ik+1 onto ZIk sending
(V ⊂ V

′

) to V . Let us prove that the map π is BH-equivariant affine fibration.

For V in ZIk denote by U i the image of Ui under the map U0 → U0/V. Then U i = U i−1 if and only if i
lies in Ik. Denote by s the single element of Ik+1 − Ik. The fibre of the map π identifies with the variety of
1-dimensional subspaces V

′

/V ⊂ U0/V such that V
′

/V is a subset of U s and V
′

/V is not contained in U s−1.

This fibre is affine and since the space ZIk is BH-homogeneous, the map π is a BH-equivariant affine fibration.

For r ≥ n denote by Yr the variety of flags V1 ⊂ · · · ⊂ Vn ⊂ V
′

n+1 ⊂ · · · ⊂ V
′

r such that I(Vi) = {τ(1), . . . , τ(i)}
for n ≤ i ≤ r. We have the forgetful maps

Ym
fm
−→ Ym−1

fm−1
−→ . . .

fn+1
−→ Yn = Spec(k).
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Any of the map fi above is obtained by a base change from the map π for a suitable pair (Ik ⊂ Ik+1). The
fibre of a map fr depends only on V

′

r−1 and not on the smaller V
′

j for j ≤ r − 2. As any affine fibration over
an affine space is trivial this leads to the result and Y is an affine space of dimension r for some r ≥ n. �

Proof of Proposition 4.23. Let us precise the definition of ν, ν = (0,w0τ
−1) is an element of XH×S n,m,where

the set Iw0τ−1 is the set τ({1, . . . , n}) and w0τ
−1 : Iw0τ−1 → {1, . . . , n} is the corresponding bijection. Consider

the map
π0 : Π0

Iw0 ,1 × F lτH −→ Π0,1.

The fibres of the map π0 are affine spaces according to Lemma 4.24. We denote by r their dimension. Since

the image of π0 is the orbit Πν
0,1. We obtain that

←

HH(Lτ!,I
w0!)−̃→Iν![r]. �

Remark 4.25. If the permutation τ is a actually a permutation of {1, . . . , n} and acts trivially on {n+1, . . . ,m}
then the shift in the above formula disappears and the map π0 will be an isomorphism onto its image Πν

0,1.

Let M be the standard Levi subgroup in H corresponding to the partition (n,m − n) of m. Then M is of the
form M1 × M2, where M1−̃→GLn and M2−̃→GLm−n. Write HIM for the Iwahori Hecke algebra associated
to M viewed as subalgebra of HIH . We have naturally HIM −̃→HIM1

⊗Q`
HIM2

. We will denote by XMi the
coweight lattice of Mi, for i = 1, 2. The space S0 is not a HIM -submodule for the natural left action of HIM

on S(Π(F))IH×IG . For instance, let λ = (1, . . . , 1, 0 . . . , 0) where 1 appears n times the complex
←

HH(Ltλ! ,Iw0!)
doesn’t occur in S0. We will consider this right action and will show that S 0 is a right HIM -module under
this right action. Remind that the right action ofHIM commutes with the left action ofHIG .

Lemma 4.26. For τ a simple reflection in the finite Weyl group WM of M,
→

HH(Lτ!,I
w0!) lies in S0.

Proof. According to Lemma 4.23, we have

(4.27)
→

HH(Lτ!,I
w0!)−̃→

←

HH(Lτ!,I
w0!)−̃→Iν![r],

where ν = (0,w0τ) is viewed as an element of XH × S n,m. Thus
→

HH(Lτ!,I
w0!) occurs in S0. �

Lemma 4.28. Let ω = (1, . . . , 1) be in XH , µ1 = (a1, . . . , an) be in XM1 and µ2 = (an+1, . . . , am) be in XM2 .

Then let λ be the coweight µ1 + µ2 in XH and assume that if m ≥ i > n ≥ j ≥ 1 then ai ≥ a j. we also fix
r,N two integers such that −N ≤ ai < r for all i. Let v be a O-linear map from L∗ to tλU/trU such that for
0 ≤ i < n, the induced map

v : L∗/tL∗ −→ tλU/tλ+ωU

sends Vect(e∗n, . . . , e
∗
n−i) isomorphically onto Vect(ta1 u1, . . . tai+1 ui+1). Denote by ν the element (w0(µ1),w0) in

XG × S n,m. Then v is an element of the orbit Πν
N,r.

Proof. Let U1 = Ou1⊕· · ·⊕Oun and U2 = Oun+1⊕· · ·⊕Oum. Then the map v can be written as a pair (v1, v2),
where vi : L∗ −→ tµi Ui/trUi for i = 1, 2. Let NG ⊂ BG be unipotent radical of the standard Borel subgroup of
G. Acting by a suitable element of NG ⊂ IG on v, one may assume that v1(e∗i ) = taw0(i) uw0(i) modulo tµ1+ωU1.

Furthermore consider the groups

I1 = {g ∈ GL(U1) | g = id mod t}

and
IG,0 = {g ∈ GL(L) | g = id mod t}.
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Acting by a suitable element of IG,0×I1 we may assume that v1(e∗i ) = taw0(i) uw0(i). This implies that v2 vanishes.
Now viewing v as a map from L∗ to t−N L, we observe that r can be replaced by 1 + min{an+1, . . . , am}. Hence
v is an element of Πν

N,r. �

Lemma 4.29. Let λ = (a1, . . . , an, 0, . . . , 0) be a anti-dominant cocharacter in XH , in particular all ai’s are
non positive. Then we have a canonical isomorphism

←

HH(Ltλ! ,Iw0!)−̃→Iµ![〈λ, 2ρ̌G − 2ρ̌H〉 + (n − m)〈λ, ω̌m〉],

where µ = (w0(λ),w0) in XG × S n,m and w0 is the longest element of the finite Weyl group of M1−̃→G

Proof. Consider the map

π0 : Π0
Iw0 ,r×̃F `

w
H −→ ΠN,r

defined in (4.20). By applying Lemma 4.28 to w = tλ, we see that the image of π0 is the IH × IG-orbit on
ΠN,r passing through the map v from L∗ to t−NU/trU given by v(e∗i ) = taw0(i) uw0(i) for 1 ≤ i ≤ n. This orbit
corresponds to element µ = (w0(λ),w0) in XG × S n,m. Restricting π0 to its image we get

(4.30) π0
H : Π0

Iw0 ,r×̃F `
tλ
H −→ Π

µ
N,r

whose fibres are affine spaces. One has dim(F `tλ
H) = 〈λ, 2ρ̌H〉. For any point hIH in F `tλ

H , let U
′

= hU. Then

dim(HomO(L∗, tλ+ωU/trU)) = nm(r − 1) − n〈λ, ω̌m〉.

Thus the affine space of maps from L∗ to hU/trU sending Vect(e∗n, . . . , e
∗
n−i) to U

′

i+1 for i = 1, . . . , n − 1 is of
dimension n2+n

2 + nm(r − 1) − n〈λ, ω̌m〉. Finally

dim(Π0
Iw0 ,r×̃F lt

λ

H) = 〈λ, 2ρ̌H〉 +
n2 + n

2
+ nm(r − 1) − n〈λ, ω̌m〉.

Moreover, we have the following isomorphism

π0
G : Π0

Iw0 ,r×̃F lt
w0(λ)

G −̃→Π
µ
N,r.

By using dim(F `tw0λ

G ) = 〈λ, 2ρ̌G〉, we get that the dimension of Π
µ
N,r equals

n2 + n
2

+ nm(r − 1) − m〈λ, ω̌m〉 + 〈λ, 2ρ̌G〉.

and hence the dimension of the fibres of the map (4.30) equals

〈λ, 2(ρ̌G − ρ̌H)〉 + (m − n)〈λ, ω̌m〉

which allows us to calculate the announced shift in the Lemma. Additionally this proves that
←

HH(Ltλ! ,Iw0!)
lies in S0. �

Remind the following two properties due to [2],

(1) If w1,w2 ∈ W̃G verify `(w1w2) = `(w1) + `(w2) then we have a canonical isomorphism

(4.31) Lw1∗ ? Lw2∗−̃→Lw1w2∗.

Under the same assumption, and by duality the same result is true for Lw!.
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(2) Denote by e the identity element of W̃G then for any w ∈ W̃G, we have

(4.32) Lw! ? Lw−1∗−̃→Lw−1∗ ? Lw!−̃→Le.

Hence the perverse sheaf Lw! is an invertible object of DIG (F lG).

Proposition 4.33. Let λ = (a1, . . . , an, 0, . . . , 0) be an anti dominant cocharacter in XH , in particular all ai’s

are non-positive. Then
←

HH(Lt−λ∗ ,I
w0!) occurs in S0.

Proof. According to Lemma 4.29, we have
←

HH(Ltλ! ,Iw0 )−̃→Iµ![d],

where the shift d equals [〈λ, 2ρ̌G −2ρ̌H〉+ (n−m)〈λ, ω̌m〉]. Moreover according to (4.32), we have Lt−λ∗?Ltλ!

is isomorphic to Le where e is the identity element in the finite Weyl group of M1. Combining these two
isomorphisms we obtain

Iw0!−̃→
←

HH(Lt−λ∗ ? Ltλ! ,Iw0!)−̃→
←

HH(Lt−λ∗ ,I
µ!)[d]

−̃→
←

HH(Lt−λ∗ ,
←

HG(Ltw0(λ)! ,Iw0!))[d]

−̃→
←

HG(Ltw0(λ)! ,
←

HH(Lt−λ∗ ,I
w0 ))[d],(4.34)

where the third isomorphism is due to Lemma 4.19 and the last one is due the fact that the actions of H and

G commute. Applying
←

HG(Lt−w0(λ)∗ , .) to both sides of (4.34), we obtain

(4.35)
←

HG(Lt−w0(λ)∗ ,Iw0!)−̃→
←

HH(Lt−λ∗ ,I
w0 )[d].

Since S0 is a leftHIG -module, the left hand side of (4.35) lies in S0. Thus so does the right hand side. �

Lemma 4.36. Let λ = (0, . . . , 0, an+1, . . . , am) be a dominant cocharacter of M. If an+1 ≥ · · · ≥ am ≥ 0 then
←

HH(Lt−λ∗,I
w0!)−̃→Iw0![〈λ, 2ρ̌H〉 − n〈λ, ω̌m〉].

Proof. Lemma 4.22 applied to w = tλ (τ being the identity) gives us
←

HH(Ltλ! ,Iw0 )−̃→Iw0 [n〈λ, ω̌m〉 − 〈λ2ρ̌H〉].

This implies the assertion for Lt−λ∗. �

Proposition 4.37. Let λ be a dominant cocharacter in XH that can be written as the sum of two cocharacters
λ1 and λ2 in XM1 and XM2 respectively. If ν = (−w0(λ1),w0) then

→

HH(Ltλ! ,Iw0!)−̃→
←

HH(Lt−λ! ,Iw0!)−̃→Iν![〈λ1, 2ρ̌G〉 − 〈λ, 2ρ̌H〉 + 〈mλ1 − nλ, ω̌m〉],

where we identify M1 with G and hence ρ̌M1 with ρ̌G. Thus
→

HH(Ltλ! ,Iw0!) occurs in S0.

Proof. Set −λ = (a1, . . . , am) and choose two integers r,N such that −N ≤ ai < r for all i. By Lemma 4.28
the map

π0 : Π0
Iw0 ,r×̃F `

t−λ
H −→ ΠN,r

factors through Πν
N,r by a map π0

H , where ν is equal (−w0(λ1),w0). The dimension of Π0
Iw0 ,r×̃F `

t−λ
H equals

nm(r − 1) + n〈λ, ω̌m〉 +
n2+n

2 + 〈λ, 2ρ̌H〉. We have the isomorphism
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Π0
Iw0 ,r×̃F `

t−w0(λ1)

H −̃→Πν
N,r

and this allows us to calculate the dimension of IH × IG-orbit Πν
N,r. Namely

dim(F `t−w0(λ1)

G ) = 〈−w0(λ1), 2ρ̌G〉 = 〈λ1, 2ρ̌G〉.

Remind that w0 is longest element of the finite Weyl group of M1−̃→G. This yields

dim(Πν
n,r) = nm(r − 1) + m〈λ1, ω̌m〉 +

n2 + n
2

+ 〈λ1, 2ρ̌G〉.

So the dimension of a fibre of the map π0
H is 〈λ, 2ρ̌H〉 − 〈λ1, 2ρ̌G〉 + 〈nλ −mλ1, ω̌m〉. This justifies the shift in

the formula announced above and the assertion follows. �

Remark 4.38. In Lemma 4.37 if λ2 equals 0 then the corresponding map π0
H is an isomorphism and the shift

in the above formula disappears.

Proposition 4.39. For any λ in X+
H , the complex

←

HH(Ltλ∗,I
w0 )[d] occurs in S0. Besides for a dominant

cocharacter µ in X+
H then the complex

←

HH(Lt−µ! ? Ltλ∗,I
w0 ) occurs in S0 as well.

Proof. The equality (4.32) combining this with Proposition 4.37, we get :

Iw0!−̃→
←

HH(Ltλ∗ ? Lt−λ!,I
w0!)−̃→

←

HH(Ltλ∗,I
ν)[d]

−̃→
←

HH(Ltλ∗,
←

HG(Lt−w0(λ)! ,Iw0!))[d]

−̃→
←

HG(Lt−w0λ! ,
←

HH(Ltλ∗,I
w0!))[d], .(4.40)

The shift d is also the one defined in Proposition 4.37. The third isomorphism is due to Lemma 4.19 and the

fourth holds by using the commutativity of the action of G and H. Applying
←

HG(Ltw0(λ)∗, .) to both sides, we
get

←

HG(Ltw0(λ)∗ ,Iw0!)−̃→
←

HH(Ltλ∗,I
w0!)[d].

This complex occurs in S0. Now consider the isomorphism
←

HH(Lt−µ! ? Ltλ∗,I
w0!)−̃→

←

HH(Lt−µ!,
←

HG(Ltw0(λ)∗,I
w0 ))[−d]

−̃→
←

HG(Ltw0(λ)∗,
←

HH(Lt−µ!,I
w0 ))[−d].(4.41)

By Lemma 4.37, the complex
←

HH(Lt−µ! ,Iw0!) occurs in S0. Since S0 is a HIG -module we can apply the

functor
←

HG(Ltw0(λ)∗, ) to
←

HH(Lt−µ! ,Iw0!). Then the result will still occur in S0. �

Proof. of Theorem 4.17: The assertion follows from (4.27), Lemmas 4.29 and 4.36, Propositions 4.37, 4.33
and 4.39. �

Proof. of Theorem 4.18 : Lemma 4.23 and Proposition 4.16 imply that the image of the map α is exactly
Θ ⊗ Q`. More precisely, if τ runs through MWH the elements Lτ! form a basis of the left HIM -module HIH .
Hence for w and τ runs through W̃G and MWH respectively, the objects

(4.42)
→

HH(Lτ!,
←

HG(Lw!,I
w0! ))
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form a basis of S0⊗HIM
HIH over Q`. An element ν in WH lies in MWH if and only if ν is strictly increasing on

{1, . . . , n} and on {n + 1, . . . ,m}. For τ in MWH let µ = w0τ and Iµ = τ−1({1, . . . , n}). Consider µ as a map from
Iµ to {1, . . . , n} and so as an element of XG × S n,m. The map τ−1w0 : {1, . . . , n} → Iµ is strictly decreasing
because τ−1 : {1, . . . , n} → Iµ is strictly increasing. According to Lemma 4.23 we have

→

HH(Lτ!,I
w0!)−̃→Iµ![r].

By Proposition 4.14 we have
←

HG(Lw!,I
µ)−̃→Iw�µ[d

′

] for some d
′

and hence the image of (4.42) under the
map α is Iw�µ![d

′′

] for some shift d
′′

. �

The Iwahori-Hecke algebra HIM identifies canonically with HIM1
⊗Q`
HIM2

. The right action of HIM1
and

HIM2
on S0 commute with each other. We are now going to define the action of the Wakimoto sheaves on

Iw0!.

Lemma 4.43. We have the following isomorphisms:

(1) For any λ in XM2

→

HH(Ltλ! ,Iw0!)−̃→
←

HH(Lt−λ! ,Iw0!)−̃→Iw0![−〈λ, 2ρ̌M2〉].

(2) For λ in XM2

(4.44)
→

HH(Lt−λ∗ ,I
w0!)−̃→Iw0![〈λ, 2ρ̌M2〉].

(3) For any λ in XM2 ,
→

HH(Θλ,I
w0!)−̃→Iw0![−〈λ, 2ρ̌M2〉],

where Θλ is the Wakimoto sheaf associated to λ.
(4) For w in W̃G and λ in XM2 ,

→

HH(Θλ,I
(w�w0)!)−̃→I(w�w0)![−〈λ, ρ̌M2〉].

Proof. The first formula is obtained by applying Lemma 4.37 to the case where λ1 = 0. The second one is
obtained from the first and from the isomorphism (4.32). The third one holds by definition of Θλ using the
two first isomorphisms. Finally we prove the fourth one:

→

HH(Θλ,I
(w�w0)!)−̃→

→

HH(Θλ,
←

HG(Lw!,I
w0!))−̃→

←

HG(Lw!,
→

HH(Θλ,I
w0!))

−̃→
←

HG(Lw!,I
w0 [−〈λ, 2ρ̌M2〉])−̃→I

(w�w0)![−〈λ, 2ρ̌M2〉].(4.45)

�

Corollary 4.46. For any object K in S0 and any λ in XM2 we have
→

HH(Θλ,K)−̃→K[−〈λ, 2ρ̌M2〉].

Proposition 4.47. For any w in the finite Weyl group of M2 we have
→

HH(Lw!,I
w0!)−̃→

←

HH(Lw−1 ,Iw0!)−̃→Iw0![−`(w)].
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Thus, at the level of the functions, the Iwahori-Hecke algebraHIM2
acts onS0 by the character corresponding

to the trivial representation of M2(F) ' GLm−n(F). Moreover,
→

HH(Θλ ? Lτ,K)−̃→K[−〈λ, 2ρ̌M2〉 − `(τ)].

Proof. At the level of functions, for any w in W̃G the character ofHIG corresponding to the trivial represen-
tation sends Tw, the characteristic function of the double coset IGwIG, to q`(w). In our geometric setting, for

any w in W̃G this character becomes the functor
←

HG(Lw!, ) sending K in S0. to K[−`(w)]. Remind that the
object Lw! corresponds to q−`(w)/2Tw. �

Remind that M1 is identified with G. Now let us analyse the structure of S0 as a right HIM1
-module and its

relation with the leftHIG -module structure.

Lemma 4.48.
(1) For any τ in the finite Weyl group of M1,

→

HH(Lτ!,I
w0 )−̃→Iw0τ!.

(2) For any λ in X+
M1
,

→

HH(Ltλ!,I
w0 )−̃→Iw0t−λ! and

←

HG(Ltw0(λ)∗,I
w0!)−̃→

→

HH(Lt−λ∗,I
w0!).

(3) For any λ in XM1 ,
→

HH(Θλ,I
w0!)−̃→

←

HG(Θ−w0(λ),I
w0! ).

(4) For any τ in the finite Weyl group of M1 and any λ in XM1 ,

→

HH(Θλ ? Lτ!,I
w0 )−̃→

←

HG(Θ−w0λ ? Lw0τw0!,I
w0!).

Proof. The first isomorphism is obtained from Proposition 4.23. The second one is a consequence of (4.2).
For the third one, choose λ1 and λ2 on X+

H ∩ XM1 such that λ = λ1 − λ2. By definition of Wakimoto sheaves,
Θλ = Lt−λ2 ∗ ? Ltλ1! inHIM1

. The isomorphism in 2) yields that
→

HH(Ltλ1! ,
→

HH(Lt−λ2∗ ,I
w0!))−̃→

→

HH(Ltλ1! ,
←

HG(Ltw0(λ2)∗ ,Iw0!))

−̃→
←

HG(Ltw0(λ2)∗ ,
→

HH(Ltλ1! ,Iw0!))

−̃→
←

HG(Ltw0(λ2)! ,
←

HG(Lt−w0(λ2)! ,Iw0!).(4.49)

The element −w0λ2 is dominant if λ2 is dominant. This implies the third assertion. The fourth isomorphism
is obtained formally in the following way:

→

HH(Θλ ? Lτ!,I
w0!)−̃→

→

HH(Lτ!,
←

HG(Θ−w0(λ)!,I
w0!))

−̃→
←

HG(Θ−w0(λ),
→

HH(Lτ!,I
w0!))

−̃→
←

HG(Θ−w0λ,
←

HG(Lw0τw0!,I
w0!))

−̃→
←

HG(Θ−w0λ ? Lw0τw0!,I
w0!).(4.50)

�
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Corollary 4.51. The subspace S0 is a free rightHIM1
-module of rank one generated by Iw0!.

Proof. The assertion follows from Lemma 4.48 and the fact that if λ and τ runs through XM1 and WM1

respectively the elements Θλ ? Lτ! form a basis ofHIM1
. �

Combining Lemma 4.48 with Corollary 4.51 we obtain the following proposition:

Proposition 4.52. There exists an equivalence of categories

σ̃ : PIM1
(F lM1 )−̃→PIG (F lG)

such that for any w in WM1 , σ̃ sends Lw to Lw0w−1w0
, ( w is the anti-involution defined in Definition definir!).

Additionally for any T in PIM1
(F lM1 ) we have

→

HH(T ,Iw0!)−̃→
←

HG(σ̃(T ),Iw0!).

At last, For any λ a cocharacter of M1, we have

σ̃(Θλ ? Lτ!)−̃→Θ−w0λ ? Lw0τw0!.

In the case n = m, the anti-isomorphism reduces to Proposition 4.11.

5. Weak geometric analogue of Jacquet Functors and compatibility with Hecke functors

In this section we place ourselves in a more general setting. Let G be a split reductive connected group
over k, T be the maximal standard torus of G and B be the standard Borel subgroup B in G containing T .
Denote by IG the corresponding Iwahori subgroup. Let P be a parabolic subgroup of G containing B and U
its unipotent radical. Let L be the Levi subgroup of P isomorphic to P/U. Let M0 be a faithful representation
of G, and let M = M0 ⊗k (O).

In the classical setting, an important tool is the Jacquet module S(M(F))U(F) of coinvariants with respect
to U(F). We will define a weak analogue of Jacquet functors in the geometric setting. Let V0 be a P-stable
subspace of M0 endowed with a trivial action of U. Set V = V0 ⊗k (O), we have a surjective map of L(F)-
representations

S(M(F))U(F) −→ S(V(F))

given by restriction under the inclusion V(F) ↪→ M(F). We will geometrize the composition

S(M(F)) −→ S(M(F))U(F) −→ S(V(F)),

and we will show that in the Iwahori case, geometric Jacquet functors commute with the action the HIL -
subelgebra ofHIG .

Let IP be the preimage of the Borel subgroup B under the map P(O) → P. Denote by BL the image of B in
L. It is a Borel subgroup of L. In the same way consider the map L(O) → L and denote by IL the preimage
of BL under this map in L(O). Hence IL is an Iwahori subgroup of L(F). Finally we have a diagram

IL ←− IP ↪→ IG,

where the first map is induced by the natural projection P(O) → L(O). According to [10], the categories
DIG (M(F)) and DIL (V(F)) are well defined. We are going to define the following functors

J∗P, J
!
P : DIG (M(F)) −→ DIL (V(F)).
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Let N, r be two integers such that N +r ≥ 0. Set VN,r = t−NV/trV.Denote by iN,r the natural closed embedding
of VN,r in MN,r. For any s ≥ 0, let Ks be the quotient of IG by the kernel of the map GO) → G(O/tsO). Let
IP,s denote the image of IP under the inclusion

IP ↪→ P(O) −→ P(O/tsO).

Similarly let IL,s be the image of IL under L(O)→ L(O/tsO). We have the following diagram

L(O/tsO) P(O/tsO)oo // G(O/tsO)

IL,s

OO

IP,soo //

OO

Ks.

OO

For s ≥ N + r, we obtain a digram of stack quotients

IP,s\VN,r
iN,r //

q

��

IP,s\MN,r
p // Ks\MN,r

IL,s\VN,r,

where p comes from the closed inclusion IP,s ↪→ IG,s. Set a equal to dim M0 − dim V0.

Proposition 5.1. There exists two well-defined functors

(5.2) J∗P, J
!
P : DIG (M(F)) −→ DIL (V(F)).

Proof. For any s ≥ N + r, we have the following functors:

J∗P,N,r, J
!
P,N,r : DKs (MN,r) −→ DIL,s (VN,r)

defined by
q∗ ◦ J∗P,N,r[dim .rel(q)] = (iN,r)∗p∗[dim .rel(p) − ra]

q∗ ◦ J!
P,N,r[dim .rel(q)] = (iN,r)! p∗[dim .rel(p) + ra].

The sequence
1 −→ U(O/tsO) −→ IP,s −→ IL,s −→ 1

is exact. Hence the functor
q∗[dim .rel(q)] : DIL,s (VN,r) −→ DIP,s (VN,r)

is an equivalence of categories and exact for perverse t-structure. The functors J∗P,N,r and J!
P,N,r are well-

defined. They are compatible with the transition functors in the ind-system of categories defining DIG (M(F))
and DIL (L(F)) defined in [10]. By the taking the inductive 2-limit, we obtain the two well-defined functors
J∗P and J!

P (5.2) which do not depend on the choice of a section of P → P/U. The Verdier duality functor D
exchanges J∗P and J!

P, i.e. we have canonically

D ◦ J∗P−̃→J!
P ◦ D.

�
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As in the case of the affine flag variety, we can define the k-space quotient P(F)/IP and define F `P to be
the sheaf associated to this presheaf in fpqc-topology. It is an ind-scheme. Let X be a projective smooth
connected curve over the field k. Let x be a closed point in X and X∗ be equal X − {x}. Denote by Ox the
completion of the local ring of X at x and by Fx its field of fractions. We choose a local coordinate at the point
x, denoted by t and we may identifyOx = k[[t]] and Fx = k((t)). Let D = Spec(k[[t]]) and D∗ = Spec(k((t))).
Then F `P classifies (FP, β, ε), where FP is a P-torsor on D, the map β is a trivialization of FP over D∗, and
ε is a reduction of FP|x to a B-torsor. We have the diagram

(5.3) F `L
tL
←− F `P

tP
−→ F `G,

where tP (resp. tL) is given by extension of scalars with respect to P ↪→ G (resp. P→ L).
Let F `P,G be the P(F)-orbit through 1 in F `G viewed as an ind-subscheme with a reduced scheme structure.
The reduced ind-scheme F `P,red gives a stratification of F `P,G.

Lemma 5.4. There exists a well-defined geometric restriction functor

gRes : DIG (F `G) −→ DIL (F `L).

Proof. For s1, s2 ≥ 0, let s1 ,s2
P(F) = P(F) ∩ s1 ,s2

G(F), and s1 ,s2
F lP = s1 ,s2

P(F)/IP, , where

s1 ,s2
G(F) := {g ∈ G(F)|ts1 V ⊂ gV ⊂ t−s2 V}.

The ind-scheme s1 ,s2
F lP is a closed subscheme of F `P. Similarly we define

s1 ,s2
L(F) := {g ∈ L(F)|ts1 V ⊂ gV ⊂ t−s2 V},

and s1 ,s2
F lL = s1 ,s2

L(F)/IL. Thus the map tL in (5.3) induces a morphism (denoted again by tL) from s1 ,s2
F lP

to s1 ,s2
F lL. For s ≥ s1 + s2 + 1 we have a diagram of stack quotients

IL,s\(s1 ,s2
F lL) IP,s(s1 ,s2

F lL)
qLoo

IP,s\(s1 ,s2
F lP)

tL

OO

tP

��
.Ks\(s1 ,s2

F lG) IP,s\s1 ,s2
F lG

ξoo

Moreover, the functor

q∗L[dim .rel(qL)] : DIL,s (s1 ,s2
F lL) −→ DIP,s (s1 ,s2

F lL)

is an equivalence of categories and exact for perverse t-structure. For any perverse sheaf K extension by zero
from s1 ,s2

F lG to F lG, we may define gRes(K) by the isomorphism

q∗LgRes(K)[dim .rel(qL)]−̃→(tL!)t∗Pξ
∗K[dim .rel(ξ)].

�
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Lemma 5.5. For any dominant cocharacter λ of G, we have

gRes(Ltλ!)−̃→Ltλ![−〈λ, 2(ρ̌G − ρ̌L)〉],

where ρ̌G (resp. ρ̌L) denote the half sum of positive roots of G (resp. positive roots of L).

Proof. Let UB be the unipotent radical of B. The space F `tλ
G is the UB(O)-orbit through tλIG on F `G. Thus

Ltλ! is the extension by zero from a connected component of F `P. The map UBtλIP/IP −→ F lt
λ

L is a trivial
affine fibration with affine fibre of dimension 〈λ, 2(ρ̌G − ρ̌L)〉 and the result follows.

�

Lemma 5.6. For any w in the finite Weyl group of L, we have

gRes(Lw)−̃→Lw, gRes(Lw!)−̃→Lw!, gRes(Lw∗)−̃→Lw∗.

Proof. The P-orbit through IP gives a natural closed subscheme L/BL−̃→P/B ↪→ F lP. For any w in the finite
Weyl group of L, the double coset BwB is contained in P. Thus Lw! initially defined over F `G is actually an
extension by zero from a connected component of F `P. Hence gRes(Lw!)−̃→Lw!. Moreover, BwB/B in G/B
actually lies in P/B, so gRes(Lw)−̃→Lw. The same result holds for Lw∗. �

The following proposition will show that the functors J!
P, J

∗
P commute with the action of the subalgebraHIL

ofHIG . Remind that the subalgebra structure ofHIL has been defined in [§4.2].

Theorem 5.7. Let T be a perverse sheaf in PIG (F `G) which is the extension by zero from a connected
component of F `P, and K be in DIG (M(F)) then we have

J∗P
←

HG(T ,K)−̃→
←

HL(gRes(T ), J∗PK)[〈λ, ν̌ − µ̌〉],

where λ is the cocharacter whose image in π1(L) is θ, ν̌ is the character by which L acts on det(V0) and µ̌ is
the character by which G acts on det(M0).

Proof. The connected components of F `P are indexed by π1(L). For θ in π1(L), denote by F `θP for the
corresponding connected component which is the preimage of F lθL under the map tL defined in (5.3).

Let s1 and s2 be two non negative integers and T be the extension by zero from s1 ,s2
F lθP = s1 ,s2

F lP ∩ F `
θ
P.

For N + r ≥ 0 and s ≥ max{N + r, s1 + s2 + 1} consider the diagram
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VN,r × s1 ,s2
P(F)

qP

��

act // VN+s1,r−s1

qU

��
VN,r

iN,r

��

VN,r × s1 ,s2
F lθP

proo actq,P //

iN,r×id

��

IP,s\VN+s1,r−s1

iN+s1 ,r−s1

��
MN,r

��

MN,r × s1 ,s2
F lθP

proo actq,P //

��

IP,s\MN+s1,r−s1

p

��
MN,r MN,r × s1 ,s2

F lθG
proo actq // Ks\MN+s1,r−s1 ,

where the map act sends (m, p) to p−1m, the map qP sends (m, p) to (m, pIP), and qU is the stack quotient
under the action of IP,s.

Moreover, the second line of this diagram fits in the following diagram

VN,r × s1 ,s2
F lθP

actq,P //

id×tL

��

IP,s\VN+s1,r−s1

q

��
VN,r × s1 ,s2

F lθL
actq,P // IL,s\VN+s1,r−s1 .

At the level of reduced ind-schemes the map s1 ,s2
F lθP −→ F lG is a locally closed embedding, thus the

perverse sheaf T may be viewed as a complex over s1 ,s2
F lθP. For a given K and large enough N, r, by

definition, up to a shift independent of K and T we have
←

HG(T ,K)−̃→pr!(act∗q,P(K) ⊗ pr∗2(T )),

where pr : Ks\(MN,r×̃s1 ,s2
F lG) −→ Ks\s1 ,s2

F lG is defined in [10]. Thus by definition of gRes and J∗P and the
commutativity of the diagram above, we get

J∗P
←

HG(T ,K)−̃→
←

HL(gRes(T ), J∗PK)[?],

To determine the shift, one may consider the following special case, where K is the constant perverse sheaf
I0 on M and T equals Ltλ! , where λ is a dominant cocharacter of G. For large enough N, r, we have the
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following diagram

(5.8) MN,r M0,r×̃F lt
λ

P
αMoo

VN,r

iN,r

OO

V0,r×̃F lt
λ

P .

OO

αVoo

Remind that F lt
λ

P is the UB(O)-orbit through tλIP in F lP. The scheme M0,r×̃F lt
λ

P is the scheme classifying
pairs (gIP,m), where gIP is in F lP and m is in gM/tr M. Similarly the scheme V0,r×̃F lPtλ is the scheme
classifying pairs (gIP, v), where gIP is in F lt

λ

P and v is in gV/trV. For large enough r, we have gV ∩ tr M = trV.
So the right vertical arrow in Diagram (5.8) is a closed immersion. Denote by IC the IC-sheaf of M0,r×̃F lt

λ

P .

We have canonically
←

HG(Ltλ!, I0)−̃→αM!(IC),

and additionally
dim(M0,r×̃F lt

λ

P ) = 〈λ, 2ρ̌G〉 + r dim M0 − 〈λ, µ̌〉,

Hence we have

J∗P
←

HG(Ltλ!, I0)−̃→i∗N,rαM!(IC)[−ra]

−̃→αV!Q`[〈λ, 2ρ̌G〉 + r dim V0 − 〈λ, µ̌〉].(5.9)

The map αV factors through

(5.10) V0,r×̃F `
tλ
P −→ V0,r×̃F `

tλ
L

αL
−→ VN,r,

where the first map is a trivial affine fibration with an affine fibre of dimension 〈λ, 2(ρ̌G − ρ̌L)〉. This gives us

dim(V0,r×̃F `
tλ
L ) = 〈λ, 2ρ̌L〉 + r dim V0 − 〈λ, ν̌〉.

By definition we have

(5.11)
←

HL(Ltλ!, I0)−̃→αL!(IC).

This gives us the desired shift as follows

J∗P
←

HG(Ltλ!, I0)−̃→αV!Q`[〈λ, 2ρ̌G〉 + r dim V0 − 〈λ, µ̌〉](5.12)

−̃→αL!Q`[〈λ, ν̌ − µ̌ − 2(ρ̌G − ρ̌L)〉]

−̃→
←

HL(Ltλ!, I0)[〈λ, ν̌ − µ̌ − 2(ρ̌G − ρ̌L)〉]

−̃→
←

HL(gRes(Ltλ!), I0)[〈λ, ν̌ − µ̌〉],

where the first isomorphism is due to (5.9), the second is due to (5.10), the third is due to (5.11) and the last
one is due to Lemma 5.5. This shift is compatible with [21, Lemma 5]. �

Let δU : Gm × M0 → M0 be a linear action, whose fixed points set is V0. Assume δU contracts M0 onto V0.
Let r be a integer, denote by ν : Gm → L the cocharacter of the center of L acting on V by x → xr. Now
consider the case where δU is the map sending x in Gm to ν(x)x−r. For any x in Gm and m in MN,r consider
the action of Gm on MN,r defined by (x,m) = xm. Let K be a Gm-equivariant perverse sheaf in PIG (M(F))
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with respect to this action of Gm on MN,r. Then for any w in W̃G, both K and
←

HG(Lw,K) are Gm-equivariant
with respect to the δU-action on M(F). We get a new version of Proposition 5.7 as follows:

Corollary 5.13. Let K be a Gm-equivariant perverse sheaf in PIG (M(F)) for the δU-action on MN,r, for N, r
large enough. Assume that k admits a k′ -structure for some finite subfield k′ of k, and as such is pure of
weight zero. Then J∗P(K) is pure of weight zero.

This is an analogue of [21, Corollary 3] in the Iwahori case affirming that the geometric Jacquet functors
preserve the pure preserve perverse sheaves of weight zero.

6. Appendix A

The construction of Hecke functors has been done in [10, §3]. We will recall here its big lines for sake of
completeness. Let G be a split connected reductive group over k. Let TG be the maximal standard torus and
BG be the standard Borel subgroup containing TG in G. Denote by IG the corresponding Iwahori subgroup.
Let M0 be a faithful finite-dimensional representation of G and let M = M0 ⊗k O. The definitions of the
derived category DIG (M(F)) of `-adic sheaves on M(F) and the category PIG (M(F)) of `-adic perverse
sheaves on M(F) are given in [10, §3]. For any two integers N, r ≥ 0 with N + r > 0, set MN,r = t−N M/tr M.
The subgroup G(O) acts on MN,r via its finite dimensional quotient G(O/tN+rO). Denote by Is the kernel
of the map G(O) −→ G(O/tsO). The Iwahori subgroup IG acts on MN,r via its finite-dimensional quotient
IG/IN+r. For s > 0 denote by Ks the quotient IG/Is. Let s1, s2 ≥ 0 and set

(6.1) s1 ,s2
G(F) = {g ∈ G(F)| ts1 M ⊂ gM ⊂ t−s2 M}.

Then s1 ,s2
G(F) ⊂ G(F) is closed and stable under the left and right multiplication by G(O). Further, s1 ,s2

F lG =

s1 ,s2
G(F)/IG is closed in F lG. For s

′

1 ≥ s1 and s
′

2 ≥ s2, we have the closed embeddings s1,s2F `G ↪→ s′1,s
′

2
F `G

and the union of s1,s2F `G is the affine flag variety F lG. The map sending g to g−1 yields an isomorphism
between s1 ,s2

G(F) and s2 ,s1
G(F). Denote by µ̌ in X̌+ the character by which G acts on det(M0). The connected

components of the affine Grassmannian GrG are indexed by the algebraic fundamental group π1(G) of G.
For θ a cocharacter in π1(G), choose λ in X+ whose image in π1(G) equals θ. Denote by GrθG the connected
component of GrG containing GrλG. The affine flag manifold F lG is a fibration over GrG with the typical
fibre G/B. Hence the connected components of the affine flag variety F lG are also indexed by π1(G). For
θ in π1(G), denote by F lθG the preimage of GrθG in F lG. Set s1 ,s2

F lθG = F lθG ∩ s1 ,s2
F lG. According to [10,

Lemma 4.2], There exists an inverse image functor

act∗q : DIG (M(F)) × DIG (F lG) −→ DIG (M(F) × F lG)

which preserves perversity and is compatible with the Verdier duality in the following way: for any K in
DIG (M(F)) and F in DIG (F lG) we have

D(act∗q(K ,T ))−̃→act∗q(D(K),D(T )).

Given N, r, s1, s2 ≥ 0 with r ≥ s1 and s ≥ max{N + r, s1 + s2 + 1}, one can define the following commutative
diagram
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MN,r × s1 ,s2
G(F) act //

qG

��

MN+s1 ,r−s1

qM

��
MN,r

��

MN,r × s1 ,s2
F lG

��

pr1oo actq // Ks\MN+s1,r−s1

Ks\MN,r Ks\(MN,r × s1 ,s2
F lG)

proo

actq,s

88

pr2 // Ks\ (s1 ,s2
F lG)

The action map act sends the couple (v, g) to g−1v. The maps pr1, pr2 and pr are projections. The map qG

sends the couple (v, g) to (v, gIG). All the vertical arrows are stack quotients for the action of the correspond-
ing group. The group Ks acts diagonally on MN,r × s1 ,s2

F lG and the map actq is equivariant with respect to
this action. This functor sends (K ,T ) to

K�̃T := (act∗q,sK) ⊗ pr∗2T [dim(Ks) − c + s1 dim M0]

where c equals 〈θ, µ̌〉 over s1 ,s2
F lθG.

For any N, r, s1, s2 greater than zero satisfying the condition s ≥ max{N + r, s1 + s2 + 1}, consider the pro-
jection

pr : Ks\(MN,r × s1 ,s2
F lG) −→ Ks\MN,r

.
For any K in DIG

(M(F)) and T in DIG
(F lG), the Hecke functor

←

HG( , ) : DIG (F lG) × DIG×IH (Π(F))→ DIG×IH (Π(F))

is defined by
←

HG(T ,K) = pr!((K�̃T ))

Moreover, this functor is compatible with the convolution product on DIG (F lG). Namely, given T1,T2 in
DIG (F lG) and K in DIG (M(F)), one has naturally

←

HG(T1,
←

HG(T2,K))−̃→
←

HG(T1 ? T2,K).

An example of computation of Hecke functors. Let R, r ≥ 0 and tr M ⊂ V ⊂ t−RM be an intermediate
lattice stable under IG. Let K ∈ PIG (MR,r) be a shifted local system on V/tr M ⊂ t−RM/tr M. We are going to
explain the above construction explicitly in this case. Let T be in DIG (s1 ,s2

F lG). Choose r1 ≥ r + s1. If g is
a point in s1 ,s2

F lG then tr1 M ⊂ gV. So we can define the scheme (V/tr M)×̃s1 ,s2
F lG as the scheme classifying

pairs (gIG,m) such that gIG is an element of s1 ,s2
F lG and m is in (gV)/(tr1 M). For a point (m, g) of this scheme

we have g−1m in V/tr M. Assuming s ≥ R + r we get the digram

MR+s2,r1

p
←− (V/tr M)×̃s1 ,s2

F lG
actq,s
−→ Ks\(V/tr M),
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where p is the map sending (gIG,m) to m. For gG(O in GrθG, the virtual dimension of V/gV is 〈θ, µ̌〉. The
space (V/tr M)×̃s1 ,s2

F lθG is locally trivial fibration over s1 ,s2
F lθG with fibre isomorphic to an affine space of

dimension dim(V/tr1 M) − 〈θ, µ̌〉. Since K is a shifted local system, the tensor product act∗q,sK ⊗ pr∗2T is a
shifted perverse sheaf. Let K�̃T be the perverse sheaf act∗q,sK ⊗ pr∗2T [dim]. The shift [dim] in the definition
depends on the dimension of the connected component and hence on µ̌ as explained above and is such that

the sheaf act∗q,sK ⊗ pr∗2T [dim] is perverse. Then
←

HG(T ,K) = p!(K�̃T ).

7. Appendix B

The aim of this appendix is to compute the complex
←

HH(Lτ,Iµ!) in the derived category DIH×IG (Π(F)) for
any Lτ in PIH (F lH). We will first consider the case of τ being a simple reflection the finite Weyl group of H
then for τ being the unique simple affine reflection in W̃H . The action of length zero elements being evident,
this completes the action of simple objets of PIH (F lH) on Iµ in the derived category DIH×IG (Π(F)). For any
point hIH in F lτH we write U

′

i = hUi and we fix a complete flag U
′

1 ⊂ · · · ⊂ U
′

m on U
′

/tU
′

. Let Π
µ

1×̃F lτH
be the scheme classifying pairs (v, hIH), where hIH is in F lτH and a v is a map from L∗ to U

′

/tU′ such that
v(e∗i ) ∈ U

′

ν(i) for all i = 1, . . . , n. Let

(7.1) π : Π
µ

1×̃F lτH → Π0,1

be the map sending (v, hIH) to v. By definition we have
←

HH(Lτ,Iµ)−̃→π!(Q`�̃Lτ).

Let Π
µ
1×̃F lτH be the open subscheme in Π

µ

1×̃F lτH consisting of pairs (v, hIH) in Π
µ
1×̃F lτH such that v(e∗i ) <

U
′

ν(i)−1 for all i = 1, . . . , n. If π0 is the restriction of π to the open subscheme Π
µ
1×̃F lτH , then we have

←

HH(Lτ!,I
µ!)−̃→π0

! (Q`�̃Lτ).

For 1 ≤ i < m we will denote by τi the simple reflection (i, i + 1) in WH .

Proposition 7.2. Let i be an integer such that 1 ≤ i < m

(1) If i < Iµ then the complex
←

HH(Lτi ,I
µ) is canonically isomorphic to Iµ ⊗ RΓ(P1,Q`)[1].

(2) If i ∈ Iµ then

←

HH(Lτi ,I
µ)−̃→

{
Iτi◦ν ⊕ Iτi−1◦ν if i > 1 and i − 1 < Iµ
Iτi◦ν ⊕ IC(Y

′′

) otherwise,

where Y
′′

is a specific locally closed subscheme of Π0,1 (whose construction will be given in the proof below).

Proof. The scheme F lτH is the projective space of lines in Ui+1/Ui−1.

(1) Consider the projection pH : F lH → GrH . Then pH!(Lτi ) is canonically isomorphic to RΓ(P1,Q`)[1].
This implies that

←

HH(Lτi ,I
µ)−̃→Iµ ⊗ RΓ(P1,Q`)[1].

(2) Let us describe the image of the map π in (7.1). It is contained in the closed subscheme Y
′

of Π0,1

given by the following two conditions:
a) For j , ν−1(i), v(e∗j) ∈ Uν( j).

b) For j = ν−1(i), v(e∗j) ∈ Ui+1.
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Let Y
′′

be the closed subscheme in Y
′

consisting of elements v such that v(e∗j) belongs to Ui−1 if
j = ν−1(i). Over a point of Y

′′

the fibre of the map (7.1) is P1 whence over a point of Y
′

− Y
′′

the
fibre of the map (7.1) is a point. Thus

←

HH(Lτ,Iµ)−̃→IC(Y
′

) ⊕ IC(Y
′′

).

Now we need to identify Y
′

and Y
′′

.

If i + 1 < Iµ, let Iµ′ be the subset of {1, . . . ,m} obtained from Iµ by throwing i away and adding

i + 1. In this case Y
′

is isomorphic to Π
µ
′

0,1 so IC(Y
′

) is canonically isomorphic to Iµ
′

. Now let
ν
′

: {1, . . . , n} −→ {1, . . . ,m} be strictly decreasing with image Iµ′ . Considering ν
′

as an element of

S n,m, we get that Πν
′

0,1 = Π
µ
′

0,1.

If i + 1 ∈ Iµ, let ν
′

: {1, . . . , n} −→ {1, . . . ,m} be the map ν composed with the permutation τi.
The image of ν

′

is the subset Iµ( but ν
′

is not strictly decreasing). Viewing ν
′

as an element of S n,m

enables us to identify Y
′

with the closure of IH × IG-orbit Πν
′

0,1.

Thus, in both cases ν
′

= τi ◦ ν is the composition {1, . . . , n}
ν
−→ {1, . . . ,m}

τi
−→ {1, . . . ,m} and

IC(Y
′

) is isomorphic to Iτi◦ν.

If i > 1 and i − 1 < Iµ then τi−1 ◦ ν : {1, . . . , n} −→ {1, . . . ,m} is strictly decreasing and Y
′′

is
isomorphic to the closure of Π

τi−1◦ν
0,1 . So we get IC(Y

′′

) = Iτi−1◦ν. This proves the assertion.

�

Proposition 7.3. Let i be an integer such that 1 ≤ i < m

(1) If nor i neither i + 1 is in Iµ then
←

HH(Lτi ,I
µ!)−̃→Iµ! ⊗ RΓ(P1,Q`)[1]

(2) If i is not in Iµ and i + 1 is in Iµ then the composition τi ◦ ν is again strictly decreasing and there is
a distinguished triangle

Iµ![−1] −→
←

HH(Lτi ,I
µ!) −→ I(τi◦ν)! +1

−→

(3) If i is in Iµ and i + 1 is not an element of Iµ then there is a distinguished triangle

I(τi◦ν)! −→
←

HH(Lτi ,I
µ!) −→ Iν![1]

+1
−→ .

(4) If both i and i + 1 are in Iµ then there is a distinguished triangle

I(τi◦ν)! −→
←

HH(Lτi ,I
µ!) −→ Iµ![1]

+1
−→ .

Proof. (1) This is straightforward as in Proposition 7.2.
(2) Let Y

′

be the locally closed subscheme of Π0,1 given by the conditions :
a) For 1 ≤ j ≤ n, v(e∗j) ∈ Uν( j).

b) For j , ν−1(i + 1), v(e∗j) < Uν( j)−1.

c) For j = ν−1(i + 1), v(e∗j) < Uν( j)−2.
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The scheme Y ′ is the union of two IH × IG-orbits corresponding to ν and τi ◦ ν. Moreover, we have

dim(Πν
0,1) = 1 + dim(Πτi◦ν

0,1 ).

Hence
←

HH(Lτi ,I
µ!)−̃→IC(Y

′

)[−1]

and the assertion follows.
(3) Let Y

′

be the scheme classifying elements v in Π0,1 such that :
a) For j , ν−1(i), v(e∗j) ∈ Uν( j) and v(e∗j) < Uν( j)−1.

b) For j = ν−1(i), v(e∗j) ∈ Ui+1 and v(e∗j) < Ui−1.

Then Y
′

is the union of two orbits Πν
0,1 and Π

τi◦ν
0,1 . Thus

←

HH(Lτi ,I
µ!) is the extension by zero of

IC(Y
′

) from Y
′

to Π0,1. Hence we have a distinguished triangle

I(τi◦ν)! −→ IC(Y
′

) −→ Iν![1]
+1
−→ .

(4) Let Y
′

be a locally closed subscheme Π0,1 be the scheme given by the conditions:
a) For ν( j) , i, i + 1, v(e∗j) ∈ Uν( j) − Uν( j)−1.

b) For j = ν−1(i), v(e∗j) and v(e∗j−1) belong to Ui+1, and their classes modulo Ui−1 form a basis of
Ui+1/Ui−1.

Then
←

HH(Lτi ,I
µ) is isomorphic to IC(Y

′

) extended by zero to Π0,1. The scheme Y
′

is the union of
two orbits Πν

0,1 and Π
τi◦ν
0,1 , and we have a distinguished triangle

I(τi◦ν)! −→ IC(Y
′

) −→ Iν![1]
+1
−→ .

�

Proposition 7.4. Let w be the affine simple reflection, i.e. w = tλτ where λ = (−1, 0 . . . , 0, 1) and τ = (1,m)
is the longest element of WH .

(1) If nor 1 neither m lies in Iµ then

←

HH(Lw,I
µ)−̃→Iµ! ⊗ RΓ(P1,Q`)[1].

(2) If 1 is not in Iµ and m lies in Iµ, let λ
′

= (−1, 0, . . . , 0), and w′ = (λ
′

, τ◦ν) be an element of XG×S n,m,

then there is a distinguished triangle

Iw
′
! −→

←

HH(Lw,I
µ!) −→ Iµ![1]

+1
−→ .

(3) If 1 is in Iµ, and m is not in Iµ, let λ
′

= (0, . . . , 0, 1), and w
′

= (λ
′

, τ ◦ ν) be an element of XG × S n,m,

then there is a distinguished triangle

Iµ![−1] −→
←

HH(Lw,I
µ!) −→ Iµ![1]

+1
−→ .

(4) If 1 and m are both in Iµ, let λ
′

= (−1, 0, . . . , 0, 1) and w
′

= (λ
′

, τ ◦ ν) then there is a distinguished
triangle

Iw
′
! −→

←

HH(Lw,I
µ!) −→ Iµ![1]

+1
−→ .
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Proof. Denote by U−1 ⊂ U0 ⊂ U1 ⊂ · · · ⊂ Um = U ⊂ Um+1 the standard flag of lattices in U(F). Assume
m > 1. A point hIH in F lwH is given by a line U

′

0/U−1 in U1/U−1. We set U
′

m = t−1U
′

0. Let Πµ×̃F lwH be the
scheme classifying pairs (v, hIH), where hIH is in F lwH and v is a map from L∗ to Um+1/U−1 verifying:

a) For ν( j) , m, v(e∗j) ∈ Uν( j).

b) For ν( j) , 1, v(e∗j) ∈ Uν( j) − Uν( j)−1.

c) For m ∈ Iµ, v(e∗1) ∈ U
′

m − U
′

m−1.
(The condition m ∈ Iµ is equivalent to ν(1) = m).

d) If 1 ∈ Iµ then v(e∗n) ∈ U1 − U
′

0.

( The condition 1 ∈ Iµ is equivalent to ν(n) = 1).

Now let

(7.5) π : Πµ×̃F lwH −→ HomO(L∗,Um+1/U−1)

be the projection sending a couple (v, hIH) to v. The scheme Πµ×̃F lwH is smooth. Write IC for the intersection
cohomology sheaf of Πµ×̃F lwH . The sheaf IC is nothing but the constant sheaf shifted to be perverse. Then

←

HH(Lw,I
µ!)−̃→π!(IC).

We can now prove the assertions.

(1) This is straightforward as in Proposition 7.2.
(2) The space HomO(L∗,Um+1/U1) is an O-module on which t acts trivially, hence it is a vector space.

By definition
←

HH(Lw,I
µ!) may be considered as a complex on HomO(L∗,Um+1/U1). Let Y

′

be the
subscheme of HomO(L∗,Um+1/U1) given by the conditions:

a) For j > 1, v(e∗j) ∈ Uν( j) − Uν( j)−1.

b) The vector v(e∗1) does not vanish in Um+1/Um−1.

Then
←

HH(Lw,I
µ!) is isomorphic to IC(Y)

′

extended by zero to HomO(L∗,Um+1/U1). The subscheme
Y
′

is the union of two IH × IG-orbits, the closed orbit corresponds to Π
µ
N,r and the open orbit passes

through maps v given by

v(e∗n) = uν(n), . . . , v(e∗2) = uν(2), v(e∗1) = t−1u1.

The map v can be written as follows:
a) For j ∈ Iµ − {m}, v(u∗j) = eµ( j).

b) For all other k , 1, v(uk) = 0; and v(u∗1) = t−1e1.

So this open orbit corresponds to the element w
′

= (λ
′

, τ◦ν) in XG ×S n,m, where λ
′

= (−1, 0, . . . , 0).
This leads to the desired distinguished triangle.

(3) In this case
←

HH(Lw,I
µ!) is naturally a complex over HomO(L∗,Um−1/U−1). The space HomO(L∗,Um−1/U−1)

is an O-module on which t acts trivially, hence is a vector space. Denote by Y ′ the subscheme of
HomO(L∗,Um−1/U−1) given by the conditions:

a) v(e∗n) ∈ U1 − U−1.

b) v(e∗j) ∈ Uν( j) − Uν( j)−1 for 1 ≤ j < n.
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Then the fibres of the map (7.5) identify with A1. So
←

HH(Lw,I
µ!) is the sheaf IC(Y

′

)[−1] extended
by zero to HomO(L∗,Um−1/U−1). The scheme Y

′

is the union of two IH × IG-orbits, the open corre-
sponding to ν and the closed one passing though v given by

v(e∗n) = tum, v(e∗n−1) = uν(n−1), . . . , v(e∗1) = uν(1).

Let w
′

= (λ
′

, τ ◦ ν) be in XG ×S n,m with λ
′

being equal to (0, . . . , 0, 1). Then we have a distinguished
triangle

Iµ[−1] −→
←

HH(Lw,I
µ!) −→ Iw

′ +1
−→ .

(4) In this case we have ν(1) = m and ν(n) = 1. Let Y
′

be the subscheme of HomO(L∗,Um+1/U−1)
classifying maps v satisfying the conditions:

a) For all 1 < j < n, v(e∗j) ∈ Uν( j) − Uν( j)−1.

b) v(e∗n) ∈ U1 − U−1.

c) v(e∗1) ∈ Um+1 − Um−1.

d) {v(e∗n), tv(e∗1)} are linearly independent in U1/U−1.

Then the map (7.5) is an isomorphism onto Y ′.Hence
←

HH(Lw,I
µ!) identifies with IC(Y ′) extended

by zero from Y ′ to HomO(L∗,Um+1/U−1). The scheme Y ′ contains the closed subscheme which is
the IH × IG-orbit corresponding to ν. The complement of the latter scheme in Y

′

is the IH × IG-orbit
passing through v given by

v(e∗1) = t−1u1, v(e2) = uν(2), . . . , v(e∗n−1) = uν(n−1), v(e∗n) = tum.

Let w
′

= (λ, τi ◦ ν) where λ = (−1, 0, . . . , 0, 1). Then there is a distinguished triangle

Iw
′
! −→ IC(Y

′

) −→ Iµ![1]
+1
−→ .

�
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