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Multi-revolution composition methods for highly oscillatory

differential equations

Philippe Chartier1, Joseba Makazaga2, Ander Murua2, and Gilles Vilmart3

March 4, 2013

Abstract

We introduce a new class of multi-revolution composition methods (MRCM) for the

approximation of the Nth-iterate of a given near-identity map. When applied to the
numerical integration of highly oscillatory systems of differential equations, the technique
benefits from the properties of standard composition methods: it is intrinsically geomet-
ric and well-suited for Hamiltonian or divergence-free equations for instance. We prove
error estimates with error constants that are independent of the oscillatory frequency.
Numerical experiments, in particular for the nonlinear Schrödinger equation, illustrate
the theoretical results, as well as the efficiency and versatility of the methods.

Keywords: near-identity map, highly-oscillatory, averaging, differential equation, com-
position method, geometric integration, asymptotic preserving.

MSC numbers: 34K33, 37L05, 35Q55.

1 Introduction

In this paper, we are concerned with the approximation of the M -th iterates of a near-
identity smooth map by compositions methods. More precisely, considering a smooth map
(ε, y) 7→ ϕε(y) of the form

ϕε(y) = y + εΘε(y), (1)

we wish to approximate the result of M = O(1/ε) compositions of ϕε with itself

ϕM
ε = ϕε ◦ · · · ◦ ϕε

︸ ︷︷ ︸

M times

(2)

with the aid of a method whose efficiency remains essentially independent of ε.
In order to motivate our composition methods, it will be usefull to observe that ϕε can

be seen as one step with step-size ε of a first order integrator for the differential equation

dz(t)

dt
= Θ0(z(t)), (3)
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where Θ0(z) = d
dεϕε(z)

∣
∣
ε=0

, and thus, ϕM
ε (y) may be interpreted as an approximation at

t =Mε of the solution z(t) of (3) with initial condition

z(0) = y. (4)

A standard error analysis shows that ϕN
ε (y) − z(Nε) = O(εH) as H = Nε → 0, which

makes clear that, for sufficiently small H = εN , ϕN
ε (y) could be approximated by one step

ΨH(y) ≈ z(H) of any pth order integrator applied to the initial value problem (3)–(4) within
an error of size O(Hp+1 + εH). In particular, ϕH can be seen as a first order integrator for
the ODE (3), and a second order integrator can be obtained as

ΨH(y) = ϕH/2 ◦ ϕ
∗
H/2(y), (5)

where ϕ∗
ε := ϕ−1

−ε is the adjoint map of ϕε. More generally, one could consider pth order
compositions integrators of the form [21]

ΨH(y) := ϕa1H ◦ ϕ∗
b1H ◦ · · · ◦ ϕasH ◦ ϕ∗

bsH(y) ≈ z(H) (6)

with suitable coefficients ai, bi (see for instance [15, 22] for particular sets of coefficients
choosen for different s and p), that would provide an approximation

ΨH(y) = z(H) +O(Hp+1) = ϕN
ε (y) +O(Hp+1 + εH)

for H = Nε ≤ H0. However, the accuracy of the approximation is limited by the given
value of the problem parameter ε being sufficiently small. Motivated by that, we generalize
the approximation (6) by replacing the real numbers ai, bi (j = 1, . . . , s) by appropriate
coefficients αj(N), βj(N) depending on N , choosen in such a way that ϕN

ε is approximated
for sufficiently small H = Nε within an error of size O(Hp+1), where the error constant is
independent of N,H, ε. We will say that such a method

ΨN,H(y) := ϕα1(N)H ◦ ϕ∗
β1(N)H ◦ · · · ◦ ϕαs(N)H ◦ ϕ∗

βs(N)H(y) (7)

is an s-stage pth order multi-revolution composition method (MRCM) if

ΨN,H(y) = ϕN
ε (y) +O(Hp+1), for H = Nε ≤ H0. (8)

For instance, we will see that the second order standard composition method (5) can
be modified to give a second order MRCM (7) with s = 1, α1(N) = (1 + N−1)/2, and
β1(N) = (1−N−1)/2,

ΨN,H(y) = ϕα1(N)H ◦ ϕ∗
β1(N)H(y) = ϕN

ε (y) +O(H3), H = Nε.

It is interesting to observe that this second order MRCM reduces in the limit case N → ∞ to
the standard composition method (5) (a second order integrator for the ODE (3)), which is
consistent with the fact that ϕN

H/N converges to the H-flow of (3) as N → ∞. More generally,

any pth order MRCM (7), gives rise to a pth order standard composition method (6) with

ai = lim
N→∞

αi(N), bi = lim
N→∞

βi(N).

2



In practice, if one wants to approximately compute the map ϕM
ε for a given small value of

ε and large positive integersM within a given error tolerance by means of a s-stage pth order
MRCM (7), then one should choose a sufficiently small step-size H to achieve the required
accuracy, and accordingly choose N as the integer part of H/ε, in order to approximate
ϕM
ε (y), for M = mN , m = 1, 2, 3 . . ., as

ϕmN
ε (y) ≈ ΨN,H(y)m.

These approximations will be computed more efficiently than actually evaluating ϕmN
ε (y) if

such a positive integer N is larger than 2s (here we assume that the computational cost of
computing ϕ∗

ε = ϕ−1
−ε is similar to that of computing ϕε). Since the error of such approxima-

tion essentially depends on H but not on ε, for a prescribed accuracy (which determine H),
the computational cost may be reduced by a factor of N/(2s) ≤ H/(2sε), which increases as
ε decreases.

The main application we have in mind is the time integration of highly-oscillatory prob-
lems with a single harmonic frequency ω = 2π/ε. In the numerical examples, we consider in
particular problems of the form

d

dt
y(t) =

1

ε
Ay(t) + f(y(t)), 0 ≤ t ≤ T, y(0) = y0 ∈ R

d, (9)

where A is a d×d skew-symmetric matrix with eigenvalues in 2πiZ, so that etA is 1-periodic in
time, and where f : Rd → R

d is a given nonlinear smooth function. In this situation, we shall
consider ϕε as the flow with time ε (the period of the unperturbed equation corresponding
to f(y) ≡ 0) of equation (9), or equivalently, the flow with time 1 of the system

d

dt
y(t) = Ay(t) + εf(y(t)).

It is well known [8, 9] that such a map ϕε is a smooth near-identity map, and furthermore,
that (3) is in this case the first order averaged equation, more precisely,

Θ0(z) =
d

dε
ϕε(z)

∣
∣
∣
∣
ε=0

=

∫ 1

0
e−Atf(eAtz)dt.

The solution y(t) of the initial value problem (9) sampled at the times t = εM will then be
given by

y(εM) = ϕM
ε (y0),

and thus, for an appropriately chosen positive integer N (determined by accuracy require-
ments and the actual value of ε), we may use a pth order MRCM (7) to compute the approx-
imations

ym = ΨN,H(y)m ≈ ϕmN
ε (y0) = y(tm), where tm = mH, H = εN.

The local error estimate (8) then leads by standard arguments to a global error estimate of
the form

ym − y(tm) = O(Hp), for tm = mH ≤ T,

where the constant in the O-term depends on T but is independent of ε and H.
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One may wonder if the application of ΨN,H in (7) makes any sense for non-integer values
of N . It can be shown that, in the case of the application of a pth order MRCM to highly
oscillatory systems of the form (9), ΨH/ε,H(y0) gives for arbitrary ε,H > 0, a pth order
approximation to the H-flow of the pth order (stroboscopically) averaged equation of (9) (see
[26] and the recent work [8]), which is a smooth ODE of the form

dz

dt
= Θ0(z) + εG1(z) + · · ·+ εp−1Gp−1(z), z(0) = y0 (10)

whose solution z(t) satisfies

z(Mε)− y(Mε) = O(εp), if Mε ≤ T,

for integer values of M . Indeed, it can be proven that, if a MRCM (7) is of order p (that is,
(8) holds for integer values of N), then, for arbitrary 0 < ε < H ≤ H0,

ΨH/ε,H(y0)− z(H) = O(Hp+1).

Notice that a similar statement can be made in the general case of an arbitrary smooth near-
identity map, where ϕε can be interpreted as a one-step integrator for the ODE (3), and (10)
is the modified equation of (3) associated to ϕε considered in backward error analysis of one
step integrators [15, Chap. IX].

It is worth stressing that MRCMs can be applied to more general highly-oscillatory prob-
lems with a single harmonic frequency. This is the case of any problem that, possibly after a
change of variables, can be written into the form

d

dt
z(t) = g(z(t), t/ε), 0 ≤ t ≤ T, z(0) = z0 ∈ R

d, (11)

where g(z, τ) is smooth in z and continuous and 1-periodic in τ . For instance, (9) can be
recast into the format (11) with g(z, τ) = e−τ Af(eτ Az) by considering the change of variables
y = etA/εz. In this more general context, ϕε will be such that for arbitrary z0, the solution
z(t) of (11) satisfies that z(1/ε) = ϕε(z0).

Highly oscillatory problems of the form (9) are in particular obtained by appropriate dis-
cretization in space of several Hamiltonian partial differentiation equations, such as nonlinear
versions of wave equation and Schrödinger equation. In Section 4 we present some numerical
experiments of the application of MRCMs to numerically integrate a problem considered in
[7] and originally analyzed by B. Grébert and C. Villegas-Blas in [14]. It consists of a non-
linear Schrödinger equation with a cubic nonlinearity |u|2u multiplied by an inciting term of
the form 2 cos(2x) and may be stated one the one-dimensional torus as

i∂tu = −∆u+ 2ε cos(2x)|u|2u, t ≥ 0, u(t, ·) ∈ Hs(T2π) (12)

u(0, x) = cosx+ sinx.

The problem is known to have a unique global solution in all Sobolev spaces Hs(T2π) for
s ≥ 0. A pseudospectral approximation of the form

u(t, x) ≈
ℓ∑

k=−ℓ

ξk(t)e
ikx
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may be obtained by determining the approximate Fourier modes ξk(t) as the solution with
appropriate initial values of a semidiscrete version of equation (12)

d

dt
ξk = −ik2ξk + ε fk(ξ−ℓ, . . . , ξ−1, ξ0, ξ1, . . . , ξℓ), k = −ℓ, . . . ,−1, 0, 1, . . . , ℓ. (13)

Clearly, the system of ODEs (13) can be recast into the format (9) by rescaling time (that
is, by rewriting the system in terms of the new time variable t̂ = ε

2π t).
Typically, the maps ϕµ and ϕ∗

µ in (7) with µ = αj(N)H, µ = βj(N)H (j = 1, . . . , s)
can not be computed exactly. In the context of highly oscillatory systems, and in particular,
for systems of the form (9), the actual (approximate) computation of ϕµ can be carried out
essentially as a black-box operation: In practice, one may use any available implementation
of some numerical integrator to approximate the flow with time 1 of the ODE

d

dt
y(t) = Ay(t) + µf(y(t)). (14)

In particular, ϕµ may be approximated by applying n steps of step-size h = 1/n of an
appropriate splitting method to (14), where n is chosen so as to resolve one oscillation. Let
Φµ,h(y) denote the approximation of ϕµ obtained in this way with a qth order splitting
method, then the following estimate

Φµ,h(y)− ϕµ(y) = O(µrhq) (15)

will be guaranteed to hold with r = 1. It is worth remarking that more refined estimates of
the form O(µr1hq1 + . . .+ µrℓhqℓ) can be obtained for certain splitting methods [20].

In the most general framework, we shall assume that, if ϕµ can not be computed exactly,
then it is approximated by some computable map Φµ,h (depending on a small parameter h
that controls the accuracy of the approximation) satisfying the error estimate (15) for some
r ≥ 0 and q ≥ 1. Observe that one can expect r ≥ 1 in the right-hand side of (15) if (as in
the case of splitting methods for (14),) Φµ,h is constructed so that Φ0,h(y) = ϕ0(y) = y.

In what follows, the method (7) where the involved maps ϕµ and ϕ∗
µ are assumed to be

computed exactly, will be referred to as semi-discrete multi-revolution composition methods.
We next define the following fully-discrete version, in the spirit of Heterogenerous multiscale
methods (HMM) (see [1, 10, 11]) which combine the application of macro-steps of length H
(to advance along the solution of (9)) with the application to (14) of some integrator with
micro-steps of size h = 1/n (where n is chosen large enough to resolve each oscillation).

Definition 1.1 (Fully-discrete multi-revolution composition methods). Given two integers
s ≥ 1 and N ≥ 2s, and an approximation Φε,h of ϕε, an s-stage fully-discrete MRCM is a
composition of the form

ΨN,H,h(y) = Φα1(N)H,h ◦ Φ
∗
β1(N)H,h ◦ · · · ◦ Φαs(N)H,h ◦ Φ

∗
βs(N)H,h(y) ≃ ϕN

ε (y), (16)

where Φ∗
ε,h := Φ−1

−ε,h is the adjoint map of Φε,h.

When solving a highly-oscillatory problem of the form (9) with standard numerical meth-
ods, stability and accuracy requirements induce a step-size restriction of the form h ≤ Cε
which renders the computation of a reasonably accurate solution more and more costly and
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sometimes even untractable for small values of ε. In contrast, approximating ϕN
ε with method

(16) and Nε = H allow to approximate the solution with a prescribed accuracy at a cost
which does not grow for small values of ε.

The general idea of multi-revolution methods has been first considered in astronomy,
where ε-perturbation of periodic systems are recurrent, and named as such since these meth-
ods approximate many revolutions (N periods of time) by only a few (in our approach, 2s
compositions then accounts for 2s revolutions with different values of the perturbation pa-
rameter ε). A class of multi-revolution Runge-Kutta type methods has then been studied in
the context of oscillatory problems of the form (9) [3, 4, 2, 23, 25]. Closely related methods
where considered in [18] and also in [5].

Actually, MRCM are asymptotic preserving, a notion introduced in the context of kinetic
equations (see [17], and the recent works [19, 13]) and ensuring that a method is uniformly
accurate for a large range of values of the parameter ε with a computational cost essentially
independent of ε. This is a feature shared by the proposed classes of multi-revolution methods.

The methods introduced in this paper differ from existing other multi-revolution methods
in that they are intrinsically geometric, since they solely use compositions of maps of the form
ϕµ and ϕ−1

µ , whose geometric properties are determined by equation (9). In particular, it
is symplectic if (9) is Hamiltonian, volume-preserving if (9) is divergence-free, and shares the
same invariants which are independent of ε as the flow of (9). This is also true in the fully-
discrete version (16) provided that the micro-integrator Φµ,h used to approximate ϕµ satisfy
the required geometric properties.

Deriving general order conditions for (7) requires to compare the Taylor expansions of
both sides of ΨN,H(y) ≃ ϕN

ε (y). Although conceptually easy, the task is rendered very
intricate by the enormous number of terms and redundant order conditions naturally arising.
Explicit conditions for standard composition methods have been obtained in a systematic way
in [24] by using the formalism of B∞-series and trees. In the situation we consider here, the
map ϕε is the flow with time ε of an ODE that depends on the parameter ε, and consequently
does not obey a group law. The question of approximating ϕN

ε/N by a composition of the

form (7) then makes perfect sense, and this article aims at analyzing the properties and order
conditions of such methods.

The paper is organized as follows. In Section 2, we derive the order conditions of the multi-
revolution composition methods and perform a global error analysis of the methods. Section
3 presents several methods of orders 2 and 4, and describes how they have been obtained.
Section 4 is devoted to numerical experiments aimed at giving a numerical confirmation of
the orders of convergence derived in Section 2 and to show the efficiency and versatility of
the newly introduced methods.

2 Convergence analysis of MRCMs

In this section, we derive general order conditions for method (7) to approach ϕN
ε . There is a

complete analogy with order conditions of standard composition methods, with the exception
that the right-hand side of each condition is now depending on N . Prior to addressing the
general case, observe that the simplest method ϕH ≃ ϕN

ε with H = Nε, corresponds to s = 1,
α1 = 1 and β1 = 0. As shown in introduction, we have that

ϕH(y)− z(H) = O(H2), ϕN
ε (y)− z(H) = O(εH),
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as H = εN → 0, where z(t) is the solution of the initial value problem (3)–(4). Hence, ϕH

has, as an approximation to ϕN
H/N , (global) order 1 in the following sense

‖ϕH(y)− ϕN
ε (y)‖ ≤ CH2 for all 0 ≤ H = Nε ≤ H0.

Constructing high-order compositions soon becomes rather intricate, not to say undoable,
unless one uses an appropriate methodology. This is precisely the object of the paper [24]
which gives order conditions for standard composition methods explicitly. We will hereafter
follow the presentation of [15]. The starting point of this section is the Taylor series expansion1

ϕε(y) = y + εd1(y) + ε2d2(y) + ε3d3(y) + . . . (17)

of the smooth map (1).

2.1 Preliminaries: trees and B∞ series

In this subsection, we briefly recall the framework of B∞-series for the study of composition
methods of the form

ϕαsε ◦ ϕ
∗
βsε ◦ · · · ◦ ϕα1ε ◦ ϕ

∗
β1ε(y) (18)

originally developed for the numerical integration of equation (3) and yet completely relevant
to the present situation. We thus define T∞ as the set of rooted trees where each vertex bears a
positive integer and we denote 1 , 2 , 3 , . . . the trees with one vertex. Given τ1, . . . , τm ∈ T∞,
we write as

τ = [τ1, . . . , τm]j (19)

the tree obtained by attaching the m roots of τ1, . . . , τm to a new root with label j. Inciden-
tally, we define i(τ) = j the label beard by its root, |τ | = 1+ |τ1|+ . . .+ |τm| its number of ver-
tices, ‖τ‖ = i(τ)+‖τ1‖+ . . .+‖τm‖ the sum of its labels2 and σ(τ) = µ1!µ2! · · ·σ(τ1) · · ·σ(τm)
its symmetry coefficient, where µ1, µ2, . . . count equal trees among τ1, . . . , τm. Now, the B∞-
series associated to a map a : T∞ ∪ {∅} → R is the formal series

B∞(a, ε, y) = a(∅)y +
∑

τ∈T∞

ε‖τ‖

σ(τ)
a(τ)F (τ)(y)

where the so-called “elementary differentials” are maps from U to R
d defined inductively by

the relations

F ( j )(y) = dj(y),

F ([τ1, . . . , τm]j)(y) = d
(m)
j (y)(F (τ1)(y), . . . , F (τm)(y)).

We immediately see that the Taylor expansion (17) of ϕε can be considered as a B∞-series

ϕε(y) = y + εd1(y) + ε2d2(y) + ε3d3(y) + . . . = B∞(e1, ε, y)

1Notice that d1(y) = Θ0(y).
2By convention, |∅| = ‖∅‖ = 0.
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with coefficients satisfying e1(τ) = 0 for all τ ∈ T∞ with |τ | > 1 and e1(∅) = 1, e1( j ) = 1
for all j ∈ N

∗. As immediate is the obtention of the coefficients of the B-series expansion of
the exact solution z(ε) of (3)

B∞(e∞, ε, y) = z(ε)

with coefficients e∞(τ) recursively defined3 by

e∞(∅) = 1, e∞(τ) =
1

|τ |
e′∞(τ) if i(τ) = 1, and e∞(τ) = 0 otherwise, (20)

where the prime stands for the following B-series operation: Given a : T∞ → R, the map a′

is defined recursively by

a′( j ) = 1 and for all τ = [τ1, . . . , τm]j ∈ T∞, a
′(τ) = a(τ1) · · · a(τm).

We now quote the following fundamental result from [24]:

Lemma 2.1. The following compositions are B∞-series

ϕ∗
βkε

◦ · · · ◦ ϕα1ε ◦ ϕ
∗
β1ε(y) = B∞(bk, ε, y)

ϕαkε ◦ ϕ
∗
βkε

◦ · · · ◦ ϕα1ε ◦ ϕ
∗
β1ε(y) = B∞(ak, ε, y)

with coefficients given recursively for all T ∈ T∞ by ak(∅) = bk(∅) = 1, a0(τ) = 0 and

bk(τ) = ak−1(τ)− (−βk)
i(τ)b′k(τ) and ak(τ) = bk(τ) + α

i(τ)
k b′k(τ).

In order to eliminate redundant order conditions, we finally fix as in [24] a total order
relation < on T∞ compatible with | · |, i.e. such that u < v whenever |u| < |v|.

Definition 2.2. (Hall Set). The Hall set corresponding to the order relation < is the subset
H ⊂ T∞ defined by

(i) ∀j ∈ N, j ∈ H

(ii) τ ∈ H if and only if there exist u, v ∈ H,u > v, such that τ = u ◦ v.

Theorem 2.3. (Murua and Sanz-Serna [24]) Consider B(a, ε, y) and B(b, ε, y) two B∞-
series obtained as compositions of the form (18) and let p ≥ 1. The following two statements
are equivalent:

(i) ∀τ ∈ T∞, ‖τ‖ ≤ p, a(τ) = b(τ),

(ii) ∀τ ∈ H, ‖τ‖ ≤ p, a(τ) = b(τ).

In the usual setting of composition methods, the previous theorem immediately gives
the reduced number of order conditions for order p by comparing the B∞-series B∞(a, ε, y)
obtained from (18) and B∞(e∞, ε, y). In our context, we have to compare B∞(a, ε, y) with
the B∞-series of ϕN

ε . This is the purpose of the next section.
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Order 1: 1

s∑

k=1

(αk + βk) = 1

Order 2: 2

s∑

k=1

(α2
k − β2k) = N−1

Order 3: 3
s∑

k=1

(α3
k + β3k) = N−2

2

1 s∑

k=1

(α2
k − β2k)

k∑

ℓ=1

′(αℓ + βℓ) =
N−1 −N−2

2

Order 4: 4

s∑

k=1

(α4
k − β4k) = N−3

3

1 s∑

k=1

(α3
k + β3k)

k∑

ℓ=1

′(αℓ + βℓ) =
N−2 −N−3

2

2

1 1 s∑

k=1

(α2
k − β2k)

( k∑

ℓ=1

′(αℓ + βℓ)
)2

=
N−1(1−N−1)(2−N−1)

6

Order 5: 5
s∑

k=1

(α5
k + β5k) = N−4

4

1 s∑

k=1

(α4
k − β4k)

k∑

ℓ=1

′(αℓ + βℓ) =
N−3 −N−4

2

3

2 s∑

k=1

(α3
k + β3k)

k∑

ℓ=1

′(α2
ℓ − β2ℓ ) =

N−3 −N−4

2

2

1 2 s∑

k=1

(α2
k − β2k)

( k∑

ℓ=1

′(αℓ + βℓ)
)( k∑

ℓ=1

′(α2
ℓ − β2ℓ )

)

=
N−2(1−N−1)(2−N−1)

6

2

1 1 1 s∑

k=1

(α2
k − β2k)

( k∑

ℓ=1

′(αℓ + βℓ)
)3

=
N−1(1−N−1)2

4

3

1 1 s∑

k=1

(α3
k + β3k)

( k∑

ℓ=1

′(αℓ + βℓ)
)2

=
N−2(1−N−1)(2−N−1)

6

Table 1: Fifth-order conditions for MRCMs. The prime attached to a summation symbol
indicates that the sum of αj

ℓ is only from 1 to k − 1 while the sum of βjℓ remains for 1 to k
.

2.2 Semi-discrete error analysis

Observe that by taking αi = N−1, βi = 0, i = 1, . . . , N in (18) Lemma 2.1 immediately yields
that the composition (ϕε/N )N (y) is again a B∞-series

B∞(eN , ε, y) = (ϕε/N )N (y). (21)

3Notice that e∞(τ) = 0 if at least one of its labels is different from 1.
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Its coefficients eN (τ) can be computed by using the following lemma.

Lemma 2.4. For all N ∈ N
∗, the coefficients eN (τ) of the B∞-series in (21) satisfy

∀j ∈ N
∗, eN ( j ) = N1−j ,

∀τ = [τ1, . . . , τn]j ∈ T∞, N‖τ‖eN (τ) =
N−1∑

k=1

k‖τ1‖+...+‖τn‖e′k(τ).

Proof. With αi = 1 and βi = 0, i = 1, . . . , N , Lemma 2.1 gives bk(τ) = ak−1(τ) and thus

aN (τ) =
N∑

k=1

a′k−1(τ) =
N−1∑

k=1

a′k(τ).

Using B∞(eN , ε, y) = B∞(aN , ε/N, y) yields aN (τ) = N‖τ‖eN (τ) and allows to conclude. �

We obtain for instance eN ( 1 ) = 1, eN ( 2 ) = N−1 and

eN

(

1

1)
=

1−N−1

2
, eN

(

2

1)
=
N−1(1−N−1)

2
, eN

(

2

1 1)
=
N−1(1−N−1)(2−N−1)

6
.

Now, recalling that the map ϕε can be interpreted as a consistent integrator for equation
(3), (ϕε/N )N (y0) converges to its solution z(ε) for N → ∞ and it is thus expected that the
coefficients eN (τ) converge to e∞(τ) as N → ∞. This is shown in next proposition.

Proposition 2.5. The coefficients of the B∞-series (21) satisfy eN (τ) → e∞(τ) for N → ∞.
In particular, for N → ∞ the order conditions (24) coincide with the order conditions of
standard composition methods (18) for the differential equation (3).

Proof. The proof is made by induction on |τ | and is a consequence of Lemma 2.4 and (20).
The result is clear for trees with one vertex using eN ( j ) = N1−j . Given a tree τ =
[τ1, . . . , τn]j ∈ T∞, assume that the result is true for all tree u ∈ T∞ with |u| < |τ |. By
the induction assumption, we have ek(τ1) · · · ek(τn) → e∞(τ1) · · · e∞(τn) for k → ∞. Using
the estimate

∑N−1
k=1 k

ℓ ∼ N ℓ+1/(ℓ + 1) for N → ∞ with ℓ = ‖τ1‖ + . . . + ‖τn‖, we deduce
using Lemma 2.4 that limn→∞ eN (τ) = e∞(τ1) . . . e∞(τn)/(ℓ + 1) = e∞(τ) for j = 1, and
limn→∞ eN (τ) = 0 = e∞(τ) for j > 1, which concludes the proof. �

Consider now the B∞-series B∞(a, ε, y) associated to a semi-discrete MRCM of the form
(7) with H = ε. Writing the order conditions now boils down to comparing the coefficients
of B∞(a, ε, y) and B∞(eN , ε, y) and estimating the remainder term. Next lemma provides
estimates of the derivatives of ϕN

ε w.r.t. ε. In order to alleviate the presentation, let us
denote for ρ > 0, Bρ(y0) = {y ∈ R

d; ‖y− y0‖ ≤ ρ}, and for a given function y 7→ k(y) defined
on Bρ(y0),

‖k‖ρ := sup
y∈Bρ(y0)

‖k(y)‖ and ‖∂ny k‖ρ := sup
y ∈ Bρ(y0),

‖vi‖ = 1, i = 1, . . . , n

‖∂ny kε(y) (v1, . . . , vn) ‖.

10



Note that if (y, ε) 7→ Θε(y) in (1) is of class Cp+1 with respect to (y, ε) on the compact set
Bρ(y0)× [−ε0, ε0], then there exist positive constants K and L such that, for all |ε| ≤ ε0

‖∂yϕε‖ρ ≤ 1 + εL, ∀k = 2, . . . , p+ 1, ‖∂kyϕε‖ρ ≤ εL,

∀0 ≤ k + l ≤ p+ 1, ‖∂ky∂
l
εϕε‖ρ ≤ K.

Lemma 2.6. Assume that (y, ε) 7→ Θε(y) is defined and of class Cp+1 with respect to (y, ε)
on B2R(y0) × [−ε0, ε0] for a given R > 0 and a given ε0 > 0. Then, there exists a constant
H0 such that for all ε and N ≥ 1 with H = Nε ≤ H0,

∥
∥∂p+1

ε ϕN
ε

∥
∥
R
≤ CNp+1,

∥
∥
∥∂

p+1
H ϕN

H/N

∥
∥
∥
R
≤ C, (22)

where C is independent of N and ε.

Proof. For ỹ0 ∈ BR(y0) and denoting M := sup|ε|≤ε0 ‖Θε‖2R, we have

‖ϕN
ε (ỹ0)− y0‖ ≤

N∑

k=1

‖ϕk
ε(ỹ0)− ϕk−1

ε (ỹ0)‖+ ‖ỹ0 − y0‖ ≤ R+NεM

as long as the iterates ϕi
ε(ỹ0) and ϕi

ε(y0) remain in B2R(y0) for 0 ≤ i ≤ N . Hence, if
Nε ≤ H0 := min(R/M, ε0) then ‖ϕk

ε‖R ≤ 2R for all k = 0, . . . , N . Under this assumption,
we now wish to prove by induction on n, that

∀n = 1, . . . , p+ 1,
∥
∥∂nε ϕ

N
ε

∥
∥
R
≤ CnN

n (23)

for some constants Cn independent of N, ε. Now, given a smooth function g : B2R(y0) → R
d

of class Cp+1, Faà di Bruno’s formula reads

∂kε (g ◦ ϕ
N
ε ) =

∑

m∈Nk, σ(m)=k

Bm g(|m|) ◦ ϕN
ε

(

(∂1εϕ
N
ε )m1 , . . . , (∂kεϕ

N
ε )mk

)

where the sum is over all multi-indices m = (m1, . . . ,mk) of Nk such that k = σ(m) :=
∑k

j=1 jmj and where |m| denotes m1 + . . .+mk and

Bm =
k!

m1!1!m1 · · ·mk!k!mk
.

We now use the differentiation formula

∂nε (ϕε ◦ ϕ
N
ε ) =

n∑

k=0

n!

k!(n− k)!
∂kε (∂

(n−k)
µ ϕµ ◦ ϕN

ε )
∣
∣
∣
µ=ε

and take g = ∂
(n−k)
µ ϕµ

∣
∣
∣
µ=ε

in Faa di Bruno’s formula. This yields

∂nε (ϕ
N+1
ε ) =

∑

0 ≤ k ≤ n,

m ∈ N
k, σ(m) = k

n!

k!(n− k)!
Bm

(

∂|m|
y ∂n−k

ε ϕε

)

◦ ϕN
ε

(

(∂1εϕ
N
ε )m1 , . . . , (∂nε ϕ

N
ε )mn

)

11



Hence, using the induction assumption, we get the estimates

∥
∥∂nε ϕ

N+1
ε

∥
∥
R

≤ ‖∂nε ϕε‖2R +
∑

1 ≤ k ≤ n − 1,

m ∈ N
k, σ(m) = k

n!

k!(n− k)!
Bm ‖∂|m|

y ∂n−k
ε ϕε‖2R

k∏

j=1

‖∂jεϕ
N
ε ‖

mj

R

+
∑

m ∈ N
n, σ(m) = n,mn = 0

Bm ‖∂|m|
y ϕε‖2R

n∏

j=1

‖∂jεϕ
N
ε ‖

mj

R + ‖∂yϕε‖2R‖∂
n
ε ϕ

N
ε ‖R

≤ K +KC̃n

n−1∑

k=1

Nk + εnĈnLN
n + (1 + εL)‖∂nε ϕ

N
ε ‖R

≤ nKC̃n(N + 1)n−1 + nĈnLH0N
n−1 + (1 + εL)‖∂nε ϕ

N
ε ‖R

≤ C̄n(N + 1)n−1 + (1 + εL)‖∂nε ϕ
N
ε ‖R

where the constants C̃n and Ĉn are defined as

C̃n = max
k=1,...,n−1

∑

m ∈ N
k

σ(m) = k

Bm

k∏

j=1

C
mj

j and Ĉn =
∑

m ∈ N
n−1

σ(m) = n

Bm

n−1∏

j=1

C
mj

j

and C̄n = nmax(K,KC̃n, ĈnLH0). Finally, using a standard discrete Gronwall lemma and
H = Nε ≤ H0 yields

‖∂nε (ϕ
N
ε )‖R ≤ C̄n

N∑

k=1

(1 + εL)N−kkn−1 ≤ C̄nN
neLεN ≤ C̄nN

neLH0

which allows to conclude the proof of the first estimate in (22) by choosing Cn = C̄ne
LH0 in

(23). The second estimate is straightforwardly obtained through a change of variables. �

We may now state the main result for the local error of the semi-discrete MRCM (7).

Theorem 2.7. Consider a semi-discrete MRCM (7) and assume further that its coefficients
αi(N), βi(N), i = 1, . . . , s are bounded with respect to N for all N ≥ N0 and satisfy

a(τ) = eN (τ), for all τ ∈ H with ‖τ‖ ≤ p, (24)

for a given order p ≥ 1. Then, for all H ≤ H0, N ≥ N0,

‖ΨN,H − (ϕε)
N‖R ≤ CHp+1

where H = Nε and the constant C is independent of N, ε.

Proof. Consider the two B∞-series B∞(a,H, y) and B∞(eN , H, y) associated respectively to
the semi-discrete MRCM (7) and to ϕN

H/N (y) in (21). It follows from Theorem 2.3 that these

B∞-series formally coincide up to order Hp. A Taylor expansion of ΨH(y) − (ϕH/N )N (y)
with integral remainder thus leads to

ΨN,H(y)− (ϕH/N )N (y) =

∫ H

0

1

p!
(H − s)p

∂p+1Ψs

∂sp+1
(y)ds−

∫ H

0

1

p!
(H − s)p

∂p+1ϕN
s/N

∂sp+1
(y) ds.

12



The derivative
∂p+1ϕN

s/N

∂sp+1 is bounded by Lemma 2.6. Given that coefficients αj , βj are uniformly

bounded with respect to N , ∂p+1Ψs
∂sp+1 is bounded as well. We conclude using (ϕH/N )N (y) =

(ϕε)
N (y). �

We report in Table 1 order conditions up to order 5 as derived above. Note that Lemma 2.4
implies (by induction) that the value of N‖τ‖eN (τ) is independent of the labels of the nodes
of a given tree τ ∈ T∞. This explains why similar right-hand sides eN (τ) are obtained for
trees where only labels differ. An immediate consequence of Proposition 2.5 is the following
remark.

Remark 2.8. Notice that for N → ∞, the order conditions (24) reduce reduce to the classical
order conditions of standard composition methods (18) for the approximation of the flow of
( (3)).

2.3 Fully-discrete error analysis

In this subsection, we derive convergence estimates for fully-discrete MRCMs (16). We high-
light once again that this is essential in view of applications because the exact computation
of the map ϕε is not available in general and has to be approximated by a map Φh,ε.

Theorem 2.9. Assume that the hypotheses of Theorem 2.7 are fulfilled. Consider a fully-
discrete MRCM (16) where the basic map Φh,ε is assumed to satisfy the accuracy estimate
(15) for given q and r. Then

‖ΨN,H,h − (ϕε)
N‖R ≤ C(Hp+1 +Hrhq)

where H = Nε, h ≤ ε and the constant C is independent of N, ε,H, h.

As a consequence of Theorem 2.9, by standard arguments in the convergence analysis
of one-step integrators, one gets a global error estimate for the numerical approximations
ym = ΨN,H,h(ym−1) of problem (9) of the form

ym − y(mH) = O(Hp +Hr−1hq) for mH ≤ T.

For the proof of Theorem 2.9, we recall the following classical discrete Gronwall estimate.

Lemma 2.10. Let (φj , ψj), j = 1, . . . , k, be k couples of maps satisfying for ρ, ν > 0

‖φj(y)− ψj(y)‖ ≤ ρ, ‖φj(y1)− φj(y2)‖ ≤ (1 + ν)‖y1 − y2‖,

for all j = 1, . . . , k and all y, y1, y2. Then,

‖φk ◦ · · · ◦ φ1(y)− ψk ◦ · · · ◦ ψ1(y)‖ ≤ eνkkρ.

Proof. Let aj = φk ◦ · · · ◦ φk−j+1, bj = ψj ◦ · · · ◦ ψ1. We have

ak(y)− bk(y) =
k−1∑

j=0

ak−j−1 ◦ φj+1 ◦ bj(y)− ak−j−1 ◦ ψj ◦ bj(y)

‖ak(y)− bk(y)‖ ≤
k−1∑

j=0

(1 + ν)k−j−1‖φj+1 ◦ bj(y)− ψj+1 ◦ bj(y)‖ ≤ keνkρ

where we used the estimate
∑k−1

j=0(1 + ν)k−j−1 ≤
∑k−1

j=0 e
j
k
νk ≤ k

∫ 1
0 e

νktdt ≤ keνk. �
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Proof of Theorem 2.9. We use the estimate

‖ΨN,H,h − (ϕε)
N‖R ≤ ‖ΨN,H,h −ΨN,H‖R + ‖ΨN,H − (ϕε)

N‖R

From Theorem 2.7, we have ‖ΨN,H − (ϕε)
N‖R ≤ CHp+1. The next estimate

‖ΨN,H,h −ΨN,H‖R ≤ CHrhq

is a consequence of Lemma 2.10 with k = 2s, ρ = CHrhq (using (15) with ε replaced by
αj(N)H and βj(N)H), ν = O(ε) being a Lipsitz constant for the near-identity map ϕε, and
φ2j−1 = ϕαj(N)H , φ2j = ϕ∗

βj(N)H , ψ2j−1 = Φh,αj(N)H , ψ2j = Φ∗
h,βj(N)H . �

3 Effective construction of MRCMs

The simplest method of order 1 is obtained simplify for s = 1, α1 = 1, β1 = 0 in (18),

ϕH(y) = ϕN
ε (y) +O(H2).

For order 2, there exist a unique solution with s = 1, given by α1 = (1 + N−1)/2 and
β1 = (1−N−1)/2,

ϕα1H ◦ ϕ−1
−β1H

(y) = ϕ(H+ε)/2 ◦ ϕ
−1
−(H−ε)/2(y) = ϕN

ε (y) +O(H3).

For order 3, there do not exist real solutions with s = 2. We directly consider order 4, for
which there are 7 order conditions to be satisfied. It turns out that there exists a family
of solutions with s = 3, i.e. with only 6 free parameters αj , βj . We consider the following
solution for N = ∞ given by with

α1 = β1 = α3 = β3 =
1

4− 2 · 21/3
, α2 = β2 =

1

2
− 2α1.

The idea is then to set δ = 1/N and to search for continuous function αj(δ
−1), βj(δ

−1) defined
for δ ∈ [0, N−1

0 ] and which coincide with the above coefficients for δ = 0. This calculation is
made by a continuation method.

However, it is known that for standard composition methods (N = ∞), the composition
methods with minimal number of compositions are not the most efficient in general. We thus
increment the parameter s and construct a family of MRCMs of order p = 4 with s = 4 where
we choose to minimize the sum of the squares of the coefficients. This yields the following
optimization problem with constraints: find δ 7→ (αi(δ

−1), βi(δ
−1)), i = 1, . . . , s minimizing

∑s
k=1(αk(δ

−1)2 + βk(δ
−1)2) and fulfilling the order conditions up to order p. This is done

using a standard optimization package. For a practical implementation, we consider a set
of K = 33 Chebyshev points δk, k = 1, . . . ,K sampling the interval [0, N−1

0 ] and for which
we compute the corresponding coefficients αk(δ

−1
i ), βk(δ

−1
i ), k = 1, . . . , k. This calculation is

made once for all and stored. We then use Chebyshev interpolation to recover the coefficients
αi, βi for any value of δ = 1/N ∈ [0, N−1

0 ]. The number K of sample points has been chosen
to guaranty that the Chebyshev interpolation error is smaller than the machine precision.
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Remark 3.1. Notice that multi-revolution composition methods with complex coefficients can
also be considered (see [6, 16] in the context of standard composition methods). For instance,
the fourth order conditions to achieve order 3 for a multi-revolution composition method have
a complex solution for s = 2, given for all N ≥ 2 by:

α1(N) = α2(N) =
1

4
+

1

2N
+ i

√

3− 12/N2

12
, β1(N) = β2(N) =

1

4
−

1

2N
+ i

√

3− 12/N2

12
.

4 Numerical experiments

The aim of this part is to obtain a numerical confirmation of the orders of convergence
given above and to demonstrate the efficiency of MRCMs. The first problem, which is a
modification of the Fermi-Pasta-Ulam problem [12], is directly of the form (9) and serves
classically in the literature as a test problem to measure the error behavior of the various
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Figure 1: Problem (25) with η = 2−12 and initial conditions (27). Errors of multi-revolution
composition methods at time t = 2π as functions of the number of evaluations of ϕµ (for
many values of the parameter N). Methods of orders 1 (circles), 2 (stars), 4 (s = 3 with
white squares), 4 (s = 4 with black squares).
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methods for integrating single-frequency highly oscillatory systems. The second test problem
is borrowed from the PDE literature and requires to be discretized with a spectral method:
we aim with this example at illustrating the qualitative properties of MRCMs.

4.1 A Fermi-Pasta-Ulam like problem

In this subsection, we consider a problem taken from [15], which is a single-frequency mod-
ification of the Fermi-Pasta-Ulam problem often used to test methods for highly-oscillatory
problem. Its Hamiltonian function is given by

Eη(p, q) =
1

2

6∑

i=1

p2i +
1

2η2

6∑

i=4

q2i + V (q), (25)

with the quartic interaction potential

V (q) =
1

4
((q1 − q4)

4 + (q2 − q5 − q1 − q4)
4 + (q3 − q6 − q2 − q5)

4 + (q3 + q6)
4),

where η > 0 is a small parameter.
In order to apply our MRCMs to that problem, we first rewrite the original Hamiltonian

system into the format (9): we consider the family of Hamiltonian systems depending on the
parameters ε, η > 0 given as

Hε,η(p, q) =
2π

ε
Fη(p, q) + 2π S(p, q), (26)

where

Fη(p, q) =
η

2

6∑

i=4

p2i +
1

2η

6∑

i=4

q2i and S(p, q) =
1

2

3∑

i=1

p2i + V (q).

Obviously, the original Hamiltonian system is recovered by considering ε = 2πη, that is

Eη(p, q) = H2πη,η(p, q).

One can readily check that, for each fixed value of η, the family of Hamiltonian systems
corresponding to the Hamiltonian functions (26) are of the form (9), with a 12 × 12 matrix
A having 2πi, −2πi, and 0 as the only eigenvalues. For a given value of η > 0, we consider
the family of near-to-identity maps ϕε defined as the flow with time ε of the Hamiltonian
system associated to the Hamiltonian function (26). Then, the solutions y(t) = (p(t), q(t))
of the original Hamiltonian problem at times t = 2πηM for integer values of M are such
that y(2πηM) = ϕM

2πη(y(0)). Hence, the solution y(t) = (p(t), q(t)) with a given initial value
y(0) = y0 can be approximated at multiples tm = mH of H = 2πηN as y(tm) ≈ Ψm

H,h(y0),
where ΨH,h is a fully-discrete MRCM (16) based on some computable approximation Φµ,h of
ϕµ.

Recall that ϕµ is the flow with time 1 associated to the Hamiltonian function µHµ,η(p, q),
so that a convenient choice of Φµ,h may be the composition of n steps of step-size h = 1/n of
a splitting method applied to the splitting into fast and slow contributions

2π Fη(p, q; η) + 2πµS(p, q)
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of the Hamiltonian µHµ,η(p, q) (so that each period of the fast term are covered with n steps
of the splitting method). In all the numerical experiments we present for that example, we
have considered the second order Strang splitting method iterated n times with constant
stepsize h = 1/n for the definition of the basic map Φε,h in the fully-discrete MRCMs (16).
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Error in energy with η = 2−16
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Figure 2: Problem (25) for different values of η and initial conditions (27). Errors in energy
at time t = 2π versus number of evaluations of ϕµ. Methods of orders 1 (circles), 2 (stars),
4 (s = 3 with white squares), 4 (s = 4 with black squares).

We have integrated the problem for different values of η with initial conditions

q(0) = (1, 0, 0, η, 0, 0)T , p(0) = (1, 0, 0, 1, 0, 0)T (27)

with the fully-discrete versions of the MRCMs obtained in Section (3) over η−2 periods of
the stiff springs (that is, for a time interval of length T = 2πη−1). We compute the errors
in positions and momenta by comparing the results with a “reference solution” computed
very accurately using the Deuflhard method (see e.g. [15]) with a very small constant step
size. In Figure 1, the global errors at time t = 2π for the components q1, q2, p1, p2 versus the
number of evaluations of the map ϕµ (computed with a high accuracy) are displayed for the
case η = 2−12. We consider the semi-discrete MRCMs of orders 1, 2, 4 for many values of
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the parameter N . We observe the expected lines of slope 1,2,4. Notice that the MRCM of
order 4 with s = 4 (black squares) has a better accuracy compared to the one with minimum
value s = 3 (white squares), as predicted in Section 3. The vertical dotted lines indicate the
cost “fnc evals” = N of the naive computation ϕN

η , for which the computational advantage
of MRCMs vanishes.

Analogously, in Figure 2, the error in energy is displayed for the cases η = 2−j for
j = 10, 12, 14, 16. This numerical experiment illustrates the uniform accuracy and robustness
with respect to the oscillatory parameter of MRCMs.

In Figure 3, the error in energy of the approximation obtained with the fully-discrete
MRCM of order 4 (s = 4) versus the number of evaluations of Φε,h is displayed for different
values of the micro-step h = 1/n where n is the number of steps of the Strang splitting
for evaluating Φε,h. Here, the vertical dotted lines in all figures corresponds to N = η−1

evaluations per macro-step which corresponds to effectively computing ϕN
ε (or ΦN

µ,h) instead
of applying an s-stage MRCM requiring 2s evaluations of the basic map Φµ,h ≈ ϕµ. This
experiment illustrates that simultaneous refinements of the macro and micro stepsizes H,h
is needed for fully-discrete MRCMs to converge, as predicted by Theorem 2.9.
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Figure 3: Multi-revolution method of order 4 (s = 4) for the Hamiltonian (25) with η = 2−12.
Error in energy in the multi-revolution approximation versus number of evaluations of Φε,h

approximating ϕε (final time t = 2π). The lines correspond respectively to h = 1/n =
2−j−1, j = 1, . . . , 7 (from top to bottom).

Finally, in Figure 4, we plot, for η = 2−12, the evolutions of the stiff spring energies

Ij =
1

2
p23+j +

1

2η2
q23+j , j = 1, 2, 3,

the adiabatic invariant I = I1 + I2 + I3 and the energy Eη(p, q) − 0.7 η on a time interval
of length T = 2πη−1 for η = 2−12. We observe excellent energy conservation and energy
exchanges for the MRCM methods of orders 1, 2, 4 compared to the reference solution. This
reference solution is computed with the standard Deuflhard method with constant step size
h = η, totalizing about 1.1 · 108 steps (recall that a stepsize h comparable to the oscillatory
period is needed for standard highly oscillatory integrators). In comparison, notice that
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the total number of micro steps (Strang splitting) for each of the considered MRCMs is
2snTη−1N−1 ≃ 1.0 · 106, which identical in all cases due to the chosen parameters N,n
and the stage number s of the MRCMs. What is striking in this experiment is that the
multi-revolution composition approach yields satisfactory solutions with a computational
cost reduced by two orders of magnitude compared to the standard reference integrator.
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MRCM of order 4 (N = 256, n = 4)

Figure 4: FPU-like problem (25) with η = 2−12. Energy exchanges on the time interval
(0, 2πη−1). Multi-revolution methods of orders 1, 2, 4. Reference solution computed with
constant stepsize h = η by the standard Deuflhard method.

Remark 4.1. We have applied our MRCMs to the Hamiltonian Eη(p, q) in (25), by con-
sidering for each value of η, a system of the form (9) that reduces to the original problem
when ε = 2πη. This way, all the considerations made in the introduction for the application
of MRCMs to systems of the form (9) apply directly to that case. Note that the considered
family of near-to-identity ϕε is different (although we do not reflect it in the notation) for
each particular value of η.

This is not however the only way to use MRCMs for the numerical integration of that
Hamiltonian problem. For instance, the near-to-identity map ϕε could simply be defined as the
flow with time 2πε of the Hamiltonian function Eε(p, q), in which case the convergence theory
in Section 2 would also apply. This approach may seem attractive because the map ϕε becomes
symmetric with respect to ε (i.e. ϕε ◦ ϕ−ε(y) = y) which would simplify considerably the
order conditions (similarly to the case of standard composition methods based on a symmetric
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Figure 5: Nonlinear Schrödinger problem (12) with ε = 10−4 on the time interval (0, 2πε−1).
Plot of the actions |ξj(t)|, for j = 1, 3, 5 (solid lines) and for j = −1,−3,−5 (dotted lines)
with colors red (|j| = 1), brown (|j| = 3), black (|j| = 5). The micro stepsize is h = 2π/n
with n = 100.

basic integrator). However, our numerical tests applied to (25) and similar to Fermi-Pasta-
Ulam like problems indicate poor performances of the derived methods on time intervals of
size O(ε−1). This seems to be related to the fact that the first order averaged ODE (3)
corresponding to that particular choice of ϕε has unbounded solutions.

4.2 Application to the cubic nonlinear Schrödinger equation

In what follows, we consider the nonlinear Schrödinger problem (12) considered in [7] and
originally analyzed by B. Grébert and C. Villegas-Blas in [14]. The following nonlinear
phenomenon is analysed in [14] and restated in the following Theorem.

Theorem 4.2. Consider the Fourier expansion u(t, x) =
∑

k∈Z ξk(t)e
ikx of the solution of

(12). For all ε small enough, one has for all |t| ≤ ε−9/8 the following estimates:

|ξ1(t)|
2 =

1 + sin(2εt)

2
+O(ε1/8),

|ξ−1(t)|
2 =

1− sin(2εt)

2
+O(ε1/8).
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These estimates imply that the energy remains essentially concentrated in Fourier modes
+1 and −1 and that modes +1 and −1 exchange their energy periodically (with period π/ε).
This effect is named “beating effect” in [14]. Another interesting part of the dynamics of this
system concerns the modes 3 and −3 whose energies scale like ε2 and may be regarded for
this reason as a “finer” component of the dynamics.
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Figure 6: Nonlinear Schrödinger problem (12) with ε = 10−4 on the time interval (0, 20πε−1).
Left pictures: actions |ξj(t)|, for j = 1, 3, 5 (solid lines) and for j = −1,−3,−5 (dotted lines)
with colors red (|j| = 1), brown (|j| = 3), black (|j| = 5). Right pictures: corresponding
Hamiltonian errors. The micro stepsize is h = 2π/n with n = 100.

We have applied our MRCMs to (12) as indicated in Section 1, using the Strang splitting
method with step size h = 2π/100 as the micro-integrator Φµ,h. All MRCMs capture the
beating effect whereas only methods of order 2 with moderate N and of order 4 with possibly
larger N provide satisfactory approximation of modes +3 and −3. These facts can be clearly
observed in Figure 5 which have been obtained by simulating equation (12) on the time
interval (0, 2πε−1) with composition methods of orders 2 (s = 1) and 4 (s = 4): we have
represented in logarithmic scale the modes |ξj | for j = ±1, ±3, ±5, ±7 (notice that the even
modes ξ2j , j ≥ 0 are zero). Here, we consider a spectral Fourier discretization with modes
ξj , j = −64, . . . , 64. Modes ±1 are of order O(1) and the beating effect is well-reproduced by
all methods. The energy (thick blue line at the top) is well conserved again by all methods.
Modes ±3 are of order O(ε), i.e. |ξ±3|

2 = O(ε2), and are well-captured for the second-
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order MRCM with moderate values of N or with the fourth-order MRCM with N = 100.
Although we do not give here theoretical error estimates for PDEs, the qualitative behavior
of the dynamics of equation (12) is clearly well reproduced for a computational cost that is
significantly smaller as compared to Strang splitting by its own. Here, for ε = 10−4, the cost
is reduced by a factor 10 for the second-order MRCM and by a factor 16 for the fourth-order
MRCM. In Figure 6, we further investigate the behavior of the methods on a time interval
ten times larger. We observe that the beating effect is still well captured (left pictures, while
an excellent energy conservation (without drift) can be observed (right pictures).
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134, 2011.

[15] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of
Springer Series in Computational Mathematics. Springer, Heidelberg, 2010. Structure-
preserving algorithms for ordinary differential equations, Reprint of the second (2006)
edition.

[16] E. Hansen and A. Ostermann. High order splitting methods for analytic semigroups
exist. BIT, 49(3):527–542, 2009.

[17] S. Jin. Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equa-
tions. SIAM J. Sci. Comput., 21(2):441–454, 1999.

[18] U. Kirchgraber. An ODE-solver based on the method of averaging. Numer. Math.,
53(6):621–652, 1988.

[19] M. Lemou and L. Mieussens. A new asymptotic preserving scheme based on micro-macro
formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput.,
31(1):334–368, 2008.

[20] R. I. McLachlan. Composition methods in the presence of small parameters. BIT,
35:258–268, 1995.

[21] R. I. McLachlan. On the numerical integration of ordinary differential equations by
symmetric composition methods. SIAM J. Sci. Comput., 16:151–168, 1995.

[22] R. I. McLachlan and G. R. W. Quispel. Splitting methods. Acta Numerica, 11:341–434,
2002.

[23] B. Melendo and M. Palacios. A new approach to the construction of multirevolution
methods and their implementation. Appl. Numer. Math., 23(2):259–274, 1997.

[24] A. Murua and J. M. Sanz-Serna. Order conditions for numerical integrators obtained by
composing simpler integrators. Philos. Trans. Royal Soc. London ser. A, 357:1079–1100,
1999.

[25] L. R. Petzold, L. O. Jay, and J. Yen. Numerical solution of highly oscillatory ordinary
differential equations. In Acta numerica, 1997, volume 6 of Acta Numer., pages 437–483.
Cambridge Univ. Press, Cambridge, 1997.

[26] J. Sanders, F. Verhulst, and J. Murdock. Averaging methods in nonlinear dynamical
systems. Springer, New York, second edition, 2007.

23


