Multi-revolution composition methods for highly oscillatory differential equations - Archive ouverte HAL
Article Dans Une Revue Numerische Mathematik Année : 2014

Multi-revolution composition methods for highly oscillatory differential equations

Résumé

We introduce a new class of multi-revolution composition methods (MRCM) for the approximation of the $N$th-iterate of a given near-identity map. When applied to the numerical integration of highly oscillatory systems of differential equations, the technique benefits from the properties of standard composition methods: it is intrinsically geometric and well-suited for Hamiltonian or divergence-free equations for instance. We prove error estimates with error constants that are independent of the oscillatory frequency. Numerical experiments, in particular for the nonlinear Schrödinger equation, illustrate the theoretical results, as well as the efficiency and versatility of the methods.
Fichier principal
Vignette du fichier
paper_mrcm.pdf (680.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00796581 , version 1 (04-03-2013)
hal-00796581 , version 2 (08-11-2013)

Identifiants

Citer

Philippe Chartier, Joseba Makazaga, Ander Murua, Gilles Vilmart. Multi-revolution composition methods for highly oscillatory differential equations. Numerische Mathematik, 2014, 128 (1), pp.167-192. ⟨10.1007/s00211-013-0602-0⟩. ⟨hal-00796581v2⟩
332 Consultations
180 Téléchargements

Altmetric

Partager

More